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ARTICLE

Transient stripping of subducting slabs controls
periodic forearc uplift
Armel Menant 1,3✉, Samuel Angiboust 1, Taras Gerya 2, Robin Lacassin 1, Martine Simoes1 &

Raphael Grandin1

Topography in forearc regions reflects tectonic processes along the subduction interface,

from seismic cycle-related transients to long-term competition between accretion and ero-

sion. Yet, no consensus exists about the topography drivers, especially as the contribution of

deep accretion remains poorly constrained. Here, we use thermo-mechanical simulations to

show that transient slab-top stripping events at the base of the forearc crust control uplift-

then-subsidence sequences. This 100s-m-high topographic signal with a Myr-long periodi-

city, mostly inaccessible to geodetic and geomorphological records, reflects the nature and

influx rate of material involved in the accretion process. The protracted succession of

stripping events eventually results in the pulsing rise of a large, positive coastal topography.

Trench-parallel alternation of forearc highs and depressions along active margins worldwide

may reflect temporal snapshots of different stages of these surface oscillations, implying that

the 3D shape of topography enables tracking deep accretion and associated plate-interface

frictional properties in space and time.
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Uplift and subsidence of the forearc domain have been long
suspected to be controlled by tectonic processes taking
place along the subduction interface1–4. Combined with

erosion, these vertical displacements shape the long-term topo-
graphy defined by a coastal high separated from the volcanic arc
by a depression, which characterizes many active subduction
zones worldwide despite their variable thermal structure, kine-
matic parameters and net mass flux5,6 (Fig. 1; see also Supple-
mentary Fig. 1 and Supplementary Note 1 for details on forearc
topography along the Circum-Pacific belt). Multiple mechanisms
at very different timescales have been invoked to explain this
coastal topography that requires permanent (i.e. anelastic)
deformation. They include cumulative co-seismic slips on the
subduction interface7,8 and/or on forearc faults9 and long-term
aseismic processes, such as crustal deformation10,11 and tectonic
underplating12–16, both being partly driven by the frictional state
of the underlying subduction interface10,11,17,18. However, the

critical lack of constraints on the long-term (i.e. Myr-scale)
dynamics of these aseismic processes and the scarcity of geolo-
gical markers of absolute vertical displacements at such long
timescales prevent a robust assessment of forearc topography
drivers. This is especially true for tectonic underplating (i.e. deep
accretion at the base of the forearc crust) that occurred in the past
and is probably still active along many present-day subduction
zones, as evidenced along the Circum-Pacific belt from geological
records13,19–22 and geophysical imaging1,23,24 (Fig. 1a).

Here, we use two-dimensional, thermo-mechanical numerical
experiments to characterize the long-term dynamics of tectonic
underplating and associated forearc topographic response with an
unprecedented high spatial and temporal resolution. A pulse-like,
deep accretionary pattern is herein recognized, marked by Myr-
scale vertical surface oscillations that generate a background
topographic signal that may have been hitherto overlooked in
natural observations.
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Fig. 1 Circum-Pacific forearc topography above deep-accretion sites. a The map shows ocean-continent subduction zones around the Circum-Pacific
region with emphasis on segments where tectonic underplating is suspected, based on geophysical observations. (1) Hikurangi margin64–66, (2) Nankai
margin67, (3) Sagami trough23, (4) Alaska margin68,69, (5) Cascadia margin70–72, (6) Costa Rica margin73, (7) North Chilean margin74,75 and (8) Central
Chilean margin74,76–79. Black frames locate regions where trench-perpendicular topographic profiles have been compiled. b Compilations of topographic
profiles for different forearc regions. For each region, the forearc topography is characterized by a large, positive coastal topography and an inner-forearc
depression. Thick red lines are mean topographic profiles while the grey area is defined by the minimum and maximum elevation profiles. Vconv denotes the
plate convergence rate. n is the number of profiles considered for each region. Note that topography compilations are not provided for active margins
characterized by particular geodynamic features, including subduction of a thick oceanic plateau (New Zealand) or a ridge (Costa Rica) and subduction
edge (Sagami). Map and topographic profiles have been extracted from the Global Multi-Resolution Topography synthesis80 with GeoMapApp [www.
geomapapp.org].
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Results
Modelling strategy. We carry out a set of numerical simulations
governed by conservation laws and visco-elasto-plastic rheologies
solved using a marker-in-cell technique25 to reproduce an ocean-
continent subduction system and its topographic evolution in a
high-resolution spatial and temporal frame (see Methods and
Supplementary Fig. 2 for details on the modelling procedure and
the initial set-up). The top of the lithospheres is solved as an
internal free surface by using a low-viscosity layer26,27 (i.e. sticky-
air method). The effects of erosion or sedimentation are also
accounted for the calculation of the topography, depending on
whether this surface is located above or below the sea level
(i.e. y = 10 km). A 0.3 mm year−1 erosion rate is thus prescribed
in all experiments, in agreement with the range of erosion rates
obtained from drainage basins in seismically active regions28.
Terrigenous sedimentation at a rate of 1 mm year−1 is restricted
to offshore regions with steep surface slopes (i.e. >17°) for
smoothing the topography of the continental slope. Note that the
elevation in our numerical experiments is relative to a fixed sea
level, implying that predicted topographic variations and vertical
surface velocities are more relevant indicators of topography
dynamics than absolute elevations.

A set of numerical simulations are herein presented with
different imposed plate convergence rates (Vconv comprised
between 2 and 10 cm year−1, in agreement with natural
estimations; Fig. 1) or a variable amount of subducting sediments
to assess the role of plate kinematics and mass flux at the trench
on accretion dynamics and associated forearc topographic
response (Supplementary Table 1). Other subduction-related
parameters, rheological properties, and boundary conditions are
kept equal in all experiments. Note also that the accuracy of the
results presented hereafter has been validated by a numerical-
resolution test (see Supplementary Fig. 3 and Supplementary
Note 2 for details).

Steady-state underplating and periodic topography evolution.
In our reference model (Vconv= 5 cm year−1; model sed5.0;
Fig. 2; see also Supplementary Movie 1), oceanic subduction is
first associated with the underplating of successive basaltic tec-
tonic slices (Fig. 2a), which recalls mafic terrane accretion during
the early stages of subduction as identified in present and former
Circum-Pacific subduction zones such as Cascadia29 (i.e. Crescent
terrane), Patagonia30 (i.e. Lazaro unit) and New Caledonia31 (i.e.
Poya terrane). Then, both frontal and basal accretions are pre-
dicted during the entire model duration (i.e. ~80Myr). Con-
tribution of both pelagic and terrigenous sediments leads to the
formation of a ~50-km-wide frontal wedge as commonly reported
along active accretive margins involving >1-m-thick trench-filling
sediments5. At higher depth, successive underplating events
between ~15 and ~30 km depth result in the growth of a dome-
shaped structure, the so-called duplex, composed of sedimentary
and basaltic slices (Fig. 2). In the deeper part of the forearc crust,
basaltic material is preferentially and regularly underplated for
~65Myr. Afterwards, only pelagic sediments are added to the
base of the forearc domain, forming a homogenous sedimentary
sequence (Fig. 2c). This change in accretionary dynamics may
result from long-term, fluid-related weakening of the subduction
channel, preventing major stress accumulation and hampering
the stripping of thick basaltic slices after 68Myr of convergence18.
Eventually, the persistence of tectonic underplating events com-
bined with surface erosion prescribed in the experiment result in
the exhumation of a ~60-km-wide duplex up to the surface,
evidencing an overall vertical mass flow throughout the forearc
domain (Fig. 2). Coevally, long-term basal erosion is predicted
along a ~20-km-long subduction segment in between the frontal

wedge and the duplex, leading to partial consumption of pre-
viously accreted material (Fig. 2d).

The forearc margin is characterized by an ~8000-m-deep
trench and a ~50-km-wide and >1000-m-high topography
composed of two highs located near the coastline, directly above
the basal-accretion sites (Fig. 2d). Landward, elevation decreases
substantially to form a wide depression that reaches >1000 m
depth before getting into the arc domain. Modelled long-term
topography results from a periodic evolution in a region
extending from the coastline to ~100 km landward (Fig. 3a).
Each topographic pulse consists in a surface uplift event ranging
from ~400 to ~700 m, followed by a subsidence episode of
equivalent amplitude and rates ranging from ~0.5 to ~1.5 mm
year−1 (Fig. 3b, c). Coevally, the horizontal location of the
coastline varies by ~5 km, leading to an overall constant distance
between the coastline and the topographic highs (i.e. ~10 km
from 0- to 1000-m high; Fig. 3a). Balance between uplift and
subsidence shapes the long-term evolution of the margin
topography, first characterized by an overall rise of the coastal
high for ~56Myr, reaching ~1800 m high (Fig. 3b). Afterwards,
basal erosion of the forward part of the duplex modifies the
equilibrium state of the accretionary wedge (Fig. 2d), resulting in
a decrease of this topography down to ~1000 m high, before it
stabilizes after ~68Myr. The frequency of the topographic signal
is robust between ~20Myr (i.e. after initial topographic
equilibration) and ~68Myr, with a periodicity of ~2.8 Myr
according to a Fourier transform calculation on the vertical
surface velocity (Fig. 3c). After ~68 Myr, the amplitude of the
topographic pulses drops to ~100 m with uplift and subsidence
rates of <0.5 mm year−1 and a shorter periodicity (i.e. ~1.6 Myr).

Role of plate kinematics and mass flux on forearc topography.
Additional experiments are carried out to test the critical role of
plate convergence and subducting sediments on tectonic under-
plating and topographic evolution (Supplementary Figs. 4–7;
Supplementary Movies 2–4). By increasing the convergence rate
(Vconv= 6.5, 8 and 10 cm year−1; models sed6.5, sed8.0 and
sed10.0, respectively), the overall evolution of the forearc margin
is akin to the reference model, except that very few basaltic slices
are accreted into the duplex, which is, instead, dominated by
pelagic and terrigenous sedimentary material (Supplementary
Fig. 4). Topographic evolution is also equivalent in these two
models, but with a higher coastal topography (i.e. reaching
~2000-m high) and a shorter periodicity for each uplift/sub-
sidence pulse (Fig. 4 and Supplementary Fig. 6). Alternatively, by
decreasing the convergence rate (Vconv= 3.5 and 2 cm year−1;
models sed3.5 and sed2.0, respectively), tectonic underplating is
achieved by a mostly horizontal mass flow at the base of the
forearc domain, leading to the horizontal growth of a wide
accretionary wedge (Supplementary Fig. 5). Associated topo-
graphy is markedly lower than in the previous experiments with a
maximum elevation of ~1000 m below the sea level and no
apparent periodicity is predicted (Supplementary Fig. 6). Finally,
by removing the sediments entering the trench, the subduction
regime becomes mostly erosive, resulting in an overall subsidence
of the forearc domain and a low topography with no apparent
periodicity (Supplementary Fig. 7). For details on the modelling
results of all the additional experiments, the reader is referred to
Supplementary Notes 3 and 4.

Discussion
Our models of a lithospheric-scale subduction zone predict that a
significant topography is built through a series of tectonic under-
plating events at the base of the forearc crust despite constant
prescribed parameters over time (e.g. sediment thickness,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15580-7 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1823 | https://doi.org/10.1038/s41467-020-15580-7 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


convergence rate; Figs. 2 and 3; see also Supplementary Figs. 4 and
6). Furthermore, the good agreement between natural and modelled
topographic profiles (Figs. 1b and 2d) provides an independent
confirmation that ongoing underplating activity is a plausible
mechanism to account for the present-day coastal high, which is in
line with geological and geophysical evidences for deep accretion
along active margins1,14,24, as well as with earlier wedge-scaled
analogue and numerical studies32–36. The coastal topography gen-
erally localizes directly above a 30–40-km-depth plate interface,
trenchward from the intersection of the continental Moho (Sup-
plementary Fig. 1; see also Supplementary Note 1 for details), which
corresponds to a preferential site for tectonic underplating1,18

(Fig. 2). Landward, the inner-forearc depression predicted in our
experiments may be related to surface slope adjustments to main-
tain a critical taper37,38 or to elastic loading by plate under-
thrusting39. The modelled depression depth is, however,
overestimated with respect to Circum-Pacific forearc depressions
(Fig. 1b), probably because our simulations do not account for
crustal deformation and magmatic processes in the arc region.

More importantly, our results highlight a pulsing rise of the
coastal topography and a direct temporal correlation between
transient stripping events along the plate-interface and uplift
pulses (whether the tectonic slices are preserved in the duplex or
basally eroded; Fig. 3b, c). After each accretion event, a period of
internal re-equilibration of the forearc wedge is marked by a
subsidence period as predicted by the Coulomb wedge theory37.
No variations in the dynamics of underplating and associated
forearc topography evolution are predicted after the thick, early

accreted basaltic lid has been exhumed and partly eroded (Fig. 1),
suggesting that these early basaltic underplating events do not
critically affect the subsequent mechanical evolution of the fore-
arc margin (Fig. 2b). Furthermore, our experiments suggest that
the Myr-scale evolution of forearc topography may be a relevant
indicator of the nature and influx rate of deeply accreted material
(Figs. 2 and 3c; see the correlation between underplating
dynamics and the topographic signal after ~68 Myr in our
reference model). Such an oscillating forearc rise is achieved in all
the simulations displaying a vertical mass flow associated with
tectonic underplating (Supplementary Figs. 4 and 6). Our set of
experiments also reveals an anti-correlation between the peri-
odicity of vertical surface oscillations above the underplating sites
and the plate convergence rate as already suspected in time-
unscaled sandbox analogue models35,40 (Fig. 4). Because this
periodicity reflects the time needed to reach differential stresses
high enough to trigger tectonic slicing, a faster-subduction regime
would promote a more rapid succession of tectonic underplating
events. Indeed, fast kinematics allows for a faster stress build-up
along the plate-interface and weak-sediment underplating (pre-
vailing in fast subduction models) requires less stress build-up
than sediment-and-basalt underplating (see Supplementary
Note 3 for details). Finally, a comparison with analogue models
highlights a correlation between the periodicity of stripping
events and the depth of the accretion site (i.e. 10–100-kyr- and
2–3-Myr-long periods for frontal accretion and ~15–30 km-deep
underplating events, respectively), which likely reflects the
increase of rock-failure threshold with depth (Fig. 4).
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A pulsing underplating dynamics is suspected in the long-term
geological record by gradually decreasing ages from the top to
the base of exhumed paleo-duplexes. This age pattern results
from transient accretion events separated in time by a few mil-
lion years, such as documented in the case of the Franciscan
complex41 or Chilean Patagonia22 and in agreement with our
modelling results (Fig. 2). Accordingly, Myr-scale vertical oscil-
lations of forearc topography should be expected along sub-
duction segments where active tectonic underplating takes place
(Fig. 3). Sedimentary and tectonic record from forearc basins
shows successive subsidence and uplift periods lasting several
millions of years, which were interpreted in terms of change in
plate motion42 (e.g. Cascadia) or varying sediment flux at the
trench43–45 (e.g. Chile). It is worth noting that the fluctuation of
sediment supply (e.g. related to glacial/interglacial periods) and
the subduction of topographic highs (e.g. seamounts, ridges46–49)
also affect forearc deformation and make the surface evolution

difficult to decipher as it interferes with the aforementioned
periodic topographic signal obtained despite constant kinematic
and boundary conditions (Fig. 3).

Episodic uplift and subsidence are widely reported along active
forearc margins at short timescales, either from Global Posi-
tioning System (GPS) measurements, historical records, coral
growth or geomorphological markers, reflecting the visco-elastic
response of the upper plate to the successive stages of the seismic
cycle at timescales of ~101–102 years50–52 or else to potential
earthquake supercycles over longer timescales of ~102–103

years53,54. Marine terraces are also insightful markers for tracking
coastal uplifts at intermediate timescales (i.e. 104–106 years) with
interpreted ~104-year-scale temporal variations proposed to
relate to earthquake temporal clustering on upper-plate crustal
faults9 or cumulative megathrust earthquakes8. This transient
signal is questioned by some authors that ascribe it to the
uncertainty on age measurements of the terraces and to their
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fragmentary record controlled by the ~40- to ~100-kyr-long sea
level oscillations55. This debate remains open and is beyond our
main focus. It is however noticeable that all these uplift-then-
subsidence signals overlap in space and time. This implies that
the vertical displacements occurring at the forearc surface actually

encompass contributions from different processes, chiefly
including tectonic underplating (Fig. 5). An important con-
sequence is that topographic variations observed at year to kyr
scale may display opposite vertical displacement vectors than the
Myr-scale signal (compare grey, red and orange curves on Fig. 5).
Forearc subsidence, recorded by GPS or geomorphological mar-
kers, thus does not preclude active deep accretion and associated
uplift over a Myr-scale period, and vice versa. As a consequence,
we posit that the underplating-related background signal is likely
inaccessible to short-term geodetic and geomorphological
records.

As discussed above, tracking this potential Myr-scale topo-
graphic signal along active subduction zones is challenging. An
alternative approach is to consider trench-parallel topographic
variations along active forearc margins as equivalent to snapshots
of different temporal stages of the surface oscillations predicted in
our experiments (Fig. 3), in a similar way to compare different
stages of short-term crustal deformation from several subduction
zones to get a comprehensive picture of the seismic cycle52. The
outer-forearc morphology typically consists of an along-strike
succession of basins and topographic highs, some of them
emerging as coastal promontories, such as the Mejillones, Tongoy
and Arauco peninsulas (Chilean margin) and the Kii, Muroto and
Ashizuri peninsulas (SW-Japan margin) (Supplementary Fig. 1).
Considering our new results evidencing a forearc uplift and
associated trenchward migration of the coastline for each
underplating event (Fig. 3a), we propose that these local topo-
graphic highs are transiently formed by deep accretion of laterally
constrained tectonic slices over few-Myr-long periods (Fig. 6).
This is notably consistent with the recent emersion of the
peninsulas as antiformal structures15,56,57, interpreted here as the
surface expression of deep duplexing, along with active normal
faulting (Fig. 2e). On these peninsulas, either normal, thrust or
strike-slip faulting has been observed, suggesting that additional
tectonic processes may disrupt the upper-crust deformation
pattern, including translation or rotation of forearc crustal
blocks15,56,58. In contrast, offshore forearc basins and

In
cr

ea
si

ng
 d

ep
th

 o
f a

cc
re

tio
n

98654321
0.01

0.1

1

10

7

Plate convergence rate (cm year–1)

P
er

io
di

ci
ty

 o
f

to
po

gr
ap

hi
c 

va
ria

tio
ns

 (
M

yr
)

10

Increasing amount of underplated basaltic crust

Frontal accretion (1)

Shallow underplating (2)

se
d3

.5
(n

o 
si

gn
al

)

se
d2

.0
(n

o 
si

gn
al

)

se
d8

.0

se
d1

0.
0

se
d6

.5

se
d5

.0

Underplating (vertical flow)

Underplating 
(horizontal flow)

Fig. 4 Anti-correlation between forearc topographic signal and plate
convergence. Semi-log chart showing the mean periodicity of vertical
topographic oscillations predicted for the forearc domain in our numerical
experiments (orange dots with error bars representing one standard
deviation). It is noteworthy that the Myr-scale topographic signal is only
recorded when tectonic underplating is achieved by an overall vertical mass
flow (orange-shaded area) as predicted in faster-subduction numerical
experiments. Alternatively, an overall horizontal mass flow at the base of
the forearc domain for slow subduction does not result in significant
vertical topographic variations (see Supplementary Note 3 for details).
Grey-shaded curves characterize vertical forearc topographic variations
from time-unscaled analogue experiments focusing on (1) frontal
accretion40 and (2) shallow tectonic underplating35 (i.e., 16–18 km depth).

Myr-scale forearc topographic signal interacting with sea-level variations Seismic-cycle deformation interacting with long-term vertical movement

Time (Ma)

E
le

va
tio

n 
fr

om
 p

re
se

n-
da

y 
se

a 
le

ve
l (

m
)

00.511.52

200
303

304

302

301

0

-200

-400

400

600

Time before Present (ka)

6 012345

Sea-level curve

Zoomed 
signal

Stratigraphy, structural data

Geomorphological markers

Historical records

GPS, tidal data

Coral growth

Zoomed signal

>>1 mm year –1

~1 mm year –1

1-5 mm year –
1

Interseismic 
signal

Coseismic 
signal

Apparent topographic signal

Background 
topographic signal

Apparent topographic 
signal

(corrected from sea-level 
curve)

a b

Fig. 5 Interferences between various timescales, forearc topographic signals. a, b Schematic charts evidencing long-term (a) and short-term (b) vertical
signals potentially recorded along active forearc margins. The three periodic topographic signals at Myr (orange), kyr (red) and 102-year scale (dark grey)
are related to tectonic underplating (this work), glacio-eustatic sea level variations and earthquake cycle, respectively. The apparent topographic signal
(red) is obtained by subtracting the sea level curve81 (blue) to the background topographic signal (orange). Usual methods for investigating vertical surface
displacements are indicated on these two charts as a function of their specific observation time window. Note that underplating-controlled topographic
signal can apparently be tracked only by long-term markers, such as stratigraphic and structural records. It is also noteworthy, from these charts, that fast
vertical displacement vectors recorded at year and kyr scale can be opposed to the slower Myr-scale signal. Tectonic underplating and associated long-
term uplift can thus occur along subduction segments where a kyr-long subsidence event is recorded and vice versa.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15580-7

6 NATURE COMMUNICATIONS |         (2020) 11:1823 | https://doi.org/10.1038/s41467-020-15580-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


embayments in between these topographic highs may correspond
to regions undergoing relaxation subsidence after a former stage
of tectonic underplating.

Local forearc topographic highs are spatially correlated with
high gravity anomalies and correspond to mostly aseismic sub-
duction segments where megathrust earthquake ruptures tend to
stop3,4,51,59. This reveals variations in the frictional properties of
the plate interface, which have to remain stable over Myr time-
scales to reconcile the seismogenic behaviour with geological and
topographic observations3,10,57 and to control the detachment of
large tectonic slices18,60. On the basis of these correlations, we
conclude that laterally constrained tectonic underplating events
allow for reconciling the frictional pattern on the interface and
the rise of these local topographic highs. Succession of Myr-long
underplating events all along active margins may then result in
the periodic formation of local topographic highs with the pos-
sible emergence and submersion of peninsulas and the rise of a
high-elevation coastal belt supported by a duplex structure at
depth over tens of Myr (Figs. 1b and 6).

Our findings thus highlight the first-order importance of
transient tectonic underplating for shaping forearc topography in
subduction zones worldwide through a characteristic Myr-scale
periodic signal, which cannot be adequately tracked with short-
term geodetic and geomorphological records. Instead, trench-
parallel and trench-perpendicular forearc topographic profiles
appear as more insightful long-term markers for assessing spatial
and temporal variations of underlying accretion processes along
the subduction interface.

Methods
Conservation equations. The two-dimensional numerical experiments are carried
out with the I2ELVIS code, which solved the continuity, momentum and heat
conservation equations, based on a finite difference scheme and a marker-in-cell
technique25. The continuity equation describes the conservation of mass, assuming
a visco-elasto-plastic compressible fluid. It is solved on a fully staggered Eulerian
grid and has the form:

D ln ρeff
Dt

þ ∂vx
∂x

þ ∂vy
∂y

¼ 0; ð1Þ

where ρeff is the effective density of rock calculated in Eq. (7), t the time, vx and vy
the viscous velocity components in x (i.e. horizontal) and y (i.e. vertical) directions.
The momentum of the compressible fluid is then solved using the Stokes equations:

� ∂P
∂x

þ ∂σxx
∂x

þ ∂σxy
∂y

¼ �ρeff ; ð2Þ

� ∂P
∂y

þ ∂σyx
∂x

þ ∂σyy
∂y

¼ �ρeff g; ð3Þ

where P is the pressure, σxx, σyy, σxy and σyx the components of the deviatoric stress
tensor and g the gravitational acceleration (= 9.81 m s−2). The heat conservation
equation is formulated in a Lagrangian form to avoid numerical diffusion of
temperature:

ρeffCp
DT
Dt

¼ � ∂qx
∂x

� ∂qy
∂y

þ Hr þ Ha þ Hs; ð4Þ

where Cp is the isobaric heat capacity, T the temperature, Hr the radiogenic heat
production, Ha the adiabatic heat production, Hs the shear heating (see ref. 25 for
details on calculation ofHa and Hs) and qx and qy the heat flux components solved as:

qx ¼ �k
∂T
∂x

; ð5Þ
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qy ¼ �k
∂T
∂y

; ð6Þ

where k is the thermal conductivity depending on temperature, pressure and rock
type (Supplementary Table 2).

Rock density and rheology. The effective density ρeff for each rock phase pre-
scribed in the experiments is solved as follows:

ρeff ¼ ρrock 1� Xfluidð Þ þ ρfluid Xfluid; ð7Þ
where Xfluid is the mass fraction of fluid (i.e. the bound mineral water content),
ρfluid the reference fluid density (=1000 kg m−3) and ρrock the rock density cal-
culated as:

ρrock ¼ ρ0 1� α T � 298ð Þð Þ 1þ β P � 0:1ð Þð Þ; ð8Þ
where ρ0 is the standard density of rock, α the thermal expansion and β the
compressibility. Non-Newtonian visco-elasto-plastic rheologies are employed in
these experiments, implying that the deviatoric strain rate _εij includes the three
respective components:

_εij ¼ _εijviscous þ _εijelastic þ _εijplastic ; ð9Þ
with

_εijviscous ¼
1

2ηeff
σ ij; ð10Þ

_εijelastic ¼
1
μ

Dσ ij
Dt

; ð11Þ

_εijplastic ¼ 0 for σII < σyield; ð12Þ

_εijplastic ¼ χ
σ ij
2σII

for σII ¼ σyield; ð13Þ

where ηeff is the effective creep viscosity calculated from experimentally con-
strained dislocation creep flow laws61 (see Supplementary Table 2 for details),

σij the deviatoric stress components, µ the shear modulus,
Dσ ij
Dt the objective co-

rotational time derivative of the deviatoric stress components and χ the plastic
multiplier when satisfying the Drucker–Prager plastic yielding condition:

σII ¼ σyield; ð14Þ
where σII is the second invariant of the deviatoric stress tensor and σyield the plastic
strength solved as:

σyield ¼ C þ P sin φdry

� �
ð1� λfluidÞ; ð15Þ

where C is the cohesion, φdry the internal friction angle for dry rocks and λfluid the
pore fluid pressure factor. The latter is calculated according to the presence (or not)
of fluid markers, which is solved by considering fluid hydration, dehydration and
transport processes in the experiments. For details on the fluid implementation, the
reader is referred to refs. 18,62.

Internal free surface and surface processes. In the numerical experiments, the
surface topography is calculated as an internal free surface by using a low-
viscosity layer to minimize shear stresses along this major rheological
boundary27. According to ref. 26, the applied sticky-air method is valid as long
as the top of the lithospheres acts as a traction-free surface on isostatic
timescales, which is defined as:

Cisost � 11; ð16Þ
with

Cisost ¼
3

16π3
L
hst

� �3 ηst
ηrelax

; ð17Þ

where L is the characteristic length scale of the model, hst and ηst the thickness
and viscosity of the sticky-air layer and ηrelax the viscosity controlling the
relaxation. In our experiments, investigated forearc topography is mostly
controlled by lithospheric deformation because of the presence of the under-
lying slab. Thus, ηrelax is here given by ηlithosphere. In addition, by considering
subduction dynamics and associated mantle corner flow, L is usually con-
sidered as corresponding to the height of the model box. Accordingly, Cisost =
4.84 × 10−5 (for hst = 10 km, ηst = 1 × 1018 Pa s and ηlithosphere= 1 × 1024 Pa s),
which implies negligible stresses exerted on the surface topography. The low-
viscosity layer is defined as air or water, depending on its location from the
prescribed sea level (y= 10 km). Changes in the surface topography are con-
trolled by the mechanical transport and surface processes through the con-
version of rock markers to air/water (i.e. erosion) and vice versa (i.e.
sedimentation). These vertical variations are then calculated by applying the

following equation at the surface:63

∂ysurf
∂t

¼ vy � vx
∂ysurf
∂x

� vsedim þ verosion; ð18Þ

where ysurf is the y coordinate of the surface, vx and vy the horizontal and
vertical velocity components of the Stokes velocity field at the surface and
verosion and vsedim the global erosion and sedimentation rates, respectively,
defined as

verosion= 0.3 mm year−1 and vsedim= 0 mm year−1 for y < 10 km,
verosion= vsedim= 0 mm year−1 for y > 10 km.
Note, however, that an increased erosion and sedimentation rate (=1mmyear−1)

is applied to regions with steep surface slopes (i.e. >17°) for smoothing the
topographic surface. This is particularly relevant for the offshore forearc domain
where the increased sedimentation rate counterbalances the absence of global
sedimentation rate prescribed in our experiments. Newly formed sedimentary rocks
are labelled as terrigenous sediments and display the same properties than the pelagic
sediments (Supplementary Table 2).

Numerical set-up. The computational domain measures 1500 × 200 km in the x
and y direction, respectively (Supplementary Fig. 2a) and is discretized using an
Eulerian grid of 1467 × 271 nodes with variable grid spacing. This allows a grid
resolution of 0.5 × 0.5 km in the vicinity of the plate boundary (i.e. the area
subjected to the largest deformation) and of 2.0 × 1.5 km elsewhere. Addition-
ally, ~8 millions of randomly distributed Lagrangian markers are initially pre-
scribed for advecting material properties and computing water release, transport
and consumption. This number may vary during the experiment, notably
depending on dehydration/hydration processes. The initial set-up for an ocean-
continent subduction zone is designed with a 30-km-thick overriding con-
tinental crust composed of 15 km of felsic upper crust and 15 km of mafic lower
crust and a 7.5-km-thick subducting oceanic crust made up of 0.5 km of pelagic
sediments, 2 km of hydrated basaltic crust and 5 km of gabbroic crust (Sup-
plementary Fig. 2b). A temperature threshold of 1200 °C is used to distinguish
the underlying lithospheric mantle from the asthenosphere. To initiate sub-
duction, the oceanic crust is initially underthrusted below the continental
margin and a 10-km-thick weak zone is prescribed at the interface between the
two plates. The convergence between the two domains is defined by prescribing a
fixed convergence condition region belonging to the subducting oceanic litho-
sphere (e.g. 5 cm year−1 for the reference model sed5.0; Supplementary Fig. 2a).
The velocity boundary conditions are free slip for the left, right and upper
boundaries, while the lower boundary is open to ensure mass conservation in the
computational domain. As described above, an internal free surface is prescribed
at the top of the oceanic and continental lithospheres, allowing to model the
topography, which is initially prescribed at the plate boundary as a continuous
slope from y= 12 km (i.e. 2000 m below the sea level) at the trench to y= 8 km
(i.e. 2000 m above the sea level) at the continental margin (Supplementary
Fig. 2b). Note that y coordinates are here indicated from the top of computa-
tional domain (i.e. y= 0 km), while in the main text, model topography and
depth are expressed from the sea level (i.e. y= 10 km).

The thermal structure of the oceanic lithosphere is calculated by applying a
half-space cooling age model from 10 kyr (x= 0; i.e. simulating a mid-oceanic ridge
on the left boundary of the computational domain) to 53 Myr (x= 854 km; i.e.
corresponding to initial location of the subduction zone). To limit the size of the
computational domain, the cooling of the oceanic lithosphere is prescribed as 10
times faster for 0 ≤ x ≤ 200 km. This high cooling zone is located at ~600 km away
from the subduction zone, which allows to avoid any thermal or mechanical effect
on modelled forearc dynamics. A geothermal gradient of ~15° km−1 down to 90
km is defined for the continental lithosphere. Below, the asthenospheric geothermal
gradient is 0.5° km−1.

Data availability
Output files from numerical experiments presented in this study and associated
MATLAB codes are accessible as a Source Data file [https://doi.org/10.5281/
zenodo.3697463].

Code availability
The numerical code presented in this study is available from the corresponding author or
from the main code developer (taras.gerya@erdw.ethz.ch) upon reasonable request.
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