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Abstract. Laboratory-scale experiments of erosion have demonstrated that landscapes have a natural (or in-
trinsic) response time to a change in precipitation rate. In the last few decades there has been growth in the
development of numerical models that attempt to capture landscape evolution over long timescales. However,
there is still an uncertainty regarding the validity of the basic assumptions of mass transport that are made in
deriving these models. In this contribution we therefore return to a principal assumption of sediment transport
within the mass balance for surface processes; we explore the sensitivity of the classic end-member landscape
evolution models and the sediment fluxes they produce to a change in precipitation rates. One end-member
model takes the mathematical form of a kinetic wave equation and is known as the stream power model, in
which sediment is assumed to be transported immediately out of the model domain. The second end-member
model is the transport model and it takes the form of a diffusion equation, assuming that the sediment flux is a
function of the water flux and slope. We find that both of these end-member models have a response time that
has a proportionality to the precipitation rate that follows a negative power law. However, for the stream power
model the exponent on the water flux term must be less than one, and for the transport model the exponent must
be greater than one, in order to match the observed concavity of natural systems. This difference in exponent
means that the transport model generally responds more rapidly to an increase in precipitation rates, on the order
of 105 years for post-perturbation sediment fluxes to return to within 50 % of their initial values, for theoreti-
cal landscapes with a scale of 100× 100 km. Additionally from the same starting conditions, the amplitude of
the sediment flux perturbation in the transport model is greater, with much larger sensitivity to catchment size.
An important finding is that both models respond more quickly to a wetting event than a drying event, and we
argue that this asymmetry in response time has significant implications for depositional stratigraphies. Finally,
we evaluate the extent to which these constraints on response times and sediment fluxes from simple models
help us understand the geological record of landscape response to rapid environmental changes in the past, such
as the Paleocene–Eocene thermal maximum (PETM). In the Spanish Pyrenees, for instance, a relatively rapid
(10 to 50 kyr) duration of the deposition of gravel is observed for a climatic shift that is thought to be towards
increased precipitation rates. We suggest that the rapid response observed is more easily explained through a dif-
fusive transport model because (1) the model has a faster response time, which is consistent with the documented
stratigraphic data, (2) there is a high-amplitude spike in sediment flux, and (3) the assumption of instantaneous
transport is difficult to justify for the transport of large grain sizes as an alluvial bedload. Consequently, while
these end-member models do not reproduce all the complexity of processes seen in real landscapes, we argue
that variations in long-term erosional dynamics within source catchments can fundamentally control when, how,
and where sedimentary archives can record past environmental change.
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1 Introduction

How river networks form and how landscapes erode remains
a basic research question despite more than a century of ex-
perimentation and study. At a fundamental level, the root
of the problem is a lack of an equation of motion for ero-
sion derived from first principles (e.g Dodds and Rothman,
2000). A range of heuristic erosion equations have, however,
been proposed from stochastic models (e.g. Banavar et al.,
1997; Pastor-Satorras and Rothman, 1998) to deterministic
models based on the St. Venant shallow water equations (e.g.
Smith and Bretherton, 1972; Izumi and Parker, 1995; Smith,
2010), diffusive transport-limited conditions (e.g. Whipple
and Tucker, 2002), or the stream power law (e.g. Howard and
Kerby, 1983; Whipple and Tucker, 2002; Willett et al., 2014,
among many others). These models, in various forms, have
been explored to try to understand how landscape evolves
and responds to tectono-environmental change. In general
terms, numerical studies have found that landscapes typically
recover from a shift in tectonic uplift after 105 to 106 years
(reviewed in Romans et al., 2016). These apparently long re-
sponse timescales to tectonic perturbations have been sup-
ported by field observations of landscapes upstream of ac-
tive faults (e.g. Whittaker et al., 2007; Cowie et al., 2008;
Whittaker and Boulton, 2012), although the precise appro-
priateness of any time-integrated erosion law to specific field
sites is not always easy to establish. Sediment flux response
times for the advective stream power law have been previ-
ously characterized by Whipple (2001) and Baldwin et al.
(2003), and for the transport model they have been studied
by Armitage et al. (2011) and Armitage et al. (2013), but
not systematically or using 2-D models. Furthermore, to our
knowledge no comparison between the transport models has
been previously made.

The response of landscapes and sediment routing systems
to a change in the magnitude or timescale of precipitation
rates is expected to depend on the long-term erosion law
implemented (Castelltort and Van Den Dreissche, 2003; Ar-
mitage et al., 2011, 2013). Some numerical modelling stud-
ies based on treating erosion as a length-dependent diffu-
sive problem suggest that landscape responses to a change
in rainfall are also on the order of 105 to 106 years, similar
to tectonic perturbations, although they produce diagnosti-
cally different stratigraphic signatures from the latter (e.g.
Armitage et al., 2011). However, other modelling contribu-
tions with different assumptions suggest that response times
to a precipitation change may be more rapid (Simpson and
Castelltort, 2012), although field data sets remain equivocal
(see Demoulin et al., 2017, for a recent review). In laboratory
studies, a series of experiments in which granular piles of a
length scale of the order of centimetres are eroded due to sur-
face water have demonstrated that a change in precipitation
rate leads a period of adjustment of the landscape topography

until a new steady state is achieved (e.g. Bonnet and Crave,
2003; Rohais et al., 2011). These experiments use a mixture
of granular silica of a mean diameter between 10 and 20 µm
that is eroded by water released from a fine sprinkler system
above. Given the complexity of these experiments, unfor-
tunately there have been insufficient different precipitation
rates studied to fully understand how the recovery timescale
varies as a function of precipitation or other parameters.

It has been increasingly recognized over the last 2 decades
that many basic geomorphic measures of catchments, such as
the scaling between channel slopes and catchment drainage
areas, are typically unable to distinguish the erosional pro-
cesses behind their formation (e.g. Tinkler and Whol, 1998;
Dodds and Rothman, 2000; Tucker and Whipple, 2002;
Whipple, 2004). Erosion and transport can be described by
equations that encompass both advective and diffusive pro-
cesses (e.g. Smith and Bretherton, 1972) and at topographic
steady state, it is very well established that fluvial erosion
models based on either of these two end-members can pro-
duce very similar river longitudinal profiles (e.g. Tucker and
Whipple, 2002; van der Beek and Bishop, 2003).

Non-uniqueness or equifinality is a common problem
when comparing the morphology generated from landscape
evolution models (e.g. Hancock et al., 2016). Consequently,
we aim to explore whether the sediment flux responses of flu-
vial systems to a precipitation perturbation may be diagnosti-
cally different for the two end-member deterministic models
across a range of parameter space. This issue is pertinent be-
cause within sedimentary basins, a change in the erosional
dynamics upstream could be recorded by changes in the total
sediment volumes stored in sedimentary basins (e.g. Allen
et al., 2013; Michael et al., 2014), in sediment delivery or
sediment accumulation rates linked to landscape response
times (Foreman et al., 2012; Armitage et al., 2015), and/or
in the grain sizes deposited as a function of sediment flux
output (Paola et al., 1992; Armitage et al., 2011; Whittaker
et al., 2011; D’Arcy et al., 2016).

In this article we make a comparative study between the
transport and stream power model to further explore the po-
tential differences between these two end-member hypothet-
ical landscape evolution models. We will focus on the tran-
sient period of adjustment to a perturbation in precipitation
rates, and using end-member numerical models we attempt
to evaluate how the response time varies as a function of
the model forcing. To this end we aim to find the model pa-
rameters that generate similar landscape morphologies such
that we can subsequently explore how the same end-member
models respond to a change in precipitation rate. We believe
that the results of this study have implications for understand-
ing the responses of landscapes to past changes in climate
and could potentially be compared with and tested against
further laboratory experiments.
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Figure 1. Diagram showing the conservation of mass within a 2-D
domain where mass enters the system through uplift, U (units of
m s−1), and exists as sediment transported, qs (m2 s−1), out of the
domain. E (m s−1) is the rate of production of regolith, h (m) is the
thickness of regolith, η (m) is the bedrock elevation, and z (m) is
the total elevation.

2 Methods

2.1 Erosion within a single dimension system

We aim to understand the effects of the most basic assump-
tions of mass transport in landscape evolution on the sed-
iment flux record. In other words, how do the response
times vary for the advective stream power law and the dif-
fusive transport model? To this end we derive the two mod-
els from first principles to demonstrate clearly how, from
the same starting point, the fundamental assumptions made
about mass transport initially give rise to very different model
equations. We use this framework as a context for our in-
vestigation of an eroding system responding to precipita-
tion change. We first define a one-dimensional system from
which the basic equations can be assembled. Following Di-
etrich et al. (2003) we define a landscape of elevation z com-
posed of bedrock, thickness η (units of metres), and a sur-
face layer of sediment with thickness h (units of metres; see
Fig. 1). This landscape is forced externally through uplift rate
U (units of m yr−1). The bedrock is transferred into sediment
through erosion at a rate E (units of m yr−1) and the sedi-
ment is transported across the system with a flux qs (units
of m2 yr−1). Assuming that the densities of sediment and
bedrock are equal, then the change in bedrock thickness is

∂tη = U −E, (1)

and the rate of change in sediment thickness is

∂th= E− ∂xqs. (2)

It then follows that the rate of change in landscape elevation
is

∂tz= ∂tη+ ∂th. (3)

It is important to realize that to solve Eq. (3), we are re-
quired to make some assumptions that fundamentally affect
the erosional dynamics of the modelled system, and we illus-
trate this below.

One basic assumption to make is that there is always a
supply of transportable sediment; we can then follow through
with the summation in Eq. (3), giving

∂tz= U − ∂xqs. (4)

This may be appropriate when modelling the transport of
sediment along the riverbed and when considering the for-
mation of alluvial fans (e.g. Paola et al., 1992; Whipple and
Tucker, 2002; Guerit et al., 2014). In the absence of surface
water we can assume that sediment flux is simply a function
of local slope qs =−κ∂xz, where κ is the hill slope diffu-
sion coefficient. In the presence of flowing water, the sedi-
ment flux is a function of the flowing water and local slope
qs =−cq

δ
w(∂xz)γ , where c is the transport coefficient (units

(m2 yr−1)1−n), qw is the water flux per unit width (units
m2 yr−1), and the exponents δ > 1 and γ ≥ 1 are dependent
on how sediment grains are transported along the bed (Smith
and Bretherton, 1972; Paola et al., 1992). Furthermore, δ > 1
is required to create concentrated flow (Smith and Brether-
ton, 1972). The change in landscape elevation is then given
by

∂tz= U + ∂x
(
κ∂xz+ cq

δ
w(∂xz)γ

)
, (5)

which can be written as

∂tz= U + ∂x

([
κ + cqδw(∂xz)γ−1

]
∂xz

)
. (6)

Equation (6) is non-linear in the case that γ 6= 1. In deriving
this equation of elevation change due to sediment transport
we have simply summed the two terms for sediment flux,
the linear and potentially non-linear slope-dependent terms.
This summation has been done as it is the simplest way to
generate landscape profiles that have the desired convex and
concave elements observed in natural landscapes (Smith and
Bretherton, 1972).

To solve this equation in one dimension we assume that the
water flux is a function of the precipitation transported down
the river network. The water collected is taken from the up-
stream drainage area, a, which is related to the main stream
length, l, by l ∝ ah, where h is the exponent taken from
the empirical Hack’s law (Hack, 1957). The main stream
length is related to the longitudinal length of the catchment
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by l ∝ xd , where 1≤ d ≤ 1.1 (Tarboton et al., 1990; Maritan
et al., 1996). Therefore, we can write x ∝ ah/d , and the wa-
ter flux is the precipitation rate, α (m yr−1), multiplied by the
length of the drainage system,

qw = kwαx
p, (7)

where kw is a constant of proportionality with units m1−p

and p = d/h. Furthermore it is observed that river catch-
ments are typically longer than they are wide, and so p < 2
(Dodds and Rothman, 2000). Therefore given that 0.5< h <
0.7 (e.g. Rigon et al., 1996), then 1.4< p < 2, and the trans-
port model (Eq. 6) becomes

∂tz= U + ∂x

([
κ + ckwα

δxpδ(∂xz)γ−1
]
∂xz

)
. (8)

For simplicity, we will also assume kw = 1 and vary c when
exploring the model behaviour.

However, returning to Eq. (3), it is clear that the trans-
port model is not the only solution. If we assume that the
rate of change in sediment thickness is zero over geological
timescales, which is to say all sediment created is transported
out of the model domain, then Eq. (3) becomes

∂tz= U −E. (9)

This assumption has been made previously when studying
small mountain catchments where the river may erode di-
rectly into the bedrock. However, recent numerical studies,
such as Rudge et al. (2015), have expanded this model to
cover continent-scale landscapes.

It is clearly plausible to suppose that erosion is primarily
due to flowing water, so the assumption of geologically in-
stantaneous transport may well be valid for mass that is trans-
ported as suspended load within the water column. Such an
assumption is less clear for bedload transport. We can assume
that the speed at which suspended loads travel down-system
is a function of the height achieved within each hop, which is
a function of the water depth, settling velocity, and flow ve-
locity. For small grains< 1 mm, the settling velocity is given
by the force balance between the weight of the grain and the
viscous drag given by the Stokes law (Dietrich, 1982). For a
particle of diameter 1×10−4 m and density 2800 kg m−3 the
settling velocity is∼ 0.01 m s−1. Therefore the distance trav-
elled assuming a flow velocity of 1 km h−1 and an elevation
of suspension of 1 m is roughly 3 km. Using a similar argu-
ment the travel distance of a sediment grain typical of the
Bengal Fan is estimated to be ∼ 104 m (Ganti et al., 2014).
This suggests that rapid transport of sediment across a conti-
nent is possible.

The percentage of mass transported in suspension may
also be quite significant. For a small Alpine braided river it
was found that the majority of mass was transported as sus-
pended load (Meunier et al., 2006), and for the river systems
draining the Tian Shan, China, 70 % of mass is transported
as suspended and dissolved load (Liu et al., 2011). Therefore

significant mass may be transported rapidly, geologically in-
stantaneously, down-system, suggesting that the assumption
that ∂th∼ 0 may be valid in some circumstances.

Assuming surface flow is the primary driver of landscape
erosion and that positive x is in the downstream direction,
then erosion, E, as a function of the power of the flow to
detach particles of rock per unit width can be written as

E =−kbρwgq
m
w (∂xz)n, (10)

where kb is a dimensional constant that parameter-
izes bedrock erodibility (Howard and Kerby, 1983; units
(m2 yr−1)1−m yr kg−1), ρw is water density, g is gravity, and
m and n are constants. The exponent m∼ 0.5, as it is a func-
tion of how the stream flow width is proportional to the water
flux (e.g. Lacey, 1930; Leopold and Maddock, 1953; Whit-
taker et al., 2007). The exponent n > 0 acts upon the slope.

In two dimensions the change in elevation is then given by

∂tz= U + kq
m
w (∂xz)n, (11)

where the constant k lumps together the other constants
(units m−1 (m2 yr−1)1−m), and if n 6= 1 Eq. (11) becomes
non-linear. Using a version of Eq. (11) to invert river profiles
for uplift histories, it is argued by some authors that n is close
to unity (Rudge et al., 2015). However, certain river profiles
may arguably be indicative of n > 1 (Lague, 2014). Further-
more if n > 1, Eq. (11) becomes non-linear and the model
response to precipitation rate change will become a function
of both uplift and precipitation rates (Whipple, 2001).

To solve Eq. (11) in 1-D, as before we will assume that
qw = kwαx

p where 1.4< p < 2. The stream power law for
landscape erosion in 1-D is then

∂tz= U + kpα
mxmp(∂xz)n, (12)

where kp = kkwρwg (units m−p (m2 yr−1)1−m).
We have demonstrated two different fundamental equa-

tions for change in elevation in 2-D (Eqs. 6 and 11) and the
equivalent 1-D forms (Eqs. 8 and 12). These two models of
elevation change differ in that Eq. (11) is an advection equa-
tion and Eq. (6) is a diffusion equation. This means that the
time evolution of Eq. (11) would be a migrating wave of ero-
sion travelling either up or down the catchment (Braun et al.,
2015). This wave could also potentially take the form of a
shock wave, in which due to the change in gradient the lower
reaches of the migrating wave could travel faster than the
upper reaches, creating a breaking wave (Smith et al., 2000;
Pritchard et al., 2009). The time evolution of Eq. (6) is very
different because here the evolution is dominated by diffu-
sive processes. The diffusion coefficient is a function of the
down-system collection of water, which can lead to the con-
centration of flow and the creation of realistic morphologies
(Smith and Bretherton, 1972). It is not, however, completely
established how the transport model responds differently to
changes in precipitation forcing in comparison to the stream
power model.

Earth Surf. Dynam., 6, 77–99, 2018 www.earth-surf-dynam.net/6/77/2018/



J. J. Armitage et al.: Sediment flux response to precipitation change 81

2.2 Linear and non-linear solutions

If n= 1 (Eqs. 11 and 12) and γ = 1 (Eqs. 6 and 8) then
the models are linear, and we can solve the equations both
analytically and in 1-D and 2-D numerical schemes. For
the stream power model we use an implicit finite-difference
scheme (Braun and Willett, 2013) and for the transport model
we use an explicit finite-element scheme with linear elements
(Simpson and Schlunegger, 2003). If n 6= 1 and if γ 6= 1
the equations become non-linear. In this case the numerical
solutions can become unstable for simple explicit schemes
and may suffer from too much numerical diffusion for im-
plicit schemes, unless the size of the time step is limited by
the appropriate Courant–Friedrichs–Lewy (CFL) condition
(Campforts and Covers, 2015). Given the short time steps
required to obtain an accurate solution, we explore the non-
linear solutions for erosion down a river-long profile in 1-D.
We solve for the stream power model (Eq. 12) using an ex-
plicit total variation diminishing scheme with the appropriate
CFL condition (Campforts and Covers, 2015). For the trans-
port model (Eq. 8) we use an explicit finite-element model
with quadratic elements and the appropriate CFL condition
to find a stable solution.

2.3 Generalizing to a two-dimensional system

To solve Eqs. (6) and (11) over a 2-D domain requires an
algorithm to route surface flow down the landscape. In our
case, to explore how a model landscape responds to a change
in precipitation rate we will make the simplest assump-
tion available: that water flows down the steepest slope. We
then solve for Eq. (11) using the numerical model Fastscape
(Braun and Willett, 2013), with a resolution of 1000 by 1000
nodes for a 100 by 100 km domain, giving a spatial resolu-
tion of 100 m. Erosion by sediment transport in 2-D is solved
following the MATLAB model of Simpson and Schlunegger
(2003), which is available from Simpson (2017). We solve
Eq. (6) on a triangular grid with a resolution of 316 by 316
nodes for a 100 by 100 km domain, giving a spatial resolu-
tion of the order of 300 m. We also explored how the models
evolve for a domain that is 500 by 500 km in size. The time
step used for both models is 10 kyr.

We will explore how an idealized landscape evolves under
uniform uplift at a rate of 0.1 mm yr−1. The initial condition
is of a flat surface with a small amount of noise added to
create a roughness. The boundary conditions are fixed eleva-
tion at the left and right sides and no flow at the sides. To
explore the response of the two models to a change in pre-
cipitation rate we start the model with an initial precipitation
rate of α0 = 1 m yr−1. For the linear models we then increase
or decrease the precipitation rate to a new value, α1, after
10 Myr of model run time. This is to be sure that the steady
state has been reached before applying the perturbation. For
the non-linear models (Sects. 3.3 and 3.4), the precipitation
rate is changed after 5 Myr as in this case steady state was

reached earlier. As the coefficients c and k have units that are
related to the exponents δ andm in Eqs. (6) and (11), respec-
tively (e.g. Whipple and Meade, 2006; Armitage et al., 2013),
when modelling increasing values of δ andm the coefficients
are likewise increased.

The response time for the transport model scales by the
effective diffusivity and can be given by

τt =
L2

κ + cqδw
, (13)

where L is the model length scale (in this case the length of
the domain). For the stream power model the response time
is a function of the velocity at which the kinematic wave trav-
els up the catchment (e.g. Whipple and Tucker, 1999; Whip-
ple, 2001). The response time is therefore given by the time
it takes for this wave of incision to travel up the catchment
length, lc,

τsp =
lc

kqmw
. (14)

Therefore we expect the response time to be a function of
the choice of both the constants c and k and the exponents δ
and m within both models. The effect of varying the coeffi-
cients m and δ independently has been previously explored
(e.g. Whipple and Meade, 2006; Armitage et al., 2013), and
we therefore will not do so in detail again here. Instead we
aim to compare the two models and therefore search for the
values of c, k, m, and δ that generate similar topography at
steady state. This steady state is then perturbed by a change
in precipitation rate.

2.4 Generating similar landscapes

It has been previously demonstrated that both end-member
models can generate convex-up long profiles (e.g. Kirkby,
1971; Smith and Bretherton, 1972; Smith et al., 2000; Whip-
ple and Tucker, 2002; Crosby et al., 2007). From solving both
Eqs. (8) and (12), where γ = 1 and n= 1, we find that in the
range 1< δ ≤ 1.5 and 0.3≤m≤ 0.7 the two end-member
models are comparable (see Appendix A). Given the possi-
ble additional degree of freedom introduced if we also vary γ
and n, it is clear that river-long profiles are not a unique iden-
tifier of erosional processes. However, in order to compare
how the end-member models respond to a change in precipi-
tation rate, it is preferable to perturb catchments of a similar
morphology. We will subsequently explore how the models
in their linear and non-linear forms respond to a change in
precipitation rates within the Results section.

2.4.1 Erosion by sediment transport

Six models have been run without a change in precipita-
tion to find the steady-state topography. The models explored
are first a set of three with varying δ and constant c, i.e.

www.earth-surf-dynam.net/6/77/2018/ Earth Surf. Dynam., 6, 77–99, 2018
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(b) Transport model

(a) Transport model

Figure 2. Sediment flux out of the model domain for the trans-
port models in which (a) δ = 1.1, 1.3, and 1.5, κ = 10−2 and
c = 10−4 (m2 yr−1)1−δ ; (b) δ = 1.1, 1.3, and 1.5, κ = 10−2 and
c = 10−2, 10−3, and 10−4 (m2 yr−1)1−δ .

δ = 1.1, 1.3, and 1.5 with c = 10−4 (m2 yr−1)1−δ (Fig. 2a),
and a set of three in which δ and c co-vary, i.e. δ = 1.1 with
c = 10−2 (m2 yr−1)1−δ , δ = 1.3 with c = 10−3 (m2 yr−1)1−δ ,
and δ = 1.5 with c = 10−4 (m2 yr−1)1−δ (Fig. 2b). These val-
ues are chosen because they generate response times within
the range of observations from normal fault-bounded sedi-
mentary systems that have responded to changes in slip rate
(Densmore et al., 2007; Armitage et al., 2011).

When the transport coefficient c is the same for the three
values of the exponent δ, the model wind-up time increases
with decreasing δ and takes several million years when δ <
1.5 (Fig. 2a). Steady-state sediment flux is greater for in-
creasing δ when c is kept constant. The dimensions (units)
of c depend on δ, which means that the value of the coeffi-
cient c must be adjusted when δ is changed to yield the same
unit erosion rate per water flux regardless of δ (see Armitage
et al., 2013). Consequently, when c is suitably adjusted the
model can reach a steady state in a similar time for all three
values of δ (Fig. 2b).

We subsequently analyse the topography for the relation-
ship between trunk river slope and drainage area, as shown
in Fig. 3, using TopoToolbox2 (Schwanghart and Scherler,
2014). For the case in which δ = 1.5 the scaling between
channel slopes and catchment drainage areas, the slope–area
exponent θ , is equal to −0.42, and for δ = 1.3, θ is equal to
−0.23 (Fig. 3b). The same value is calculated using the spa-

Table 1. Slope–area relationship for trunk streams derived using χ
analysis (Perron and Royden, 2012)

Sediment kS θ

transport

δ = 1.3 0.86 −0.23
δ = 1.5 1.76 −0.42

Stream
power

m= 0.3 0.95 −0.29
m= 0.5 6.52 −0.46
m= 0.7 71.42 −0.68

tial transformation described in Perron and Royden (2012),
commonly referred to as χ analysis (Table 1). Given the re-
duction in θ from δ = 1.5 to 1.3, we did not analyse the
case for δ = 1.1 as the slope–area relationship will clearly
lie below the observed range (−0.7< θ <−0.35; e.g. Sny-
der et al., 2000; Wobus et al., 2006). Therefore, for river net-
works defined by routing water down the steepest slope of
descent, the transport model can create catchment morpholo-
gies that have a concavity similar to that observed in nature
if δ ∼ 1.5.

2.4.2 Comparison to erosion by stream power

In order to provide a comparison for the morphology of
the transport model we explore how the stream power
model evolves to a steady state. The landscape derived
from the stream power model, as shown in Eq. (11),
evolves towards a steady state with a slightly different
behaviour in comparison to the transport model (Fig. 4).
As before we ran six models for which in this case the
first set of three are m= 0.3, 0.5, and 0.7 with k =

10−5 m−1 (m2 yr−1)1−m (Fig. 4a). The second set of three
are of m= 0.3 with k = 10−4 m−1 (m2 yr−1)1−m, m= 0.5
with k = 10−5 m−1 (m2 yr−1)1−m, and m= 0.7 with k =

10−6 m−1 (m2 yr−1)1−m (Fig. 4b). This range of m is chosen
as it spans the range of observed concavities within catch-
ments. As with the transport model the coefficient k can be
adjusted along with m as they are related, and increasing k
reduces the model wind-up time (Fig. 4b). Decreasing the
exponent m increases the timescale taken to reach a steady
state (Fig. 4a); however, by varying k by a factor of 100, the
steady-state sediment flux is reached within 3 Myr for the
three values of m (Fig. 4b).

Following the previous examples, we analyse the topog-
raphy for the relationship between trunk river slope and
drainage area (Fig. 5). Both the transport model and the
stream power model can create landscapes with similar
slope–area relationships calculated using the χ -analysis ap-
proach (Table 1). For both models, the values of the inter-
cept, ks, and the gradient, θ , are of similar magnitudes for
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Figure 3. (a) Steady-state topography after 10 Myr for the transport model in which δ = 1.5 and c = 10−4 (m2 yr−1)1−δ . (b) Slope–area
relationship for the transport model for δ = 1.3 and δ = 1.5.
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Figure 4. Sediment flux out of the model domain for the stream
power models in which (a) m= 0.3, 0.5, and 0.7 and k =

10−5 (m2 yr−1)1−m; (b)m= 0.3, 0.5, and 0.7 and k = 10−4, 10−5,
and 10−6 m−1 (m2 yr−1)1−m.

δ = 1.5 andm= 0.5. Absolute elevation for the model shown
in Fig. 5a is higher than the transport model example due to
the larger value of k relative to c. However, importantly, both
models can create similar landscape morphologies at steady
state.

3 Results

The stream power and transport models can both fit the ob-
served slope–area relationships of the present day landscape
morphology, for example θ ranging from −0.35 to −0.7
(Snyder et al., 2000; Wobus et al., 2006), when the water
flux exponent ism∼ 0.5 or δ ∼ 1.5 for the stream power and
transport model, respectively. Therefore, both models may be
a reasonable representation of how, on a gross scale, a land-
scape erodes. We therefore keep the exponents in the range
0.3≤m≤ 0.7 and 1.3≤ δ ≤ 1.5 and explore how the mod-
els in their linear and non-linear forms respond to a change
in precipitation rates.

3.1 Response to precipitation rate reduction

When the model is perturbed by a change in precipitation rate
the sediment flux output will first change as the erosive power
changes (e.g. Fig. 6). The model will subsequently return to
the steady-state output, as the slope of the fluvial system will
adjust to the new precipitation rate, and the landscape will
re-achieve the same steady state. In Fig. 6a we display the
response of erosion for the transport model in terms of sedi-
ment flux out of the model domain for a reduction in precipi-
tation rate from 1 to 0.5 m yr−1 at 10 Myr of model evolution.
We explore how the transport model responds for δ = 1.5,
c = 10−4 and δ = 1.3, c = 10−3 as these two values of δ gen-
erate reasonable slope–area relationships (Fig. 3b, Table 1).
The response to a reduction in precipitation is similar for the
two model parameter sets, with the flux initially reducing by
half and then recovering to within 10 % of steady-state values
within∼ 2 Myr (Fig. 6a; see Table 2). Changing the transport
coefficient, c, does not affect the predicted gradient of catch-
ment slope versus catchment area (see Appendix A, Fig. A2).
However, changing c changes the model elevation (Fig. A2).
Furthermore, the larger the value of c the faster the response
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Figure 6. Response of the transport and stream power model to a
reduction in precipitation rate. (a) Sediment flux for the transport
model for a step reduction in precipitation from 1 to 0.5 m yr−1

after 10 Myr. Two models are plotted in which δ = 1.3 and 1.5,
κ = 10−2, and c = 10−3 and 10−4 (m2 yr−1)1−δ . (b) Sediment
flux for the stream power model for a step reduction in precipita-
tion from α0 = 1 to α1 = 0.5 m yr−1 after 10 Myr. Three models
are plotted in whichm= 0.3, 0.5, and 0.7 and k = 10−4, 10−5, and
10−6 m−1 (m2 yr−1)1−m.

Table 2. Response to a change in precipitation rate; α1 repre-
sents the value that the precipitation rate changes to from α0 =
1 mm yr−1. Response time is given for two model sizes, 100 and
500 km, and as the time for the model to recover to within 50 %
(1/2) and 10 % (1/10) of the steady-state sediment flux.

L= 100 km Transport Detachment
α1 τ1/2 τ1/10 τ1/2 τ1/10

yr−1 Myr Myr Myr Myr

0.25 1.42 6.07 0.98 1.66
0.50 0.53 2.19 0.70 1.18
0.75 0.30 1.21 0.57 0.98

2.00 0.09 0.31 0.34 0.60

L= 500 km Transport Detachment
α1 τ1/2 τ1/10 τ1/2 τ1/10

yr−1 Myr Myr Myr Myr

2.00 0.17 0.64 0.34 0.60

(Eq. 13; see Armitage et al., 2013). A small increase in the
exponent δ will strongly reduce response times, as it will in-
crease the water flux term (Eq. 13). Therefore an order-of-
magnitude decrease in c counters the change in δ for the two
model sets (Fig. 6a). For the values chosen both models re-
spond at a similar rate to the change in precipitation (Fig. 6a;
see Table 2).

The response of the stream power model to an identical
reduction in precipitation at a model time of 10 Myr takes
a similar form, with an initial decrease in sediment flux out
followed by a gradual recovery (Fig. 6b). In a similar manner
as the transport model, response is a function of the exponent
m and the coefficient k (Eq. 14). We have modelled three pa-
rameter sets: m= 0.3 and k = 10−4, m= 0.5 and k = 10−5,
and m= 0.7 and k = 10−6 (Fig. 6b). The response time to
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achieve a return to 10 % of the steady-state sediment flux
varies from 3 Myr in the case of m= 0.3 to less than 1 Myr
when m= 0.7. In addition to response time being longer for
smaller values of m, the peak magnitude of the flux response
is reduced for smaller values of m (Fig. 6b).

The magnitude of the response for all the runs is greater
for the transport model when compared to the stream power
model (Fig. 6). Consequently, response time, while being
a function of the transport coefficients c and k, may still
systematically differ between the two models: the transport
model with δ = 1.5 and c = 10−4 generates a maximum
model elevation of ∼ 240 m, and the stream power model
with m= 0.5 and k = 10−5 generates a maximum elevation
of ∼ 180 m. These two models have a similar slope–area re-
lationship at steady state (Table 1) and are therefore compa-
rable, suggesting a faster response to a reduction in precipi-
tation rates for the stream power model (Fig. 6).

To explore how the difference in response time and mag-
nitude is expressed in the landscape, we extract the river pro-
files of the main trunk systems for models in which δ = 1.5
and m= 0.5 during the response to the reduction in pre-
cipitation rate, while the uplift rate is constant (Figs. 7 and
8). For the transport model in which δ = 1.5 and c = 10−4,
the catchment elevation increases to a new steady state that
has an elevation that is roughly 2.6 times higher than the
steady-state elevation after 10 Myr (Fig. 7). Just under half
of this new topographic elevation is achieved within the
first 500 kyr. In contrast, for the stream power model in
which m= 0.5 and k = 10−5, the steady-state topography
is achieved within a fraction of the time when compared to
the transport model. This is in line with the more rapid re-
sponse of this model to a relative drying of the climate using
these parameters (compare Fig. 6a and b). Furthermore the
increase in elevation due to the reduced surface water flux
is only a factor of ∼ 1.2, which is less than half of the in-
crease for the transport model. Our results confirm that two
different end-member erosion models encompassing advec-
tive and diffusive phenomena can produce landscapes with
similar morphologies if particular parameter sets are selected
accordingly.

3.2 Response to different magnitudes of precipitation
rate change

The response time of the transport model is known to be a
function of the transport coefficient and the magnitude of the
precipitation rate (see Armitage et al., 2013). This behaviour
is displayed in Fig. 9a, in which the response of the transport
model with δ = 1.5 and c = 10−4 for a change in precipita-
tion from 1 to 0.25, 0.5, 0.75, and 2 m yr−1 is plotted. The
response time, measured as the time for the sediment flux
to recover by half and by 90 % to the steady-state value, is
shown additionally in Fig. 10 as black solid and dashed lines,
respectively, and in Table 2. For a reduction to 0.25 m yr−1

the prediction is for a long response time of 6.07 Myr, while

for an increase to 2 m yr−1 the prediction is a for rapid re-
sponse time of 310 kyr for 90 % recovery towards previous
sediment flux values. The equivalent half-life, recovery by
50 % towards previous sediment flux values, is 1.42 Myr and
90 kyr.

The stream power model likewise has a response time that
is a function of precipitation rate (Fig. 9b). For a reduction to
0.25 m yr−1 the prediction is for a response time of 1.66 Myr,
while for an increase to 2 m yr−1 the prediction is for a recov-
ery time of 600 kyr for 90 % recovery (Table 2). The equiv-
alent half-life is 0.98 Myr and 340 kyr (Table 2). The stream
power model is therefore faster to recover for a reduction
in precipitation rate yet slower to respond to an increase in
precipitation rate. This is because the response time of the
stream power model is more weakly a function of precipi-
tation rate. Importantly, these results therefore suggest that
there is a fundamental asymmetry in the response timescale
to a climate perturbation. The models suggest that it takes
longer for surface processes to recover from a drying event
compared to a wetting event.

Both models display a response time that is a function of
the precipitation rate (Figs. 9 and 10). The relationship be-
tween precipitation rate and the transport model response can
be expressed as

τt ∝ α
−δ, (15)

where in this case δ = 1.5. This proportionality is in agree-
ment with our numerical model results, in which the slope
of trend for the transport model in the log–log plot is −1.5
(Fig. 10).

In contrast, the response time of the stream power model is
not as strongly inversely dependent on the precipitation rate
(Fig. 10). For this model, the response time is a function of
the velocity at which the wave of incision travels upstream.
This velocity is directly related to the inverse of the water
flux, qmw , which is in turn a function of the drainage length
and precipitation rate, α. Therefore for the stream power
model we can write that response time is

τsp ∝ α
−m. (16)

This proportionality, which is in agreement with the approx-
imate analytical solutions of Whipple (2001), is likewise in
agreement with our numerical model results, in which the
slope of trend for the stream power model in the log–log plot
is−0.5 (Fig. 10). Consequently, for these two models, which
were derived from the same starting point (Fig. 1) and ap-
plied to catchments of similar topography and morphology,
we find that above a certain magnitude of precipitation rate
change, the transport model responds more rapidly than the
stream power model and vice versa.

The position of the critical point at which the stream power
model responds more rapidly than the transport model is a
function of the water flux and the collection of coefficients.
In the model comparison developed here, we have compared
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Transport model Transport model

Figure 7. Transport model evolution due to a reduction in precipitation. (a) Selected river-long profile response to a change in precipitation.
The black line is the profile just before a factor of 2 reduction in precipitation. The red and blue lines are 200 and 500 kyr after the reduction
in precipitation. The dashed black line is the steady-state profile. (b) Trunk stream used for the analysis with the steady-state elevation.

Stream power model Stream power model

Figure 8. Stream power model evolution due to a reduction in precipitation. (a) Selected river-long profile response to a change in pre-
cipitation. The black line is the profile just before a factor of 2 reduction in precipitation. The red and blue lines are 200 and 500 kyr after
the reduction in precipitation. The dashed black line is the steady-state profile. (b) Trunk stream used for the analysis with the steady-state
elevation.

two model catchments that have a similar slope–area expo-
nent, θ between −0.4 and −0.5 (δ = 1.5 and m= 0.5) and
model domain length of L= 100 km, giving catchments of
roughly 50 km length. In this case the 90 % recovery of the
sediment flux signal is predicted to be more rapid for the
transport model when compared to the stream power model
for an increase in precipitation rate (Fig. 10). If, however, the
model domain is increased to L= 500 km then it takes twice
as long for the transport model to recover from an increase in
precipitation rate from 1 to 2 m yr−1: 0.63 Myr compared to
0.31 Myr for L= 100 km (Fig. 11a and Table 2).

The stream power model is insensitive to the size of the
model domain because of the particular choice of m= 0.5
and the shape of drainage network that forms under the as-
sumptions of routing water down the steepest slope of de-
scent (Fig. 11b). Taking the drainage length to be directly
proportional to the catchment area, ld ∝ a, and given that
catchment length is proportional to drainage area raised to
the Hack exponent, h, we can re-write Eq. (14) as

τsp ∝
ah

(αa)m
. (17)
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Transport model

Stream power model

Figure 9. (a) Response of the transport model to a change in
precipitation rate. Equation (6) is solved for δ = 1.5 and c =

1× 10−4 (m2 yr−1)1−δ . The precipitation rate is initially α0 =
1 m yr−1 and changes to α1 = 0.25, 0.5, 0.75, or 2 m yr−1 after
10 Myr. (b) Response of the stream power model to a change
in precipitation rate. Equation (6) is solved for m= 0.5 and k =
1×10−5 m−1 (m2 yr−1)1−m. The precipitation rate is initially α0 =
1 m yr−1 and changes to α1 = 0.25, 0.5, 0.75, or 2 m yr−1 after
10 Myr.

Therefore, in the case that h= 0.5 andm= 0.5, as in the nu-
merical model here, the response time becomes independent
of system length (see Whittaker and Boulton, 2012). If h < m
then response times would decrease with increasing drainage
basin size, and if h > m then response times would increase
with drainage basin size. There is good empirical evidence
for 0.5< h < 0.7 (e.g. Rigon et al., 1996), which fundamen-
tally controls the plan view shape of catchments, yet there
is not a complete consensus on the value of m (see Lague,
2014; Temme et al., 2017).

A final key difference between the transient sediment flux
responses of the two models is that the peak magnitude of
system response to a change in precipitation rate is systemat-
ically larger for the transport model (Fig. 9). For an increase
in precipitation rates from 1 to 2 m yr−1, the sediment flux in-
creases from 1× 106 m3 to 2.5× 106 m3 for erosion by sed-
iment transport. This is 3 times greater than the equivalent
increase for the stream power model. The reduction in sedi-
ment flux is likewise larger for the transport model (Fig. 9).
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Figure 10. Log–log plot of response time to a change to a precip-
itation rate of α1 from an initial value of α0 = 1 m yr−1 when the
model domain is 100 by 100 km (see Table 2); τ1/2 is the time for
the sediment flux to recover by half of the magnitude change in sed-
iment flux and τ1/10 is the time for the sediment flux to recover by
90 %.

Therefore, although response time is a function of precipita-
tion rate, the magnitude of change is consistently larger for
the transport model.

3.3 Non-linear response timescales

Up to this point we have compared how the models respond
to a precipitation rate change when the solutions are linear.
However, there is reasonable debate as to the value of the
slope exponent n in the stream power model (e.g. Lague,
2014; Croissant and Braun, 2014; Rudge et al., 2015) and
likewise within the transport model it is plausible that the
slope exponent γ > 1. The response time for the stream
power model for various values of n has been explored within
Baldwin et al. (2003). Here we expand on this by explor-
ing the equivalent response times for the transport model. To
explore the implications of the non-linearity introduced by
relaxing the constraint that n= 1 and γ = 1 for both mod-
els, we solve Eqs. (8) and (12) for p = 1.1, δ = 1.5, and
c = 5× 10−5 and m= 0.5 and k = 10−4, respectively, with
different uplift rates. We have modelled the response due to
an uplift rate between 0.1 and 1.0 mm yr−1 for the case in
which γ = 1.2 and n= 1.2 in Eqs. (8) and (12) (Fig. 12).
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Figure 11. (a) Response of the transport model to a change
in precipitation rate for two different model dimensions, 100 by
100 km and 500 by 500 km. Equation (6) is solved for δ = 1.5
and c = 1× 10−4 (m2 yr−1)1−δ . The precipitation rate is initially
α0 = 1 m yr−1 and changes to α1 = 2 m yr−1 after 10 Myr. (b) Re-
sponse of the stream power model to a change in precipitation
rate for two different model dimensions, 100 by 100 km and
500 by 500 km. Equation (6) is solved for m= 0.5 and k = 1×
10−5 m−1 (m2 yr−1)1−m. The precipitation rate is initially α0 =
1 m yr−1 and changes to α1 = 2 m yr−1 after 10 Myr.

We find that for both the transport and stream power
model, when the slope exponent is greater than one, the
model response time is a function of uplift rate. The faster
the rate of uplift, the faster the system responds to a change
in precipitation rate. If the response time for a system recov-
ery to steady state by 50 or 10 % is plotted on a log–log plot
against uplift rate we find that the response time is propor-
tional to the uplift rate raised to a negative power (Fig. 13). In
the case of n= 1.2 or γ = 1.2 the slope of trend is −0.1667,
and for n= 2 or γ = 2 the slope of trend is −0.5 (Fig. 13).
These slopes are in agreement with the approximate analyt-
ical solutions of Whipple (2001) and numerical models of
Baldwin et al. (2003); i.e. the stream power response time
τsp has a proportionality,

τsp ∝ U
1
n
−1, (18)

and equivalently we infer from our numerical model (Fig. 13)
the transport model response time as

τt ∝ U
1
γ
−1
. (19)
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Figure 12. (a) Response of the transport model to a change in
precipitation rate for two values of uplift, 0.1 and 1.0 mm yr−1.
Equation (8) is solved for γ = 1.2, δ = 1.5, p = 1.1, and c =

5× 10−5 (m2 yr−1)1−δ . The precipitation rate is initially α0 =
1 m yr−1 and changes to α1 = 0.5. (b) Response of the stream
power model to a change in precipitation rate for two values of
uplift, 0.1 and 1.0 mm yr−1. Equation (12) is solved for n= 1.2,
m= 0.5, p = 1.1, and k = 1× 10−4 m−1 (m2 yr−1)1−m. The pre-
cipitation rate is initially α0 = 1 m yr−1 and changes to α1 = 0.5
after 5 Myr.

This implies that both models have the same form of re-
sponse dependency on uplift rates. Therefore, regardless of
the rate of uplift we should expect the transport model to re-
spond more rapidly to a large increase in precipitation rate
and the stream power model to respond more rapidly to a re-
duction in precipitation rate (Fig. 10). Our results are also
consistent with the field-based findings of Whittaker and
Boulton (2012), who showed that landscape response times
for rivers close to the detachment-limited end-member were
shorter for terrain uplifted by faster-slipping active faults.
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Figure 13. Log–log plot of response time for different slope exponents and uplift rates to a change to a precipitation rate from an initial value
of α0 = 1 to α1 = 0.5 m yr−1; τ1/2 is the time for the sediment flux to recover by half of the magnitude change in sediment flux and τ1/10 is
the time for the sediment flux to recover by 90 %. (a) Response time for the transport model (Eq. 8) and stream power model (Eq. 12) when
the slope exponent γ = 1.2 and n= 1.2, respectively. A linear trend is found with a gradient of −1.667. (b) Response time for the transport
model and stream power model when the slope exponent γ = 2 and n= 2, respectively. A linear trend is found with a gradient of −0.5.

3.4 Response time as a function of the initial
precipitation rate

Up until this point we have only explored how the numer-
ical models respond to an increase or decrease in precipi-
tation rate by keeping the initial precipitation rate fixed at
α0 = 1 m yr−1 and varying the final precipitation rate α1. In
this final section we will instead keep the final precipitation
rate fixed at α1 = 1 m yr−1 and vary the initial precipitation
rate α0 from values of 0.5 to 1.5 m yr−1. We will focus again
on the 1-D models and look at the linear and non-linear cases
with n= 1.2 and γ = 1.2.

For the linear and non-linear transport model we find that
if the initial precipitation is less than the final precipitation
(α0 < α1) then the response time is not very sensitive to the
initial precipitation rate (Fig. 14a). If α0 > α1 then the re-
sponse time is a function of the initial precipitation rate, but
the relationship cannot be explained by a simple power law
(Fig. 14a). The change in response time as a function of the
initial precipitation rate is, however, small compared to the
change in response time as a function of the final precipita-
tion rate.

In the case of the linear and non-linear stream power
model, the response time has a no dependence on the initial
precipitation rate and is only a function of the final precip-
itation rate (Fig. 14b). With all other parameters being held
constant, the initial precipitation rate will set up the topog-
raphy and hence the slope of the pre-perturbation landscape.
Elevations will be lower for higher precipitation rates, and
the topographic gradient will be smaller. For the case of the

stream power model, the change in erosion rates migrates up
the catchment and so the old topography does not impact the
response time. For the transport model, however, the remnant
topography does have a small effect on the response time, but
only if the previous precipitation rate was higher than the new
post-perturbation precipitation rate.

4 Discussion

In deriving the two end-member models to describe land-
scape evolution, we showed that if the rate of transport of
sediment were assumed to be instantaneous (i.e. all sedi-
ment is transported out of the model domain) then the stream
power model would be appropriate to describe catchment
erosion. However, if it is instead assumed that the rate of
sediment transport is not instantaneous, then we arrive at
a model in which erosion scales with the rate of change
of sediment flux, which itself is dependent on both linear
and potentially non-linear slope-dependent terms. These two
end-members can produce similar steady-state landscapes,
as noted by a number of previous studies (e.g. Whipple and
Tucker, 2002; Tucker and Whipple, 2002). However, as we
demonstrate above, when perturbed by a change in condi-
tions such as rainfall rate, they can produce very different
landscape responses, which vary in terms of their style, mag-
nitude, and tempo. We explore the nature and implications of
these responses below.

It is also important to stress that the catchment responses
and the predicted sediment fluxes out of these two model
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Figure 14. Log–log plots for the transport model and the stream power model in 1-D for a step change in precipitation rate; the initial
precipitation rate, α0, varies from 0.5 to 1.5 m yr−1, and the final precipitation rate is fixed at α1 = 1 m yr−1. (a) Results for the transport
model. (b) Results for the stream power model.

domains might be variously relevant to different erosional
and depositional domains (see Lague, 2014; Temme et al.,
2017). A model of instantaneous sediment transport might
be more relevant for suspended sedimentary loads, for which
transport times can be very small, while the transport model
might be more appropriate for bedload-dominated systems,
even in cases in which bedrock is clearly incised (e.g. Paola
et al., 1992; Valla et al., 2010). Furthermore, given that these
two models have different response times, it is possible that
fine-grained deposits might record signals of climate change
differently from, for example, the gravel deposits within al-
luvial valleys. Below, we will therefore first discuss how the
two model responses compare in terms of their response time
and place our results in the wider context of sediment rout-
ing system response to environmental change. Second, we
will compare the model results with three records of change
in sediment deposition during the Paleocene–Eocene thermal
maximum (PETM), a known and well-constrained period of
rapid climate change. Finally, we will summarize the key im-
plications from our results.

4.1 Response times as a function of model choice

Under certain parameter sets it is relatively straightforward
to generate two landscapes eroded by the transport or stream
power model that have similar elevation, slope, and area met-
rics (Figs. 3 and 5). To find a path to break the apparent
non-uniqueness of these solutions we have explored the tran-
sient sediment flux response out of the model domain for
two end-member solutions to erosion. The first observation
is that both models respond at a first order in a broadly sim-
ilar way to a precipitation rate (climate) driver (Figs. 9 and
10). Both models have a response that is an inverse function
of the magnitude of precipitation rate change. Both models
have a response that is related to uplift in an identical man-

ner (Fig. 13). However, the responses for catchments that are
comparable in slope–area relationship and maximum eleva-
tion, but which are governed by different erosional dynamics
defined by c, k, m, and δ, actually display different response
times by almost 1 order of magnitude (Figs. 2 and 4).

We have demonstrated that models limited by their abil-
ity to transport sediment tend to have shorter response
times to an increase in rainfall rate and thus re-achieve pre-
perturbation sediment flux values more rapidly compared to
stream-power-dominated systems, particularly when catch-
ment length scales are small (e.g. < 100 km, Fig. 10). These
model observations suggest that the sediment fluxes from
small alluvial catchments, even when captured in down-
stream depocentres, may be difficult to tie to changing cli-
mate parameters unless depositional chronologies are excep-
tionally well constrained (e.g. D’Arcy et al., 2017). Con-
versely, catchments whose erosional dynamics lie close to
the stream power end-member model may be well placed
to record longer-term climate shifts, but may be buffered
to very high-frequency variations in the climate driver (see
Simpson and Castelltort, 2012; Armitage et al., 2013). It is
important to stress that the trend in response is asymmet-
ric, by which we mean that both models show a faster re-
sponse for a precipitation increase relative to a precipitation
decrease (Fig. 10). This is an important outcome, which has
to date not been widely recognized or investigate in field sce-
narios. In particular, it raises the prospect that for glacial–
interglacial cycles characterized by wetter, cooler stadial pe-
riods and dryer, warmer interstadials, the rapid climate re-
covery from peak glacial conditions typically seen in δ18O
records might be mediated by a longer landscape response
time to this change. Conversely, physically slower boundary
condition changes towards wetter conditions may give rise
to faster landscape response times. We suggest that an ex-
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ploration of these differences may be a promising avenue of
future research.

Given that the response time is a function of the water
flux exponent (m or δ) and that the water flux exponent for
the transport model is greater than that for the stream power
model, there will be a cross-over point at which the stream
power model responds faster than the transport model. This
cross-over point is a function of the erodibility coefficient k
and the transport coefficient c. In the scenario in which we
have tried to initiate the perturbation in precipitation rates
from similar catchments, we find that this cross-over point is
towards large reductions in precipitation rates (Fig. 10). This
implies that the transport model generally responds faster
than the stream power model (105 to 106 yr) for examples in
which the parameter combinations used here produce similar
steady-state landscapes.

For such conditions, the stream power model predicts a
landscape response time to a change in precipitation of the
order of 106 yr, and this time is related to the precipitation
rate to the inverse power of m (Fig. 10). The transport model
predicts a wider range of response times of the order of 106

to 105 yr that is related to the precipitation rate to the inverse
power of δ; in this case the response time is also length de-
pendent (Fig. 10 and Table 2). It has been suggested that a
transition from a landscape controlled by detachment-limited
erosion (stream power model) to sediment transport at longer
system lengths may explain the longevity of mountain ranges
(Baldwin et al., 2003). This hypothesis is somewhat backed
up by the analysis of response times for the transport model,
as the response time increases with system length (Table 2)
unlike the stream power model, which has a response that
is only slightly modified by system length (Whipple, 2001;
Baldwin et al., 2003). To date, physical constraints on land-
scape and sediment flux response times to climate changes
in the geologic past are relatively scarce (Ganti et al., 2014;
Romans et al., 2016; Temme et al., 2017) because real sys-
tems are complex. They include internal dynamics, such as
vegetation and autogenic behaviour, which are often omitted
from model studies, and because of the need for stratigraphic
archives to be complete with well-established chronologies
(Allen et al., 2013; Forman and Straub, 2017). In principle,
however, the dominant long-term incision process govern-
ing catchment behaviour fundamentally determines the sed-
iment flux response and may itself help identify catchment
erosional dynamics; we explore this question in Sect. 4.2.

Finally, it is worth noting that the model response time has
implications for the inverse modelling of river profiles. When
river-long profiles are inverted for uplift, erosion is typically
assumed to be captured by the stream power model (e.g.
Pritchard et al., 2009). Studies of continent-scale inversion
have found that the best fit value of k for the stream power
model increases by 2 orders of magnitude to fit river profiles
in Africa relative to Australia (Rudge et al., 2015). Such a
large change in k would result in a highly significant differ-
ence in response time from continent to continent, which in

itself would imply that tectonic and climatic signals are pre-
served in landscapes and sediment archives over vastly dif-
ferent time periods (see Demoulin et al., 2017). Such an out-
come may reflect fundamental differences in bedrock erodi-
blity (Roy et al., 2015), but alternatively could be satisfac-
torily explained by differing long-term erosional dynamics
and sediment transport. These differences are enhanced in
the case in which n > 1 in the stream power erosion model.

4.2 Relevance of model responses to sediment records
of climate change

To what extent do these model results, which start from sim-
ilar steady-state topographies, help us to understand whether
stratigraphic records of sediment accumulation through time
do or do not reflect the effects of climatic change on sediment
routing systems governed by differing long-term erosional
dynamics? One motivation for this study has come from the
increasing number of field and stratigraphic investigations
of terrestrial sedimentary deposits, apparently contempora-
neous with (and taken to record) known past climate pertur-
bations, such as the Palaeocene–Eocene thermal maximum
(PETM), a hyperthermal event that occurred around 56 Ma.
Stratigraphers often correlate changing stratigraphic charac-
teristics with changing environmental boundary conditions
in a qualitative way (see Romans et al., 2016; Allen, 2017).
However, to evaluate quantitatively how sediment routing
systems respond to climate with reference to real examples, it
is imperative to consider systems in which the timescales of
erosion (or as a proxy, deposition) are known, stratigraphic
sections are complete, and the driving mechanisms well doc-
umented (see Allen et al., 2013; D’Arcy et al., 2017).

To compare our model predictions with observations it is
clear that we have to use the depositional record. Therefore,
there is an implicit assumption that stratigraphy is a faith-
ful recorder of erosion. It is, however, possible that climatic
change will also alter processes that control sediment depo-
sition, for example by altering how sediment partitions from
transport into stratigraphy. By using estimates of the total
volume of sediment deposited within the Escanillia Eocene
sedimentary system in the Spanish Pyrenees, it has been
demonstrated that climatic change can recreate observed
changes in grain size deposition (Armitage et al., 2015). This
example of a close model-to-stratigraphic-observation pre-
diction might be evidence that the stratigraphic record is a
faithful record of a change in sediment flux delivery to the
depositional environment.

The PETM is arguably the most rapid global warming
event of the Cenozoic, with a rise in global surface temper-
atures by 5 to 9 ◦C (Dunkley Jones et al., 2010), forming a
clear step change in climate for which depositional records
are well constrained in a number of basins worldwide (Fore-
man et al., 2012). It is therefore a good example for high-
level comparison with our model outputs. While the large-
magnitude glacial–interglacial cycles of the past 1 Myr are
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also plausible candidates to investigate these links in princi-
ple (see Armitage et al., 2013), we note that many terrestrial
records of sedimentation over ca. 100 kyr, such as fluvial ter-
races and alluvial fans, have depositional chronologies that
are often incomplete or reworked (D’Arcy et al., 2017; De-
moulin et al., 2017).

The initial warming associated with the PETM event oc-
curred at ca. 55.5 Ma and may have been as abrupt as 20 kyr,
with a duration of 100 to 200 kyr based on the synthesis of
δ13C and δ18O records (e.g. Schmitz and Pujalte, 2007; Fore-
man et al., 2012). The event has been associated with clear
changes to global weather patterns; for instance, hydrogen
isotope records suggest increased moisture delivery towards
the poles at the onset of the PETM, consistent with predic-
tions of storm track migrations during global warming (Sluijs
et al., 2006). This event has also been argued by an increasing
number of authors to have produced a significant geomorphic
and erosional impact based on sedimentary evidence and its
apparent effect on the global hydrological cycle and catch-
ment run-off (e.g. Foreman et al., 2012; Foreman, 2014).

A clear response to the PETM is recorded within both
the Spanish Pyrenees and the western US; however, the re-
sponses are arguably not the same. At the onset of the PETM
there is strong evidence for the contemporaneous increase
in precipitation rates and the deposition of coarse gravels
known as the Claret Conglomerate (Schmitz and Pujalte,
2007) in the Tremp Basin of the Spanish Pyrenees. In the
western US the PETM is marked by the deposition of well-
documented channel sandstone bodies in the Piceance Creek
and Bighorn basins (Foreman et al., 2012; Foreman, 2014,
e.g.). In the US cases, the deposits include coarse channel-
ized sands, marked by upper flow regime bed forms, some of
which are consistent with a synchronous increase in both wa-
ter and sediment discharge. At Claret, where the style of sedi-
mentation abruptly changes from a semi-arid alluvial plain to
an extensive braid plain or megafan deposit, the conglomer-
ate has a thickness of ∼ 10 m, while the total carbon isotope
excursion (CIE) in the same section measures ∼ 35 m (Man-
ners et al., 2013).

4.2.1 Claret Conglomerate, Spanish Pyrenees

The Claret Conglomerate was likely deposited rapidly, rep-
resenting a fast response to climate change. If we assume a
constant rate of deposition, then the Claret Conglomerate ac-
counts for roughly 30 % of the total duration of deposition for
the CIE (170 kyr; Röhl et al., 2007), suggesting that deposi-
tion occurred over a duration of up to 50 kyr. Indeed, Schmitz
and Pujalte (2007) argue that the deposition of this unit may
have been markedly quicker than the conservative estimate
above, perhaps taking less than 10 kyr, based on their de-
tailed comparison of δ13C and δ18O records at the field site
compared to marine records of the excursion. Therefore un-
less there is a major unconformity within the CIE, the im-
plication is that the erosional system responded rapidly at

this particular field site, in 10 to 50 kyr, to a significant shift
in climatic conditions. These values suggest sedimentation
rates of up to 1 mm yr−1. If such a sedimentation rate had
been sustained for the duration of the deposition of the Tremp
Group (Maastrichtian to the end of the Palaeocene), the sedi-
ment thickness would be> 15 km. This is an order of magni-
tude more than actually observed (Cuevas, 1992) and would
therefore suggest that sediment fluxes increased dramatically
at the PETM.

Erosional source catchment areas were likely < 100 km in
length given the palaeo-geography of the Pyrenees at the time
(Manners et al., 2013). The very short duration of the ero-
sional response, which is required for the sediments to be
transported and deposited on a timescale of ca. 104 years, is
therefore difficult to model within a stream power (advec-
tive) end-member model for catchments of this scale (Ta-
ble 2), although a version of such a model has been recently
used to explore the controls on the evolution of later Miocene
megafans in the northern Pyrenees (e.g. Mouchené et al.,
2017). To use the stream power model would require a signif-
icant increase in the bedrock erodibility parameter, k, within
the model (by greater than 1 order of magnitude), imply-
ing slopes and topography in the palaeo-Pyrenees that were
highly subdued. In contrast, the sediment transport model
more easily reproduces the documented response timescales
given an increase in precipitation; it is also consistent with
the volumetrically significant export of bedload-transported
gravel clasts and therefore honours the independent field data
more effectively. We also note that the transport model dis-
plays a response time that has a stronger dependence on pre-
cipitation rate change and has a greater amplitude of pertur-
bation (e.g. Fig. 9). We therefore suggest that the erosional
pulse that led to the deposition of the Claret Conglomerate is
most appropriately modelled as a diffusive system response
to a sharp increase in precipitation over the source catch-
ments of the developing Pyrenean mountain chain at that
time.

4.2.2 Sandstone bodies in the Piceance Creek and
Bighorn basins, western US

The time-equivalent sections in the Bighorn and Piceance
Creek basins of the western US also provide clear evi-
dence of anomalous sedimentation at the PETM; however,
in this case the duration of deposition is somewhat longer,
> 100 kyr (Foreman et al., 2012; Foreman, 2014). Here the
deposits are of smaller grain sizes, with the boundary sand-
stone sequence in the Bighorn Basin being made up of fine
to coarse sand with little gravel (Foreman, 2014). In the
Piceance Creek basin, the PETM section documents the rapid
progradation of coarse-grained sands, which is consistent
with greater discharges, over silty underlying strata and in
that sense these observations also match sediment transport
model predictions for rapid increases in sediment flux driven
by enhanced precipitation (Foreman et al., 2012). However,
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it is notable that the documented changes in fluvial style per-
sisted beyond the PETM and we therefore suggest that the
fast response of the system to the increase in precipitation,
but the persistence of coarser-grain sedimentation as the cli-
mate presumably dried and cooled, may indeed reflect the
marked asymmetry in sediment flux responses to wetting and
drying noted in Fig. 9.

In contrast, the Bighorn Basin boundary sandstone sedi-
ments are contained within the PETM time period and indi-
cate uniform flow depths and widths during this time, while
also being coarser than the underlying horizons. Moreover,
proxy data suggest a net decrease rather than an increase in
precipitation (Foreman et al., 2012; Foreman, 2014). While
the progradation of such coarse-grained facies could be rep-
resented as a diffusive process driven by increasing rainfall-
driven discharge (Paola et al., 1992; Armitage et al., 2011),
this is apparently inconsistent with the sedimentological
characteristics of the deposit. Although sediment fluxes are
not explicitly reconstructed in this work, this response appar-
ently requires greater volumes and grain sizes of sediment
delivered despite lowered rainfall conditions and is thus dif-
ficult to capture in either of the end-member models used
here. Foreman et al. (2012) and Foreman (2014) argue for
the preferential removal of fine-grained floodplain deposits
speculatively linked to changing vegetation and the reduced
cohesion of overbank sediments. Consequently, while two of
the PETM sections considered here are broadly consistent
with landscape responses governed by a sediment transport
model, some depositional stratigraphies are not immediately
consistent with either end-member model and may reflect im-
portant complexity, such as the effects of vegetation, lacking
from simple model solutions.

4.3 Summary and model limitations

In this section we consider the implications of our model out-
puts, both generally for interpreting sediment routing system
response to boundary condition change and specifically in
the context of the well-studied PETM event. While the sedi-
ment flux response of the models to a change in precipitation
are at a first-order level broadly similar, there are four key
differences to highlight. First, starting from the same initial
conditions, the sediment transport model appears to be more
sensitive to precipitation change than the equivalent stream
power model. It is therefore a good candidate for which rapid
catchment-wide responses are recorded to, for example, a cli-
mate change event, as we argued for the PETM Claret Con-
glomerate in the Spanish Pyrenees. Second, we note that in
both model cases there is a quicker response to a wetting
than a drying event, something which has not been well es-
tablished or demonstrated from field observations. Neverthe-
less we argue that field data sets, including PETM studies,
may already have recorded this asymmetry, although it may
not have been recognized as such. Third, the sediment trans-
port model has a greater magnitude of peak sediment flux

and is particularly sensitive to catchment size. Finally, we
note that response time in both models is a function of up-
lift rate for n > 1, which means that in such cases, perhaps
counter-intuitively, the more perturbed the system the faster
it responds (see Whittaker and Boulton, 2012).

However, it is important to recognize that in deriving these
two classic end-member models we have simplified land-
scape evolution considerably. We acknowledge that change
in the model parameters, c, k, m, and δ, will alter the re-
sponse times depicted here (see Armitage et al., 2013). How-
ever, in order to compare the two models we have specifically
used values of c, k,m, and δ that generate comparable model
landscapes, and we then changed the precipitation rate to un-
derstand the form of the model response. No model incor-
porates all the complexities that characterize sediment rout-
ing systems from source to sink (see Allen, 2017) and the
act of simplification inherent in considering erosional end-
member models necessitates that in arguing for the applica-
bility of one over the other, we simply consider the broad
styles of behaviour suggested by model outputs. We do not,
for example, consider autogenic behaviours (e.g. Forman and
Straub, 2017), nor do we consider coupled issues of vege-
tation turnover in response to climate change, which may a
play an important role in examples such as the Bighorn Basin
considered here (see Foreman, 2014). Nonetheless, a signif-
icant finding of this work has been the clear asymmetry in
response time of these end-member models in terms of a wet-
ting event (faster) compared to a drying event (slower). This
implies that aridification events are harder to preserve in the
sedimentary record, not only because they are typically as-
sociated with reduced sediment fluxes, but also because the
timescale of landscape response may be > 106 years.

5 Conclusions

Deterministic numerical models of landscape evolution rest
on fundamental assumptions on how sediment is transported
down-system. The stream power law is based on the as-
sumption that all sediment generated is transported instanta-
neously out of the landscape. Transport models assume that
there is an endless supply of sediment to be transported. The
existence of knickpoints within river-long profiles, assumed
to be produced by a system perturbation such as a base level,
has been used to provide evidence in support of the stream
power law in upland areas (e.g. Whipple and Tucker, 1999;
Snyder et al., 2000; Whittaker et al., 2008). Knickpoints,
however, can likewise be a result of changes in lithology
(Grimaud et al., 2014; Roy et al., 2015) and are certainly
not a unique indicator of erosion dynamics (e.g. Tucker and
Whipple, 2002; Valla et al., 2010; Grimaud et al., 2016).
In this contribution we therefore attempted to understand
how the sediment flux signal out of the eroding catchment
may generate a distinguishable difference between the end-
member models in terms of a response to a change in run-off.
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This idea is motivated from field observations of past land-
scape responses to climate excursions, such as the PETM,
which are manifested in the rapid deposition of coarse sedi-
mentary packages in terrestrial depocentres (Armitage et al.,
2011; Foreman et al., 2012).

Both models suggest that the response time of landscape
to a change in precipitation rate has a proportionality of the
form of a negative power law (Eqs. 15 and 16). The key
difference is in the value of the exponent. For the stream
power model, the exponent must be less than one in order
to match the observed concavity of river profiles. In contrast,
for the transport model the exponent on the precipitation rate
must be greater than one in order to generate a river network
(Smith and Bretherton, 1972) and to generate the observed
concavity of river profiles. This results in the transport model
responding more rapidly to an increase in precipitation rate
in comparison to the stream power law model (Fig. 10). In
contrast, the stream power model is faster to respond to a
reduction in rainfall rate. This is fundamentally because the
response time of this model is more weakly a function of pre-
cipitation than the sediment transport model. Significantly,
therefore, our results show that there is a fundamental asym-
metry in the response of both models to a climatic pertur-
bation, with the response time to a drying event longer than
that to an increase in rainfall. In general terms, the magni-
tude of the response to a change in precipitation rate appears
greater across the range of model space investigated here for
the sediment transport (diffusive) model solutions, while for
the stream power (advective) model, the magnitude of the
sediment flux perturbation is smaller, but is more localized
within the catchment with respect to knickpoint retreat.

While this study does not address whether or not these
sediment flux signals will be preserved in the stratigraphic
record, a problem that fundamentally rests on the availabil-
ity of accommodation to capture the eroded sediment (see
Allen et al., 2013; Whittaker et al., 2011), it does suggest that
landscapes governed by these simple erosional end-members
should be sensitive to climate change. Moreover, there are
some important diagnostic differences between their sedi-
ment flux responses to an identical perturbation, including
the amplitude, timescale, and locus of the erosional response.
Using published stratigraphic examples, we suggest that the
timescales and magnitude of coarse sediment deposition in
the Spanish Pyrenees at the time of the PETM are best
described using the diffusive transport model end-member.
Moreover, we argue that these model end-members allow us
to constrain the range of likely sediment flux scenarios that
precipitation changes may generate and that numerical mod-
els, in conjunction with a range of field and independently
constrained proxy data sets, are best placed to tease apart
when and in what circumstances climate signals are likely to
have been generated in erosional catchment systems, which
fundamentally determines whether they can be subsequently
captured in sedimentary depocentres downstream.

Code availability. The 1-D solution to the transport model is
available from John Armitage (armitage@ipgp.fr). The 1-D solution
to the stream power model is available from Benjamin Campforts
(benjamin.compforts@kuleuven.be). Fastscape is available from
Jean Braun (GFZ Potsdam) by request. The 2-D solution to the
transport model was developed by Guy Simpson (University of
Geneva) and is available as part of Simpson (2017).
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Appendix A: Steady-state 1-D profiles

The solution to the one-dimensional stream power law
(Eq. 12) assuming that at the end of the catchment at x = L
elevation z= 0 and mp 6= 1 is

zsss =
U

mkαm (mp− 1)

(
x(1−mp)

−Lx(1−mp)
)
, (A1)

and for the case in which mp = 1 this simplifies to

zsss =
U

kαm
loge(L/x). (A2)

For the transport model (Eq. 8) there is an exact solution
for the case that δp = 2, which assumes that at x = 0, ∂xz= 0
and at x = L, z= 0:

zsst =−
UL

2κDe

(
log(Dex

2
+ 1)+ log(De+ 1)

)
, (A3)

where

De =
ckwα

2/pL2

κ
. (A4)

For other values of δp the steady-state solution is solved nu-
merically; Eq. (8) is solved using the finite-element method
with linear weight functions. We use a non-uniform 1-D
nodal spacing, for which the spatial resolution is increased
with increasing gradient. The numerical model is bench-
marked against the analytical solution for the case in which
np = 2.

The steady-state solutions are plotted in the case that δ =
p =
√

2 and for reference the stream power model solution
with m= 0.5 and p =

√
2 (Fig. A1). Such a value of p as-

sumes that h∼ 0.7, which is towards the higher end for ob-
served Hack exponents, and that the river catchment is very
elongated. When plotting the logarithm of the model slope
against drainage area (Fig. A1b), for which area is given
by a = xp/kw and assuming kw = 1, for the simple stream
power law derived here the slope–area exponent θ =−m.
The value of the dimensional constant k has no impact on
the slope–area exponent as expected. The transport model
likewise creates river-long profiles that have on average a
negative curvature. For small values of x there is, however,
a region of positive curvature in which κ > ckwα

δLδp. For
the slope–area analysis this leads to a positive gradient in
the trend for small catchment areas. This relationship subse-
quently has a negative slope for larger catchments. The point
of inflection is dependent on the value ofDe; for smaller val-
ues of κ the region of positive gradient is reduced. There is
therefore a critical catchment area that is dependent on the
diffusive term κ . After this critical point the slope–area rela-
tionship becomes negative. At distances down-system, where
the upstream area is greater than this critical area, the gradi-
ent θ =−0.88; θ is insensitive to the coefficient c as would
be expected.

Table A1. Gradient, θ , of the slope vs. area trend at steady state for
1-D sediment transport (Eq. 8, Fig. A2).

δ p = 1.40 p = 1.67 p = 2.00
c θ c θ c θ

1 10−6
−0.50 10−5

−0.40 10−4
−0.30

1.5 10−8
−1.01 10−7

−0.91 10−6
−0.81

2 10−10
−1.51 10−9

−1.41 10−8
−1.31

The range of gradients found for river catchments for this
type of slope–area analysis, usually referred to as concavity,
generally lies within the range θ =−0.35 to −0.70 (Snyder
et al., 2000; Wobus et al., 2006). It is trivial to find the values
of m for the steady-state solution to the stream power law
that fit such values of θ . To further explore how θ depends
on δ and p within the transport model we solve Eq. (8) nu-
merically for δ = 1, 1.5, and 2 while keeping h= 0.7 or 0.6
(Fig. A2). The result is that θ varies from −0.3 for the case
of δ = 1 to −1.31 for δ = 2. The values of the gradient for
the slope–area analysis for 1.4< p < 2, in which we assume
d = 1 and hence p = 1/h, are displayed in Table A1. For the
transport model the slope is dependent on both δ and p.

Clearly there is a combination of δp values that is equally
capable of fitting the observed river-long profile. Further-
more, for the transport model the slope is a function of the
Hack exponent h (and therefore p) and the choice of δ. This
because of the diffusivity term that leads to positive curvature
and rounded 1-D profiles (Figs. A1b and A2). The magnitude
of the water flux term within the transport equation (Eq. 8)
is dependent on how much water the river network captures,
which is in turn a function of how elongated the catchment
is.

The positive slope–area relationship for the transport
model for small catchment areas (see Figs. A1b and A2b) has
been previously explored in Willgoose et al. (1991). The gra-
dient of the relationship between slope and catchment area is
dominantly a function of the exponent δ within Eq. (6). The
value of this exponent is likely within the range of 1< δ < 2
depending on the bedload transport law assumed (Armitage
et al., 2013). If the observations of trunk river slope against
catchment area are representative of a landscape at steady
state, then for the smaller range of 1< δ ≤ 1.5, a realistic
catchment topography can be generated.
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Transport model
Stream power model

Figure A1. (a) Steady-state profiles of elevation against down-system length and (b) the slope of the profile plotted against the drainage
area assuming that area a = xp , where p = 1/h=

√
2 and h is the Hack exponent. Dashed lines are for the stream power law (Eq. 12) with

m= 0.5 and k = 10−4, 10−3.5, and 10−3. The solid lines are for the transport model (Eq. 8 with n=
√

2, κ = 10−3, 1, and 103 m2 yr−1 and
c = 10−6, 10−5.5, and 10−5.

Figure A2. (a) Steady-state elevation and (b) slope–area relationship for the numerical solution to 1-D sediment transport (Eq. 8) for which
the area, a, is taken to be related to distance x by a = xp , where p = 1/h and h is the Hack exponent. Red lines are for the case in which
n= 1, blue lines for n= 1.5, and black lines for n= 2. Solid lines are for h= 0.7. Dashed lines are for h= 0.6.
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