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A b s t r a c t .  Acceleration and heating of particles in a given electric field is considered by performing test particle 
type simulations. The purpose of this study is to identify relationships between statistics of the electric field and those 
of particles. Electric field is taken to be constant on some randomly chosen intervals and random in other intervals. 
Potential applications are particle acceleration or heating in quasiparallel shock regions or in solar corona where multiple 
reconnection sites can occur. 

INTRODUCTION 

We are interested to study the acceleration and heating 
of test particles in a given electromagnetic field. Our pur- 
pose is to identify the relationship between the statistics 
of the given field and that of the particle diffusion. We 
are motivated by the fact that this or quite similar prob- 
lems appear in several branches of astrophysics and space 
physics: 

a) particle acceleration in the front of collisionless 
quasi-parallel shock, 

b) solar physics (particle acceleration, diffusion) in do- 
mains of  flares of different scale. 

Diffusive shock acceleration mechanism is based on 
three key elements: 

- formation of seed particle population, that is usually 
assumed to be generated in the shock front 

- diffusion of particles that gives rise to the isotropiza- 
tion of their distribution in the reference frame of the up- 
stream and downstream flow keeping their energy con- 
stant 

- multiple shock front crossings with energy gain after 
each back and forth trip. 

This last element is related to the bulk flow velocity 
difference between upstream and downstream states of 
the plasma crossing the shock front. One of the models 
that was developed to describe this process (1) is based 
on the presence of structures moving upstream of the 
shock front with the upstream flow velocity, and down- 
stream with the corresponding Rankine-Hugoniot down- 
stream velocity. This approach qualitatively describes the 
creation of the seed particle distribution (2), but meets 
some difficulties in the quantitative description. The pres- 
ence of non-linear magnetic field structures in the front of 

quasi-parallel shocks is well documented (see e.g. (3)). 
Particle diffusion in a gas of such structures assimilated 
to randomly distributed spheres is a classical mathemat- 
ical problem of "billiard", and quite well known results 
of this theory, such as Lyapunov exponents or diffusion 
coefficient (see e.g. (4)), can be used if the effects of 
inhomogeneity are neglected. In such a model the inter- 
action with the elementary entities of the turbulence (bil- 
liard spheres) is supposed to be elastic. A more detailed 
analysis of the turbulence in the vicinity of the quasi- 
parallel shock shows that two additional effects can be 
important for the modeling of these processes: 

- the turbulent elements have different scales, that 
correspond to scaling laws similar to MHD turbulence, 
though the scaling characteristics are not still established 
in detail (5) 

- these MHD structures can interact with particles in a 
non-elastic way (6). 

The last point is due to the fact that the front regions 
of the structures are strongly inhomogeneous. In these 
regions the conditions are favorable for the particle accel- 
eration by means of surfing or gradient drift type mech- 
anisms. Even if the amplitude of the effect will be suffi- 
ciently less than in the ramp region of the shock front, the 
integral effect can be very important because the parti- 
cle interacts with many such structures, thus during much 
larger time than with the shock front. 

This could be modeled by a random distribution of the 
spheres having different radii with which particles un- 
dergo an elastic collision if the angle between the nor- 
mal to the sphere surface and velocity vector is less than 
some critical value, otherwise an electric field assumed 
to be parallel to the sphere surface acts on the particle. 
The field in each sphere may for example depend on its 
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radius. In this paper, we shall consider the much simpler 
case (but somehow similar for the physics) of a particle 
randomly crossing some structures with random electric 
fields. 

Such a description may also apply to particle accel- 
eration and diffusion in multiple domains of solar flares 
of different scales in the solar corona, that are observed 
by several experiments (7). Moreover the measurements 
onboard the GRANAT satellite give clear evidence of 
the presence of scaling laws for these phenomena (8, 9). 
One of the popular models describing statistical proper- 
ties of the magnetic fields relies on self-organized criti- 
cality (10, 11), which results in scaling laws of the mag- 
netic field and associated electric fields (that is, power- 
law dependence of the field intensity on its characteristic 
scale). The problem of particle diffusion is quite simi- 
lar to the previously discussed one, because particles can 
visit many sites, where they undergo the action of electric 
fields with defined statistical properties. Sites themselves 
have given statistical properties and distribution. 

RANDOM WALKS AND TURBULENCE 

It is well known that Brownian motion gives rise to 
Gaussian probability distributions with a mean square 
displacement (msd) linearly dependent on time (x 2) ,,~ t 
where (...) denotes ensemble average. However, particle 
diffusion in turbulent flows is known to provide already in 
the framework of the classical model of Kolmogorov tur- 
bulence (12) a quite different diffusive behaviour, which 
was experimentally discovered by Richardson (13): 

(x 2) ,~ t 3 (1) 

The conventional dependence of the Brownian motion 
on time is based on the central limit theorem, which states 
that the limit distribution of the sum of N independant 
random variables when N ---roo is Gaussian, provided the 
probability distribution of each variable has a finite vari- 
ance. If it is infinite, then the distribution for the sum 
converges toward a so-called Ldvy-stable law, character- 
ized by a parameter ~ < 2 which describes the asymptotic 
decay of the probability density: 

p (r) ,~ r -(1+13) (2) 

In some sense Ldvy-stable laws have self-similarity prop- 
erties and exhibit no characteristic scale. The correspond- 
ing random walks are called Ldvy flights (15)but have the 
major drawback that the msd of a walker is infinite. How- 
ever, Schlesinger et al. (16) proposed to impose to the 
walker a velocity dependent on the step length, in a way 
compatible with the Kolmogorov scaling for longitudinal 

velocity fluctuations 

8V(l),.,ll/3 

They showed that this trick makes the msd at a given in- 
stant finite, and moreover that the Richardson law of rel- 
ative diffusion is recovered for 13 < 1/3. These results 
implicitly assume that the particles are linked to the tur- 
bulent flow in all scales and instantly, without any "slid- 
ing". 

These hypotheses allow to attribute the scaling laws of 
the turbulent flow to the particle motion under additional 
condition of the velocity dependence on the scale. There 
is no consideration of forces acting on the particle in such 
an approach. 

Surprisingly, one can find similar time dependence of 
the mean square displacement of a walker under the ac- 
tion of a random force in an extremely simple case. Let 
us consider a discrete random motion under the action of 
a force verifying 

(FiFj) = F28ij. 

(i is the i-th step). Such a force gives rise to some kind of 
Brownian motion in the velocity space. Hence the veloc- 
ity fluctuations are Gaussian and the mean square velocity 
displacement after N steps: 

(~V 2) , ~  N ,-~ t 

This results to the following dependence of the msd under 
the assumption V (0) = 0: 

N = F 2 N ( N + I ) ( 2 N + I  ) ,.,t 3 (x2) ~' F2 Z n2 
n=l 6 

STATEMENT OF PROBLEM 

Above discussions lead to the following questions: 
how do the statistical properties of fields (this includes 
the properties of their amplitudes and time/spatial scale 
distributions) influence the characteristics of the particle 
diffusion and acceleration processes ? 

If one takes the equations of motion in their simple 
form 

dr  dv 
- -  = v ,  = f ( 3 )  
at --d-i 

where f has prescribed statistical properties. Clearly, par- 
ticles statistics will be determined by those of the force. 
Their time/spatial scales and amplitudes are closely re- 
lated in models of MHD-type turbulence in the vicinity 
of the shock front, and in models of multi-scales recon- 
nection sites. 
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Short Large Amplitude Magnetic Structures (SLAMS) 
observed near quasi-parallel shocks have clearly identi- 
fied scaling laws: larger structures tend to have larger 
fluctuations of magnetic and associated electric fields. 
The surfing mechanism, that can be responsible for the 
non-elastic particle-structure interaction, is based on an 
electric field component perpendicular to the magnetic 
field in the front region of the structures, and depends on 
the magnetic field inhomogeneity. 

The amplitude of the electric field in the reconnection 
site is associated with the energy flux into it, eventually of 
bursty nature (explosive regime), and may be associated 
with the amplitude of fluctuating Alfv6n velocity in close 
vicinity of the site. The scale of the acceleration region 
is assumed to be determined by the Larmor radius of ions 
in the surrounding background magnetic field (ions are 
supposed to be magnetized outside but not inside). 

Hereafter, statistical properties of the electric fields are 
determined by the the intervals where they are applied. 
Several levels of studies, with increasing complexity and 
sophistication can be considered: 

1. The basic equations of motion can be discretized, 

x ( i + l )  = x( i )+v( i )  (4) 

v ( i + l )  = v ( i )+f ( i )  (5) 

x, v being n-dimensional position and velocity, and f 
the normalized force, which may depend on v as well 
(Lorentz force). 

From the point of view of numerics, these equations 
are equivalent to continous ones 3 as long as the time step 
used is taken much shorter than the correlation time scale 
of the forcing. The situation may be different if f depends 
on x, in which case the effect of the particle-"wave" res- 
onance may become quite significant. 

One can also include the effect of relativity, as neces- 
sity arises. 

2. The forcing can be given in a variety of ways: 
(a) A random force with (f )  = 0 and (f2)  = 1 (since 

the basic equations of motion are linear, f can always be 
put in this way), corresponding to Brownian motion. 

(b) An "intermittent force" can be constructed in a sim- 
ple way: time intervals without forcing alternate with 
intervals of nonzero (f2).  Intervals may have different 
lengths. We shall assume here 

f(t) ~ 0 for m T < t < ( m + p ) T  (6) 

f = 0 otherwise (7) 

where m is an integer and p is the fraction of time with 
nonzero f .  The simplest is the case with T and p both 
constant, but either T or p can be made variable with 
given distribution. 

(c) Further complication is given by allowing the mag- 
nitude of f to depend on the time interval T which mod- 
els more realistic situations in the solar wind, such as 
SLAMS. Also, one can specify some finite value to f = 
f0 in the period of time (m+ 1 - p)T < t < (m +  1)T, in 
order to look at the effect of constant acceleration. How- 
ever it is required that on a global time scale (f0) = 0. 

(d) f can be taken as a synthetic "multi-affine" field, 
either in 1, 2, or 3d with prescribed multifractal prop- 
erties. There exist for quite a long time rather success- 
ful techniques to reproduce random variables with simi- 
lar properties to those of measured quantities such as the 
energy dissipation rate in a turbulent fluid (17). 

3. The one dimensional case is already an adequate 
starting point exhibiting interesting phenomena and al- 
lowing several variations (as discussed previously). The 
2d case allows more effects, as the divergence of trajecto- 
ries, Fermi acceleration, acceleration due to the gradient- 
B force, etc. It has more direct application to the acceler- 
ation in the vicinity of planetary bow shocks. 

4. The obtained time series can be analyzed by the 
now-standard techniques of turbulence and multifractal 
analysis, such as structure functions and the f (¢x) spec- 
trum. We should also evaluate the particle diffusion prop- 
erties, including the energy diffusion (in 1,2,3d cases) and 
the pitch-angle diffusion (in 2,3d). 

PRELIMINARY RESULTS 

In order to launch the above described project we have 
computed several different simulation runs, with some 
variety of models and different parameters. The Figures 
are available on the CD. All the runs presented in Figures 
1 to 7 represent one-dimensional cases with the equations 
of motion 4 and 5. Figs. 8 to 13 are two-dimensional. 

The total length of time steps, NT, is 105. The panels 
in the figures show F, v, and x as functions of time. Up- 
per panels of figures B represent the structure functions, 
Sq (x), for F, v, x, respectively, as function of the corre- 
lation time x (horizontal axis) for several order q. For a 
given time series G(t), the structure function of order q 
is defined as 

Sq ('~) : ( Ia( t  +x)  - G(t)[ q) 

and is supposed in case of a "turbulent" field to behave as 
a power-law in some range of x 

Sq ('~) ,~ "~;(q) 

The exponent is related to the fractal properties of the tur- 
bulence (18). Intermittency corresponds to a non-linear 
dependence of ~ on q and is associated to multifractality 
(for a homogeneous turbulent field is linear on q). In 
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practice scaling laws are better detected when the struc- 
ture functions Sq are normalized to some Sp 

Sq ('~) s(nO,~) q ('C) --  
($2 ('~))q/2 

If the particle trajectories has the intermittency property 
these functions can provide quantitative characterization 
of it. However the detailed analysis of these characteris- 
tics are beyond the scope of our paper and will be pub- 
lished elsewhere. 

FIGURE CAPTIONS 

Most of the Figures show structure functions of index 
p ranging from 1 to 5. They are noted respectively by the 
following signs: 1 - +, 2 - *, 3 - x,  4 - A, 5 - square. 

Fig. I. The run with a uniform distribution of F in the 
interval [ -  1, 1]. 

Fig. 2. The force is given intermittency by T = 1000 
and p = 0.3 in equation 7. 

Fig. 3. T has a probability density 

p(T)  = ifTo < T < TI 

p(T) = 0 otherwise 

where in this particular run, To = I00,/'i = 10000, and 
g = 2 have been chosen. Otherwise, all the parameters 
used are the same as previous runs, i.e., NT = I00000 
and p = 0.3. 

Fig. 4. Same as Fig. 3 except that p = 0.7. 

Fig. 5. The amplitude of F is chosen to be propor- 
tional to the interval length, T. Otherwise, parameters 
are the same as in Fig. 3. 

Fig. 6. Same as Fig. 5 but p = 0.7. 
Fig. 7. Same as Fig. 5 but p = 0.1. 
Runs shown in Fig. 8 to Fig. 13 correspond to the two- 

dimensional case where the force amplitude, F, obeys 

p ( F)  = aRE -c~ i f F o < F  <F] 

p ( F )  = 0 otherwise 

where g is the given power law index, R is randomly as- 
signed a value of either 1 or -1, and a is the normalization 
constant. This is a rather simple model so its statistical 
properties may have already been analyzed. 

Fig. 8. g = 1. 
Figs. 9 and 10. g = 2. 
Fig. 11. g = 3 (LOvy flight-like patterns are seen). 
Fig. 12. g = 4 .  
Fig. 13. The force is given as a Gaussian. 
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