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Abstract:  

A large plateau can be produced by crustal thickening in convergent zones such 

as continental collision belts and Andean-type subduction zones, but the life cycles of 

such plateaux are not well-understood. In particular, it is not clear how long they 

persist after construction, before other tectonic processes or erosion reduce crustal 

thickness and elevation to near-normal levels. Triassic subduction- and 

collision-tectonics produced intense deformation, magmatism and metamorphism 

across the entire South China Block. This large-scale crustal shortening created a 

broad orogenic belt, uplifted most parts of the South China Block, and probably 

initiated the growth of an orogenic plateau. Our study presents low-temperature 

thermochronology data from the Xuefengshan Belt in the interior of the South China 

Block. There was along-strike variation in exhumation. The north orogenic core was 

subjected to Triassic (~245-210 Ma), and Late Cretaceous (~100-80 Ma) exhumation, 

whereas the cooling path of the south orogenic core reflects a two stage Cretaceous 

evolution. The variable exhumation pattern reflects non-uniform tectonics in different 

regions, but both regions were subject to Late Cretaceous extension. We tentatively 

reconstruct the original plateau paleo-elevation to be ~1.5 km above sea level, based 

on the amount of exhumation (~10 km) and the present crustal thickness (~35 km). 

The T-t trajectories of the Xuefengshan Belt and other Triassic belts highlight the 

significance of Cretaceous extension and exhumation in shaping the tectonic 

configuration of the South China Block. Large-scale extension was probably triggered 

by rollback of the Paleo-Pacific subduction zone. 
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1. Introduction 

This paper presents new thermochronology data for the Xuefengshan Belt 

(XFSB) of the South China Block (SCB), to explore its exhumation history and how 

and when Triassic metamorphic belts were modified into their present configurations. 

We use the results and regional context to propose that a large part of the SCB was an 

orogenic plateau for much of the Mesozoic, with similarities to modern examples of 

the Central Andes, Iranian and Tibetan plateaux. The wider aim is to shed light on the 

evolution of orogenic plateaux in general: they are a major aspect of continental 

tectonics and growth, but their life cycles are not well-understood. Although the part 

of the adjacent North China Block has previously been interpreted as an orogenic 

plateau in the Mesozoic (e.g. Zhang et al., 2008), we are not aware that the SCB has 

been viewed in this way before. 

 The XFSB is part of a large Triassic intracontinental fold-and-thrust belt 

within the southeast and center of the SCB (Fig. 1). Ductile deformation of pre-Late 

Triassic rocks in the XFSB progressed from the southeastern margin towards the 

interior of the continent (Li ZX and Li XH, 2007; Chu et al., 2012a; Shu et al., 2015), 

in response to Paleo-Pacific subduction beneath this margin. Deformation affected 

other areas of the SCB in the Triassic as the result of collisions along its northern, 
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northwestern and southern margins (Fig. 1). The area affected by compressional 

deformation increased through the Jurassic, but without additional collisions at the 

margins of the SCB. Cretaceous extension formed large continental basins with 2 to 5 

km thick terrigenous sedimentary deposits (Fig. 2; Shu et al., 2009; Li JH et al., 

2012).  

Although exhumation of the XFSB occurred in response to both the Early and 

Late Mesozoic tectonics of the SCB, the final exhumation and the related thermal 

evolution history remain poorly understood. This knowledge gap leaves a deficit in 

our wider understanding of the Mesozoic evolution of the SCB. Our new 

thermochronology data for the XFSB helps bridge this gap. By comparing cooling 

paths obtained from different regions of the SCB with our new data, we discuss the 

widespread delayed exhumation of the Triassic orogens, the implications for 

Mesozoic tectonics in South China, and the more general issue of the relative timing 

of deformation and exhumation in orogenic belts and plateaux.  

 

2. Geological setting 

2.1. The South China Block  

The SCB is one of the major continental blocks in East Asia, and consists of the 

Yangtze and the Cathaysia Blocks to the northwest and southeast, respectively (Fig. 

1). The amalgamation of the two blocks occurred in the Neoproterozoic, and gave rise 

to subduction-collision-related rock formations, including arc-related magmatic and 

sedimentary rocks between 1.0 and 0.9 Ga (Li, 1999; Li et al., 2009; Wang et al., 
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2013, 2016), metamorphic units (1.1-0.9 Ga) (Li et al., 2002, 2007), and 

post-orogenic intrusions (0.83-0.8 Ga) (Wang et al., 2006; Zheng et al., 2008).  

An Early Paleozoic (~460 to 380 Ma) tectonic event interrupted the continuous 

sedimentation since Late Neoproterozoic times, and strongly reworked the SCB by 

widespread compression. This intracontinental belt, called the Wuyi-Yunkai orogen, 

is characterized by amphibolite to granulite facies metamorphism, migmatization, and 

intensive deformation (Lin et al., 2008; Faure et al., 2009; Li et al., 2010; Chu et al., 

2012c, 2014; Shu et al., 2014). A regional Middle to Late Devonian unconformity 

marks the end of this tectonic event (BGMRJX, 1984; BGMRHN, 1988; Shu et al., 

2015). 

Deformation affected the entire SCB (Fig. 1) in the Triassic. The 

Qinling-Dabie-Sulu orogen records Triassic intracontinental subduction of the SCB 

under the North China Block, and includes one of the largest areas of ultrahigh 

pressure metamorphic rocks on Earth (Hacker et al., 2000; Meng and Zhang, 2000; 

Ratschbacher et al., 2000; Faure et al., 2001, 2003). In the southwest, after 

Permian-Early Triassic South-directed oceanic subduction, the Indochina Block 

collided with the SCB in the late Early to early Middle Triassic (ca 245-235 Ma) 

leading to the formation of the Indosinian Orogen (Lepvrier et al., 2004, 2011; Faure 

et al., 2014, 2016a). In the northwest part of the SCB, Triassic compression was 

responsible for crustal shortening in the Longmenshan Belt (e. g. Harrowfield and 

Wilson, 2005; Yan et al., 2011; Xue et al., 2017). 
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Triassic NW-SE compression formed a broad intracontinental thrust belt from 

the southeast coastal region of the SCB, to the northwest inland area, in response to 

the Paleo-Pacific subduction (Wang et al., 2005; Li and Li, 2007; Xu et al., 2011; Chu 

et al., 2012a, 2012b, 2018; Shu et al., 2015). A flat-slab subduction model has been 

proposed, which matches the northwest migration of magmatism (Li and Li, 2007). 

There was a short period in the Late Triassic with post-orogenic magmatism and basin 

deposition (Li and Li, 2007; Shu et al., 2009). Continental clastic sediments 

(―molasse‖) were deposited at the margins of the SCB (e.g. Meng et al., 2005; Qiu et 

al., 2017). Crustal melt granites produce evidence for major crustal thickening (e.g. 

He et al., 2010). Later Jurassic and Early Cretaceous compressional tectonics partially 

reactivated the Triassic belts, and advanced the thrust front westwards to the eastern 

Sichuan Basin (Li et al., 2018), producing a broad zone of distributed deformation 

(Fig. 1).  

Cretaceous extensional tectonics in the SCB has been recorded in numerous 

magmatic domes and (half-) graben basins (Fig. 1; Faure et al., 1996; Lin et al., 2000, 

2015; Shu et al., 2009; Xu and Wang, 2010; Zhu et al., 2010; Li et al., 2013, 2014; Ji 

et al., 2018a, 2018b). As a continent-scale response to back-arc extension west of the 

Paleo-Pacific subduction, Cretaceous extension was coeval with several episodes of 

magmatic flare-ups (Li XH, 2000; Zhou et al., 2006; Li XH et al., 2010; Li ZX et al., 

2012; Li JH et al., 2014; Jiang et al., 2015). In this period, episodic extension and 

compression alternatively controlled the tectonics of the SCB, suggested to relate to 

changes of subduction angle of the Paleo-Pacific slab (Zhou et al., 2006; Li et al., 
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2010; Li et al., 2014; Jiang et al., 2015; Chu et al., 2018). Extensional domes with 

detachment zones document at least two episodes of extension-related ductile 

shearing and exhumation at ~140-120 Ma and ~110-85 Ma, respectively, before and 

after a short (~10 Myr) compressional event (Webb et al., 1999; Hacker et al., 2000; 

Lin et al., 2000; Ratschbacher et al., 2000; Zhu et al., 2010; Li et al., 2013, 2016, 

2020; Ji et al., 2017, 2018a). 

 

2.2. The Xuefengshan Belt  

Located in the center of the SCB, the Xuefengshan Belt (XFSB) is present 

for >500 km along strike from the NE to the SW (Fig. 2). Although the final 

establishment of this belt took place in the Late Mesozoic (Dong et al., 2015), the 

Middle Triassic compressional event accounts for most of the present tectonic 

architecture. These structures are overlain by a regional Late Triassic-Early Jurassic 

unconformity (Wang et al., 2005; Chu et al., 2012a, 2012b; Faure et al., 2016b). 

Beneath Neoproterozoic to Early Triassic non-metamorphic sedimentary formations, 

a mylonitized décollement zone and its underlying metamorphic rocks correspond to 

the orogenic cores of the XFSB, which were deformed and metamorphosed between 

245 and 225 Ma (Chu et al., 2012a, 2012b). By placing unmetamorphosed rocks over 

metamorphic rocks, the shear sense of this zone would appear to record an extensional 

overprinting after the Triassic compressional deformation. Undeformed post-orogenic 

Middle to Late Triassic granites (~225-215 Ma) intruded into the folded pre-late 

Triassic strata (Chu et al., 2012c). The XFSB was also deformed by a Late 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 8 

Jurassic-Early Cretaceous compressional event. This event included the reactivation 

of previous thrust faults, and the formation of folds and thrusts involving Jurassic 

sedimentary rocks (Yan et al., 2003; Li et al., 2012; Dong et al., 2015). Unlike the 

Triassic structures, the Jurassic-Early Cretaceous structures were predominantly 

formed by brittle deformation. Cretaceous sedimentary basins are bounded by normal 

faults or detachments and contain several-hundred-meter- to kilometer-thick 

continental reddish conglomerate, sandstone, and siltstone (BGMRHN, 1988; Shu et 

al., 2009; Li et al., 2014). On the basin footwalls, the exhumed rocks consist of 

ductilely deformed and metamorphosed micaschist, or weakly deformed rocks 

exposed in extensional domes or in horsts bounded by high-angle brittle normal faults, 

respectively (Li et al., 2013; Ji et al., 2018a; Chu et al., 2019).  

 

3. Deformation in the orogenic core of the Xuefengshan Belt  

3.1. Triassic mylonitization (D1) 

The orogenic core of the XFSB is exclusively exposed in the Eastern Zone as 

two localized domal-shaped metamorphic units, namely the North Orogenic Core 

(NOC), SW of Xinhua County, and the South Orogenic Core (SOC), East of Chengbu 

County (Fig. 2). Both the NOC and SOC include micaschist, quartzite, and deformed 

Early Paleozoic granite, which experienced medium to high greenschist facies 

metamorphism, pervasive ductile shearing, and mylonitization (Chu et al., 2012b). In 

the NOC and SOC these Paleozoic granites are the Baimashan and Miaoershan 

plutons, respectively (Fig. 2).  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 9 

The SOC shows dominant Triassic ductile deformation characterized by 

sub-horizontal flat-lying, but undulating foliation (S1), and NW-SE mineral and 

stretching lineation (L1), with a top-to-the NW sense of shear (Figs. 2 and 3a-b; Chu 

et al., 2012b). The amount of strain in these mylonitized quartzite and two-mica schist 

is in high contrast with the overlying, weakly metamorphosed and folded sandstone 

and siltstone. Syn-metamorphic monazite yields U-Th-Pb chemical ages at ~245-225 

Ma interpreted as the time of mylonitization (Chu et al., 2012b). The NOC has a 

dome-shaped structure with NW- or SE-dipping foliation (S1) and a NW-SE lineation 

(L1) formed by a consistent top-to-the NW shearing during the Triassic (Figs. 5a-b). 

Within the ductile decollement, the Baimaishan pluton was strongly deformed, 

showing intense mylonitization at its margins.  

 

3.2. Post-Triassic deformation 

A distinct late, although weak, tectonic overprint of the Triassic structures is 

also present. The mylonitic foliation of the décollement zone was strongly crenulated 

by small upright folds with a wavelength of 0.2 to 1 cm, and 1- to 10 m-scale folds 

during a late event (Figs. 4a-b). Both the Triassic foliation and lineation are folded by 

crenulation folds with closely spaced hinge lines (Figs. 4c-d; Chu, 2011). We observe 

an eastwards decrease in the amount of modification of the primary fabrics in the 

SOC. Close to the western boundary between the ductile décollement zone and the 

sedimentary cover, a low-grade metamorphosed pelitic rock is overprinted by strong 

crenulation, with hinge lines spaced at 0.1-0.5 mm, which could have been initiated in 
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 10 

the fine-grained layers (Fig. 4e). In the center of the SOC, the crenulation is weaker in 

medium-grade metamorphic rocks. Within two-mica schist, a well-developed 

crenulation with an obvious northwestward asymmetry only appears in the mica-rich 

layers, but its 0.5-2 mm wavelength is larger than in the western boundary (Fig. 4f). 

In the eastern boundary of the décollement zone, the crenulation deformation only 

generated gently asymmetric small folds with a large wavelength >2 mm (Fig. 4g). 

Thus, our structural analysis suggests more intense tectonic modification of the D1 

fabrics at the western boundary of the décollement zone than the eastern one. The age 

of this modification is not clear. 

In the NOC, crenulation folded the Triassic foliation in metasedimentary rocks, 

but barely affected the rigid mylonitized granite (Fig. 5a-b). The S1 of the micaschist 

or metapelite is variably modified in this area, and both closely-spaced and 

widely-spaced crenulation cleavage (Sc) can be observed. This tectonic overprinting is 

comparable with that of the SOC, suggesting a later event after the Triassic 

mylonitization during the formation of the XFSB. 

 

4. Sample descriptions 

In order to determine the cooling history of the orogenic core of the XFSB, a 

total of 12 samples were collected, with 10 from the SOC (Figs. 3a and Figs. 4a-f), 

and 2 from the NOC (Fig. 5).  

In the SOC (Fig. 3), we chose an undeformed biotite monzogranite sample 

XF270 from the Miaoershan pluton that was emplaced at 412 ± 4 Ma (Chu et al., 
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 11 

2012c). XF270 shows a dominant magmatic texture, but some 0.1-0.5 mm neograins 

developed at large quartz grain boundaries suggest the initiation of bulging 

recrystallization (Fig. 4d). Samples XF313 and XF314 are two mylonitic biotite 

granites from a sheared Early Paleozoic pluton dated at 418 ± 3 Ma in the SOC (Chu, 

2012c).  

Seven strongly deformed or mylonitized micaschist samples were also selected. 

Two mylonitic quartz micaschists, XF295 and XF296, and one micaschist XF300 

sampled in the north of the SOC include well-crenulated mica-rich layers resulting 

from a late overprinting (Figs. 4a and 4f). In the center of the SOC, XF316B and 

XF368 are micaschists deformed by the Triassic ductile shearing and a late 

crenulation; muscovite/biotite grains are oriented along the mylonitic foliation, but 

also affected by microscopic folds. In the southern part of the SOC, we collected two 

garnet micaschist samples, XF312 and XF365, both of which are located close to the 

décollement zone beneath the Neoproterozoic cover, on the eastern and western flanks 

of the antiform of the SOC. These micaschists are intensely sheared. Monazite 

chemical dating of sample XF365 places an age constraint of ~225 Ma on the 

metamorphism coeval with ductile deformation (Chu et al., 2012b). As noted in 

section 3, the intensity of crenulation, qualitatively estimated by the microfold 

wavelength, deceases from west (sample XF365) to east (sample XF312) (Figs. 4e 

and 4g). 

In the NOC, we collected two deformed granite samples, XF224 and XF349 

(Fig. 5a). Both samples are biotite monzogranite from the Early Paleozoic Baimashan 
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 12 

pluton, which was emplaced at 411 ± 4 Ma (Chu et al., 2012c). In both samples, field 

and microscopic observations show similar deformation features, and kinematics. The 

Triassic synmetamorphic deformation temperature was estimated around 300-400°C 

from quartz c axis fabrics (Chu et al., 2012b). The late structural superimposition 

described in section 3 is not observed in this deformed granite.   

 

5. Analytical methods 

5.1.  40
Ar-

39
Ar dating 

Biotite, muscovite and K-feldspar grains were separated from mylonitic 

micaschist, quartzite and granites by conventional mineral separation techniques, and 

handpicked under a binocular microscope to remove visible impurities. Except for 

samples XF295 and XF365, all 
40

Ar/
39

Ar analyses were performed using a MM-5400 

mass spectrometer at the 
40

Ar/
39

Ar and (U–Th)/He Laboratory, Institute of Geology 

and Geophysics, Chinese Academy of Sciences (IGGCAS, Beijing). Detailed 

analytical procedure was described in Wang et al. (2014). Corrections on the 

measured isotopic ratios were for system blanks, mass discrimination, and 

irradiation-induced interference. 
40

Ar/
39

Ar ages were calculated on 
40

Ar/
39

ArK ratios 

and J value from analyses of the monitors and the decay constant. Minerals from 

sample XF295 and XF365 were processed in Geosciences Montpellier (University of 

Montpellier). The detailed procedures were described by Monié and Agard (2009). 

Weighted plateau, inverse isochron and total fusion ages were calculated using the 

ArArCALC software (Koppers, 2002). Age data are presented with 2-sigma 
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uncertainties. For analyses on K-feldspar, the various model parameters, e.g. active 

energy and relative domain size were processed with appropriate adjustment. 

Multi-domain diffusion modeling was conducted to obtain a modeled age spectrum 

and cooling history. 

 

5.2.  (U-Th)/He dating 

Zircon and apatite separation were conducted in the same procedure as for mica 

and feldspar. We performed the analyses at the 
40

Ar/
39

Ar and (U–Th)/He Laboratory, 

Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS, 

Beijing). Euhedral apatite and zircon grains were handpicked for inclusion-free grains 

under a high-power microscope, and then packaged in Pt (for apatite) and Nb (for 

zircon) microtubes for (U-Th)/He dating analysis. Detailed parameters and procedures 

were presented by Wu et al. (2016) and Shi et al. (2018). Standard minerals were used 

to verify the analytical procedure: Durango apatite (dated at 32.2 ± 1.0 Ma by Wu et 

al., 2016, and 31.9 ± 1.9 Ma by Reiners and Nicolescu, 2006), and Fish Canyon Tuff 

zircon (dated at 28.3 ± 2.6 Ma; Reiners, 2005). 

 

6. Results 

We obtained 11 
40

Ar-
39

Ar results on biotite or muscovite, and 2 on K-feldspar 

by conventional step-heating method (Figs. 5 and 6; Tables S1-S3). The age spectra 

for mica are shown in Figs. 7 and 8, and K-feldspar analytical and modeled age 
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spectra and cooling paths are shown in Fig. 9. We also acquired 3 zircon (U-Th)/He 

(ZHe) and 2 apatite (U-Th)/He (AHe) ages (Tables S4 and S5). 

 

6.1. Mica 
40

Ar-
39

Ar dating 

All mica dating results are within the age range 150-88 Ma, and 10 ages are 

clustered in the Early Cretaceous (Figs. 7 and 8; Table S1 and S2). Initial 
40

Ar/
36

Ar 

ratios are calculated for all samples, whereas those of XF295 and XF365 are poorly 

constrained due to the narrow range of their 
40

Ar/
39

Ar ratios (Table S2). All the initial 

40
Ar/

36
Ar ratios are close to 295, indicating negligible excess argon in the dated 

minerals (Table S1). Except for XF300 and XF314, all samples have weighted plateau 

ages that are consistent with their total fusion ages and inverse isochron ages within 

errors (Figs. 7 and 8). The weighted plateau age (107.9 ± 3.6 Ma) of sample XF314 is 

~10 Myr younger than its total fusion age (119.6 ± 3.4 Ma), whereas XF300 has a 

rugged age spectrum associated with different amounts of released 
39

Ar. Indeed, most 

samples show uneven age spectra, possibly indicating a later thermal perturbation.  

In the SOC, undeformed granite sample XF270 from the Miaoershan pluton 

yields a biotite 
40

Ar-
39

Ar weighted plateau age at 143.4 ± 3.4 Ma (Fig. 7a). Two 

sheared granite samples XF313 and XF314 are dated at 124.8 ± 5.7 Ma and 116.8 ± 

1.2 Ma respectively (Figs. 7d-e). Ages from micaschists vary in a more concentrated 

range at 132-136 Ma, but sample XF300 gives a much younger total fusion age of 

108.8 ± 1.4 Ma. Sample XF224 from the NOC yields a late Cretaceous age of ~88 Ma 

(Fig. 7h).  
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6.2. K-feldspar 
40

Ar-
39

Ar results and multi-domain diffusion modelling 

Two K-feldspar samples, XF270 from the Miaoershan pluton, and XF349 from 

the Baimashan pluton, have been analyzed by the high-resolution 
40

Ar-
39

Ar 

step-heating method (McDougall and Harrison, 1999). The multi-domain diffusion 

model of the 
40

Ar-
39

Ar system in K-feldspar is the most widely used method for 

reconstructing the thermal evolution at 150-350°C (Lovera et al., 1997, 2002; 

McDougall and Harrison, 1999). 

Both samples show several rugged steps at low temperatures because of excess 

Ar present in the margin of the mineral. The age spectra of sample XF270 range from 

56 Ma to 164 Ma with a total fusion age of 131 Ma (Fig. 9a), which is close to its 

biotite 
40

Ar-
39

Ar age. A small age plateau is shown around 128 Ma with 18% of the 

total released argon, suggesting a rapid cooling event at this time. Cooling history 

demonstrates a fast cooling from 155 Ma to 125 Ma, and fits well with the total fusion 

age and the weighted plateau age (Fig. 9b). Another cooling stage at 50-40 Ma is 

indicated at the end of this curve, but it has low reliability because the majority of the 

curve is in the low-temperature domain (<150°C).  

Sample XF349 has age spectra between 116 Ma and 289 Ma with a total fusion 

age at 222 Ma (Fig. 9c). The relatively flat portion with 22% of the total released 

argon yields a weighted plateau age at ~221 Ma in agreement with the total fusion age. 

Multi-domain diffusion modeling reveals two stages of fast cooling; one from 255 Ma 
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to 220 Ma that complies with the total fusion age and the weighted plateau age, and 

the other from 105 Ma to 80 Ma (Fig. 9d).  

 

6.3. (U-Th)/He dating 

All samples for ZHe and AHe dating are collected from the SOC (Fig. 6). ZHe 

ages from samples XF296, XF313, and XF368 range from 100 Ma to 77 Ma. XF296 

has a Late Cretaceous AHe age of 78 Ma. Thus, according to the closure temperatures 

for ZHe and AHe of 185 ± 10°C, and 65 ± 5°C, respectively (Wolf et al., 1996; Farley, 

2002; Reiners et al., 2002; Reiners, 2005), these results show that the southern core of 

the XFSB experienced relatively fast cooling at a rate at ~8°C/Myr during the Late 

Cretaceous. In contrast, sample XF368 yields a Late Jurassic AHe age with large 

uncertainties, that is older than the ZHe age of this sample. Considering the 
40

Ar-
39

Ar 

ages that are exclusively younger than 150 Ma, the AHe age of XF368 likely reflects 

a mixed result due to partial resetting on the isotopic system.   

 

7. Discussion 

7.1.  Tectonothermal history of the Xuefengshan Belt 

Previous structural studies have demonstrated the dominance of Triassic 

tectonics in the development of the XFSB (Wang et al., 2005; Chu et al., 2012a, 2015). 

Recent work on the ductile décollement zone gives an Early Triassic age (ca. 245-225 

Ma) for the syn-tectonic metamorphism of the garnet-micaschist (Chu, 2011; Chu et 

al., 2012b). In the NOC, our new data clearly indicate this Early Triassic 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 17 

tectono-thermal event underwent a 2-3°C/Myr cooling gradient in the modeled 

thermal history of the Baimashan pluton (Fig. 9b). The thermal history for the 

Baimashan pluton also documents a fast cooling at ~100-85 Ma, consistent with the 

biotite 
40

Ar-
39

Ar age at ~88 Ma (Fig. 9b). 

In the SOC, structural observations reveal a second deformation phase that 

reworked the Triassic structures by pervasive crenulation cleavages. The development 

of these crenulations was coeval with a low-temperature overprint of the previous 

structures as the result of reactivation along the décollement zone. Our 

thermochronology results indicate that the overprint took place in the Late 

Jurassic-Early Cretaceous, and may have reached a peak at ~130 Ma, as documented 

by the 
40

Ar-
39

Ar ages (Fig. 9). Indeed, the Cretaceous event observed in the SOC has 

a similar timing and style to the extensional tectonics in the adjacent Yuechengling 

pluton, where a large-scale detachment accommodated extensional exhumation of the 

dome structure (Chu et al., 2019). In the northwest part of the XFSB, Cretaceous 

extension also formed large continental basins with shallow to semi-deep lake facies 

deposits (Tang et al., 2014).  

The K-feldspar modeled cooling history from the undeformed part of the 

Miaoershan pluton shows that a fast cooling stage began at ~160 Ma, and lasted until 

~130 Ma, at an overall exhumation rate of ~4°C/Myr (Fig. 9). In the XFSB, the late 

Jurassic-earliest Cretaceous compression is followed by Early Cretaceous extension 

(BGMRHN, 1988; Shu et al., 2009; Li et al., 2014), but the transition between 

compression and extension are still debated (Zhou and Li, 2000; Dong et al., 2008, 
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2015). The incipient cooling of the Miaoershan pluton at ~160 Ma (ca. 10 Myr earlier 

than the earliest 
40

Ar-
39

Ar age recorded in the SOC), took place in a transitional stage 

between the Middle-Late Jurassic extension, and the Late Jurassic-Early Cretaceous 

regional compression of the SCB (Zhou and Li, 2000; Li et al., 2014).  

Metamorphic rocks from the SOC do not yield any Late Cretaceous 
40

Ar-
39

Ar 

ages, which suggests they were already at upper crustal depths before the second 

phase of exhumation at this time (Fig. 10). ZHe and AHe ages provide a 

well-constrained cooling pattern in which fast cooling from ~7 ± 1 km to ~3 ± 1 km 

occurred at ~100-80 Ma in the SOC, but Late Cretaceous exhumation of the NOC 

began at a deeper level, at depths of ~12 ± 2 km (assuming an average 

paleo-temperature gradient of 25°C/km).  

To summarize, the NOC records an Early Triassic thermal event, overprinted by 

a Late Cretaceous cooling event, whereas the SOC shows a two-stage cooling path in 

the Early and Late Cretaceous periods (Fig. 10). In spite of the internal variations 

during the exhumation, the XFSB experienced a two-stage exhumation in the Late 

Mesozoic: one from ~150 Ma to 110 Ma, centered at ~130 Ma, and another one 

between ~100-80 Ma (Fig. 9). The two-stage exhumation pattern is also identified in 

the adjacent regions of the XFSB. To the SE of the SOC, the Yuechengling pluton, 

(Fig. 2), preserved two phases of ductile extensional deformation that took place at 

140-120 Ma and 100-85 Ma respectively (Chu et al., 2019). The Hengshan 

detachment initiated in the Early Cretaceous (Fig. 2), and was followed by a Late 

Cretaceous cooling event (Li et al., 2013; Wei et al., 2016). Fault slip analysis in the 
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Yuanma Basin also demonstrates two stages of ~NW-SE extension in the Early and 

Late Cretaceous, respectively (Li et al., 2012). Therefore, all of these lines of 

evidence support a two-stage extensional history across the XFSB in the Late 

Mesozoic, principally in the Early and Late Cretaceous (Fig. 10).  

 

7.2. Regional Cretaceous exhumation of Triassic orogens: implications for the 

destruction of the Mesozoic plateau in South China  

Triassic tectonics had a major impact across the SCB, creating a wide 

intracontinental fold-and-thrust belt that probably resembled an Andean-type orogenic 

plateau, superimposed on the crustal thickening caused by the continental collisions 

along its northern and southern margins (Yin and Nie, 1996; Li and Li, 2007; Chu et 

al., 2012a). During the Late Triassic to Early Jurassic, A-type and basaltic magmatism 

implies signatures of the asthenospheric mantle, but the Triassic orogenic plateau was 

preserved during the following compression (Li et al., 2014).  

We propose a model that regional exhumation and destruction of this plateau 

occurred in the Cretaceous, and here review the regional evidence that supports this 

model (Fig. 11). At the northern margin of the SCB, post-orogenic extension of the 

Early Mesozoic high pressure–ultrahigh pressure Qinling-Dabieshan-Sulu belt gave 

rise to a fast cooling phase in the Late Triassic-Early Jurassic (Figs. 1 and 11), but the 

Early Cretaceous large-scale extension also exposed a large portion of the exposed 

UHP and high temperature metamorphic units at 130-120 Ma (Ratschbacher et al., 

2000; Lin et al., 2015; Ji et al., 2017). As the western extension of the Dabieshan belt, 
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the Triassic Tongbaishan belt was also overprinted by two stages of ductile extension 

that exhumed a large portion of the high pressure rocks during the Early and Late 

Cretaceous eras (Fig. 11a) (Webb et al., 1999; Liu et al., 2010; Xu and Wang, 2010; 

Cui et al., 2012).  

Our new results argue for similar Cretaceous overprinting of the Triassic XFSB 

(Fig. 11b). The décollement zone that represents the orogenic core of this belt 

developed during the Early Triassic, but its final exhumation to the upper crustal or 

subaerial level was completed in the Late Cretaceous, following an Early Cretaceous 

stage of exhumation (Fig. 11b). In the southern part of the SCB, the Triassic orogenic 

events deformed the early Paleozoic deformed and metamorphosed rocks in the 

Yunkai, Baiyunshan, and Song Chay Massifs (Fig. 1; Roger et al., 2000; Wang et al., 

2007; Wan et al., 2010; Chen et al., 2011, 2017), while the Cretaceous extension 

exhumed the Triassic basement with a fast cooling stage at ~140-120 Ma (Fig. 11b), 

and played an important role in the formation of the present orogenic configuration 

(Roger et al., 2000; Yang et al., 2010).  

Delayed exhumation of the Triassic orogenic belts appears to be a common 

phenomenon across the SCB (Fig. 12). Despite variations in exhumation rates and 

patterns, this widespread Cretaceous extension shows a connection to 

continental-scale extensional tectonics induced by Paleo-Pacific subduction (Fig. 12b; 

Li XH, 2000; Zhou and Li, 2000; Li and Li, 2007; Li JH et al., 2014; Ji et al., 2018a). 

The crust of the North China Block was profoundly extended in numerous 

metamorphic core complexes and (half-) graben basins in a short period at 130-120 
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Ma. At depth, the NCB lithospheric mantle was also removed by effects of the 

Paleo-Pacific subduction (Lin and Wang, 2006; Wu et al., 2019). The SCB may have 

evolved under a contrasting regime. After the formation of the Triassic belts, a 

significant portion of orogenic cores, such as the XFSB, remained stagnant at the 

upper-middle crustal level (Fig. 10). Although compressional deformation may have 

played a role in the Jurassic tectonics of the SCB (Dong et al., 2008, 2015; Shu et al., 

2009; Li et al., 2014), it had had limited impact on the cooling paths from the 

pre-existing Triassic belts. The Triassic orogenic core units retained their position in 

the crust (Figs. 10 and 11). In the Cretaceous, the long-lasting, episodic extension 

facilitated the exhumation of these orogenic cores, most of which were exposed to 

their present, subaerial levels, as shown by metamorphosed/deformed pebbles in the 

Cretaceous basins (Fig. 12; Zhang et al., 2010; Chu et al., 2019).  

The Triassic SCB probably resembled other orogenic plateaux (Fig. 13), such as 

the North American Cordillera (―Nevadaplano‖) in the Late Mesozoic (Dickinson, 

2004; Yonkee and Weil, 2015), the Late Cretaceous Lhasa terrane (―Lhasaplano‖; 

Kapp et al., 2007; Wang et al., 2017), or the Cenozoic Central Andes (Altiplano and 

Puna plateaux; Espurt et al., 2008). All these regions are characterized by retroarc 

fold-and-thrust belts, which thickened the crust over broad regions. However, these 

plateaux have had different fates. The Nevadaplano was dismantled during Late 

Cenozoic extension (Colgan and Henry, 2009). The high elevation of the Lhasaplano 

was preserved because of the subsequent India-Eurasia collision that persisted or 

enhanced the compression (Wang et al., 2017). The Central Andean Plateau was built 
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by compressional deformation since ~40 Ma, and is still growing laterally and across 

strike (McQuarrie et al., 2008; Scott et al., 2018).  

The implication of our study on the SCB plateau is that the other orogenic 

plateaux may have experienced (or will experience) similar long time lags between 

the construction of the belt, and widespread destruction by extension and exhumation 

of rocks to surface or near-surface levels. It is notable that this scenario implies little 

or no denudation throughout the Jurassic for the SCB, in keeping with the lack of 

evidence for exhumation or tectonic deformation through this period, with the 

implication that erosional processes on their own were not sufficient to reduce the 

Triassic plateau to near-normal crustal thickness and elevation.   

Taking the present regional crustal thickness of the interior of the SCB as ~35 

km (He et al., 2014), and adding ~10 km as a very rough estimate of regional 

exhumation by the end of the Cretaceous, gives an indicative Triassic crustal 

thickness of ~45 km. While this figure is much less than crustal thicknesses in the 

modern Andean or Tibetan plateaux, it is comparable with the interior of the Iranian 

Plateau (Taghizadeh-Farahmand et al., 2015), and suggests that regional 

paleo-elevations may have been on the order of 1.5 km above sea level, by analogy 

with the modern Iranian plateau. 

Present lateral dimensions of the paleo-SCB plateau are ~1300 km 

northeast-southwest from the Qinling-Dabie-Sulu belts in the northeast to the 

Indosinian Orogen in the southwest (Fig. 1). The northwest-southeast dimension is 

harder to reconstruct, but potentially reached from the western margin of the 
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Xuefengshan deep into the interior of the Cathaysia Block, which is a present-day 

distance of ~500 km (Fig. 1). The total area involved is therefore ~800,000 km
2
. This 

is comparable to the Central Andean Plateau, but smaller than the Turkish-Iranian or 

Tibetan plateaux (~1,400,000 and 2,000,000 km
2
 respectively). The paleo-SCB 

plateau should have been wider before the Cretaceous extension, but the initial width 

is unknown as the extension factor is not yet constrained. 

 

8. Conclusions 

A complex cooling path is recorded in the orogenic core of the XFSB. In this 

belt, Early Triassic ductile deformation produced a greenschist to lower amphibolite 

facies décollement zone overlying two orogenic cores. The northern core underwent  

Late Triassic extension, whereas the southern orogenic core retained its middle crustal 

position through this time. Both cores underwent significant Cretaceous exhumation, 

but in different ways. The southern orogenic core had a two-stage exhumation process, 

with Early Cretaceous exhumation to ~7 ± 1 km depth, and Late Cretaceous 

exhumation to ~3 ± 1 km depth. The northern orogenic core only underwent the Late 

Cretaceous stage that exhumed the rocks from ~12 ± 2 km to ~6 ± 1 km depth (Fig. 

10). Combining the available evidence leads us to propose that the larger part of the 

SCB was an orogenic plateau from its construction in the Late Triassic until its 

destruction in the Late Cretaceous. This concept is no doubt a great simplification of a 

complex region, but it gives a new framework for understanding each facet of the 

geology. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 24 

Comparison with other Triassic orogenic belts of the SCB (Fig. 11) indicates 

that such postponed exhumation may be a common phenomenon. Although the 

detailed exhumation history for each belt varies (Fig. 13), we emphasize the common 

importance of Cretaceous extension in the SCB, that established the present structure. 

Changes in stress state at the Paleo-Pacific plate boundary are the most likely cause of 

Cretaceous extension (Fig. 12), following a long period where an orogenic plateau of 

thick continental crust remained in equilibrium, neither collapsing nor enlarging.  
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Figure captions  

Fig. 1. Tectonic map of the South China Block and its adjacent regions. CB: Cathaysia 

Block. ICB: Indochina Block. JSJ: Jinshajiang Suture zone. NCB: North China Block. 

SCB: South China Block. XFS: Xuefengshan. YB: Yangtze Block. DEM base map is 

generated from the software GeoMapApp (http://www.geomapapp.org). Metamorphic 
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units of Triassic orogens are highlighted in pink. 

 

Fig.2. Geological map of the Xuefengshan Belt (Modified after Chu et al., 2012a). BP: 

Baimashan pluton. EZ: Eastern Zone. HS: Hengshan. MP: Miaoershan pluton. MXT: 

Main Xuefengshan Thrust. WZ: Western Zone. YB: Yuanma Basin. YP: Yuechengling 

pluton. Sample localities of the north orogenic core and the south orogenic core are 

marked in Figs. 3a and 5a. 

 

Fig. 3. (a) Geological map of the south orogenic core (SOC). Structural elements 

including foliation and lineation measurements are based on this study and Chu et al. 

(2012b). (b) Cross-section showing the Triassic décollement zone overprinted by 

Cretaceous extension. Note that the interface between the décollement zone and the 

weakly- or unmetamorphosed sedimentary cover was inherited during the Cretaceous 

reworking.  

 

Fig. 4. Field photos and photomicrographs of structures observed in the south 

orogenic core. (a) Crenulated mylonitic foliation in the north of the décollement, 

location of sample XF295. (b) Folded mylonitic foliation of the décollement zone, 

location of sample XF300. (c) Quartz micaschist with pervasive crenulation, south of 

the décollement. (d) Crenulation folding the stretching lineation during the Triassic 

deformation, location of sample XF316B. (e) Superimposed Sc crenulation in 

mica-rich layers, but Triassic mylonitic foliation (S1) preserved in quartz-rich layers. 
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Location at 500 m west of sample XF365. (f) Strongly crenulated micaschist (Sc) 

superimposed of S1 foliation. Note that the wavelength of crenulations is about 0.5-2 

mm. Location at sample XF295. (g) Gently crenulated micaschist. Location at sample 

XF312. (h) Undeformed Miaoershan pluton. Note the points with incipient buldging 

recrystallization of large quartz grains. Location at sample XF270. 

 

Fig. 5. (a) Geological map of the north orogenic core. Structural elements including 

foliation and lineation measurements are based on this study and Chu et al. (2012b). 

(b) Cross-section showing the Triassic décollement zone of the NOC. 

 

Fig. 6. Geological map with sample locations and Ar-Ar and (U-Th)/He ages of 

samples in this study from the south orogenic core. Symbols for rock units are the 

same as those in Fig. 2a. 

 

Fig. 7. 
40

Ar-
39

Ar mica dating results in the study region. Age spectra are presented for 

(a) XF270, (b) XF300, (c) XF312, (d) XF313, (e) and (f) XF314, (g) XF316B, and (h) 

XF224. Sample locations are marked on Figs. 3 and 5. Bt: Biotite. Mus: Muscovite. 

 

Fig. 8. 
40

Ar-
39

Ar mica dating results in the Chengbu region. Age spectra are presented 

for (a) XF295A, (b) and (c) XF365. Sample locations are marked on Fig. 3. Bt: 

Biotite. Mus: Muscovite. 
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Fig. 9. 
40

Ar–
39

Ar K-feldspar age spectra and the multi-domain diffusion modeling 

results of K-feldspar from (a) and (b): XF 270, and (c) and (d): XF349. Sample 

locations are marked on Figs. 3 and 5.  

 

Fig. 10. Cooling paths of (a) the south orogenic core of the XFSB, and (b) the north 

orogenic core. In the south orogenic core, there were two episodes of fast cooling, 

whereas only the second episode is recorded in the north orogenic core. 

 

Fig. 11. Summary of available cooling paths related to Cretaceous exhumation of 

Triassic orogens in East Asia. (a) Marginal belts around the SCB, including Dabieshan, 

Tongbaishan, and Sulu modified after Lin et al. (2015); Song Chay data are from 

Roger et al. (2000). (b) Intracontinental belts, including Baiyunshan (Yang et al., 

2010), Yunkai Massif (Wang et al., 2007a; Chen et al., 2017), and Xuefengshan (this 

study). See Fig. 1 for locations. Dashed parts of each cooling path represent a 

presumed thermal trajectory of the belt.  

 

Fig. 12. Tectonic models showing the evolution of the South China Block in the 

Triassic and Cretaceous within the Paleo-Pacific subduction system. (a) A broad 

intracontinental belt was created by flat-slab subduction (Li and Li, 2007), producing 

an orogenic plateau that is similar to the present North American Cordillera, or Andes. 

The north orogenic core (NOC) of the Triassic belts experienced limited exhumation, 

whereas the south orogenic core (SOC) showed little effect. Continuous subduction in 
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Jurassic maintained the plateau without further exhumation. (b) The two-stage 

Cretaceous extension exhumed the metamorphic orogenic cores of the Triassic belts, 

and finalized the current geological configuration of the South China Block. This 

phase of extension marked the collapse of the Mesozoic orogenic plateau in the South 

China Block. 

 

Fig. 13. Area vs. time for comparison of present and ancient plateaux in major 

subduction (light color) and collision (dark color) zones. Note that there is a change 

from subduction to collision for the Lhasaplano. Area is estimated by using Google 

Earth. Data for duration of plateaux are from: 1. Wang et al. (2008), Law and Allen 

(2020); 2. Francois et al. (2014); 3. This study; 4. DeCelles (2004); 5. Kapp (2007), 

Wang et al. (2017); 6. McQuarrie et al. (2008), Scott et al. (2018). 

 

Table 1. Summary of information from dated samples of the Xuefengshan Belt. 

Weighted age refers to weighted plateau age for Ar-Ar dating, and weighted mean age 

for (U-Th)/He dating. 

 

Appendix Table S1. Analytical Ar-Ar data of selected samples analyzed in Institute of 

Geology and Geophysics, Chinese Academy of Sciences. 

 

Appendix Table S2. Analytical Ar-Ar data of selected samples analyzed in 

Geosciences Montpellier, University of Montpellier.  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 47 

 

Appendix Table S3. Analytical data on K-feldspar Ar-Ar dating of two granites. 

 

Appendix Table S4. Analytical data on zircon (U-Th)/He dating from the south 

orogenic core. 

 

Appendix Table S5. Analytical data on apatite (U-Th)/He dating from the south 

orogenic core. 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 48 

A large plateau can be produced by crustal thickening in convergent zones such as 

continental collision belts and Andean-type subduction zones, but the life cycles of such plateaux 

are not well-understood. In particular, it is not clear how long they persist after construction, 

before other tectonic processes or erosion reduce crustal thickness and elevation to near-normal 

levels. Triassic subduction- and collision-tectonics produced intense deformation, magmatism 

and metamorphism across the entire South China Block. This large-scale crustal shortening 

created a broad orogenic belt, uplifted most parts of the South China Block, and probably 

initiated the growth of an orogenic plateau. Our study presents low-temperature 

thermochronology data from the Xuefengshan Belt in the interior of the South China Block. There 

was along-strike variation in exhumation. The north orogenic core was subjected to Triassic 

(~245-210 Ma), and Late Cretaceous (~100-80 Ma) exhumation, whereas the cooling path of the 

south orogenic core reflects a two stage Cretaceous evolution. The variable exhumation pattern 

reflects non-uniform tectonics in different regions, but both regions were subject to Late 

Cretaceous extension. We tentatively reconstruct the original plateau paleo-elevation to be ~1.5 

km above sea level, based on the amount of exhumation (~10 km) and the present crustal 

thickness (~35 km). The T-t trajectories of the Xuefengshan Belt and other Triassic belts highlight 

the significance of Cretaceous extension and exhumation in shaping the tectonic configuration of 

the South China Block. Large-scale extension was probably triggered by rollback of the 

Paleo-Pacific subduction zone. 
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Highlights: 

 

1. Thermochronology defines T-t cooling paths for the Xuefengshan Belt, South China 

2. Orogenic cores of this Triassic belt were mainly exhumed to surface in Cretaceous 

3. Episodic Cretaceous extension and exhumation finalized the tectonic configuration 

4. A regional Mesozoic orogenic plateau was dissected by Cretaceous extension 
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