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Spherical convective dynamos in the rapidly
rotating asymptotic regime

Julien Aubert†, Thomas Gastine and Alexandre Fournier
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris-Diderot, CNRS, 1 rue

Jussieu, F-75005 Paris, France.

(Provisionally accepted for publication in the Journal of Fluid Mechanics)

Self-sustained convective dynamos in planetary systems operate in an asymptotic regime of rapid
rotation, where a balance is thought to hold between the Coriolis, pressure, buoyancy and Lorentz
forces (the MAC balance). Classical numerical solutions have previously been obtained in a
regime of moderate rotation where viscous and inertial forces are still significant. We define
a unidimensional path in parameter space between classical models and asymptotic conditions
from the requirements to enforce a MAC balance and to preserve the ratio between the magnetic
diffusion and convective overturn times (the magnetic Reynolds number). Direct numerical sim-
ulations performed along this path show that the spatial structure of the solution at scales larger
than the magnetic dissipation length is largely invariant. This enables the definition of large-eddy
simulations resting on the assumption that small-scale details of the hydrodynamic turbulence are
irrelevant to the determination of the large-scale asymptotic state. These simulations are shown
to be in good agreement with direct simulations in the range where both are feasible, and can be
computed for control parameter values far beyond the current state of the art, such as an Ekman
number E = 10−8. We obtain strong-field convective dynamos approaching the MAC balance and
a Taylor state to an unprecedented degree of accuracy. The physical connection between classical
models and asymptotic conditions is shown to be devoid of abrupt transitions, demonstrating the
asymptotic relevance of classical numerical dynamo mechanisms. The fields of the system are
confirmed to follow diffusivity-free, power-based scaling laws along the path.

Key words: Dynamo theory, Magnetohydrodynamics, Geodynamo

1. Introduction
Convective dynamos in electrically conducting planetary fluid cores operate in an asymptotic

limit of rapid rotation and strong energy input. Considering the Earth’s core as representative of
this regime, as we will do throughout this work, the values of a few dimensionless numbers may
illustrate the situation (see table 1). Using a planetary rotation rate Ω = 7.29 × 10−5 s−1, viscous
and magnetic diffusivities ν ≈ 10−6 m2/s, η ≈ 1 m2/s, a typical length scale D = 2260 km
and a typical velocity U = 0.5 mm/s, the Ekman number representing the ratio of the rotation
period to the viscous diffusion time is E = ν/ΩD2 = O(10−15), implying a nearly inviscid
behavior. The hydrodynamic Reynolds number measuring the ratio of the viscous diffusion time
to the convective overturn time is Re = UD/ν = O(109), implying a developed hydrodynamic
turbulence that is also strongly constrained by rotation, as witnessed by the low Rossby number
Ro = ERe = O(10−6). The magnetic diffusion time relative to the convective overturn time
yields the magnetic Reynolds number Rm = UD/η = O(103), implying that the level of
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magnetic turbulence is more modest, though. The large disparity between the magnetic and
viscous diffusion times, expressed by the small values of the magnetic Prandtl number Pm =

ν/η = O(10−6), implies a dominant ohmic dissipation of the injected power, and also presumably
a high level of scale separation between the small-scale velocity field and a large-scale, self-
sustained magnetic field, a situation which is classically intractable in the framework of global
numerical simulation.

The activity of numerical dynamo modelling has nevertheless blossomed in the space defined
by modest, numerically tractable values of the aforementioned parameters (typically E > 10−5

and Pm > 0.2 for full domain calculations) with interesting success in accounting for the static
and kinematic morphological properties of Earth’s magnetic field (e.g. Christensen et al. 2010;
Aubert et al. 2013), a result that may be considered surprising given the distance in parameter
space between such models and planetary conditions. The exploration of this classical parameter
space has led to the formulation of scaling principles for the amplitude of the relevant fields of
the system (Christensen & Aubert 2006; Yadav et al. 2013a,b). The power-based, rotation- and
diffusivity-independent magnetic field scaling law proposed by these authors is now accepted
given its success in accounting for a wide variety of planetary and stellar objects (Christensen
et al. 2009). However, the theory underlying the flow speed, length scale and heat transfer
scalings has in general been subject to considerable debate, as it has been shown that the data set
acquired in the classical parameter space can support multiple interpretations (Soderlund et al.
2012; King & Buffett 2013; Davidson 2013; Oruba & Dormy 2014). Within this parameter space
indeed, the part of the Coriolis force not balanced by the pressure gradient can be equilibrated
by several different combinations of the other remaining forces (Lorentz force, buoyancy force,
inertia, viscous forces) because none of these is really negligible. Another problem is that scaling
predictions from the concurrent theories that have been formulated yield comparable levels of
variance reduction against the numerical data set, and the scaling exponents are often too close
to each other to be straightfowardly discriminable over the limited available control parameter
range, unless one resorts to advanced statistical methods (Stelzer & Jackson 2013). Finally, the
possible artificial alignment of data due to the choice of diffusivity-free scaling parameters has
also been questioned (Aurnou 2007; Cheng & Aurnou 2016).

These results lead to the conclusion that further insight on the planetary regime may be difficult
to obtain without adding significantly more extreme numerical calculations to the original data
set, a difficult task that in the past decade has received less attention than reanalyses of already
available data. Still, a small number of extreme runs have been carried out at typical parameters
E > 10−7 and Pm > 0.05 (Kageyama et al. 2008; Sakuraba & Roberts 2009; Miyagoshi et al.
2010; Sheyko et al. 2016; Nataf & Schaeffer 2015), exhibiting a suprising variety of behaviors.
In his comment of the study by Kageyama et al. (2008), Christensen (2008) underlines the
usefulness of such runs to test and challenge our prior understanding, but points out that these can
be fully rationalised only if they preserve the dynamical equilibria that are already well simulated,
while progressively enforcing those that are not yet well accounted for. The difficulty resides
in defining a corresponding path in parameter space between classical models and asymptotic
conditions, which forms the first goal of this work.

From a theoretical standpoint, a MAC (Magneto-Archimedes-Coriolis, also sometimes re-
ferred to as magnetostrophic) force balance should be enforced in Earth’s core, or asymptotic
conditions (e.g. Braginsky 1967; Starchenko & Jones 2002; Davidson 2013). In the resulting
dynamics, the magnetic and buoyancy forces equilibrate the part of the Coriolis force not
balanced by the pressure gradient, because of the relative smallness of viscous and inertial
forces (small Ekman and Rossby numbers). From this follows the Taylor constraint (Taylor
1963) stating that the integral of the azimuthal magnetic force over cylinders co-axial with the
rotation axis (the axial cylinders) should vanish in the limit E,Ro → 0. Indeed, the pressure
force identically vanishes on axial cylinders, as does the azimuthal Coriolis force, and buoyancy
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does not have an azimuthal component. In a situation where the magnetic force equilibrates
with the Coriolis force while strongly dominating the fluid inertia, the magnetic energy should
also largely dominate the kinetic energy (e.g. Davidson 2013), a regime which is commonly
referred to as strong-field dynamo action. In the parameter space sampled so far by numerical
simulations and laboratory experiments, a number of indirect diagnostics are suggestive of the
emergence of an asymptotic regime: change in the dominant length scale of convection (Sakuraba
& Roberts 2009; Takahashi & Shimizu 2012; Hughes & Cattaneo 2016), in the efficiency of heat
transfer (King & Aurnou 2015; Yadav et al. 2016a), and local cancellation between the Coriolis
and Lorentz forces (e.g. Dormy 2016). Yet, characterising the asymptotic regime, and clearly
separating the MAC forces from the residual contributions of inertia and viscosity definitely
require to obtain models operating at control parameter values significantly outside the currently
accessible space. Likewise, the MAC balance, the associated magnetostrophic Taylor state and
strong-field dynamo action are more convincingly assessed by examining direct diagnostics such
as the actual levels of all forces (e.g. Wicht & Christensen 2010; Soderlund et al. 2015; Yadav
et al. 2016b), the level of Taylor constraint enforcement (e.g. Wicht & Christensen 2010; Teed
et al. 2015), and the ratio of kinetic to magnetic energy (e.g. Takahashi & Shimizu 2012). These
last two points form the second goal of this work.

The key to achieve both goals is to introduce a relevant path in parameter space. It has been
recognized (Christensen et al. 2010) that morphological semblance of the numerical dynamo
output to the geomagnetic field can be achieved if a few time scale ratios are either set to,
or brought reasonably close to, their Earth counterparts. Among these, the Earth’s magnetic
Reynolds number value Rm = O(103) is already numerically tractable. A sensible path con-
necting the available numerical models and the Earth should thus at least preserve Rm while
bringing other less-well simulated time scale ratios such as the Ekman and Rossby numbers to
more Earth-like values (again, by reaching conditions of rapid rotation). Here, we show that
the requirements to preserve Rm and to observe the MAC balance enable the formulation of a
unidimensional path between the currently available models and the Earth, such that all control
parameters are determined by powers of a single path parameter ε. In the formulation to be
detailed in section 3, the value ε = 1 characterises the classical moderate models, while the
Earth’s core conditions correspond to ε = 10−7, a value representative of the rapidly rotating
limit ε → 0. The idea of a unidimensional path is equivalent to the mathematical concept of a
distinguished limit, the relevance of which has also recently been suggested by Dormy (2016)
along somewhat different lines of reasoning.

As we will show, direct numerical simulation currently makes only a small portion of this path
accessible, down to ε = 0.1. Within this subset, the large-scale model output shows a large degree
of spatial invariance as ε is decreased. Large-scale invariance suggests that one may parameterise
the effects of hydrodynamic turbulence below the magnetic dissipation length scale. This idea
is in fact reminiscent of the large-eddy numerical simulations that have been exploited at the
historical outset of the discipline (Glatzmaier & Roberts 1995) for reasons of computational
limitations. Simple functional forms of hyperdiffusivity (e.g. Zhang & Jones 1997; Grote et al.
2000) however may introduce dramatic changes in the character of the solution, though it is safe
to use them at the end of the spectrum to stabilise the computation (e.g. Gastine et al. 2014).
Sophisticated subgrid parameterisations (e.g. Baerenzung et al. 2008, 2010; Matsui & Buffett
2013) are promising but have never been fully tested in the spherical, self-sustained configuration
examined in this work. Our approach combines physical arguments relative to the scales for
energy injection and dissipation in the system, together with a hyperdiffusive treatment recently
proposed by Nataf & Schaeffer (2015), applied to the velocity and density anomaly fields, but
not to the magnetic field which remains fully resolved. We obtain a much more tractable, but
still reasonably accurate large-eddy simulation, enabling the computation of models down to
ε = 3 × 10−4, halfway in logarithmic scale between the moderate models and Earth along the
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parameter space path. This corresponds to the lowest Ekman number E = 10−8 reached to date
in three-dimensional numerical dynamo simulation, to a low Pm = 0.045, and more generally to
diagnostic dimensionless numbers significantly more realistic than in the classical parameter
space (table 1). Such models enable an exploration of the asymptotic behavior of spherical
convective dynamos. This study is organised as follows: section 2 describes the numerical model
and methods. The path theory and numerical results are presented in section 3 and 4, and are
discussed in section 5.

2. Numerical model
2.1. Model equations, input parameters and methods

We consider a convecting, electrically conducting, incompressible fluid in a self-gravitating
spherical shell between radii ri and ro, with ri/ro = 0.35 as in the Earth’s core at present. The shell
is rotating about an axis ez with an angular velocity Ω. We solve for Boussinesq convection for a
velocity field u and a density anomaly field C, magnetic induction in the magnetohydrodynamic
approximation for a magnetic field B, with the following set of dimensionless equations:

∂u
∂t

+ u · ∇u + 2 ez × u + ∇P = Ra∗(F)
r
ro

C + (∇ × B) × B + E∇2u, (2.1)

∂B
∂t

= ∇ × (u × B) +
E

Pm
∇2B, (2.2)

∂C
∂t

+ u · ∇C =
E
Pr
∇2C + S , (2.3)

∇ · u = 0, (2.4)
∇ · B = 0. (2.5)

Here r is the radius vector. Time is scaled with the inverse of the rotation rate Ω−1. Length is
scaled with the shell gap D = ro − ri. Velocity is scaled with ΩD. Magnetic induction is scaled
by (ρµ)1/2ΩD, where ρ is the fluid density and µ the magnetic permeability of the fluid. Tables
1 and 2 summarise the values of the input parameters for our survey, together with their Earth
estimates. We recall the definitions for the Ekman number E, magnetic Prandtl number Pm, and
introduce the Prandtl number Pr as:

E =
ν

ΩD2 , (2.6)

Pm =
ν

η
, (2.7)

Pr =
ν

κ
. (2.8)

Here ν, η have already been introduced as the fluid viscous of magnetic diffusivities, and κ is
the diffusivity of the density anomaly field C. Two different sets of boundary conditions are
investigated. Type ST refers to the standard boundary conditions often used in the numerical
dynamo modelling community (e.g. Christensen & Aubert 2006): rigid (no-slip) and electrically
insulating boundary conditions, and fixed density anomaly at both boundaries, with an imposed
difference ∆C between inner and outer boundary (which also serves as the scale for the dimen-
sionless density anomaly). In this case the density anomaly source term S vanishes in equation
(2.3), and the modified Rayleigh number Ra∗ appearing in equation (2.1) reads:

Ra∗ =
go∆C
ρΩ2D

. (2.9)

Here go is the gravity at the outer boundary. The modified Rayleigh number relates to the
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Name Symbol Definition Meaning Range in this work Earth

Ekman E ν/ΩD2 planetary rotation period
viscous diffusion time

10−8 − 3 × 10−5 O(10−15)

Magnetic Prandtl Pm ν/η
magnetic diffusion time
viscous diffusion time

0.045 − 2.5 O(10−6)

Flux Rayleigh Ra∗F
goF

4πρΩ3D4

(
power input rate

planetary rotation rate

)3

9 × 10−9 − 2.9 × 10−5 O(10−12)

Lehnert λ
B

(ρµ)1/2ΩD
planetary rotation period

Alfvén time
2 × 10−3 − 2 × 10−2 O(10−4)

Elsasser Λ B2/ρµηΩ
Lorentz force
Coriolis force

18.4 − 31.7 O(10)

Rossby Ro U/ΩD
planetary rotation period

overturn time
2.4 × 10−4 − 1.1 × 10−2 O(10−6)

Reynolds Re UD/ν
viscous diffusion time

overturn time
372 − 2.4 × 104 O(109)

Magnetic Reynolds Rm UD/η
magnetic diffusion time

overturn time
930 − 1099 O(103)

squared Alfvén A2 ρµU2/B2 kinetic energy
magnetic energy

1.4 × 10−2 − 0.48 O(10−4)

Table 1. Summary of the main input and output parameters, together with their values in this work and in
the Earth’s core. See section 2 for definitions and section 3 for a discussion of geophysical estimates.

canonical Rayleigh number Ra = go∆CD3/ρκν through

Ra∗ = RaE2/Pr. (2.10)

Note that the square root of the modified Rayleigh number is classically referred to as the
convective Rossby number (Gilman 1977). The second set of boundary conditions (type CE) is
derived from the Coupled Earth dynamo setup (Aubert et al. 2013). Here the idea is to minimise
the residual influence of boundary layers, and provide a geophysically more relevant description
of global coupling by using stress-free, electrically conducting, and fixed mass anomaly flux
conditions at both boundaries. We will show in section 4 that results obtained within setups ST
and CE are largely similar, meaning that the nature of the asymptotic state is not influenced by
the choice of boundary conditions. In type CE, the imposed mass anomaly flux crossing the shell
is defined as F, and the density anomaly scale for nondimensionalisation is defined as F/4πΩD3.
The dimensionless, spherical parts of the mass anomaly flux at the inner and outer boundaries are
fixed to ∂C/∂r(ri) = −Pr/ Er2

i and ∂C/∂r(ro) = 0. The modified flux Rayleigh number appearing
in equation (2.1) then becomes

Ra∗F =
goF

4πρΩ3D4 , (2.11)

and mass flux conservation implies that the source term in equation (2.3) for type CE is S =

−3/(r3
o−r3

i ) (Aubert et al. 2009). Throughout this work, the notation Ra∗(F) introduced in equation
(2.1) refers either to Ra∗ or Ra∗F depending on whether we consider the ST or the CE setup,
respectively.

In addition to this basic setup, type CE also features a number of refinements, listed below,
which help the simulation output to match the statics and kinematics of the geomagnetic field,
particularly regarding the geomagnetic westward drift and the geographical localisation of the
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temporal magnetic field variations. Although these are mostly irrelevant to the fundamental force
balance and scaling results to be presented in the following sections, they have been kept here for
future exploitation of the results in a geophysical context. The fluid shell is magnetically coupled
to a solid inner sphere of radius ri (the inner core) and with the same electrical conductivity,
axially rotating at a rotation rate Ωic. The inner sphere couples to a solid spherical shell between
radii ro and 1.83ro (the mantle), also axially rotating at a rate Ωm, through a restoring remote
torque Γ = ξ(Ωic−Ωm) meant to arise from gravitational coupling, with ξ = 0.75. The outer solid
shell has an dimensionless electrical conductance Σ = 10−4 also enabling magnetic coupling
with the fluid shell (see Pichon et al. 2016, eqns. 28 and 29, for complete definitions of ξ and
Σ). Angular momentum of the coupled system is preserved, with moments of inertia for the
inner sphere, fluid shell, and outer solid shell in Earth-like ratios (see also Pichon et al. 2016).
Finally, a longitudinal hemispheric modulation of the mass anomaly flux is imposed at the inner
core boundary on top of the homogeneous part, with a peak-to-peak amplitude 0.8Pr/ Er2

i . A
spatial modulation of the mass anomaly flux at the outer boundary is also imposed, with a peak-
to-peak amplitude 0.1Pr/ E. The patterns and relative orientations of these mass anomaly flux
heterogeneities are those prescribed in Aubert et al. (2013).

We have carried out 10 numerical cases of type CE and 7 cases of type ST (table 2). Type
ST cases were integrated using the MagIC numerical implementation (Wicht 2002; Gastine
et al. 2016, freely available at www.github.com/magic-sph/magic), which uses a Chebyshev
decomposition in the radial direction with NR nodal points, and a lateral spherical harmonic
decomposition up to degree and order lmax. Type CE cases were integrated using the PARODY-
JA numerical implementation (Dormy et al. 1998; Aubert et al. 2008) using a second-order
finite differencing scheme in the radial direction with NR grid points in the fluid, 50 grid
points in the inner sphere, and the same spherical harmonic decomposition as MagIC. Both
implementations use a toroidal-poloidal decomposition of the solenoidal vector fields u and B
(equations 2.4,2.5), the same Crank-Nicolson/Adams-Bashforth semi-implicit adaptative time
stepping scheme of second order in time, and are benchmarked against each other (Christensen
et al. 2001). Both implementations resort to the library SHTns (Schaeffer 2013, freely available
at https://bitbucket.org/nschaeff/shtns), for efficient handling of the spherical harmonic trans-
forms. All calculations have been performed in the full domain and no azimuthal symmetry
was assumed. More extreme parameter regimes could be reached in the CE setup, owing to the
absence of viscous and density anomaly boundary layers. The least forced reference models
0 and 1 in the ST and CE setups were already largely supercritical, with Rayleigh numbers
respectively 40 and 400 times their critical values. Note however that these figures are different
because supercriticality is defined relative to the flux in CE case, and the dynamical regimes of
models 0 and 1 are otherwise equivalent. All models produced a self-sustained magnetic field
with a dominant axial dipole that did not reverse polarity, and with a morphology exhibiting
detailed resemblance to that of the geomagnetic field (see section 4.2). No bistable states were
found, though such states were not specifically searched for. Our initial conditions for models
0 and 1 were indeed an axially dipolar magnetic field, zero velocity field and a random density
anomaly perturbation. We then progressed by half-decades towards lower Ekman numbers by
iteratively initialising each new model with the final state of the previous calculation. Large-eddy
simulations (section 3.4) were computed first, and then expanded into fully resolved numerical
simulations by removing the hyperdiffusive treatment, a strategy causing only weak transients
and ensuring significant savings in numerical cost.

2.2. Output parameters

In the following, we will analyse the following time-averaged, integral outputs, which are
also summarised in table 1 and detailed in table 2. The magnetic field amplitude in the shell is
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characterised either by the Lehnert number

λ =
B

(ρµ)1/2ΩD
, (2.12)

or the Elsasser number

Λ =
B2

ρµηΩ
, (2.13)

where B is the dimensional, root-mean-squared magnetic field amplitude in the fluid shell. Table
2 lists the Elsasser numbers in our numerical cases, and we recall that λ =

√
ΛE/Pm. The

velocity field amplitude is characterised either by the Rossby number

Ro =
U
ΩD

, (2.14)

the hydrodynamic Reynolds number

Re =
UD
ν
, (2.15)

or the magnetic Reynolds number

Rm =
UD
η
, (2.16)

where U is the dimensional, root-mean-squared velocity field amplitude in the fluid shell. Table
2 lists the magnetic Reynolds numbers, and we recall that Re = Rm/Pm and Ro = ERm/Pm.
The squared Alfvén number

A2 =
ρµU2

B2 , (2.17)

measuring the ratio of kinetic to magnetic energy can also be derived from table 2 as A2 =

ERm2/PmΛ. The efficiency of mass anomaly transfer in the ST cases is measured by the Nusselt
number Nu = FD/4πriroκ∆C.

The volumetric convective power is defined as

p =
Ra∗(F)

Vro

∫
V

(u · r)C dV, (2.18)

where V = 4π(r3
o − r3

i )/3 is the volume of the fluid shell. On time average, the convective
power equates to the rate of gravitational potential energy release, which itself relates to the
mass anomaly flux. In the CE setup this leads to a relationship between p and Ra∗F (Aubert
et al. 2009) while in the ST setup this may be more precisely assessed by relating p to an
advected flux Ra∗(Nu − 1)E/Pr (Christensen & Aubert 2006). Determining the proportionality
factor γ = p/Ra∗F (CE setup) or γ = p/(Ra∗(Nu − 1)E/Pr) (ST setup) requires knowledge of
the gravitational potential difference between the radii for density anomaly injection and mixing.
The constant γ can be exactly determined in a configuration of condensed mass central gravity
g ∼ 1/r2 (Gastine et al. 2015). Approximate values of γ depending only on geometry can also be
analytically determined in the present situation of sufficiently supercritical convection and linear
radial gravity, through an assumption on the density anomaly profile (ST setup, Christensen &
Aubert 2006) or on the average gravitational potential relevant to density anomaly mixing (CE
setup, Aubert et al. 2009). Figure 1 shows that the deviations of our simulations from these
approximate theories remain weak throughout the investigated range and should also remain
negligible at Earth’s core conditions, as expected for strongly supercritical convection in the
rotationally-dominated regime (Oruba 2016). In the following, we will thus consider that there is
proportionality between p and Ra∗F in the CE setup, such that power is an input parameter. In the
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Figure 1. Proportionality (a) between the convective power p and the dimensionless mass anomaly flux Ra∗F
(CE cases) or Ra∗(Nu − 1)E/Pr (ST cases), presented together with its compensated scaling (b). The green
line is the analytic prediction relevant to the CE setup from the perfect-mixing theory (Aubert et al. 2009),
with proportionality constant γ = 0.332. The orange line is the analytic prediction γ = 0.480 obtained in the
ST setup by Christensen & Aubert (2006). In panel (b), shaded regions represent the ±1 std. dev. of temporal
fluctuations relative to the time average. In the CE setup, the large-eddy simulations (see section 3.4) exhibit
a weak residual trend for γ which should amount to about 20% at Earth’s core value Ra∗F = O(10−12), a
negligible error compared to the geophysical uncertainty in the determination of Ra∗F (equation 3.14).

ST setup we will also consider that p is proportional to Ra∗(Nu− 1)E/Pr, meaning that power is
an output parameter.

The volumetric rate of ohmic dissipation is defined as

Dη =
E

PmV

∫
V

(∇ × B)2 dV, (2.19)

and is expressed in table 2 through the ohmic dissipation fraction fohm = Dη/p. The equivalent
ohmic dissipation length as defined in Christensen & Tilgner (2004) is also reported in table 2
and reads

dmin =

(∫
V

B2 dV
)1/2 / (∫

V
(∇ × B)2 dV

)1/2

=
E

Pm

√
Λ

p fohm
. (2.20)

We finally use a standard measure (Wicht & Christensen 2010; Teed et al. 2015) for the
enforcement of the Taylor constraint (Taylor 1963), by assessing the cancellation level of the
Lorentz force acting on axial cylinders:

T (s) =

∫ z+

z−
eϕ · (∇ × B) × B dz∫ z+

z−

∣∣∣∣ eϕ · (∇ × B) × B
∣∣∣∣ dz

. (2.21)

Here s, ϕ, z are cylindrical coordinates, eϕ is the unit vector in the azimuthal direction, and
the overbar represents an average taken in the azimuthal direction. The vertical integrals are
evaluated between the lower and upper heights z−,+ at which the axial cylinder of radius s
intersects the spherical shell boundaries. In table 2 we report T as an average of |T (s)| over
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axial cylinders between s = 0 and s = ro, hence also encompassing fluid regions above and
below the inner sphere inside the axial cylinder tangent to the inner core (the tangent cylinder).

3. A parameter space path connecting models to asymptotic conditions
Here we first recall the MAC balance theory introduced by Davidson (2013) (from hereafter

D13). We use this theory as a guideline for defining a parameter space path connecting classical
models to asymptotic conditions, along which the solutions should show a degree of large-
scale invariance. From this we introduce large-eddy simulations aiming at capturing the essential
features of the system at a drastically reduced computer cost. A spatially invariant, approximated
version of the D13 theory is introduced to account for the scaling properties of these large-
eddy simulations. The two theories are assessed in section 4 against numerical data, and their
agreement together with the validity of the associated approximations are discussed in section 5.

3.1. Outline of the MAC theory

The D13 theory introduces three length scales to describe the asymptotic solutions. First, d//
describes the typical size of convection structure along the rotation axis. The second scale d⊥
is the typical size of convection structures in a plane perpendicular to the rotation axis. The
third scale is finally the magnetic dissipation length dmin which we introduced above in its
dimensionless form. The columnar structure of convection rolls is a robust feature of spherical
convective dynamos (Christensen & Aubert 2006; Yadav et al. 2013b), prompting

d// ∼ D. (3.1)

The MAC balance evaluated from the curled, dimensional version of equation (2.1) leads to

ρΩU
D
∼

goC
d⊥
∼

B2

µd2
⊥

, (3.2)

where C denotes a typical density anomaly, complementing the already introduced typical ve-
locity and magnetic fields U and B. Likewise, the dimensional balance between the rate of
convective energy input and magnetic dissipation (Christensen & Tilgner 2004; Christensen &
Aubert 2006) may now be written

ηB2

µd2
min

∼ fohm
goF
D2 , (3.3)

where we have used the equivalence between convective power and mass anomaly flux (figure
1). Using F ∼ UCD2, and assuming a context of dominant magnetic dissipation i.e. fohm ≈ 1,
one sees that satisfying both the balance between buoyancy and magnetic forces in (3.2) and the
energy budget (3.3) implies that

U/d⊥ ∼ η/d2
min. (3.4)

This implies that the large-scale vorticity and the vorticity at the scale of magnetic dissipation are
equivalent. This is an important result as it indicates that the turbulent energy transfers which are
essential to the dynamics occur between the large scale d⊥ at which the magnetic field sustains
itself by drawing convective power (balance between buoyancy and Lorentz forces), and the
small scale dmin at which this power is ohmically dissipated. If one further requires the large- and
small-scale vorticities to be independent on the system rotation rate and diffusivities, then from
(3.3) it follows that the magnetic field itself is independent on the rotation rate and diffusivities.
Dimensional analysis finally yields the following scaling, corresponding to the initial proposal
of Christensen & Aubert (2006):

B ∼
√
ρµ(goF/ρD)1/3. (3.5)
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One finally obtains the dimensionless power-driven, diffusivity-free scalings

Ro ∼ (Ra∗F)4/9, (3.6)
λ ∼ (Ra∗F)1/3, (3.7)

together with the following relationships for the length scales

dmin/D ∼ Rm−1/2Ro1/8, (3.8)
d⊥/D ∼ Ro1/4. (3.9)

In equation (3.8) dmin thus primarily scales with the magnetic Reynolds number, in accordance
with the initial result of Christensen & Tilgner (2004). In the range between model 0 (table 2)
where Ro = 10−2, and the conditions of Earth’s core where Ro ≈ 3 × 10−6 (see section 3.2),
the secondary dependence with the Rossby number Ro1/8 should remain small, within a factor
3. Numerical dynamo surveys (Christensen 2010; Yadav et al. 2013a; Stelzer & Jackson 2013)
generally suggest an even weaker dependence of dmin in Ro with power-law exponents between
1/20 and 1/10. The discrepancy with D13 may be rooted in the variations of fohm that are still
significant in the numerical data set but not considered in the asymptotic MAC scaling theory. A
reasonable approximation is thus to neglect the Rossby number dependence in (3.8). Consistency
with the vorticity equivalence (3.4) then also demands the stronger assumption to neglect the
Rossby number dependence in (3.9).

3.2. Path theory in the CE setup

The calculations listed in table 2 do not represent a systematic sampling of the parameter
space, but are rather chosen to follow a path connecting the classical numerical models such
as the original CE dynamo (Aubert et al. 2013) to Earth’s core conditions. To introduce this
concept it is best to use a reasoning based on time scale ratios, with our ultimate goal being
to bring five relevant time scales in Earth-like proportions. These are the inverse rotation rate
τΩ = 1/Ω, the convective overturn time τU = D/U, the Alfvén time τA =

√
ρµD/B, the time

scale for convective power input τF = (4πρD4/goF)1/3 (analogous to the Kelvin-Helmholtz time
scale), and the magnetic diffusion time τη = D2/η. Less relevant to us are the viscous diffusion
time τν = D2/ν and the density anomaly diffusion time τκ = D2/κ. For these latter times we
do not target Earth-like ratios relative to the other times, but simply conditions corresponding to
the magnetic diffusion time τη being much smaller than τν and τκ, so that ohmic losses are the
dominant source of dissipation.

We first illustrate the strategy with CE cases. Our starting point is a model similar to the
original coupled Earth dynamo (Aubert et al. 2013), which we label model 0 (see table 2). In
the following, subscript 0 denotes the parameters relative to this model. Four relevant time scale
ratios for this model are (

τΩ
τF

)3

= (Ra∗F)0 = 2.7 × 10−5, (3.10)

τΩ
τη

= E0/Pm0 = 1.2 × 10−5, (3.11)

τητΩ

τ2
A

= Λ0 = 21.4, (3.12)

τη

τU
= Rm0 = 930. (3.13)

Our goal corresponds to conditions in the Earth’s core. To estimate these we use the values
B = 4 mT (Gillet et al. 2010), U = 5 × 10−4 m/s (e.g. Aubert 2014), ρ = 11000 kg/m3, D =

2260 km, Ω = 7.29 × 10−5 s−1, which are known with some certainty. We further use the less
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certain values η = 0.3 − 3 m2/s for the magnetic diffusivity, and Qad = 4 − 15 TW for the
core-mantle boundary adiabatic heat flow, the uncertainty being due to an ongoing debate on
core thermal and electrical conductivities (e.g. Pozzo et al. 2012; Ohta et al. 2016; Konôpková
et al. 2016). We assume that heat flow at the core-mantle boundary is exactly adiabatic, such
that the dynamo is entirely bottom-driven, as is the case in our CE models. Taking into account
the thermodynamic efficiencies of inner core crystallisation and latent heat release (as computed
in Lister 2003), the dimensional, volumetric power is then p ≈ 0.2Qad/V . The modified, flux-
based Rayleigh number can then be deduced using the proportionality exhibited in figure 1 as
Ra∗F = p/γρΩ3D2, with γ = 0.33. The resulting time scale ratios for Earth’s core are then(

τΩ
τF

)3

= Ra∗F = 6 × 10−13 − 2.5 × 10−12, (3.14)

τΩ
τη

= E/Pm = 10−9 − 10−8, (3.15)

τητΩ

τ2
A

= Λ = 5 − 50, (3.16)

τη

τU
= Rm = 400 − 4000. (3.17)

We see that along a sensible path connecting models and Earth, we would need to preserve at
least the magnetic Reynolds number and the Elsasser number, our starting values representing
reasonable midpoints in the range inferred for Earth’s core. We will see below that these two
conditions in fact reduce to only one once the MAC balance is considered. We thus first decide
to keep Rm constant. From the discussion in section 3.1 this implies that dmin should be close
to invariant along the path. If we assume invariance for dmin, then the vorticity equivalence (3.4)
also implies that d⊥ is invariant. The first part of the balance (3.2) then reduces to ρΩU ∼ goC,
and we also have F ∼ UCD2. This yields the classical thermal wind balance (e.g. Starchenko &
Jones 2002; Aurnou et al. 2003; Aubert 2005; Pichon et al. 2016), which is written here using
the time scales introduced above:

τΩτ
2
U ∼ τ

3
F . (3.18)

With a constant dmin and fohm ≈ 1, the energy budget (3.3) now becomes

τ3
F ∼ τ

2
Aτη. (3.19)

Note that (3.18) and (3.19), together with a constant Rm = τη/τU , indeed yield a constant Elsasser
number Λ = τητΩ/τ

2
A along the path. With these relationships at hand, we may now mathemati-

cally define the rules for input parameters along the path. Any model may be characterised by a
path parameter ε such that

Ra∗F = ε(Ra∗F)0. (3.20)
In the CE setup, ε is then an input parameter controlling the mass anomaly flux and convective
power, or alternatively the rotation rate since Ra∗F = (τΩ/τF)3. The rapidly rotating asymptotic
regime is obtained for ε → 0. With this definition, ε = 1 corresponds to the conditions of model
0, and ε = 10−7 is appropriate to describe Earth’s core conditions given the Earth values reported
above. Using the definition of Ra∗F in terms of time scales, together with (3.18) and a constant
Rm = τη/τU we then obtain

E
Pm

=
√
ε

E0

Pm0
. (3.21)

We see here again that ε = 1 still describes model 0, while ε = 10−7 indeed yields a correct Earth
value E/Pm = 3.8 × 10−9 for the magnetic Ekman number. As mentioned above, we also wish
to sufficiently increase τν and τκ relative to τη in order to ensure a dominantly ohmic dissipation.
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We adopt

Pm =
τη

τν
=
√
ε Pm0, (3.22)

Pr =
τκ
τν

= 1, (3.23)

such that

E =
τΩ
τν

= εE0. (3.24)

We see that setting ε = 10−7 implies Pm = 7.9×10−4 and E = 3×10−12, meaning that although at
the end of the path we have indeed rendered τη and τΩ much shorter than τν and τκ, we have not
reached the expected Earth values for their ratios. However, we argue that Pm and E are small
enough for thermal and viscous diffusivites to effectively become irrelevant, as is the case in
Earth’s core. In contrast, it is a far more important result that the path achieves a correct value of
the Earth magnetic Ekman number E/Pm, since this number involves τΩ and τη, two time scales
which have a major impact on the MAC balance and on energy dissipation. Other dependences on
ε for E and Pm than those in equations (3.22, 3.24) may besides be chosen, as long as E/Pm still
varies like

√
ε, and as long as Pm decreases more slowly than E3/4 along the path, an empirical

condition (Christensen & Aubert 2006) for maintaining self-sustained dynamo action that is
also satisfied by (3.22, 3.24). For instance, perhaps a more elegant (but more computationally
demanding) approach could be to simply define the path from the sole requirement to match the
Earth’s core values of Ra∗F , E and Pm at ε = 10−7, i.e. Ra∗F = ε(Ra∗F)0, E = ε1.4E0 and Pm =

ε0.9Pm0. Along this alternative path (which satisfies all the above requirements) the constancy
of Rm, Λ, together with the gradual enforcement of the MAC balance should then presumably
emerge as results rather than prescriptions.

With the path input parameters now fully defined, we turn to the expected scalings for the
outputs along the path. We have already seen that our path implies

Rm = Rm0, (3.25)
Λ = Λ0. (3.26)

The CE-type models in table 2 provide a first consistency check of our theoretical approach,
as Rm and Λ are indeed constant to within ±10% for models chosen along the path down to
ε = 3× 10−4, and, by construction, obviously match the expected Earth values for ε = 10−7. This
also applies to the ST models, though with a slightly different baseline for Λ. Diffusivity-free
scalings for other outputs can be derived using our path definitions (3.20, 3.22, 3.24) together
with the relationships (3.18, 3.19, 3.25):

τΩ
τU

= Ro =
√
ε Ro0, (3.27)

τΩ
τA

= λ = ε1/4λ0, (3.28)

τA

τU
= A = ε1/4A0. (3.29)

Here Ro0 = 1.11 × 10−2, λ0 = 1.60 × 10−2 and A0 = 0.69 are respectively the Rossby, Lehnert
and Alfvén numbers of model 0 (tables 1,2). Extrapolations of the scalings (3.27-3.29) to Earth’s
core conditions (ε = 10−7) yield Ro = 3.5 × 10−6, λ = 2.8 × 10−4 and A = 1.2 × 10−2. These
are strikingly close to the estimates Ro = 3 × 10−6, λ = 2.1 × 10−4 and A = 1.5 × 10−2 obtained
using the Earth values introduced above for U, B, ρ, Ω,D. Stating the result in another way, these
scalings together with the output of model 0 provide independent predictions U = 6 × 10−4 m/s
and B = 5.3 mT which compare very favourably with current estimates obtained through
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geophysical methods (Gillet et al. 2010; Buffett 2010; Aubert 2014). While there is a rough
equipartition of the kinetic and magnetic energy in model 0 (A2

0 = 0.48), the predicted separation
increases with decreasing ε and is large at Earth’s core conditions, i.e. A2 = O(10−4).

In summary, here we have used a spatially-invariant approximation of the D13 theory to estab-
lish a smooth (i.e. devoid of abrupt physical transitions) theoretical connection between classical
numerical dynamos such as model 0 and the conditions of Earth’s core, along a unidimensional
parameter space path constrained by the MAC balance and the need to maintain a constant
value of the magnetic Reynolds number. While the extrapolations performed above are certainly
supportive of this connection, the spatial invariance assumed in the path theory implies scaling
exponents for the main outputs (equations 3.25-3.29) differing from the values predicted by the
(in principle) asymptotically correct D13 theory along the path. From equations (3.6-3.9,3.20-
3.24), we indeed get the D13 scalings

Ro = Ro0 ε
4/9, (3.30)

λ = λ0 ε
1/3, (3.31)

Rm = Rm0 ε
−1/18, (3.32)

Λ = Λ0 ε
1/6, (3.33)

dmin = (dmin)0 ε
1/12, (3.34)

d⊥ = (d⊥)0 ε
1/9. (3.35)

We note that in the case of dmin and d⊥, the dependences in ε are indeed marginal and support
spatial invariance to the extent that there is less than an order of magnitude variation between
ε = 1 and ε = 10−7. The same also holds for Rm, but interestingly not for Λ. Both the D13 and
spatially-invariant path theories will be checked in section 4.3 against numerical data covering
a wide portion of the path, leading to an assesment of the quality of the spatially-invariant
approximation. As can be expected, we will show that the direct numerical simulation results
support the D13 set of exponents (3.30-3.35), while the results of large-eddy simulations to be
introduced in section 3.4 are best described by the set of exponents (3.25-3.29), since these
simulations assume spatial invariance to some extent.

3.3. Path theory in the ST setup

The formulation of the path theory is straightforward in the CE setup, because the convective
power is in fact an input as it relates to the imposed mass anomaly flux Ra∗F (figure 1). The
situation changes in the more widely studied ST setup, where the power is an output. Starting
from model 1 (table 2, model parameters subscripted with 1 in the following), which operates
with the ST setup in the same physical regime as model 0 with the CE setup, we now wish to
define the path parameter ε in terms of the power p (which is then fully equivalent to what we
did in the CE setup, equation 3.20):

p = εp1. (3.36)

We wish to also keep the same dependences on ε for E, Pm and Pr as those introduced in (3.22-
3.24), i.e. E = εE1, Pm =

√
ε Pm1, and Pr = 1. To obtain the path rule for the input parameter

Ra∗, we recall the proportionality between the convective power and the mass anomaly flux
(figure 1), which in the ST setup is (Christensen & Aubert 2006):

p ∼ Ra∗(Nu − 1)
E
Pr
. (3.37)

We thus need a relationship between the Nusselt and Rayleigh numbers. Such a relationship
usually involves the canonical Rayleigh number Ra and its critical value for convection onset
Rac ∼ E−4/3 (Busse 1970). It can generically be expressed as Nu−1 ∼ (Ra/Rac)β ∼ RaβE4β/3, and
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with equation (2.10) and the fact that Pr = 1 this yields Nu − 1 ∼ (Ra∗)βE−2β/3. The convective
power then scales with p ∼ (Ra∗)β+1E−2β/3+1, and the requirements p ∼ ε and E ∼ ε thus
imply Ra∗ = ε2β/3(β+1) Ra∗1. Rotating convection and dynamo studies suggest values ranging
from β = 6/5 (Christensen & Aubert 2006; Aurnou 2007; King et al. 2010) to β = 3/2 (the
diffusivity-free prediction, Gillet & Jones 2006; Julien et al. 2012; Stellmach et al. 2014). These
yield very similar dependences ε4/11 to ε2/5 for Ra∗. In the following we choose to retain the
simpler expression

Ra∗ = ε2/5Ra∗1, (3.38)

for completing the definition of the ST path. We note that the canonical Rayleigh number Ra then
increases with ε−8/5, which is steeper than the increase of the critical value Rac ∼ ε

−4/3, meaning
that supercriticality indeed increases as we progress along the path.

Direct numerical simulations (table 2, ST/D cases) show that the obtained ε, reported in table 2
as the ratio p/p1, very closely matches the intended ε defined as E/E1. This provides a posterior
check for our analysis. For the large-eddy simulations (ST/L cases) to be introduced in section
3.4, however, the obtained value is lower than the intended value, and the difference increases
with decreasing ε. The hyperdiffusive treatment of the velocity and density anomaly fields indeed
leads to a loss of the convective power carried through the interaction of small-scale velocity and
density anomaly. Note though that this problem is specific to the ST setup, since in the CE setup
the relationships p/p0 ≈ Ra∗F/(Ra∗F)0 = E/E0 = ε hold with markedly better accuracy (table 2).

3.4. Large-eddy simulations

Exhibiting numerical solutions for low values of ε is difficult because hydrodynamic turbu-
lence sets up as one progresses along the path, as witnessed by the Reynolds number scaling that
can be derived from (3.27):

Re = Re0ε
−1/2, (3.39)

with Re0 = 372 in the CE case. As a result, the exploration of the path with a fully resolved
direct numerical simulation (DNS) is currently possible only down to ε = 0.1 (cases CE/D and
ST/D in table 2). Achieving lower values of ε requires to define relevant large-eddy simulations
(LES, cases CE/L and ST/L in table 2). We have seen in section 3.1 that the essential part of
the energy transfers should occur between the scales d⊥ and dmin, with d⊥ > dmin and the
separation between the two being mainly controlled by the level of magnetic turbulence Rm
(equations 3.8,3.9). We have also seen that we could approximate dmin by a constant along a path
of constant Rm, implying that d⊥ is also a constant. These points suggest that the hydrodynamic
turbulence gradually setting up at scales below dmin as we progress along this path is irrelevant
to the determination of the large-scale structure. This latter structure is indeed controlled by a
large-scale MAC balance at scale d⊥ and only a small part of the convective power does cascade
further below the scale dmin, the major part being dissipated there through ohmic losses.

We may thus parameterise the hydrodynamic turbulence below scale dmin without too much
loss in physical relevance and accuracy, and our numerical computation may be restricted to the
sole length scale range dmin 6 d 6 D, thus alleviating the common scale-separation problems
encountered at extreme control parameter values. Using dmin ≈

√
1/ 2Rm (Christensen & Tilgner

2004, a relationship also well verified in our data set, see table 2) and Rm = 1000, this
corresponds to a numerical expansion up to spherical harmonic degree lmax = 140. In CE/L
and ST/L large-eddy cases (table 2) we have used either lmax = 133 or lmax = 170 for reasons
of numerical efficiency. We adopt a hyperdiffusive treatment recently proposed by Nataf &
Schaeffer (2015) that we apply to the diffusion of momentum and density anomaly, but not to
that of the magnetic field, which remains fully resolved. In the numerical implementation, the
principle is to use effective diffusivities νeff, κeff that depend on the harmonic degree l and the
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molecular diffusivities ν, κ according to

(νeff, κeff) = (ν, κ) for l < lh, (3.40)
(νeff, κeff) = (ν, κ) ql−lh

h for l > lh. (3.41)

Here lh is the cut-off degree below which the hyperdiffusive treatment is not applied. For this
treatment to remain physically accurate, it should satisfy the following requirements: (i) it should
not perturb the large-scale MAC balance, i.e. lh should be sufficiently larger than l⊥ = πD/d⊥,
and (ii) the additional viscous energy losses that it implies should remain small relatively to
ohmic losses. These requirements are satisfied here by prescribing lh = 30, a value which, as we
will see in section 4.1, is three times larger than our estimate l⊥ ≈ 10, and values of qh close to
1 (table 2), enabling a very smooth increase of hyperdiffusivity with harmonic degree. In section
4 we will validate this treatment by comparing DNS and LES simulations in the range where
both are feasible, and by demonstrating that the additional viscous losses are indeed negligible
in the asymptotic limit. There is some leeway in the choices of qh and lh. For the CE/L case
performed at ε = 0.1 we have indeed checked that varying qh in the range 1.02 6 qh 6 1.07
yields similar results to within 5%. The same holds when varying lh in the range 15 6 lh 6
60 in the CE/L case performed at ε = 0.33. Given the numerical schemes used to solve the
equations, the hyperdiffusive treatment only applies to the lateral directions of the numerical
calculation, making it still necessary to increase the radial resolution as ε decreases. This is
however a far more tractable numerical problem than that of expanding the grid in all three
spatial directions. Combined with the fact that we avoid treating viscous boundary layers, this
permitted to calculate CE cases down to ε = 3.33 × 10−4 and an Ekman number E = 10−8. This
is the lowest Ekman number reached to date in self-sustained spherical convective dynamos,
though it should be acknowledged that this value applies to the degree range l 6 30 only, after
which the effective Ekman number increases.

4. Numerical results
4.1. Spatial structure of the asymptotic MAC force balance

In figure 2 we first analyse the force balance operating in the ST simulations (similar results
hold for the CE simulations). To this end, for each force f we follow Soderlund et al. (2012,
2015) and compute

f 2
rms =

1
V

∫
V

f 2 dV =

lmax∑
l=0

f 2
l . (4.1)

There are a few novelties of our calculation relative to Soderlund et al. (2012, 2015). First,
we have access to the part of the Coriolis force not balanced by the pressure gradient (the
ageostrophic part). Second, we reveal the actual force balance in the bulk of the fluid by excluding
viscous boundary layers from the calculation. Note that this methodology is similar to that used
in Yadav et al. (2016b) and the results are hence directly comparable. A third point which is
original to the present work is that we decompose f 2

rms into a sum of contributions f 2
l along

spherical harmonic degrees and present fl as a function of l. At the order following that of the
diagnostic balance between Coriolis and pressure forces, a MAC balance is robustly observed
in all simulations between the ageostrophic Coriolis, buoyancy and Lorentz forces. This force
balance is structurally similar among all simulations (compare the four panels of figure 2).
The harmonic degree l⊥ ≈ 10 corresponding to an optimal MAC balance may be identified
as the intersection between the contributions of the Lorentz and buoyancy forces, and is largely
invariant, both in the DNS and LES simulations. For harmonic degrees smaller than l⊥ (length
scales larger than d⊥) the main balance is between the buoyancy and ageostrophic Coriolis forces,
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Figure 2. Force balance spectrum in the ST numerical simulations (viscous boundary layers excluded),
presented as a function of the spherical harmonic degree l, and normalised relative to the peak amplitude
of the pressure gradient, for two DNS (a,b) and two LES (c,d) cases performed at varying ε along the
path. Panels (b) and (d) present a comparison of DNS and LES at a constant ε value. Note that the
maximal spherical harmonic degree lmax of the calculations differs in the four cases (see table 2). The solid
lines represent the time-averaged force balance, and the shaded regions represent the ±1 std. dev. in the
instantaneous force balance. The harmonic degree l⊥ is defined as the intersection between the buoyancy
and Lorentz forces, such that these two forces equally contribute to balance the part of the Coriolis force not
balanced by the pressure gradient. For comparison purposes, the predictions π/d⊥ obtained from equation
(4.2) using values in table 2 are also reported in panels (a-d).

and the Lorentz force substitutes to the buoyancy force for harmonic degrees larger than l⊥
(length scales smaller than d⊥). The temporal variability of this basic structure is quite low,
implying that the MAC balance holds at all instants in the numerical simulations. Independent
predictions l⊥ = π/d⊥ (reported in figure 2) can be obtained from equation (3.4) and the values
in table 2, where the dimensionless D13 length scale d⊥ is

d⊥ = fohmd2
minRm. (4.2)

Note that (4.2) reintroduces the contribution of fohm that should arise from (3.3) but has been
neglected in (3.4). These predictions are essentially invariant and closely match the measure
obtained by the crossings of forces in figure 2. This confirms that l⊥ indeed corresponds to the
D13 scale d⊥. This also demonstrates the conjecture that the large scale at which the convective
dynamo is organised is indeed controlled by the vorticity equivalence (3.4) that follows from
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the MAC balance. It is interesting to note that the starting point of the ST path (model 1, figure
2a) already exhibits a well-respected MAC balance, though the contributions of inertial and
viscous forces are still sizeable. Decreasing ε by a factor 10 in a DNS simulation (figure 2b)
decreases the contribution of inertia by a factor 3 roughly, as expected from the predicted Rossby
number scaling (equation 3.27) along the path. The gap between inertial and viscous forces also
enlarges, though at a pace somewhat slower than that predicted by Reynolds number scaling
(3.39), hinting at a non-trivial length scale for viscous dissipation which we leave outside the
scope of the present study.

The agreement between DNS and LES performed at a similar value of ε (figure 2b,d) is ex-
cellent regarding the harmonic structure and relative amplitudes of pressure, Coriolis, buoyancy,
Lorentz and inertial forces up to degree l 6 70. The LES obviously shows an increase in viscous
forces after degree lh = 30 but it is worth noting that up to l = lmax these do not reach a first-order
dominance, such that the nature of the small-scale force balance is also preserved. An interesting
point is that for degrees l 6 lh, the viscous force also slightly increases in the LES relatively to
the DNS. Finally, comparing the DNS case with ε = 1 to the LES case with ε = 6.42 × 10−3

(figure 2a,c), we see that despite the use of hyperdiffusivity, this latter simulation has reached
a nearly inviscid regime in the harmonic degree range l 6 50, with the viscous force at least
two orders of magnitude lower than the MAC forces. In this harmonic degree range, inertia is
also rendered largely subdominant, with its typical amplitude one to two orders of magnitude
below the MAC forces. All these points underline the success of the path and LES approaches
in reaching the MAC balance. This regime has been observed down to the lowest value of ε that
we could achieve, halfway in logarithmic distance between the classical models and the Earth
conditions along the parameter path. These results provide strong support to the claims that the
MAC balance is indeed the planetary, asymptotic regime, and that our numerical models are close
to this regime.

4.2. Spatial invariance of the solutions along the path

We now turn to the analysis of the spatial structure of the fields along the path. The large-
scale invariance can be first demonstrated by examining energy spectra from direct numerical
simulations (figure 3a,b) performed in the range 0.1 6 ε 6 1. The magnetic spectral energy
density profile (figure 3a) is structurally invariant in the range l 6 ldiss, where ldiss ≈ 133 is the
harmonic degree corresponding to the magnetic dissipation length scale dmin. The spectral profile
of kinetic energy density (figure 3b) is also invariant in the large-scale range l 6 30 but shows
an enrichement in smaller scales as ε decreases. Large-eddy simulations (figure 3c,d) present
even higher levels of structural similarity, both for the velocity and magnetic fields, throughout
the resolved spectral range. CE-type models are generally more invariant than ST-type models,
owing to their better control on ε. Comparing a DNS and a LES performed at a similar value of
ε (figure 4) it is clear that despite using a significantly lower value of lmax, the LES accurately
captures the spectral distribution of magnetic energy almost up to degree lmax = 133, and the
kinetic energy distribution at least up to degree 30. These results are found to hold irrespectively
of the boundary condition choice, with CE and ST yielding comparable energy distributions, at
the exception of velocity for l = 1 which is enhanced in the CE setup by an inhomogenenous
mass anomaly forcing at the inner boundary (Aubert et al. 2013). In all cases, the kinetic energy
spectra feature a peak around the value l⊥ ≈ 10 already identified in the force balance (figure 2),
implying a predominant organisation of convective structures around this scale.

To check how these spectral results translate into the physical space, we further examine
equatorial and meridional velocity planforms in the CE setup (figure 5a-c). From the kinetic
energy spectra observed in figure 3, we expect the equatorial planforms of radial velocity to
remain structurally similar as ε varies, particularly in the large-scale range where an azimuthal
wavenumber m ≈ l⊥ ≈ 10 should emerge. Comparing the CE-type DNS simulations at ε = 1 and
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Figure 3. Time-averaged magnetic (a,c) and kinetic (b,d) energy spectra in the CE (top row) and ST (bottom
row) setups, for DNS (a,b) and LES (c,d) simulations performed at varying ε. To obtain the normalised
magnetic energy spectra in panels (a,c), the magnetic field amplitude is normalised by its scaling prediction
λ0,1ε

1/4 (equation 3.28), where λ0,1 stands for the Lehnert number of model 0 (CE) or 1 (ST). Similarly, in
panels (b,d) the amplitude of the velocity field is also normalised by Ro0,1ε

1/2 (equation 3.27). The total
normalised energy is close to 1 in all cases. For reference, the dashed vertical lines mark the harmonic
degree l⊥ corresponding to d⊥ as identified in figure 2.
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Figure 4. Comparison of time-averaged energy spectra obtained in DNS and LES at a given ε value
corresponding to an Ekman number E = 3 × 10−6, for CE (a) and ST (b) cases. The amplitude of magnetic
and velocity fields are both normalised by λ0,1ε

1/4. The total normalised magnetic energy is then close to
1 while the total normalised kinetic energy is close to the separation factor A2 = 0.2 (CE) and A2 = 0.14
(ST).
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Figure 5. Evolution of velocity planforms (snapshots, units of η/D or magnetic Reynolds number units)
in CE-type calculation as ε decreases (a-c), and comparisons at fixed ε between DNS and LES (b), and
between CE and ST cases (d). In panels (a) and (c), the left and right panels respectively present snapshots
of the radial velocity in a half equatorial plane (red is outwards), and a meridional cut of the azimuthal
velocity (blue is westwards). In (b) and (d) all panels represent snapshots of the equatorial radial velocity.

ε = 0.1 (figure 5a,b, left panels), we indeed observe the preservation of structures at this large
scale, while a decrease in ε leads to the refinement of small-scale details. Compared to its LES
counterpart, the DNS at ε = 0.1 (figure 5b) also refines the small-scale details while not changing
the large-scale structure, thus visually confirming the relevance of the LES. Comparing equatorial
planforms obtained in the CE and ST DNS setups (figure 5d), we find structural similarity close
to the inner boundary and a richer small-scale content in the ST setup close to the outer boundary
(as previously shown by Sakuraba & Roberts 2009). This reflects a fundamental change in how
convective power is transported. In the ST setup, the part of the convective power carried by these
small-scale velocity structures together with their corresponding density anomalies (see figure
6e) is not accounted for in the LES (compare the values of p in table 2), leading to deviations
from the ideal path (see section 3.3) and to a decrease of the LES accuracy. In contrast, CE-type
LES simulations preserve the DNS convective power remarkably well (compare again p values
in table 2), save for a slight change of mixing properties (see trend for γ = p/Ra∗F in figure 1b)
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Figure 6. Evolution of equatorial density anomaly planforms (half-plane snapshots, orange denotes lighter
fluid) as ε decreases (a-d) and comparisons at fixed ε between DNS and LES (b,c) and between CE and
ST cases (b,e). In CE cases (a-d) the dimensionless density anomaly C is normalised by C0ε

−1/2, with
C0 = 6000. In the ST case (e) C, is normalised by Pr/E with Pr = 1 and E = 3 × 10−6.

that should remain negligible at Earth’s core conditions. This confirms that convective power is
mostly transferred at large scales in the CE setup.

Turning now to meridional planforms, the axially columnar structure of the azimuthal velocity
field (figure 5a,c, right panels) outside the tangent cylinder is also preserved as ε decreases,
together with retrograde (westward) polar vortices at the upper and lower ends of the tangent
cylinder, confirming the ansatz d// ∼ D made in section 3. The power input in the system indeed
increases as ε decreases, but so does also the rotational constraint, leading to a preservation of the
columnar structure. Types CE and ST have zonal flows of similar amplitude despite the change
in boundary conditions from stress-free to rigid (not shown, previously already documented by
Yadav et al. 2013a). Livermore et al. (2016) have suggested that the amplitude of zonal flows
may asymptotically scale differently depending on mechanical boundary conditions if these are
limited by the residual viscosity. This does not apply here because zonal flows in spherical,
convective, dipole-dominated dynamos such as those discussed here are thermal-wind limited
(Aubert 2005).

Equatorial planforms of the density anomaly (figure 6) also lead to similar observations, with
broadly structurally similar patterns at large scales (figure 6a-d) and the DNS simply refining
the picture obtained with the LES (figure 6b,c). Both CE and ST setups produce dominant
bottom-originated convective plumes (figure 6b,e), as theoretically expected, but the ST setup
additionally produces small-scale, secondary return plumes originated at the outer boundary. In
the CE setup, the dimensionless density anomaly C is found to scale with C0ε

−1/2, as can be
predicted from the expression of convective power (2.18), together with the velocity scaling
(3.27) and the fact that the ratio p/Ra∗F is constant (figure 1), and we find C0 = 6000. The typical
dimensional density anomaly δC in Earth’s core may then be estimated through the following
diffusivity-free, power-driven scaling obtained from equations (2.11) and (3.20):

δC/ρ = C0(Ra∗F)0
Ω2D
g0

ε1/2, (4.3)

with C0(Ra∗F)0 = 0.162. Using ε = 10−7 together with the previously introduced values D =

2260 km, Ω = 7.29 × 10−5 s−1, and g0 = 10 m/s2, this yields δC/ρ = 6 × 10−8. Converting
this anomaly into a temperature deviation δT from the core adiabat, we obtain δT = δC/αρ =
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Figure 7. Evolution of the radial magnetic field pattern at the model outer boundary (snapshots, units of√
ρµηΩ or Elsasser units, orange is outwards) in the CE setup as ε decreases (a-c), and comparison at fixed

ε between DNS and LES (b,d).

Figure 8. Radial magnetic field pattern at the model outer boundary (snapshots, units of
√
ρµηΩ or Elsasser

units, orange is outwards), filtered below spherical harmonic degree and order 13, in the CE setup for a
DNS at ε = 1 (a), and a LES at ε = 10−3 (b).

6 × 10−3 K, where α = 10−5 K−1 is the thermal expansion coefficient. Either δC or δT are in
good agreement with geophysical estimates (e.g. Aurnou et al. 2003; Christensen & Aubert
2006), which again underlines the relevance of the path chosen to connect model and Earth’s
core conditions.

Figures 7,8 present maps of the radial magnetic field at the model outer boundary for CE-type
calculations. The full-resolution magnetic field patterns (figure 7) are again remarkably invariant,
with an axial dipole-dominated morphology, high-latitude flux patches of normal polarity at
the intersection of the outer boundary with the tangent cylinder, westward-drifting, low-latitude
patches of normal polarity, a magnetic flux deficit inside the tangent cylinder due to the action
of polar vortices, and localised inverse flux patches. The good results obtained in the original CE
dynamo model (similar to model 0, figure 7a, see also Aubert et al. 2013) as regards the static
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Figure 9. Spherical- and time-averaged radial distributions of the kinetic and magnetic energies r2u2 (a)
and r2B2 (b), for CE models (black) computed at ε = 0.1, and ST models (grey) computed at ε = 0.1 (DNS)
and ε = 0.0891 (LES). DNS (solid lines) and LES (dashed lines) calculations are presented. Velocity and
magnetic fields are presented in units of

√
ηΩ and

√
ρµηΩ (Elsasser units), respectively, such that the radial

integral of the magnetic energy density is the Elsasser number Λ and the radial integral of the kinetic energy
density is A2Λ, revealing the energy separation factor A2.

and kinematic similarity of the model output to the geomagnetic field are thus preserved, and
demonstrated here to pertain to the asymptotic regime. Figure 8 further shows that when filtered
to the typical resolution l 6 13 of modern geomagnetic observations, the model output preserves
the Earth-like morphological properties (as objectively defined in Christensen et al. 2010) of the
initial model 0. We also note in figures 7,8 that the field amplitude presented in Elsasser units
remains constant as ε decreases, in agreement with equation (3.26). Finally, considering the ratio
of the root-mean-squared magnetic field inside the shell to that at the outer boundary, the CE
models yield a constant value of about 5 if the full outer boundary magnetic field is considered,
or 7 if that field is truncated to spherical harmonic degree 13. This latter value is in agreement
with geophysical estimates (e.g Christensen & Aubert 2006; Gillet et al. 2010; Buffett 2010).

We finish our structural analysis by examining radial profiles of the kinetic and magnetic
energies (figure 9) at a fixed ε value, for DNS and LES simulations carried out in the CE and
ST setups. These profiles show that the choice of boundary conditions has a weak influence on
the distribution of energy in the shell. Indeed, the ST and CE kinetic energy profiles (figure 9a)
are strikingly similar, with the only noticeable differences residing in the ST viscous boundary
layers that are absent in the CE setup. Likewise, the ST and CE magnetic energy profiles (figure
9b) only differ in their amplitude, as already noted in table 2 (see also figure 11b). Turning now
to the agreement between DNS and LES, the best results are obtained in the CE setup, while in
the ST setup the discrepancies are most visible near the outer boundary. There, the inhibition of
the small-scale radial motion yields a quieter zone where the magnetic energy can concentrate.

4.3. Evolution of diagnostics and asymptotic scalings along the path

Figure 10 presents the evolution of the velocity diagnostics Ro,Re,Rm with ε. DNS and LES
diagnostics are here again in broad agreement. Results obtained with type CE and ST collapse
on each other once presented as functions of ε, illustrating the convergence between the two
types of boundary conditions. CE and ST-type DNS cases respectively follow Ro = Ro0ε

0.44±0.02,
Ro = Ro1ε

0.45±0.01, and CE-type LES cases follow Ro = Ro0ε
0.49±0.01 (figure 10a). These best-

fit exponents are in excellent agreement with the D13 prediction 4/9 from equation (3.30) and
the path theory prediction 1/2 from scaling (3.27), respectively. This is fully expected since
the DNS leaves the spatial structure of the solution free while the LES constrains it in the
lateral directions. The slope difference between the two theories is resolvable here thanks to
the extremely low scatter of the numerical data and to the 3 decades available in LES cases. The
path approach is thus demonstrably advantageous when compared to systematic samplings of the
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Figure 11. Evolution of the Lehnert number λ (a) and Elsasser number Λ (b) with ε. In panel (a) the Lehnert
number is corrected by the factor f 1/2

ohm in order to account for the variations of the ohmic dissipation fraction
within the scaling theory (e.g. Christensen & Aubert 2006; Davidson 2013). These variations are significant
in the DNS cases but unimportant in the LES cases (see figure 12a). In the CE-type LES case indeed, the
corrected best fit presented in (a) is closely similar to the uncorrected fit, which yields λ = λ0ε

0.25. In panel
(b), shaded regions represent the ±1 std. dev. of temporal fluctuations relative to the time average.

parameter space (e.g. Christensen & Aubert 2006). The best-fit exponent 0.46 obtained for Ro in
the ST-type LES simulations is significantly below the predicted value 1/2, because the ε values
of these simulations are misplaced relative to the values that they should have along the ideal
path, as we have seen in section 3.3 and table 2. It is thus generally not advisable to attempt an
interpretation of ST-type LES scaling exponents. Finally, the magnetic Reynolds number (figure
10b) is confirmed to be roughly constant, as already seen in table 2.

Figure 11 presents the evolution of the magnetic field diagnostics λ and Λ with ε. CE and
ST-type calculations show more difference than in figure 10, but still produce very comparable
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results. DNS and LES diagnostics are again in good agreement. Within the standard error 0.01
on exponent determination, CE and ST-type DNS cases (figure 11a) are in close agreement with
the ohmic fraction-corrected scaling λ/ f 1/2

ohm ∼ ε
1/3 (see equation 3.31) expected from D13 and

Christensen & Aubert (2006). LES calculations performed in the CE setup yield the corrected
Lehnert number scaling λ/ f 1/2

ohm ∼ ε0.27±0.01, and the uncorrected scaling λ = λ0ε
0.25±0.01, both

also in close agreement with the prediction (3.28) from the path theory. We do not attempt to
scale the LES simulations performed in the ST setup, for the same reason as above. The Elsasser
number Λ is confirmed to be roughly constant (figure 11b) in CE simulations. The CE-type DNS
cases thus appear to invalidate the D13 scaling (3.33), but this is the consequence of the persistent
increase in fohm not being accounted for in (3.33). ST simulations have a higher Λ baseline than
CE simulations, and the LES cases show a residual decrease with decreasing ε, which can be
explained by noting that their rotation rate increases too rapidly with respect to the injected
power, as witnessed by the misplaced values of ε relative to the ideal path (table 2).

We next turn to the analysis of the dissipation diagnostics fohm and dmin in our simulations
(figure 12). The ohmic dissipation fraction fohm (figure 12a) is largely similar in CE and ST cases.
LES simulations produce fohm values somewhat below those obtained from DNS simulations
performed at similar values of ε, an expected consequence of increased viscous losses due to
hyperdiffusivity. However, as ε decreases these additional losses are dominated by the increasing
ohmic losses, such that LES simulations gradually approach the expected asymptotic behavior
fohm = 1. This shows that along the chosen path, the additional viscous losses indeed become
asymptotically negligible, thus validating our hyperdiffusive treatment of turbulence. The mag-
netic dissipation length scale dmin is confirmed to be weakly variable within the investigated ε
range (note the narrow linear scale used for the ordinate axis of figure 12b). A closer analysis
shows that the DNS simulations in ST and CE setups support a decrease dmin ∼ ε0.09±0.01,
matching the dependence ε1/12 predicted by the D13 theory (equation 3.34). LES simulations
in the ST setup do not show a systematic evolution of dmin with ε. LES simulations in the CE
setup show a weak variation dmin ∼ ε

0.022±0.002. This can be expected because the LES constrain
the length scale to be constant in the two lateral directions, leaving only the radial length scale
free to evolve. The discrepancy between DNS and LES, or between the D13 and path theories
should remain quite low at Earth’s core asymptotic conditions. For ε = 10−7 we indeed predict
dmin ≈ 0.006 (corresponding to about 14 km) if we follow the DNS trend, and dmin ≈ 0.015 (or
34 km) following the LES trend.

Finally, we investigate in figure 13 the level of enforcement of strong-field dynamo action
and of the Taylor constraint in our simulations. Figure 13(a) shows that at low values of ε,
the solutions have a kinetic energy much smaller than the magnetic energy, as witnessed by
the low values of the squared Alfvén number A2 measuring their ratio. Together with values
of the Elsasser number Λ in excess of 1 (figure 11b), this clearly characterises a regime of
strong-field dynamo action. The power-law exponents obtained for A in the DNS simulations
range between 0.17 and 0.19, in consistency with the results obtained in figures 10 and 11.
LES calculations performed in the CE setup yield A = A0ε

0.24±0.01, in close agreement with the
prediction (3.29) from the path theory. Analysing the variations of T in CE-type simulations
(figure 13b), we find that the level of Taylor constraint enforcement increases (i.e. T decreases)
steadily with decreasing ε, both in DNS and LES simulations. This again confirms that the
hyperdiffusive treatment performed in the LES simulations introduces dynamically negligible
additional amounts of the viscous force in asymptotic conditions. Respectively to the time-
averaged values of T , we find low instantaneous deviations of ±20%, meaning that the Taylor
constraint is enforced at all times in addition to holding everywhere in the fluid domain. As
theoretically expected, cylindrical reference surfaces are particular for the Taylor constraint in
the sense that the integral Lorentz force remains unconstrained on other surfaces such as spheres.
Qualitatively, the enforcement of the Taylor constraint links with strong-field dynamo action and
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Figure 12. Evolution of the ohmic dissipation fraction fohm (a) and the magnetic dissipation length dmin
(b) with ε. Shaded regions represent the ±1 std. dev. of temporal fluctuations relative to the time average.
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Figure 13. Evolution of the Alfvén number A (a), and of the level of Taylor constraint enforcement T (b)
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(b), the Taylor constraint enforcement level on cylindrical surfaces (large symbols) is as defined in equation
(2.21). For reference, the enforcement level on spherical surfaces (where T should be unconstrained) is also
presented (small symbols). In panel (b), shaded regions represent the ±1 std. dev. of temporal fluctuations
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the low value of the Alfvén number A = τA/τU . This ratio indeed also determines how many
torsional oscillation periods τA can occur within a convective overturn time τU to minimise
(by virtue of the Lenz law) the Taylor state deviations that trigger these oscillations. More
quantitatively, the level of Taylor constraint enforcement should scale like the ratio of inertia
at the Alfvén time scale and magnetic forces at scale d⊥, leading to (in dimensional form)

T ∼ ρµ
|∂u/∂t|

|(∇ × B) × B|
∼

d⊥
τA
ρµ

U
B2 ∼

d⊥
D
τU

τA
ρµ

U2

B2 ∼
d⊥
D

A2/A ∼
d⊥
D

A. (4.4)

This suggests that T should primarily scale with A, as evidenced by the similarity between the
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power-law exponents obtained in figures 13(a,b). We thus propose a scaling law of the form
T = T0 Ad⊥/A0(d⊥)0. Using A0 = 0.69, T0 ≈ 0.2 and d⊥/(d⊥)0 = ε1/9 (equation 3.35), at Earth’s
core conditions i.e. ε = 10−7 and A = 1.2 × 10−2 we predict

T = O(10−3), (4.5)

such that the Taylor constraint should be strongly but not completely enforced, to leave the
possibility for torsional oscillations to exist.

5. Discussion
We have defined a path in parameter space connecting classical spherical convective dynamo

models to the asymptotic conditions of the Earth’s core. This unidimensional path is constrained
by the MAC balance and the requirement to preserve the magnetic Reynolds number. Large-
scale spatial invariance has been obtained over half the logarithmic distance between models and
Earth (figures 3-7). Increasing the rotation rate and power input along the path, we observe direct
evidence for a gradual enforcement of the MAC balance (figure 2), of the Taylor constraint (figure
13), and of strong-field dynamo action with Elsasser numbers in excess of unity (figure 11) and
magnetic energy largely dominating the kinetic energy (figure 13). The first half of the path that
we have covered is thus devoid of abrupt regime transitions. Furthermore, the model outputs
are in excellent agreement with asymptotic, diffusivity-free scalings that accurately predict the
Earth’s core state. Abrupt transitions are hence also unlikely to happen within the second half of
the path. We therefore confirm the asymptotic validity of the D13 theory, and show that dynamo
modelling has now advanced to a stage where numerical solutions are sufficiently close to the
asymptotic regime. Along the path, the MAC balance, strong-field dynamo action and the Taylor
state are furthermore enforced everywhere in the fluid domain, at all instants, and irrespectively
of the convective supercriticality, which increases together with the rotational constraint. Our
new models thus systematise the results previously obtained in the classical parameter space,
where some of these properties were suggested through indirect evidence (see section 1), close
to the onset of convection (because of the limited rotational constraint), and on the basis of
temporal or spatial averages. The way our solutions approach the asymptotic Taylor state by
minimising viscosity and inertia is also complementary to an alternative theoretical approach
aiming at finding an exact Taylor state, which recently led to numerical solutions in the mean-
field framework (Wu & Roberts 2015). According to our extrapolation on Taylor constraint
enforcement in Earth’s core (figure 13 and equations 4.4,4.5), we emphasize that an exact Taylor
state is an approximation of Earth’s core regime to a similar extent as our numerical solutions,
because inertia should be retained for the observed torsional oscillations to exist (Gillet et al.
2010).

Our solutions at ε � 1 clearly belong to the inviscid, strong-field, magnetostrophic solution
branch conjectured to exist at asymptotic conditions of rapid rotation (e.g. Soward 1974; Malkus
& Proctor 1975; Roberts 1978; Hollerbach 1996). The smooth transition that we observe between
classical dynamos and this asymptotic state may be seen as contrasting with the scenario of
a catastrophic transition between a weak-field, viscously-dominated solution branch and this
strong-field branch (see e.g. Dormy 2016). This apparent contradiction disappears if one con-
siders that classical numerical solutions obtained over the past decade have been sometimes
incorrectly attributed to the weak-field, viscous branch. It is true that such solutions, which serve
as a starting point for our path, are indeed not strong-field since their kinetic and magnetic
energies are comparable, at the exception of a few cases obtained at low supercriticality (i.e.
by minimising the kinetic energy, Takahashi & Shimizu 2012; Dormy 2016). But they are not
viscous either, as their force balance is already a well-satisfied MAC equilibrium (figure 2) with
sizeable residual contributions of inertial and viscous forces. These secondary contributions
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gradually disappear as we progress along the path, and the separation between kinetic and
magnetic energy gradually increases. In summary, the branch on which most classical dynamos
reside does not belong to either of the historical regimes that we alluded to above, but this branch
gradually morphs into the strong-field branch as we reach the rapid rotation limit. The weak-field
branch is nonexistent far above the onset of convection (e.g. Roberts 1978), rationalising the fact
that we did not observe bistability in our strongly supercritical simulations.

Large-eddy simulations are key to the numerical feasibility of asymptotic, rapidly rotating
convective dynamos. They are made possible because of the large-scale spatial invariance con-
jectured to hold at a constant level Rm of magnetic turbulence, and broadly confirmed by direct
numerical simulations. Here we have used an hyperdiffusive treatment that does not perturb
the large-scale MAC balance structure, and asymptotically introduces a negligible additional
amount of the viscous force (figures 2,13) and of viscous dissipation (figure 12), leaving ohmic
losses as the dominant source of dissipation. Compared to direct numerical simulations, the
most accurate large-eddy simulation results (figures 4-9) have been obtained by using fixed
mass anomaly fluxes at the boundaries, yielding a better control on the convective power and
a transport dominated by large scales. Furthermore, extreme calculations are also made possible
by using boundary conditions that dispense of viscous and density anomaly boundary layers.
Their scaling properties have been demonstrated to be largely identical to calculations where
these boundary layers are present (e.g. figure 9). In particular, we have not observed evidence of
active boundary layers, such as recently proposed by Stellmach et al. (2014). Our interpretation is
that the configuration used by these authors mostly applies to the tangent cylinder of a spherical
shell, while most of the energy transfer in our simulations occurs elsewhere in low-latitude
regions (Yadav et al. 2016a). We also obtain zonal flows of similar amplitude regardless of
mechanical boundary conditions, another confirmation that they are thermal-wind limited in
dipole-dominated spherical convective dynamos (Aubert 2005; Yadav et al. 2013a), and that
possible residual effects of the boundary viscous drag (Livermore et al. 2016) are not present in
our calculations.

As mentioned above, diffusivity-free, power-driven scaling laws can be derived and numeri-
cally validated for the velocity, magnetic and density anomaly fields amplitude along the path
(equations 3.27,3.28,4.3, figures 6,10,11) and yield predictions in striking agreement with geo-
physical estimates. Crucial to this success and also to the consistency of the path theory is
that our estimate of Earth’s core flux-based, modified Rayleigh number Ra∗F (equation 3.14)
is probably about correct. Another important point is that the path theory underlying these
scalings is a spatially-invariant approximation of the D13 theory, such that there exists a few
differences in scaling exponents between the path and D13 theories (see section 3.2). These
differences are resolvable in our numerical dataset (for instance in figures 10,11), with the direct
numerical simulations in full agreement with D13 and the large-eddy simulations supporting the
path theory. For theoretical purposes, the D13 theory should be used, but for most geophysical
purposes the path theory suffices because the differences between the two theories are minimal at
Earth’s core conditions. As an illustration, predictions for the velocity, magnetic field amplitudes,
and magnetic dissipation length differ by only a factor 2 to 4 at ε = 10−7. Still, throughout the
path the D13 theory predicts a somewhat larger (roughly a factor 6, equation 3.35) decrease for
the large scale d⊥. This decrease is not observed in direct numerical simulations covering the first
decade of the path (figure 2) because the ohmic fraction fohm influencing d⊥ (equation 4.2) still
varies significantly (figure 12a) and compensates for the expected variation. These results outline
the limits of our present approach, and suggest that more extreme direct numerical simulations or
large-eddy simulations at higher resolution will still be required to fully capture the effects of the
residual variations of d⊥ and dmin along the path. Such simulations will also be needed to clarify
the control of inertia on the occurrence of magnetic polarity reversals (e.g. Christensen & Aubert
2006; Sheyko et al. 2016), a topic that we have kept outside the scope of the present study.



Asymptotic convective dynamos 29

There has been a long-standing debate on the relevance of classical numerical solutions to the
structural and mechanistic description of the geodynamo (see e.g. a discussion in Christensen
& Wicht 2015), that our results should contribute to settle. Indeed we have shown that classical
models at the starting point of our path have a large-scale spatial structure which is essentially
invariant as we progress towards asymptotic conditions, and a reasonably well enforced MAC
balance. This suffices to produce solutions with statics and kinematics that compare favourably
to the observable geomagnetic field (Christensen et al. 2010; Aubert et al. 2013). However,
classical models fall short of fully accounting for the dynamics because the amplitude of the
magnetic force is incorrect relatively to core inertia (they are not in a strong-field regime).
Further down the path, the strong-field models that we have calculated open a window on the
short-timescale magnetic dynamics that the classical models fail to resolve. One topic of interest
concerns magnetohydrodynamic waves such as torsional oscillations and MAC waves. These
can be clearly exhibited in contexts where the magnetic field is forced (see e.g. Braginsky 1993;
Braginsky & Roberts 1995; Buffett 2014) but tend to become quite subtle in free, self-sustained
dynamo systems (Wicht & Christensen 2010; Teed et al. 2015) because of the Lenz law effects
that follow from strong-field dynamo action. Our new models may help to assess the levels at
which these waves settle in free environments, and their possible geophysical signatures.

By construction, our large-eddy simulations do not investigate the turbulence underlying the
large-scale MAC system that we have exhibited. In this respect, direct numerical simulations and
laboratory experiments remain essential (see in particular Aurnou et al. 2015; Nataf & Schaeffer
2015). Since turbulence occurs below the magnetic dissipation length scale, one could conjecture
that it may be magnetically unconstrained. It would thus be interesting to assess how much the
small-scale system has then in common with quasi-gestrophic, two-dimensional turbulence. In
that sense, the ideas brought forward within the context of a multi-scale dynamo model (Calkins
et al. 2015) could help to formulate a unified model handling both the large (MAC) and small
(geostrophic) scales. Though it has been demonstrated to be fairly accurate, our large-scale
approximation could also certainly be made better through progress on the characterisation and
modelling of turbulent fluxes between large and small scales.

We thank Ulrich Christensen and two anonymous referees for insightful comments that helped
to enhance the manuscript. JA acknowledges support from French Programme National de
Planétologie (PNP) of CNRS/INSU. This work was granted access to the HPC resources of
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allocation 2016-042122 made by GENCI. This is IPGP contribution 3781.
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