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Abstract 

The terrestrial planets are depleted in volatile elements with respect to chondritic meteorites, 

their possible building blocks. However, the timing, extent and origin of volatile depletion is 

debated. Zinc is a moderately volatile element (MVE), whose stable isotopic composition can 

distinguish when and where this depletion took place. Here, we report data for 40 ultramafic 

rocks comprising pristine upper mantle peridotites from the Balmuccia orogenic lhezolite 

massif and Archean komatiites that together define the Zn isotope composition of the Earth’s 

primitive mantle. Peridotites and komatiites are shown to have indistinguishable Zn isotopic 

compositions of δ66Zn = +0.16±0.06‰ (2SD), (with δ66Zn the per mille deviation of 66Zn/64Zn 

from the JMC-Lyon standard), implying a constant Zn isotope composition for the silicate 

Earth since 3.5 Ga. After accounting for Zn sequestration during core formation, the Earth falls 

on the volatile-depleted end of a carbonaceous chondrite array, implying Earth avoided 

modification of its MVE budgets during late accretion (e.g., during a giant impact), in contrast 

to the Moon. The Moon deviates from the chondritic array in a manner consistent with 

evaporative loss of Zn, where its δ66Zn co-varies with Mn/Na, implying post-nebular volatile 

loss is more pronounced on smaller bodies. Should the giant impact deliver the Earth’s volatile 

complement of Pb and Ag, it cannot account for the budget of lithophile MVEs (e.g., Zn, Rb, 

Mn), whose abundances reflect those of Earth’s nebular building blocks. The Earth initially 

accreted from material that experienced chemical- and mass-dependent isotopic fractionation 

akin to carbonaceous chondrites, though volatile depletion was more pronounced on Earth. 

Word count: 7504 
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1.0. Introduction 

In comparison with the Sun and CI chondrites, the Bulk Silicate Earth (BSE) is depleted in 

moderately volatile elements (MVEs), normalised to the main constituents of the rocky planets, 

Fe, Mg and Si. Moderately volatile elements condense from a gas of solar composition at 

temperatures below those of the main constituents, assuming thermodynamic equilibrium and 

pressures of 10-4 bar (Lodders, 2003), and, are variably depleted in most chondrites compared 

to CI chondrites (Wasson and Kallemeyn, 1988). Since CI chondrites have elemental 

abundances, save for the most volatile, H, C, N, O and the noble gases, that match those of the 

Sun, they represent a default baseline from which the degree of volatile depletion may be 

quantified. This is achieved by normalising the abundance of a given MVE to a lithophile 

element that behaves in a nominally refractory manner (here, Mg), divided by the same ratio 

in CI chondrites, defining a depletion factor, (MVE/Mg)/(MVE/Mg)CI. The pattern of MVE 

depletion in the Earth is different to that in any kind of meteorite, either chondritic or 

achondritic (O’Neill and Palme, 2008).  

The dual siderophile and/or chalcophile character of many MVEs creates ambiguity as to 

whether MVE depletion in the terrestrial planets arose from core formation or volatility (Wood 

and Halliday, 2010; Ballhaus et al., 2013). Furthermore, this net depletion on Earth, as in other 

rocky planets, is the sum of two distinct processes: those responsible for MVE depletions in 

chondrites (nebular; e.g. Humayun and Cassen, 2000), upon which are superimposed volatile 

transfer mechanisms during the late stages of accretion (post-nebular; e.g. O’Neill and Palme, 

2008). These post-nebular processes must occur at different thermodynamic conditions to those 

extant in the solar nebula, and thus give rise to elemental and isotopic fractionation that is not 

observed in chondrites. For example, the superchondritic Mn/Na ratios inferred for small 

telluric bodies (though notably not the Earth) likely reflect evaporation and loss of vapour 

under oxidising conditions (O’Neill and Palme, 2008). Moreover, the enrichment in the heavier 

Mg isotopes of the Earth (Hin et al., 2017) compared to most chondrites groups has been taken 

as empirical evidence for post-nebular volatile loss on Earth. Nevertheless, these processes 

remain poorly understood and thus conjecture abounds as to whether the Earth acquired its 

complement of volatile elements at an early (Halliday and Porcelli, 2001) or late stage 

(Schönbächler et al., 2010; Albarede et al., 2013) and whether chondritic meteorites are suitable 

analogues for its composition. 
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The monovalent and lithophile element Zn, with its simple geochemistry during igneous 

differentiation, is an ideal element for detecting volatile delivery or loss during planetary 

accretion (Day and Moynier, 2014). The cosmochemical utility of Zn lies in its ability to track 

interactions between gaseous species and condensed phases (liquid/solid), by virtue of its low 

half-condensation temperature (TC); 726 K (Lodders, 2003). Zinc isotope fractionation may 

arise from evaporation of condensed Zn hosted in silicates to Zn0 (the stable gas phase; 

Lamoreaux et al., 1987), and is associated with mass-dependent, heavy isotope enrichment in 

the residue, be it at equilibrium or via kinetic processes. However, which end-member scenario 

characterises volatile loss during planetary formation, remains unconstrained, despite the fact 

that these processes may be distinguished by their stable isotope signatures. Namely, 

equilibrium isotope fractionation of Zn between condensed phase(s) and gas is smaller, 

especially at high temperatures (the 66Zn/64Zn fractionation factor between ZnO(s) and Zn0
(g) is 

0.31‰×106/T2; Ducher et al., 2016), than kinetically-driven vapour loss into a vacuum which 

is temperature-independent and scales with the inverse square root of the masses of the two 

evaporating isotopes (cf. Richter et al., 2002). The low Zn abundance of lunar mare basalts and 

highland rocks, coupled with their enriched δ66Zn composition (≈1.4‰, Paniello et al., 2012; 

Kato et al., 2015) is consistent with evaporative loss, likely following degassing of a magma 

ocean or the Moon-forming giant impact. By contrast, the different classes of carbonaceous 

chondrites show only a small range in δ66Zn, ≈0.3‰, where δ66Zn decreases with Zn/Mg, the 

opposite to that expected from volatilisation and is interpreted as reflecting two-component 

mixing in the solar nebula (Luck et al., 2005; Pringle et al., 2017). The position of Earth in the 

context of these reservoirs may serve in discerning when and where volatile depletion occurred.  

Here, we present new Zn isotope data for terrestrial peridotites and komatiites. Combined, these 

data allow assessment of the primitive mantles Zn isotope composition, representative of the 

BSE. Accurate determination of these values is contingent upon selecting representative 

samples, since stable isotopes can fractionate during core formation, partial melting, and 

igneous differentiation. Therefore, we analysed fresh, unmetasomatised peridotite samples, 

from depleted dunites to fertile lherzolites and pyroxenites, from the orogenic massif 

Balmuccia, Italy (Hartmann and Wedepohl, 1993) emplaced in the lower crust prior to 285 Ma 

and likely at 453±35 Ma (Obermiller, 1994), representing contemporary upper mantle. These 

samples are complemented by komatiites sourced from four different cratons with ages ranging 

from 3.5-2.7 Ga, representing high-degree partial melts of mantle sourced from plumes (Sossi 

et al., 2016a). Together, they constrain the zinc isotope composition of the Earth’s mantle 
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through space and time, from 3.5 Ga to present. Allowing for the effect of core formation, the 

MVE history of Earth is contrasted against chondritic meteorites, which act as a suitable 

starting point to discern between nebular and post-nebular fractionation. 

2.0. Samples 

Peridotites from the Balmuccia Orogenic Lherzolite Massif, Ivrea Zone, NW Italy 

Peridotitic and pyroxenitic ultramafic samples come from a single massif, the ≈4.5 km long, 

0.5 km wide Balmuccia orogenic lherzolite (Shervais and Mukasa, 1991) affording a snapshot 

of mantle processes preserved in time. The suitability of these rocks for helping constrain the 

zinc isotope composition of the Earth’s mantle also lies in their pristine nature. Lherzolites, 

which comprise the bulk of the massif, are fertile (≈13% clinopyroxene), fresh (negative loss-

on-ignition) and unmetasomatised (Hartmann and Wedepohl, 1993). Petrographic descriptions, 

mineral chemistry and an overview of the tectonic history and geological setting of the samples 

used in this work can be found in Shervais and Mukasa (1991). Samples were collected at the 

same location as in the aforementioned studies, along the river that bisects the massif at its 

southern tip, and hence are directly comparable petrologically.  

For this work, the samples are subdivided, based on their whole rock chemistry, as a) normal 

lherzolites (38.5 – 40.5 % MgO), b) depleted lherzolites (40.5 – 43.5 % MgO) and c) dunites 

(> 46 % MgO). Normal lherzolites are representative of the initial composition of the massif, 

and, with 39.3±0.5 wt% MgO and Mg# = 0.895, they are residues of 8±2 % fractional melting 

of a primitive mantle source of Palme and O’Neill (2014) (Sossi and O’Neill, in prep.). 

Progressive increase in MgO reflects a decrease in modal clinopyroxene, owing to partial 

fusion and its segregation into pyroxenite veins. Pyroxenites fall into two suites; the Chrome-

Diopside and Aluminium-Augite types. The former are consistent with local mobilisation of 

clinopyroxene from the adjacent lherzolites, and therefore have similar petrological 

characteristics (e.g. Rivalenti et al., 1995). By contrast, the Al-Aug suite rocks are more 

evolved clinopyroxene-spinel crystal cumulates from a low-degree melt derived from a 

composition similar to the Balmuccia lherzolite. Dunites are often found adjacent to Chrome-

Diopside pyroxenite segregations, and are residues of pyroxene removal and melt infiltration 

(Mazzucchelli et al., 2008). 

Komatiites 

The petrogenesis and geochemistry of the komatiites and komatiitic basalts in this work are 

described in Sossi et al. (2016a). A subset of these were analysed for their Zn isotope 
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composition, and come from 4 separate cratons; the Kaapvaal (3), the Superior (3), the 

Zimbabwe (2), and the Pilbara (5), and comprise both Aluminium-Depleted and Aluminium-

Undepleted komatiites (Nesbitt and Sun, 1979). Their eruptive ages range from 2.7 to 3.5 Ga, 

thereby representing not only a broad spatial, but a temporal cross-section of Archean 

magmatism. The samples are subdivided into petrological groups; the olivine cumulates (OCs), 

spinifex-textured komatiites (STKs), spinifex-textured basalts (STBs) and basalts (Bs). The 

spinifex-textured examples, owing to the quick cooling rates they experienced (Donaldson, 

1976), closely approximate primary liquids. 

3.0.Methods 

An important consideration in ensuring the fidelity of isotope analyses of ultramafic rocks is 

their complete dissolution, which is hindered by the presence of refractory chromite. Despite 

its low modal abundance in komatiites (<5%), the budget of Zn in chromite is significant due 

to its higher partition coefficient (𝐷𝑍𝑛
𝑀𝑖𝑛−𝑀𝑒𝑙𝑡 = 5.2; Davis et al. 2013) relative to ferromagnesian 

silicates (𝐷𝑍𝑛
𝑀𝑖𝑛−𝑀𝑒𝑙𝑡 ≤ 1). The difficulty of spinel breakdown (nearer the magnesiochromite 

end member, MgCr2O4 in these compositions) is proportional to its Cr#. Although Cr2O3 is 

resistant to digestion in HNO3-HCl-HF mixtures at ambient pressure and 130°C, its oxidised 

counterpart, Cr6+, is readily soluble (e.g., Sulcek and Povondra, 1989). To ensure quantitative 

digestion of chromite, 100 mg of powder was weighed in 3 mL Teflon beakers with 

concentrated HCl-HF-HNO3 at 1:0.5:0.2 and left to dissolve at ≈130°C. After drying-down, 

concentrated HNO3-HF (1:0.5) were added, and the samples placed inside 20 mL FEP Teflon 

vessels and inserted into steel bombs in an oven at ≈210°C for 7 days, sufficient to ensure 

complete dissolution of chromite. 

Samples were then evaporated whilst 0.5 mL volumes of 15 M HNO3 were added periodically 

to inhibit the formation of insoluble fluoride complexes. The samples were then dissolved in 6 

M HCl, dried down, and re-dissolved again in 1 mL 6 M HCl in preparation for column 

chromatography. The samples were processed on 1 mL of AG1-X8 (200-400 mesh) anion 

exchange resin in BioRad ® PolyPrep columns (Sossi et al., 2015). Briefly, this involves 

sample loading and Cu elution in 6 M HCl, before iron is removed by adding 0.5 M HCl. 

Finally, Zn is eluted in 3 M HNO3; only one pass through this column procedure was necessary 

to obtain purity sufficient for isotope analyses. The total Zn recovery is within uncertainty of 

100%. 
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After being evaporated completely as nitrates following addition of 15 M HNO3, the samples 

were dissolved in 2 mL 2% (0.317 M) HNO3 in readiness for mass spectrometric measurement. 

All solutions (samples and standards) were then diluted to 300 ppb, to which 300 ppb of Cu 

was added, to act as the external element for mass bias correction, as described in Sossi et al. 

(2015). Purified samples were run on a ThermoFinnigan Neptune Plus Multiple Collector 

Inductively-Coupled Plasma Mass Spectrometer (MC-ICP-MS) housed at the Research School 

of Earth Sciences, Australian National University and at the Institut de Physique du Globe de 

Paris (samples marked * in Table 1). Solutions were introduced via a glass nebuliser at 100 

µL/min into a Scott Double Pass-Cyclonic Spray Chamber, before passing through standard 

cones (H skimmer; normal sampler) and low resolution slits. Under these conditions, typical 

sensitivities were 21 V/ppm 65Cu and 10 V/ppm 64Zn, and Ni and Ti signals, which can form 

oxide-based interferences on Zn masses, were checked for each sample and were lower than 

10-3 V (62Ni), yielding 64Zn/64Ni > 10000, leading to corrections of <0.1‰ δ66Zn, and 10-2 V 

(48Ti), the limit required to prevent any resolvable effect of the 48Ti16O polyatomic interference 

on 64Zn (see Sossi et al., 2015). Each cycle consisted of a 1 s idle time of and an integration 

over the peak centre of 4.194 s, with forty per analysis. Under such conditions, the 

measurement repeatability was ± 0.02‰ (2SD) on the Ni-corrected 66Zn/64Zn ratio. Repeated 

running of standard rock powders through the entire procedure (dissolution, chromatography, 

mass spectrometry) reveal an external reproducibility of ±0.06‰ (2SD). Isotopic values are 

reported in delta notation relative to JMC-Lyon, [(6xZn/64Zn)sample/(
6xZn/64Zn)JMC-Lyon-1]*1000 

= δ6xZn, where x = 6 or 8. 

To ensure that the isotope data for the samples are accurate, three samples of known 

composition were run. The first, a pure solution standard (JMC-LMTG) was not processed 

through the columns, yielded a value of δ66Zn = -0.09±0.05‰ (n, number of samples = 3) 

relative to the JMC-Lyon standard, in agreement with previously reported values (-

0.11±0.05‰, n = 5; Sivry et al. 2008). In addition, the Allende CV3 chondrite, Hawaiian basalt 

BHVO-2 and serpentinised peridotite PCC-1 were also measured, yielding +0.21±0.04‰ (n = 

2), +0.28±0.06‰ (n = 2) and +0.27±0.08‰ (n = 2), respectively. Recent determinations of the 

δ66Zn of Allende (Pringle et al., 2017) yield 0.29±0.04‰, within uncertainty of the value 

reported here. It should be noted that some Calcium-Aluminium Rich Inclusions (CAIs), which 

comprise ~3% of Allende (Ebel et al. 2016) are enriched in the lighter isotopes of zinc (Luck 

et al., 2005; Kato and Moynier 2017) and may contribute to heterogeneity in the Zn isotope 

composition of Allende fragments. The BHVO-2 composition agrees with a compilation of 5 
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independent measurements that yield +0.28±0.04‰ (Sossi et al., 2015). Although PCC-1 best 

matches the Mg-rich matrices of the samples measured herein, only one other reported value 

exists in the literature, +0.21±0.10‰ (Makishima and Nakamura, 2013) that overlaps with our 

determination. Uncertainties quoted in Table 1 and elsewhere are 2×standard deviations of 

replicate measurements on the MC-ICP-MS, and if not available, the total procedural 

uncertainty (±0.06‰ 2SD). 

4.0. Results 

Zinc isotope compositions of all samples, along with pertinent geochemical data, are reported 

in Table 1. The 19 peridotites have 31.79 < MgO (wt%) < 48.38, including eleven normal 

lherzolites (38 < MgO (wt%) < 42), with an average δ66Zn=0.14±0.06‰ (Fig. 1a). The three 

depleted lherzolites and three dunites have indistinguishable averages of +0.13±0.05‰ and 

+0.14±0.06‰, indicating that all peridotitic lithologies in the massif are homogeneous with 

respect to zinc isotopes. This result, combined with the constancy of Zn contents (48±7 ppm; 

Table 1, Fig. 1b), despite marked changes in mineralogy, shows that zinc and its isotopes are 

evenly distributed throughout mantle phases, that is, 𝐾𝐷 𝑍𝑛
𝑚𝑖𝑛/𝑚𝑖𝑛

≈ 1. The three pyroxenite 

samples (MgO ≈20 wt%), however, are marginally heavier, and average δ66Zn = 0.21±0.04‰. 

Magnesia in komatiitic rocks ranges from 43.69 wt% in olivine cumulate sample 331/788 to 

4.05 wt% in sample 179/753, a differentiated basalt from the Coonterunah Subgroup (Fig. 1a). 

These two samples also define the minimum and maximum Zn contents s, between 22 to 178 

ppm, respectively and 331/788 is the lightest sample with δ66Zn = +0.04‰ and 331/778, a 

spinifex-textured basalt from the Komati formation the heaviest at +0.24‰, (Fig. 1b). Though 

none of the komatiite subgroups show a statistical difference from one another, a broad trend 

of increasing δ66Zn with falling MgO is apparent, similar to that observed for a co-genetic 

sequence of rocks from Kilauea Iki, Hawai’i (Chen et al., 2013). However, the basaltic samples 

(+0.22±0.04‰, n = 5) with 13.84 to 4.05 wt% MgO, are marginally heavier than spinifex-

textured komatiites (δ66Zn = 0.18±0.04‰, n = 11).  

The generally lighter isotope composition of ultramafic samples with respect to basalts is in 

accord with previously reported analyses of mantle peridotites. A marked contrast was found 

between fertile lherzolites from basalt-hosted off-craton peridotite xenoliths (δ66Zn = 

0.30±0.06‰, n = 11) and highly refractory kimberlite-hosted harzburgites with δ66Zn = 

0.14±0.06‰, n = 6 (Doucet et al., 2016). On the other hand, orogenic lherzolites from the North 
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China Craton are relatively homogeneous in composition, δ66Zn = 0.18±0.06‰, n = 25 (Wang 

et al., 2017) for a wide range of MgO and Zn contents, from 37.7 to 49.3 wt% and 58 to 35 

ppm, respectively. This lack of isotopic variation is also recorded in the Balmuccia massif.   

5.0.Discussion 

 

5.1. Disturbance of Zn in ultramafic rocks 

Petrographically, the peridotites of the Balmuccia massif are free of secondary alteration 

effects, indicated by the preservation of primary olivine and negative Loss-on-Ignition values 

(Hartmann and Wedepohl, 1993; Shervais and Mukasa, 1991). On the other hand, all Archean 

komatiites have experienced metamorphic retrogression by crustal fluids, which may have 

mobilised zinc. 

The fidelity of Zn concentrations in a series of differentiating rocks may be determined through 

normalisation of Zn to another element that behaves conservatively and is geochemically 

similar. This role is fulfilled by Fe, whose high concentration in komatiites (≈11 wt. % FeOT) 

and similar compatibility to that of Zn into olivine, near unity (e.g. Le Roux et al., 2010; Davis 

et al., 2013), render it an appropriate choice. Indeed, the observation that 𝐾𝐷(𝑜𝑙/𝑚𝑒𝑙𝑡)
𝑍𝑛/𝐹𝑒

 = 

0.92±0.07 (Le Roux et al., 2010) suggests that, if undisturbed, komatiitic rocks should lie on 

olivine control lines that produce near constant Zn/Fe ratios in evolving liquids. Samples that 

diverge markedly from constancy have therefore experienced secondary modification.  

Here, a simple olivine fractional crystallisation/accumulation model is constructed in which 

the parental magma has 25 wt. % MgO, 11 wt. % FeO(T), an Fe3+/Fe(T) of 0.10 and Zn content 

of 60. The KD
Fe-Mg exchange between olivine and melt is 0.30 (Toplis, 2005). The Zn/Fe 

evolution with MgO closely parallels that of the whole rocks (Fig. 2). Additionally, that the 

samples have Zn/Fe ratios very similar to that of the primitive mantle (Palme and O’Neill, 

2014) and the Balmuccia peridotites substantiates not only that the trend is primary, but that 

the absolute values are, too. Samples plotting off the array are 179/753 and 179/755. Sample 

179/753 is a differentiated basalt, hence it is not solely the product of olivine fractionation. 

Rather, Zn may have been enriched by crystallisation of Zn-poor minerals, plagioclase and 

pyroxene. This logic does not apply to sample 179/755, a spinifex-textured komatiite. 

Therefore, in this case, the Zn content appears to have been increased from its initial value. 

Despite this, its δ66Zn is +0.20‰, consistent with the other STKs. It is concluded that the 
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measured Zn isotope composition of metamorphosed Archean komatiites can be regarded as 

reflecting the primary signature of the magma from which they formed. 

 

5.2. Principles of zinc isotope fractionation during magmatic differentiation 

The two central processes that involve mass transfer in igneous petrogenesis, and are thus 

capable of fractionating Zn isotopes, are partial melting and fractional crystallisation. Given 

that olivine is the liquidus phase in mafic and ultramafic magmas above 8 wt% MgO (Kinzler 

and Grove, 1985) and constitutes ≈55 % of peridotites, coupled with the fact that Zn is 

distributed sub-equally between the two phases (i.e., 𝐷𝑍𝑛
𝑂𝑙−𝑀𝑒𝑙𝑡 = 1; Le Roux et al., 2010; Davis 

et al., 2013) olivine-melt equilibria must control Zn isotope fractionation, where Zn2+, 

substitutes for Fe2+ and Mg2+ on the octahedral M-sites of olivine: 

𝑍𝑛𝑂𝑙𝑖𝑞 +  𝑀𝑔𝑆𝑖0.5𝑂2
𝑜𝑙 = 𝑀𝑔𝑂𝑙𝑖𝑞 + 𝑍𝑛𝑆𝑖0.5𝑂2

𝑜𝑙. 

As the activity of 𝑀𝑔𝑆𝑖0.5𝑂2
𝑜𝑙

 varies little in ultramafic rocks (XMg = 0.9), the partitioning of 

zinc is dependent only on melt composition and temperature. The equilibrium constant for 

reaction (1) is: 

𝐾𝐷 𝑂𝑙/𝑀𝑒𝑙𝑡
𝑍𝑛/𝑀𝑔

=  [
𝑋𝑍𝑛

𝑂𝑙

𝑋𝑍𝑛
𝐿𝑖𝑞

] / [
𝑋𝑀𝑔

𝑂𝑙

𝑋𝑀𝑔
𝐿𝑖𝑞

]. 

The fact that 𝐾𝐷 𝑂𝑙/𝑀𝑒𝑙𝑡
𝑍𝑛/𝑀𝑔

 ≈ 0.2 <  𝐾𝐷 𝑂𝑙/𝑀𝑒𝑙𝑡
𝐹𝑒/𝑀𝑔

 ≈  0.3  in basaltic melts (Kohn and Schofield, 

1994) implies that Zn2+ is more incompatible and has a different co-ordination to Fe2+
, which 

is near V- to VI-fold in melts (Wilke, 2005). Owing to the full occupation of valence shell 

electrons (a 3d10
 configuration), Zn2+ has no octahedral site preference energy and thus tends 

to form tetrahedral compounds (e.g., Zn olivine, willemite, Zn2SiO4; Neumann, 1949), 

suggesting that, in basaltic melts, Zn should be predominantly tetrahedrally co-ordinated 

(Dumas, 1986; Le Grand, 2001). The 𝐾𝐷 𝑂𝑙/𝑀𝑒𝑙𝑡
𝑍𝑛/𝑀𝑔

 decreases to lower NBO/T (Non-Bridging 

Oxygens/Tetrahedrally-Coordinated Cations, Mysen et al., 1988) typical of felsic melt 

compositions, meaning Zn becomes more incompatible. The coordination of metals in silicate 

melts decreases with increasing network modifiers (high NBO) with lower bond valence 

(Farges et al., 2004; Jackson et al., 2005).  This provides a basis for the heavy Zn isotope 

enrichment in liquids, as the lighter isotopes partition into the phase in which Zn has higher 

coordination (olivine) and therefore weaker Zn-O bonds (cf. Schauble, 2004). 

(2) 

(1) 
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These systematics are also affirmed by the Zn isotope composition of spinel, in which 

tetrahedral Zn is incorporated as the gahnite (ZnAl2O4) component. At the closure temperature 

of Zn exchange between spinel and olivine (≈ 850°C), spinel is systematically enriched in δ66Zn 

by 0.13‰ relative to the VIZn-O bonds of olivine and other Fe-Mg silicates (Wang et al., 2017). 

Accounting for the effect of temperature on the fractionation factor yields Δ66ZnSp-Ol = 

+0.17×106/T2 (n = 8). Although Zn partition coefficients between aluminous spinel and melt 

are roughly 5 times that of olivine (Davis et al., 2013), its modal abundance is too low (<2 ‰) 

in peridotites to significantly affect the distribution of zinc isotopes, a conclusion also 

suggested on the grounds that measured whole rocks have similar δ66Zn to those of Fe-Mg 

silicates (Wang et al., 2017).  

According to the systematics outlined above, the behaviour of Zn and its isotopes can be 

modelled using the non-modal melting equations developed for element (Shaw, 1970) and 

isotope (Sossi and O’Neill, 2017) partitioning. Mineral modes, partition coefficients, modal 

melting reaction coefficients and fractionation factors are shown in Table 2. Both the constancy 

of Zn content in peridotites over varying degrees of melt extraction (Le Roux et al. 2010; Wang 

et al., 2017; this work) and the experimentally-measured partition coefficients (Le Roux et al., 

2011; Davis et al., 2013) show that 𝐷𝑍𝑛
𝑀𝑎𝑛𝑡𝑙𝑒−𝑀𝑒𝑙𝑡 ≈ 1 (here 0.86). Accordingly, partial melts 

are only mildly enriched in zinc (≈ 65 ppm) with respect to their sources (53.5 ppm) prior to 

spinel exhaustion, which, if it comprises 2% of the rock, occurs at f = 0.15, using the average 

of the melting reaction coefficients for low-pressure, clinopyroxene-bearing lherzolites; 

(Wasylenki et al. 2003; Table 2).  

0.80 𝑐𝑝𝑥 +  0.35𝑜𝑝𝑥 +  0.10𝑠𝑝 =  1𝑙𝑖𝑞 + 0.25𝑜𝑙  

In modelling Zn isotope fractionation, the IVZn2+ in spinel is assumed to have the same isotope 

composition (i.e., force constant) as the IVZn2+ that is presumed to exist in the melt, a feature 

observed for iron (Dauphas et al., 2014). Insofar as this is correct, an enrichment of +0.08‰ 

δ66Zn is modelled in incipient melts relative to the residue (Fig. 3a). This fractionation is only 

a weak function of f, because the bulk DZn is close to unity and due to the assumption that spinel 

and melt have the same zinc isotope composition. This results in primary basaltic liquids with 

δ66Zn between +0.22‰ and +0.24‰ for 30% and 0.5% partial melting, or a Δ66ZnMelt-Mantle 

between 0.06‰ and 0.08‰, respectively, at 1573 K. By contrast, because the residual 

peridotite still contains the bulk of the Zn, mass balance demands that its composition is little 

affected (up to 0.015‰ lighter at f = 0.3).  

(3) 
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This has important implications for the Zn isotope heterogeneity in the mantle, because Doucet 

et al. (2016) suggested that the light isotope composition of refractory peridotites (δ66Zn ≈ 

+0.15‰; [Zn] ≈ 35 ppm) could be caused by 30% melt extraction from fertile peridotites with 

δ66Zn = +0.30‰, [Zn] ≈ 55 ppm. In a batch melting regime, the fractionation factor and thus 

the δ66Zn of the complementary basalts can be calculated from this data alone. In order to 

produce the observed δ66Zn and [Zn] drop, Δ66ZnMelt-Mantle = +0.20 ‰ and DZn = 0.36, with the 

extracted melt having [Zn] = 102 ppm and δ66Zn = +0.42‰. As illustrated in Fig. 3b, this 

scenario is incongruous with respect to Zn isotope compositions of terrestrial basalts measured 

thus far, which vary from +0.2 to +0.3 ‰ in MORB, OIB and continental examples, which, 

combined with komatiites and peridotites, define a ‘mantle array’ (this study, Herzog et al. 

2009; Chen et al., 2013; Wang et al., 2017). Furthermore, the calculated Δ66ZnMelt-Mantle is much 

larger than that observed for Δ66ZnSp-Ol, which, as in the case of Δ66ZnMelt-Mantle, is presumed to 

be driven by fractionation between VIZn2+ and IVZn2+. Therefore, Δ66ZnMelt-Mantle should be no 

larger than +0.08‰ (Fig. 3a), hence minimal (<0.015‰ δ66Zn) zinc isotope fractionation 

occurs in peridotite residues up to 30% partial melting. 

5.3.Chemical and isotopic composition of zinc in the Earth’s mantle 

That measurable zinc isotope fractionation occurs during igneous processes invalidates the 

assumption that basalts are representative of the BSE, a conclusion already hinted to by 

isotopically light olivines (δ66Zn ≈ 0.10‰) compared to ≈0.25‰ in basaltic rocks (Sossi et al., 

2015) and suggested by Wang et al. (2017). Herein, two complementary reservoirs are 

explored; i) a compilation of peridotitic rocks that sample the lithospheric mantle, and ii) 

ultramafic magmas (komatiites) that sample the convecting mantle in the Archean. In this way, 

any sampling bias arising from selecting certain peridotite bodies is alleviated, and the effects 

of partial melting on the residue and resulting melts can be quantified. Lastly, komatiites also 

permit a temporal assessment of the evolution of the zinc isotope composition of the Earth’s 

mantle. 

In light of Zn isotope fractionation during partial melting, a more accurate representation of 

the Zn isotope composition of the contemporary mantle is proffered by peridotites compared 

with basaltic rocks. Although predominantly lherzolitic, sub-ordinate dunites and pyroxenites 

occur in the Balmuccia massif. Fertile lherzolites representative of the body have Mg# = 0.895, 

and mildly depleted rare earth element (REE) patterns that are consistent with their origin as 

residues of 8±2 % melting of primitive mantle (e.g. Hartmann and Wedepohl, 1993). Despite 
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a small degree of melt extraction, their Zn contents (48±7 ppm; Table 1) are indistinguishable 

from the primitive mantle (53.5 ppm; Palme and O’Neill, 2014). Furthermore, the calculations 

presented above show that 8% partial melting will decrease the δ66Zn of the residue by 0.005 

‰ (i.e., within analytical uncertainty). The insensitivity of the δ66Zn composition of global 

peridotites to Zn content substantiates the view that even strongly depleted peridotites should 

preserve unfractionated zinc isotope compositions (Fig. 4). Indeed, the fertile continental 

lherzolite xenoliths with δ66Zn ≈ +0.30‰ (Doucet et al., 2016) are outliers with respect to all 

other high-Mg lithologies (including pyroxenites and komatiites; Fig. 4) at similar Zn contents. 

A crucial test for the Zn isotope composition of the BSE determined from peridotites, and proof 

for the rationale outlined above, is provided by mantle-derived magmas formed by high degrees 

of partial melting, and early in Earth’s history to minimise sampling of mantle domains that 

experienced crust extraction and/or re-fertilisation. Komatiites fulfil both of the above criteria, 

and can thus be used to constrain the isotopic composition of the early terrestrial mantle, an 

approach that has been successfully applied to Mg, Fe, Ni, Mo, Ga and Sn isotopes (Dauphas 

et al., 2010; Nebel et al., 2014; Greber et al., 2015; Gall et al., 2017; Kato et al. 2017; 

Badullovich et al. 2017). Specifically, komatiites are the result of 25-40% melting of peridotite 

with a weakly depleted to near-primitive mantle composition at high temperatures (> 1700°C 

at the locus of melting; Nisbet et al., 1993), both of which act to minimise isotope fractionation 

(proportional to 1/T2). At these conditions, Δ66ZnMelt-Mantle ≤ +0.03‰, meaning that komatiites 

should faithfully reflect the composition of their sources. As the Archean komatiites analysed 

herein have sources that were depleted by partial melting degrees between 0 and 5% (Sossi et 

al., 2016a), they should also be representative of the Archean convecting mantle. Komatiites 

that separated from both garnet-bearing (Al-depleted) and garnet-absent (Al-undepleted) 

residues were investigated (Table 1), yet Zn isotopes show no resolvable difference between 

the two types. Furthermore, there is no apparent correlation with the degree of source depletion; 

the Munro komatiites, whose sources had already experienced 5% melt extraction (Sossi et al., 

2016a), have the same δ66Zn (+0.16‰ and +0.20‰) as the two Cooneterunah komatiites 

samples, which have flat REE patterns and were derived from primitive mantle. As illustrated 

in Fig. 3b, given that partial melting engenders heavy Zn isotope enrichment in the 

complementary melts (section 5.2., see also Doucet et al., 2016), partial melting of a fertile 

peridotite with δ66Zn ≈ 0.30‰ would not produce primary melts of near-primitive mantle (i.e., 

komatiites) with δ66Zn ≈ 0.20‰.  
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The origin of the heavier Zn isotopic composition (δ66Zn =+0.30±0.06‰ 2SD) in continental 

xenoliths is unknown, but the evidence presented hitherto suggest that these samples are 

unrepresentative of the zinc isotope composition of other peridotites, fertile or otherwise (Wang 

et al., 2017; Fig. 4), and cannot give rise to the light δ66Zn of mantle-derived magmas (section 

5.2.). As a result, they are not considered in the derivation of the δ66Zn value of the primitive 

mantle. Therefore, combining komatiites with 23 < MgO (wt%) < 33 (i.e., avoiding cumulates) 

with Balmuccia and remaining literature mantle peridotite data (Doucet et al., 2016; Wang et 

al., 2017) with MgO >36 wt%, the Earth’s upper mantle has δ66Zn = +0.16‰ (n = 64, ±0.06‰ 

2SD; 0.01‰ 2SE), lighter than previous estimates based on a basalt average (+0.28±0.05‰ 

2SD; Chen et al., 2013) and continental xenoliths (+0.30±0.06‰ 2SD; Doucet et al., 2016), 

but overlapping with the peridotites measured by Wang et al. (2017). The lack of isotope 

variation between Archean komatiites, aged between 2.7 and 3.5 Ga and sourced from four 

cratons, and Phanerozoic peridotites further points to the constancy of mantle zinc isotope 

composition through geologic time and space.  

5.4.Chemical and Isotopic Composition of Zinc in the Earth 

Before comparisons between the Zn isotope composition between planets and chondrites can 

be made, the extent of Zn loss to the core must be assessed, and if it occurred, whether isotopic 

fractionation ensued. Zinc abundances in the BSE are depleted with respect to carbonaceous 

chondrites, normalised to Mg (Dreibus and Palme 1996; O’Neill and Palme 1998), that is:  

𝑓𝑍𝑛 =  
𝑍𝑛𝑥 𝑀𝑔𝑥⁄

𝑍𝑛𝐶𝐼/𝑀𝑔𝐶𝐼
 

Where 𝑓𝑍𝑛 refers to the fraction of Zn. For the BSE, 𝑓𝑍𝑛 = 0.075 (53.5 ppm, Palme and O’Neill, 

2014). Since Zn is not significantly concentrated in the crust, collisional erosion (O’Neill and 

Palme 2008) is not a strong candidate to account for Zn loss. Three mechanisms may account 

for such a depletion: 

1. Zn was lost to the core  

2. Post-accretion volatilisation of Zn 

3. Accretion of the planets from material that was initially more volatile-depleted than CI 

Given that Zn is overwhelmingly concentrated in silicates and oxides in carbonaceous and 

ordinary chondrites (Nishimura and Sandell, 1964), it is thought to behave as a lithophile 

element under the oxygen fugacities typical of these materials. However, under the extremely 

(4) 
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reducing fO2s of enstatite chondrites, Zn does partition appreciably into sulfides, along with Ti 

and the REE (Dreibus and Palme, 1996). Following this logic, the chondritic abundances of Ti 

and REE in the Earth and on Mars suggest that little Zn was sequestered into the core on either 

body. Indeed, the greater fraction of FeO in the Martian mantle indicates that core formation 

took place at higher fO2 than on Earth (Righter and Drake 1996; Rubie et al. 2004), favouring 

the retention of Zn in silicates. In S-free systems, the 𝐾𝐷𝑍𝑛/𝐹𝑒
𝑀𝑒𝑡/𝑆𝑖𝑙 = 0.1 (Corgne et al. 2008; 

Mann et al. 2009), independent of pressure. Although 𝐾𝐷𝑍𝑛/𝐹𝑒
𝑀𝑒𝑡/𝑆𝑖𝑙 and 𝐷𝑍𝑛

𝑀𝑒𝑡/𝑆𝑖𝑙
 climb to maxima 

of 0.25 and 12, respectively at 𝑋𝑆
𝑀𝑒𝑡 = 0.5 (Wood et al. 2014), the Earth’s core contains only 

small quantities of S (1.5 – 2 wt%; Dreibus and Palme, 1996; McDonough, 2003; Suer et al., 

2017) and hence will not facilitate Zn incorporation into the Earth’s core. Using 

thermodynamic fits to existing Zn metal-silicate partitioning data, coupled with models of 

continuous core formation, integrated DZn between core and mantle varies considerably 

(between 1 and 6.5), largely as a function of oxygen fugacity. Accordingly, estimates for the 

Zn content of the bulk Earth span a wide range; 65 to 163 ppm (Mahan et al., 2017). Therefore, 

given the diversity of accretion models (Rubie et al., 2011), it is possible only to put limits on 

the amount of Zn in the core.  

The relative depletion of Zn in the Earth due to core formation may also be quantified by 

comparing its abundance to other similarly volatile, but less siderophile elements (Corgne et 

al. 2007); the alkali metals – Li, Na, K, Rb and Cs plus Mn (Fig. 5). In so doing, ≈30% of the 

Earth’s Zn is expected to reside in the core, corresponding to bulk Zn contents of 81 ppm. 

Although independent of core formation models, the accuracy of this method is inherently 

contingent upon the fidelity of condensation temperatures representing elemental volatilities, 

and is therefore imperfect. Nevertheless, this estimate falls within the range calculated by 

Mahan et al. (2017). Assuming that no Mg partitioned into the core (Ringwood and Hibberson 

1991), the Zn/Mg ratio of the Earth is 3.5×10-4. Importantly, Zn isotopic fractionation attending 

metal-silicate equilibration is absent to temperatures as low as 1200°C and 1.5 GPa 

(Bridgestock et al., 2014; Mahan et al., 2017). Therefore, irrespective of the Zn content of the 

core, the isotope composition of the BSE may be projected to that of the bulk Earth which is 

therefore δ66ZnBE = +0.16±0.03‰.  

  

5.5.Behaviour of zinc during planetary accretion 
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The new estimate of the Earth’s δ66Zn lies on an extension of the carbonaceous chondrite (CC) 

trend defined by Luck et al. (2005) and Pringle et al. (2017) (Fig. 6), which diagnostic because 

it extends in a manner perpendicular to fractionation induced by evaporation or condensation, 

as exemplified by the lunar composition. However, the Earth also overlaps with the zinc isotope 

composition of high-iron enstatite chondrites (EH; 0.15-0.31‰, Moynier et al., 2011). Such 

isotopic kinship between EH chondrites and the Earth is also observed for isotopic anomalies 

for elements such as Cr (Mougel et al. 2017), Ni (Steele et al. 2012), Ti (Zhang et al. 2012) and 

O (Young et al. 2016) leading to the notion that the Earth is dominantly composed of enstatite 

chondrites (Javoy et al. 2010) or, at least from similar nebular source material (Wiechert et al., 

2001; Dauphas, 2017). However, EHs have Zn/Mg ratios an order of magnitude higher than 

the Earth (Fig. 6). Subsequent volatile loss by evaporation could then account for the decrease 

in Zn/MgBE required, however, this process would be associated with an enrichment in heavy 

Zn isotopes, a feature not observed (in contrast to the Moon; Kato et al., 2015).  Isotopic 

fractionation may be minimised if it occurred at equilibrium with condensed ZnO in a terrestrial 

magma ocean or silicates, for which the reaction may be written:  

𝑍𝑛𝑂(𝑙,𝑠) =  𝑍𝑛(𝑔) +  
1

2
𝑂2 

The temperatures required to decrease the 66/64Zn fractionation factor of eq. 5, Δ66ZnZnO(s)-Zn(g), 

to analytically unresolvable levels (<0.05‰) are >2200°C (given Δ66ZnZnO(s)-Zn(g) = 

+0.31×106/24732 = +0.05‰; Ducher et al., 2016). Thermodynamic data for eq. 5 (Lamoreaux 

et al., 1987) show that the enthalpy and entropy of vaporisation yield Gibbs Free Energies, 

∆𝐺𝑜, of: 

∆𝐺𝑜
(5)(𝑘𝐽/𝑚𝑜𝑙) =  411.7 − 0.177𝑇. 

Vapour pressures of Zn(g) calculated using eq. 6 at 2473 K and 1 bar pressure, given ideality of 

ZnO(l) in silicate melts (Reyes and Gaskell, 1983) would result in loss of 99.9% of the Zn budget 

of the residue (see also Canup et al., 2015). Should evaporation of an EH precursor cause the 

observed depletion of Zn in the BSE (0.075× that of CI or EH), then, at Iron-Wüstite (IW) and 

1 bar, temperatures of 1400°C are required, at which Δ66ZnZnO(s)-Zn(g) = +0.11‰. The δ66Zn of 

the bulk Earth should then reflect the EH average (+0.22±0.06‰) plus Δ66ZnZnO(s)-Zn(g), equal 

to +0.33‰, heavier than that observed. The isotopic composition of another lithophile MVE, 

Rb, in the Earth (Pringle and Moynier, 2017) also falls on the end of a carbonaceous chondrite 

array in a plot of 87Rb/85Rb vs. Rb/Sr (Sr is used as the normalising refractory lithophile element 

(5) 

(6) 
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analogous to Mg herein). Due to the different equilibrium partial pressures and evaporation 

stoichiometries of of Rb(g)
 and Zn(g), the fact that both isotopic systems constrain the Earth to 

lie at the volatile-depleted end of the CC array strongly argues against vaporisation of a 

volatile-rich, isotopically light precursor. 

Rather, the recognition that Earth falls at the volatile-depleted end of the CC array for both Rb 

and Zn isotopes allows a simpler interpretation; that the Earth accreted from material that 

experienced chemical and isotopic fractionation in the solar nebula in the same manner as the 

CCs, but proceeded to more volatile-depleted extremes. Although carbonaceous chondrites, 

given their disparate O and other mass-independent isotope signatures compared to the Earth 

(e.g., Clayton et al., 1976; Budde et al., 2016), are not considered its primary constituents, 

similarities in elemental abundances between Earth and CCs suggest they underwent similar 

chemical evolution in the solar nebula. Specifically, the Earth shares comparable refractory 

lithophile element ratios (Palme and O’Neill, 2014) with carbonaceous chondrites and has 

volatile/refractory element ratios (e.g., K/U vs Rb/Sr, and Mn/Na) that plot along an array 

defined by CCs, except to more volatile-depleted values, as per Fig. 6 (Halliday and Porcelli, 

2001; O’Neill and Palme, 2008; Wang et al. 2016). Together, these factors imply that the Earth 

had its Zn complement set by processes operative during the formation of carbonaceous 

chondrites.  

The nebular origin of zinc in the Earth precludes any significant loss of Zn during a 

potential Moon-forming giant impact, despite evidence for vaporisation from the Moon 

(Paniello et al., 2012). The volatile budget of the Moon is markedly depleted with respect to 

the BSE (O’Neill, 1991; Taylor and Wieczorek, 2014). Planetary-scale impacts between 

differentiated planetesimals typify the later stages of accretion (e.g., Morbidelli et al., 2012), 

which, in the case of the giant impact, occur some 70-110 Myr after chondrite formation 

(Halliday, 2008). Here, volatile loss would occur at oxygen fugacities defined by the 

evaporation of planetary mantles, whose dominant gas species, SiO(g), buffers fO2 near fayalite-

magnetite-quartz (FMQ), ≈107 times more oxidising than the nebular gas (Visscher and Fegley, 

2013). This consideration is important because element volatility depends on the redox state of 

the gas:  

(𝑀𝑥
𝑥

2
𝑂) +  

𝑛

4
𝑂2 = (𝑀𝑥+𝑛

𝑥 + 𝑛

2
𝑂), 
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where, even at FMQ, the stable gas species for many MVEs, including Zn, is the monatomic 

gas (Lamoreaux et al., 1987). However, MVE speciation in the condensed phases differs, such 

that the relative volatilities of element pairs changes with fO2. One notable example is Mn/Na; 

Mn2+O and Na+O0.5 are stable in liquids or solids, whereas Mn(g) and Na(g) are the equilibrium 

gas species. Therefore, the ratio of their vapour pressures, pNa/pMn is proportional to fO2
1/4

 

(eq. 7), such that Na becomes relatively more volatile than Mn at high fO2 (O’Neill and Palme, 

2008). This ratio is used to discern between nebular (reducing) and post-nebular (oxidising) 

volatile depletion, where basalts from small telluric bodies in the inner solar system, including 

the Moon, exhibit elevated Mn/Na with respect to chondrites. The extent of orthogonal 

deviation of the Moon from the chondritic array Zn/Mg-δ66Zn is correlative with its Mn/Na 

ratio (Fig. 7), fingerprinting post-nebular fractionation. By contrast, carbonaceous chondrites 

show little variation in Mn/Na (indicating similar TC), whereas the Earth falls at the end of the 

CC trend. Thus, the Earth’s chondritic Mn/Na ratio is further evidence that it was set by nebular 

processes. The fact that Zn, whose vaporisation stoichiometry mirrors that of Mn, preserves a 

nebular isotope signature implies that MVEs with similar volatility to Zn (e.g. K), or with the 

same volatility dependence with fO2 (e.g. Fe2+), were not lost from the Earth in an impact 

scenario. This is consistent with numerical models of protolunar disk evolution, in which most 

of the disk’s volatile components may be transported to Earth rather than being lost to space 

(Charnoz and Michaut, 2015). Furthermore, this implies that MVE isotope systems should be 

unfractionated in the BSE with respect to the systematics found in chondrites, as observed for 

K, Li, Cd, Ga, Cl and Rb isotopes (Wang and Jacobsen 2016; Magna et al., 2006; Sharp et al., 

2007; Wombacher et al., 2008; Nebel et al., 2011; Pringle and Moynier 2017; Kato et al., 2017). 

The observation that the depletion factors of moderately volatile elements in the Earth resemble 

those in silicate liquid residues of evaporation at 1300°C near the IW buffer led Norris and 

Wood (2017) to conclude that Earth’s MVE budget, including siderophile (e.g. Ag, Ge) and 

lithophile (e.g. Zn, Tl) elements, were set solely by evaporative loss from silicate melts during 

accretion. For this interpretation to hold, it implies that either i) core formation had limited 

impact on the budgets of MVEs in the Earth or ii) the MVEs were accreted from residues of 

material that had experienced evaporative loss, after the cessation of core formation. The first 

scenario is unappealing due to the well-documented depletion of other non-volatile siderophile 

elements (e.g. Ni, Co, W) due to core formation (e.g., Schmitt et al., 1989). The second should 

be accompanied by resolvable mass-dependent fractionation in the stable isotopes of 

moderately volatile elements (e.g., Wombacher et al., 2004; Yu et al., 2003), which is not 

(7) 
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observed, as stated above. Although fractionation is recorded for Mg isotopes and taken as 

evidence for vaporisation (Hin et al., 2017), heavy isotope enrichments also characterise the 

two other main components, Fe (Sossi et al., 2016b) and Si (Armytage et al., 2011), a 

characteristic attributed to nebular volatile depletion on Earth (Sossi et al., 2016b). Therefore, 

there is currently no consensus as to the locus or timing of volatile depletion that afflicted the 

Earth. Given the evidence presented, we propose that the MVE depletion in the Earth is of 

nebular origin, and henceforth investigate the delivery of moderately volatile elements in the 

framework of their accretion to the Earth from chondritic components. 

5.6.Implications for Accretion of Other Moderately Volatile Elements to the Earth 

In the short-lived 53Mn-53Cr  (T1/2=3.7 Myrs) system, where Mn is more volatile than Cr, the 

BSE falls on an external isochron defined by carbonaceous chondrites, also signifying that 

Earth’s Mn budget was set at the commencement of the solar system (Moynier et al., 2007). 

By contrast, Pb and Ag-Pd isotope systematics require late volatile addition (Schönbächler et 

al., 2010; Albarède et al., 2013); either a small (≈2-5%) CI chondrite component, or a larger 

(≈10–15%) fraction of a CO/CV-like composition (Albarède et al., 2013).  

To simulate the chemical effects of late volatile delivery, a model is constructed in which 

different fractions of CI- or CV chondrites (≤5% and ≤15%. respectively; Albarède et al., 2013) 

are added to a proto-Earth’s mantle whose abundances of Mn, Rb, In, Zn, Ag and Pb are found 

by least-squares minimisation where their final concentrations (proto-Earth + CI/CV) must 

match the contemporary BSE (Palme and O’Neill, 2014). In the limiting case of addition of 

5% CI or 15% CV chondrites, they contribute about 15 ppm (300×0.05 or 100×0.15) of the 

contemporary 53.5 ppm of Zn observed, meaning ≥75% of the Earth’s present-day Zn would 

already be present in the proto-Earth (Fig. 8). As Zn is correlated with other MVEs in 

chondrites (Wasson and Kallemeyn, 1988) as well as water (Albarède et al.. 2013), other 

weakly siderophile or lithophile MVEs, In, Mn and Rb are also remnants of early accretion 

(Fig. 8), as further suggested by the isotopic composition of Rb in the Earth (Pringle and 

Moynier, 2017). Therefore, should the early accretion of the Earth be typified by reduced 

material, then this must also contain the majority of its lithophile MVE budget. Contrastingly, 

late volatile addition contributes to most of Pb and particularly Ag observed in the primitive 

mantle (Fig. 8). For Pb, for example, CIs contain 2.4 ppm, therefore a 5% addition would 

deliver 0.12 ppm, or 65%, of the 0.185 ppm present today.  
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The early accretion of Rb (Halliday and Porcelli, 2001), Mn (O’Neill and Palme, 2008) and Zn 

contrasted with the late delivery of Ag and Pb (Schönbächler et al., 2010; Albarède et al., 2013) 

can be reconciled with the early partitioning of the latter into the core. Lead and Ag are 

particularly chalcophile, and become siderophile under the very reducing conditions prevailing 

during early core formation on the Earth (Mann et al., 2009; Wood et al., 2008). Therefore, 

even if Ag-Pb were added in the early stages of accretion, their concentrations would have been 

reduced to almost nil in the silicate portion of the proto-Earth following core formation.  By 

contrast, Zn, Mn and particularly Rb would have remained in high abundances due to their 

lithophile character. In this case, the fraction that late accreting material would contribute to an 

element’s present-day BSE abundance decreases in the order Rb ≈ Mn < Zn ≤ In < Pb < Ag 

(Fig. 8), broadly roportional to their metal-silicate partition coefficients. Therefore, the robust 

conclusion can be drawn that the bulk of the Zn (and other moderately volatile lithophile 

elements) and hence their isotopic composition were inherited from the Earth’s precursor 

material, which is itself more volatile depleted than, though on the same trend as, the 

carbonaceous chondrites. 

 

Conclusions 

A complementary dataset comprising ultramafic rocks, both peridotites and komatiites, is used 

to quantify processes that cause Zn isotope variations in the terrestrial mantle. A general trend 

of falling δ66Zn with increasing MgO is observed.  Together with published data on peridotitic 

rocks and their constituent minerals, it is demonstrated that partial melting is ineffective in 

producing Zn isotope fractionation in the mantle. However, the complementary partial melts 

may be significantly enriched in the heavier isotopes of Zn, such that they are up to +0.08‰ 

heavier than their sources. The high temperatures and degrees of melting that produce 

komatiites mitigate this effect such that they reflect the Zn isotope composition of their sources, 

with no variation according to age, source depletion or petrogenetic type.  Thus, a compilation 

of 60 ultramafic rocks defines the composition of the Bulk Silicate Earth to +0.16±0.06‰. 

After accounting for partial Zn removal in the terrestrial core (which engenders no isotopic 

fractionation), the bulk Earth falls to the volatile depleted end of the carbonaceous chondrite 

array in a δ66Zn vs log(Zn/Mg) plot. The preservation of these systematics suggests that Zn 

(and elements less volatile) in the Earth records its initial nebular composition, and was not 

modified thereafter during a putative Moon-forming collision. By contrast, the Moon falls off 
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the chondritic array to higher δ66Zn and lower log (Zn/Mg), to an extent correlative with its 

Mn/Na, a fingerprint of oxidising, post-nebular volatile loss on this body. 
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Figure Captions 

Fig. 1. [2 columns] The change in zinc isotope composition for the samples studied in this work, expressed as 

δ66Zn, as a function of a) MgO (wt. %) and b) Zn (ppm) content of the whole rocks. Uncertainties are 2SD. 

Fig. 2. [1 column] The Zn/Fe ratios in Spinifex-Textured Komatiites and Spinifex-Textured Basalts as a function 

of their MgO contents. Balmuccia peridotites and the primitive mantle (red star) are also shown. In black, the 

fractional crystallisation/accumulation of olivine is shown, with black circles representing 10% increments of 

olivine addition/subtraction. Symbols as per Fig. 1. 

Fig. 3. [2 columns] A compilation of the zinc isotope compositions of mantle melts with two melting models 

overlain a) partition coefficients and fractionation factors deduced from parameters listed in Table 2 and b) 

partition coefficients and fractionation factors inferred from Doucet et al. (2016) assuming refractory peridotites 

(purple circles) are residues after 30% melt extraction from a primitive mantle source (yellow circles), as modelled 

by the black line. In this case modelled partial melts (red line) are much heavier than observed (red squares, OIBs 

(Kilauea) - Chen et al. 2013; blue squares, MORBs – Wang et al., 2017; green squares, STK and green diamonds, 

Balmuccia peridotites – this work). These define a ‘mantle array’ which passes through the Balmuccia peridotites 

and the refractory peridotites of Doucet et al. (2016). 

Fig. 4. [1 column] Determination of the zinc isotope composition of the BSE. Circles in green denote all peridotite 

samples in the literature (Doucet et al., 2016; Wang et al., 2017; this study) save for the fertile continental xenoliths 

shown in yellow (Doucet et al., 2016). Dark green squares are spinifex-textured komatiites (this study).  

Fig. 5. [1 columns] Relative abundances of moderately-volatile elements, expressed as depletion factors, in the 

Earth (Palme and O’Neill, 2014; green squares) and carbonaceous chondrites (diamonds; Wasson and Kallemeyn, 

1988), normalised to Mg and CI-chondrites. They are plotted in accord with their half-condensation temperatures, 

TC (K) from Lodders (2003). The terrestrial trend is estimated from the depletion factors of alkali metals and Mn. 

Fig. 6. [2 columns] Zinc isotope compositions of planetary materials. Carbonaceous chondrites (Luck et al., 2005; 

Pringle et al., 2017) are plotted as diamonds, ordinary chondrites (Luck et al., 2005) as circles and enstatite 

chondrites (Moynier et al., 2011) as squares. The bulk Earth (green) plots on the carbonaceous chondrite array. 

The vector of evaporation/condensation is also shown (dashed grey line) for a fractionation factor, Δ66Znliq-vap = 

+1‰, with each value (grey circle) representing the fraction of Zn evaporated from a bulk Earth composition. The 

regression considers only carbonaceous chondrite analyses. The logarithmic scale on the abscissa means that the 

position of the Bulk Earth is relatively insensitive to the amount of Zn in the core. 

Fig. 7. [1 column] The contrasting chemical signatures of nebular and post-nebular depletion in planetary 

materials. Carbonaceous chondrites (listed CI, CM, CV, and CO) show near-constant Mn/Na and decreasing δ66Zn 

with progressive volatile depletion. The Earth lies at the volatile-poor end of this trend, whereas the Moon shows 

heavy δ66Zn with respect to carbonaceous chondrites and markedly higher Mn/Na ratios. This latter trend is 

characteristic of volatile depletion under oxidising (post-nebular) conditions. 

Fig. 8. [1 column] The contribution of 2-5 % CI chondrite or 5-15% CV chondrite during late accretion to the 

present-day element budget of the Earth’s mantle. Ordinate values correspond to the fraction of the element in the 
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proto-Earth prior to late chondrite addition, low values, as for Ag and Pb, indicate that most of their budget was 

delivered late. By contrast, CI- or CV addition is calculated to bring not more than 35% of the In, Zn, Rb and Mn, 

meaning the majority of the budget of these elements had to have been present in the proto-Earth prior to any late 

addition. 
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Table 1: Samples analysed for their Zn isotope composition in this work, classified by type; Peridotites and Pyroxenites from the 

Balmuccia 

massif, NW Italy, and a selection of global Komatiites, presented alongside some relevant geochemical data. 

Sample Locality Class Subclass MgO 

(wt%

) 

FeO 

(wt%

) 

Zn 

(ppm

) 

δ66Z

n 

(‰) 

2×St

. 

Dev. 

δ68Z

n 

(‰) 

2×St

. 

Dev. 

n 

Peridotite

s 

      
    

BM31 Balmucci

a 

Peridotite Dunite 48.38 9.29 44.7 

0.16 

0.04 

0.33 

0.08 2 

BM19 Balmucci
a 

Peridotite Dunite 47.47 10.26 48.8 
0.12 

0.02 
0.23 

0.04 2 

BD31 Balmucci
a 

Peridotite Dunite 46.32 7.85 41.1 
0.15 

0.06 
0.31 

0.12 1 

BM26B Balmucci

a 

Peridotite Depleted Lherzolite 43.30 8.04 52.1 

0.11 

0.06 

0.60 

0.12 1 

BM42 Balmucci

a 

Peridotite Depleted Lherzolite 42.15 8.11 46 

0.16 

0.06 

0.30 

0.12 1 

BMH3-Pd Balmucci

a 

Peridotite Depleted Lherzolite 42.09 8.21 75.2 

0.11 

0.06 

0.22 

0.03 2 

BM30 Balmucci

a 

Peridotite Depleted Lherzolite 41.75 8.67 47.5 

0.15 

0.06 

0.30 

0.12 1 

BMH-1 Balmucci
a 

Peridotite Depleted Lherzolite 40.70 8.86 66 
0.18 

0.06 
0.39 

0.12 1 

BMH-5 Balmucci
a 

Peridotite Normal Lherzolite 40.10 8.09 46 
0.12 

0.06 
0.25 

0.12 1 

BM35 Balmucci

a 

Peridotite Normal Lherzolite 40.00 8.04 45 

0.12 

0.06 

0.25 

0.12 1 

BM27 Balmucci

a 

Peridotite Normal Lherzolite 39.81 8.30 52.9 

0.14 

0.04 

0.28 

0.09 2 

BM40 Balmucci

a 

Peridotite Normal Lherzolite 39.48 8.31 52 

0.12 

0.02 

0.26 

0.04 2 

BM23 Balmucci
a 

Peridotite Normal Lherzolite 39.35 8.31 43.5 
0.14 

0.02 
0.29 

0.15 2 

BM29-Pd Balmucci
a 

Peridotite Enriched Lherzolite 39.20 8.24 43 
0.10 

0.06 
0.20 

0.12 1 

BM12 Balmucci

a 

Peridotite Normal Lherzolite 38.85 8.24 43.5 

0.15 

0.02 

0.27 

0.06 2 

BM22 Balmucci

a 

Peridotite Normal Lherzolite 38.77 8.22 47 

0.18 

0.06 

0.37 

0.08 2 

BMH-9 Balmucci

a 

Peridotite Normal Lherzolite 38.55 8.04 41.7 

0.16 

0.06 

0.33 

0.12 1 

BMH-2 Balmucci

a 

Peridotite Enriched Lherzolite 36.78 7.86 42 

0.13 

0.11 

0.25 

0.23 2 

BM14 Balmucci
a 

Peridotite Enriched Lherzolite 31.79 7.06 33.9 
0.16 

0.06 
0.31 

0.12 1 

Pyroxenites            
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BM28-Px Balmucci

a 

Pyroxenit

e 

Chrome-Diopside 21.75 3.91 17 

0.21 

0.06 

0.42 

0.12 1 

BMH3-Px Balmucci

a 

Pyroxenit

e 

Chrome-Diopside 19.96 4.00 52.1 

0.23 

0.01 

0.45 

0.01 2 

BM29-Px Balmucci
a 

Pyroxenit
e 

Aluminium-Augite 18.48 5.00 70 
0.18 

0.06 
0.37 

0.12 1 

Komatiit

es 

      
    

331/788 Barberton Komatiit

e 

Olivine Cumulate 43.69 5.44 22 0.04 0.01 0.10 0.04 2 

176-725 Regal Komatiit

e 

Olivine Cumulate 35.13 10.88 54 

0.16 

0.06 

0.33 

0.12 1 

422/86 Munro Komatiit

e 

Olivine Cumulate 32.45 8.60 60 

0.20 

0.06 

0.41 

0.12 1 

422/84 Munro Komatiit

e 

Olivine Cumulate 28.50 9.21 57 

0.16 

0.06 

0.33 

0.12 1 

422/84 (r)* Munro Komatiit
e 

Olivine Cumulate 28.50 9.21 57 
0.20 

0.06 
0.39 

0.12 1 

422/96* Munro Komatiit
e 

Spinifex-Textured 
Komatiite 

28.71 7.83 70 
0.19 

0.06 
0.39 

0.09 2 

B-R1 Belingwe Komatiit

e 

Spinifex-Textured 

Komatiite 

27.60 10.59 55 

0.16 

0.06 

0.29 

0.12 1 

B-H2 Belingwe Komatiit

e 

Spinifex-Textured 

Komatiite 

27.00 9.60 57 

0.18 

0.04 

0.39 

0.04 2 

331/777a Barberton Komatiit

e 

Spinifex-Textured 

Komatiite 

25.10 11.17 68 

0.19 

0.06 

0.38 

0.12 1 

331/779* Barberton Komatiit
e 

Spinifex-Textured 
Komatiite 

26.76 10.51 64 
0.19 

0.06 
0.38 

0.12 1 

SD6/400* Yilgarn Komatiit
e 

Spinifex-Textured 
Komatiite 

27.99 10.34 71 
0.20 

0.06 
0.40 

0.12 1 

179-755 Coonteru

nah 

Komatiit

e 

Spinifex-Textured 

Komatiite 

24.32 9.32 58 

0.16 

0.02 

0.36 

0.11 2 

179-751 Coonteru

nah 

Komatiit

e 

Spinifex-Textured 

Komatiite 

23.33 10.69 139 

0.20 

0.06 

0.40 

0.12 1 

331/778* Barberton Basalt Spinifex-Textured Basalt 12.30 13.19 85 0.24 0.06 0.47 0.12 1 

BR-S Barberton Basalt Spinifex-Textured Basalt 13.84 9.17 62 0.20 0.06 0.40 0.12 1 

RL-12-1 Red Lake Basalt Spinifex-Textured Basalt 13.68 10.83 63 0.22 0.06 0.43 0.12 1 

RL-12-1 (r)* Red Lake Basalt Spinifex-Textured Basalt 13.68 10.83 63 0.23 0.06 0.45 0.12 1 

176-766 Coonteru
nah 

Basalt Spinifex-Textured Basalt 11.26 12.94 97 
0.19 

0.06 0.39 0.12 1 

179/753 Coonteru
nah 

Basalt Basalt 4.05 13.39 178 
0.22 

0.01 
0.43 

0.02 2 

Standards (This Work) 

JMC-LMTG Zn 
Solution 

     
-0.09 

0.06 
-0.18 

0.10 3 

BHVO-2 Kilauea Basalt Basalt 7.23 11.2 103 0.28 0.06 0.55 0.11 2 
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Allende  Chondrit

e 

CV3 24.59 30.32 110 

0.21 

0.04 

0.41 

0.10 2 

PCC-1* Cazadero Peridotite Serpentinised Harzburgite 43.43 7.91 42 0.27 0.08 0.53 0.14 2 

* Denotes samples run at IPGP. 

(r) denotes samples re-dissolved and processed. 

Figures in italics denote external reproducibilities adopted from Sossi et al. (2015). 
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Table 2. Model parameters for the calculation of Zn isotope fractionation during non-modal partial 

melting of a fertile peridotite.  

Phase Starting 

fraction 

Melting 

reaction1 

 Partitioning DZn
2 Δ66Zn (‰) T (K) 

olivine 0.535 -0.25  ol/melt 0.96 -0.17×106/T2  

orthopyroxene 0.26 0.35  opx/melt 0.65 -0.17×106/T2  

clinopyroxene 0.185 0.80  cpx/melt 0.40 -0.17×106/T2  

spinel 0.02 0.10  sp/melt 5.20 0×106/T2  

Bulk 1 0  mantle/melt 0.86 -0.15×106/T2 1573 
1 Wasylenki et al. (2003) 
2Le Roux et al. (2011); Davis et al. (2013). 
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