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Whistler waves are an intrinsic feature of the oblique quasiperpendicular collisionless shock waves.
For supercritical shock waves, the ramp region, where an abrupt increase of the magnetic field
occurs, can be treated as a nonlinear whistler wave of large amplitude. In addition, oblique shock
waves can possess a linear whistler precursor. There exist two critical Mach numbers related to the
whistler components of the shock wave, the first is known as a whistler critical Mach number and
the second can be referred to as a nonlinear whistler critical Mach number. When the whistler
critical Much number is exceeded, a stationary linear wave train cannot stand ahead of the ramp.
Above the nonlinear whistler critical Mach number, the stationary nonlinear wave train cannot exist
anymore within the shock front. This happens when the nonlinear wave steepening cannot be
balanced by the effects of the dispersion and dissipation. In this case nonlinear wave train becomes
unstable with respect to overturning. In the present paper it is shown that the nonlinear whistler
critical Mach number corresponds to the transition between stationary and nonstationary dynamical
behavior of the shock wave. The results of the computer simulations making use of the 1D full
particle electromagnetic code demonstrate that the transition to the nonstationarity of the shock front
structure is always accompanied by the disappearance of the whistler wave train within the shock
front. Using the two-fluid MHD equations, the structure of nonlinear whistler waves in plasmas with
finite beta is investigated and the nonlinear whistler critical Mach number is determined. It is
suggested a new more general proof of the criteria for small amplitude linear precursor or wake
wave trains to exist. ©2002 American Institute of Physics.@DOI: 10.1063/1.1457465#

I. INTRODUCTION

Shock waves in plasmas as well as in gases and other
media are usually considered to be nonlinear waves that
cause changes of state of the media and are stationary in
some reference frames. Indeed, numerous theoretical papers
are devoted to finding stationary solutions to the set of equa-
tions describing the plasma dynamics~for a review, see, e.g.,
Refs. 1–3!. However, in the very beginning of the collision-
less shock physics, the hypothesis was suggested that high
Mach number shocks can be nonstationary~see, e.g., Refs. 4,
5!. As far as we know, the first unambiguous evidence of the
shock wave nonstationarity was obtained by Morseet al.6 in
the laboratory experiments with a plasma-wind-tunnel de-
vice. They revealed that in the fast mode Mach number range
M f.4 –8 the shock wave oscillates with a frequency com-
parable to the upstream ion gyrofrequency.

In the early 1980s, in the response both to new observa-
tions of the Earth bow shock and a great progress both in
computational sciences and computer hardware, the interest
to the problem concerned is considerably increased. In the

Earth bow shock, the low frequency oscillations of the ion
flux were observed.7–9 Later similar phenomenon was also
found in the uranium bow shock.10 These observations can
easily be interpreted as a manifestation of the shock front
nonstationarity.11,12 In addition, Leroyet al.13,14 modeled the
dynamics of a perpendicular shocks with the use of a hybrid
code. Simulations with the parameters typical for the Earth
bow shock~in particular, forMA58 andbe5b i50.6, where
MA is the Alfvén Mach number,be,i is the ratio of the ther-
mal and magnetic pressures! showed that the shock structure
varies with time, for example, the maximum value of the
magnetic field exhibits temporal variations with a character-
istic time of the order of ion gyroperiod, the magnitude of
these variations being about of 20%. The amplitude of the
oscillations increases with the Mach number and decreasing
b i . The oscillations of the fraction of reflected ions,a, are
more pronounced than that of the magnetic field overshoot or
the maximum value of electric potential. ForMA510 and
b50.1 the ion reflection was bursty,a oscillating between
0% and 70%–75%, although the magnetic field and electric
potential overshoot can be considered as quasistationary on
the average because their relative amplitudes of oscillations
do not exceed 10%–15%.

For the first time, modeling of high Mach number per-
a!Electronic mail: vkrasnos@cnrs-orleans.fr
b!Permanent address: IZMIRAN, Troitsk, Moscow Region, Russia.
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pendicular shocks (MA522, b50.1) was carried out by
Quest.15 He found that in the absence of the electron resis-
tivity the ion reflection process is periodic, the stages with
100% ion reflection alternating with the stages of 100% ion
transmission. As a result, a periodic shock front reformation
was observed rather than a stationary structure. Quest16 ex-
tended these preliminary simulations to perform a systematic
study of high Mach number perpendicular shocks. Forb
50.1 he revealed that the found previously14 tendency for a
shock to become increasingly time-dependent asMA in-
creases was also observed forMA>10 and resulted in the
cyclical wave breaking forMA>20. In addition, forb51
and MA>10 a non-trivial dependence of the shock front
structure on the resistivity was found. Nonstationarity was
observed both for low and high resistivityh while for mod-
erateh the shocks were stationary up toMA560. In conclu-
sion, Quest16 argued that a fundamental question concerned
with a physical mechanism that controls the stability of the
shocks has not been resolved yet.

In addition, it is worth noting that in numerical simula-
tions the intrinsic shock front instability can be obscured by
a number of unphysical effects such as an artificial dissipa-
tion, dispersion, and/or instability of the computational
algorithm.11

Analyzing the major achievements of collisionless shock
physics by the end of 1984 and reviewing the conceptual
issues of the subject, Kennelet al.17 argued that the shock
front nonstationarity does exist and they suggested to intro-
duce the so-called third critical Mach number corresponding
to the transition between the stationary shocks and nonsta-
tionary ones.

Krasnoselskikh18 and Galeevet al.19 suggested the theo-
retical models describing the shock front instability due to
domination of the nonlinear effects over the dispersion and
dissipation. This instability results in a gradient catastrophe
within a finite time interval and nonstationarity of the shock
wave. Later Galeevet al.20 showed that the nonlinear whis-
tler wave train can be observed within the front of the qua-
siperpendicular shock wave under some conditions and they
argued that the role of this wave train should be taken into
account when analyzing the problem concerned. To confirm
the hypothesis of shock front nonstationarity, Galeevet al.11

presented the results of analysis of the experimental data
obtained onboard Prognoz-8 and Prognoz-10 for several
crossings of the Earth bow shock. The manifestation of the
shock front nonstationarity in the ion distribution function
was also discussed.12 Later, the presence of the nonstationary
whistler wave trains in the front of strong quasiperpendicular
shock waves was also confirmed by direct observations of
the Earth bow shock onboard Intershock-Prognoz-10 and
AMPTE UK spacecrafts.21

Lembégeet al.22 also observed the cyclic reformation of
the exactly perpendicular low-beta nonresistive shock waves
in 1D full particle simulations, where the ratio of electron
and ion masses wasm5me /mi50.01. They argue that very
high Mach numbers are not necessary for the reformation to
exist; in these simulations the reformation was also observed
for relatively low Mach numbersMA52 –3 corresponding
however to supercritical regimes. In the 2D full particle

simulations with the mass ratiom50.024, Lembe´ge et al.23

found that the cyclic reformation of the front takes place also
for oblique shock waves within the same Mach number
range even when the finite resistivity effects due to cross-
field-current instabilities are self-consistently included. The
reformation cycle was found to be of the order of the mean
ion gyroperiod measured in the shock ramp. Furthermore,
the shock front appeared to be rippled rather than uniform.
However, the discussion of these two-dimensional effects is
beyond the scope of the present paper.

The present paper is organized as follows: In Sec. II, the
model suggested in Ref. 19 is briefly outlined. We believe
that this model describes not only shock front formation for
moderate Mach numbers but the nonstationary reformation
of strong shocks as well. Several aspects of the model are
developed in further detail and more rigorously. In particular,
we analyze a model equation describing the dynamics of the
shock wave front with large gradients, when a characteristic
length of the plasma flow within the front is typical for whis-
tler waves. This analysis shows that the dispersion of whis-
tler waves is not sufficient to prevent the breaking of strong
disturbances. On the basis of this analysis, we put forward an
argumentation that a nonlinear whistler critical Mach num-
ber, above which the nonlinear whistler wave train cannot
stand within the shock front, is approximately equal to the
critical Mach number corresponding to the transition from
stationary shock waves to nonstationary ones. In Sec. III we
present the results of the computer simulations making use of
the 1D full particle electromagnetic code. In order to obtain
more reliable results concerned with the role of whistler
waves in the shock front nonstationarity, we take a smaller
ratio of electron and ion masses,m50.005, than used
previously.22,23 To distinguish between the transient pro-
cesses during formation of a stationary shock and the intrin-
sic nonstationarity of strong shocks, in the present simula-
tions the total run time covers about 4 ion gyroperiods
calculated with the use of upstream magnetic field
~previously22,23the duration of the runs did not exceed 0.5–1
ion gyroperiods!. The results obtained demonstrate that the
transition to the nonstationarity is always accompanied by
the disappearance of the phase-standing whistler wave train
within the shock front. Some auxiliary facts and results are
presented in the Appendices. In particular, Appendix B con-
tains a new more general proof of the criteria for small-
amplitude precursor or wake wave trains to exist. In Appen-
dix C the structure of nonlinear whistlers in plasmas with
finite b and adiabatic equation of state for electrons is inves-
tigated using two-fluid MHD equations.

II. GRADIENT CATASTROPHES AND INSTABILITY OF
STATIONARY SHOCK FRONT STRUCTURE

A. A multistage process of the formation of a strong
shock wave

As opposed to hydrodynamic shocks, shock waves in
collisionless plasmas usually have much more complicated
structure. For example, a typical magnetic field profile for a
quasiperpendicular supercritical shock is shown in Fig. 1
taken from Ref. 24. It consists of a foot or pedestal, ramp,
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and overshoot–undershoot oscillations. This large-scale
structure is closely related to the dynamics of reflected ions.
A fraction of the incoming ions is reflected from the ramp,
where the gradient of the magnetic field intensity is the larg-
est, then they are magnetically deflected, accelerated by the
flow electric field, and pass the ramp on the second encoun-
ter thereby forming the ring distribution in the overshoot–
undershoot region. Assuming that the ions are specularly re-
flected from the ramp, the foot thickness can be estimated
as25

L foot50.68
U0

vBi
sin uBn ,

whereU0 is the plasma velocity along the shock normal in
the shock frame,vBi is the upstream ion gyrofrequency, and
uBn is the angle between the shock normal and the upstream
magnetic field. The distance between the overshoot and un-
dershoot has the same order of magnitude.26 The ramp is
significantly thinner, it follows from some observations that
it can be of the order of several electron skin depthsc/vpe ,
wherec is the speed of light andvpe is the electron plasma
frequency. The dispersion lengthcucosuBnu/vpi , wherevpi is
the ion plasma frequency, determines the ‘‘ramp’’ thickness
for oblique subcritical shock waves. Although not explicitly
presented in the large-scale structure, there is a number of
other scales, which are closely related to the physical pro-
cesses within the shock front. For instance, the Debye length
electrostatic fluctuations due to the ion-sound instability are
believed to provide an anomalous resistivity. The length of
the order of severalc/vpe is believed to be typical wave-
length of whistler waves observed within the front and
upstream.20,21 The thermal electron gyroradius,re

5vTe /vBe , wherevTe is the electron thermal velocity and
vBe is the electron gyrofrequency, determines the boundary
between two regimes of electron heating, i.e., if the charac-
teristic length of the plasma flow is much larger thanre , the
electron component obey an adiabatic equation of state, oth-
erwise the nonadiabatic heating takes place.

Since some of the scales within this hierarchy differ
from others by several orders of magnitude, the theoretical
analysis of the shock formation is a very complicated prob-
lem. However, we can model different stages of the shock

formation with the use of simplified sets of equations, where
the main features of the stage considered are taken into ac-
count.

To begin with, let us consider the dispersion relation for
fast magnetosonic waves. Indeed, there exists a multiform
relationship between the structure of shock waves and the
properties of the corresponding linear waves.1,2 In particular,
when considering the evolution and structure of high Mach
number shocks, the dispersion relation for fast magnetosonic
waves is of particular importance. In the case of the cold
plasma, the frequency dependence of the refraction index
N5kc/v can be easily written in the analytic form~see, e.g.,
Ref. 27!. However, this form of the dispersion relation is
rather cumbersome and inconvenient to analyze. Instead of
it, in the following we use an approximate relationship sug-
gested by Krasnoselskikhet al.,28

v25
vBe

2

11vpe
2 /k2c2 S m1

cos2 u

11vpe
2 /k2c2D , ~1!

wherev andk are the frequency and the wave number, re-
spectively,u is the angle between the wave vector and the
magnetic field, andm is the ratio of electron and ion masses,
m5me /mi . Although this equation is approximate, it de-
scribes all the relevant features of the exact dispersion rela-
tion. Indeed, for the waves propagating perpendicularly to
the magnetic field (u590°) from Eq.~1! we get

v25
k2vA

2

11k2c2/vpe
2

. ~2!

It is easily seen from Eq.~2! that the phase velocity of the
waves is approximately equal to Alfve´n velocity vA for
kc/vpe!1 and decreases to zero as the wave numberk is
increased and the frequency approaches the low hybrid fre-
quency,v→(vBevBi)

1/2. For long waves, the characteristic
dispersion length isc/vpe . For oblique propagation, cos2 u
@m, the long waves have the same velocityvA , but the
phase velocity increases with the increase ink, and the char-
acteristic dispersion length is equal toc ucosuu/vpi ,

v2.k2vA
2S 11

k2c2 cos2 u

vpi
2 D .

The last equation describes also the low frequency whistlers
with v!vBeucosuu. Finally, for kc/vpe@1 the oblique
waves are electrostatic with the frequencyv.vBeucosuu and
small phase velocity.

Figure 2 shows the dependence of phase velocityvph

5v/k upon the wave number in the case of oblique propa-
gation, cos2 u@m. As it was noted above, the range of wave
numbers can be split into three parts corresponding to~I!
long waves,k!vpi /c ucosuu, ~II ! whistler waves with a
characteristic wavelength of aboutc/vpe , and ~III !
quasielectrostatic oscillations, respectively.

When considering a shock wave formation from a
smooth initial disturbance of the plasma flow, we can imag-
ine that a point representing the characteristic scale length of
the disturbance moves along the dispersion curve shown in
Fig. 2. Thereby the evolution of the disturbance resulting in

FIG. 1. The magnetic field profile for a typical supercritical quasiperpen-
dicular shock wave obtained in numerical simulations~from Ref. 24 with
kind permission from Kluwer Academic!. The foot, ramp, and overshoot are
indicated.
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the shock formation can be considered as a three-stage pro-
cess, each stage corresponding to a particular part of the
dispersion relation.

In this paper we consider the problem of the formation
of oblique shocks such that cos2 u@m.

B. Large scale phenomena and evolution of the MHD
type system

Consider a one-dimensional plasma flow such that ini-
tially it is plane-polarized and consists of three regions,
namely, two regions of approximately steady flow with con-
siderably different velocities and the third region between the
two. Suppose further that the gradients in the third region are
small enough, i.e., a characteristic length of the disturbance
corresponds to the region I on the dispersion curve~see Fig.
2!, i.e., this length is much greater than the characteristic
lengths related to both dispersion and dissipation. Choose a
reference frame such that the only nonvanishing components
of the initial disturbance of the magnetic field and plasma
velocity areBx,y andVx,y , respectively. Such a flow is gov-
erned by the well-known equations of magnetohydrodynam-
ics of an ideal medium~see, e.g., Refs. 29, 30!,

]r

]t
1

]

]x
~rVx!50,

]Vx

]t
1Vx

]Vx

]x
52

cs
2

r

]r

]x
2

By

4pr

]By

]x
,

]Vy

]t
1Vx

]Vy

]x
5

Bx

4pr

]By

]x
,

]By

]t
1Vx

]By

]x
5Bx

]Vy

]x
2By

]Vx

]x
,

wherer is the plasma density,cs is the sound velocity, and
Bx5const. This is the hyperbolic quasilinear system of equa-
tions. The properties of such systems are studied in detail
~see, e.g., Refs. 29, 31!. It is well-known that for a multitude
of initial disturbances the corresponding smooth solutions to
these equations exist only during finite time intervals. At the
end of such an interval a gradient catastrophe occurs, i.e.,

infinite gradients develop. Then the plasma flow overturns
resulting in the formation of a multiflow region. We illustrate
this phenomenon by an example of a so-called simple waves.

Using a standard technique,29 we find that the magnetic
field in a simple wave obeys the equation,

]By

]t
1Vf~By!

]By

]x
50,

which has a solution,

x2Vf~By! t5F~By!, ~3!

whereF(By) is an arbitrary function of the magnetic field.
The plasma density and velocity can be easily found using
the Riemann invariants, which are constant in a region occu-
pied by a simple wave. Since the thermal effects do not
change the qualitative features of the phenomenon, they can
be neglected for simplicity. In this case the Riemann invari-
ants are

R15
~Bx

21By
2!1/2

r
, ~4!

R25Vx6S R1

p D 1/2

~Bx
21By

2!1/4, ~5!

R35Vy7
Bx

2 S R1

p D 1/2E dBy

~Bx
21By

2!3/4
. ~6!

The phase velocity of the wave is given by

Vf5R27
3

2 S R1

p D 1/2

~Bx
21By

2!1/4. ~7!

Choose the lower signs in Eqs.~5!–~7! to consider a wave,
which propagates with respect to the plasma in the positive
direction of thex-axis. From Eq.~3! it follows that an infinite
gradient of the magnetic field~as well as the gradients of the
other parameters describing the plasma flow! develops for
the first time at

t5min
F8~By!

V8~By!
.

This gradient catastrophe could happen if the dispersion
would not counteract to prevent it. These effects cannot be
described by the magnetohydrodynamic equations. When
characteristic lengths become shorter thanc/vpi , one should
change the model equations to take into account the disper-
sion due to two-fluid nature of the plasma.

C. Dispersion effects and whistler-type precursor
wave trains

If the characteristic length of the flow becomes compa-
rable with the dispersion length, the system goes to the re-
gion II on the dispersion curve~see Fig. 2!, where its evolu-
tion is governed by a more complicated system of the two-
fluid magnetohydrodynamics.

If the initial disturbance has a small amplitude, its steep-
ening will stop when the characteristic length of the region
with the largest gradients attains the dispersion length

FIG. 2. The dependence of phase velocity of the oblique fast magnetosonic
waves on the wave number.
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cucosuu/vpi ~as it was stated above, here and in the following
we assume that the dissipation is weak, i.e., the dissipation
results in the large scale variations of the plasma parameters,
but it does not influence considerably the fine structure of the
front!. In this case the equations describing the evolution of
the shock wave structure can be simplified by neglecting the
electron inertia~see, e.g., Refs. 1, 32!. Thereby we obtain32

dV

dt
5

1

4pr
@rot B3B#,

rot B5
4pne

c
~V2Ve!,

]B

]t
5rot @V3B#2

mic

e
rot

dV

dt
1

mec

e
rot

dVe

dt
,

whereV5(meVe1miV i)/(me1mi) is the bulk plasma ve-
locity, Ve,i are the fluid velocities of the electron and ion
components.

Then we can introduce two small parameters,

«15
b

vAl 2
!1, «25

By2B0 sin u

B0
!1,

where b5vAc2 cos2 u/2vpi
2 , l is a characteristic length of

the disturbance,B0 is the unperturbed magnetic field,u is the
angle between the unperturbed magnetic field and the direc-
tion of the wave propagation.

Retaining the terms up to the second order with respect
to these parameters, and considering only the waves propa-
gating in the positive direction, after some algebra we
obtain32

]b

]t
1S vA1

3vA sin u

2B0
bD ]b

]x
2b

]3b

]x3
50, ~8!

where b5By2B0 sinu. This equation is equivalent to
Korteweg–de Vries equation, describing nonlinear waves
with a positive dispersion. It is well-known that all solutions
to Korteweg–de Vries equation have no sharp crests and do
not break. This means that the dispersion of short waves is
strong enough to prevent the growth of gradients due to non-
linear effects. However, this equation is valid only for small
and smooth disturbances.

To analyze the evolution of large-amplitude distur-
bances, we should at least begin with the equations of two-
fluid magnetohydrodynamics, where the effects of electron
inertia are also taken into account. It is generally believed
that under some conditions these equations have no smooth
solutions. In particular, it is well-known that stationary solu-
tions can have sharp crests~see, e.g., Refs. 1, 2!. In addition,
we should expect that these equations describe also the wave
breaking of the hyperbolic kind with the development of the
vertical slope~a gradient catastrophe! and a multivalued pro-
file. Up to now the rigorous proof of the corresponding math-
ematical theorem has not been obtained yet. However, we
can suggest several arguments confirming this statement.

From the set of equations of the two-fluid magnetohy-
drodynamics, after a cumbersome but straightforward alge-
bra of the reductive perturbation method33 we obtain a model
equation,

]u

]t
1u

]u

]x
1E

2`

1`

K~x2j!
]u~ t,j!

]j
dj50. ~9!

This equation was proposed by Whitham34 as the sim-
plest equation which combines two important factors, the
typical hydrodynamical nonlinearity and dispersion of the
arbitrary type. Indeed, the phase speed of the linear waves is
given by the Fourier transform of the kernel of the integral
operator,

vph~k!5E
2`

1`

K~x!exp~2 ikx! dx,

andvice versa,

K~x!5
1

2pE2`

1`

vph~k!exp~ ikx! dk. ~10!

Later35 it was realized that the energy dissipation and pump-
ing can also be described by Eq.~9!. Because the main goal
of the paper is to study the role of the dispersion in the
formation and breaking of the shock front, we neglect the
dissipation in order to simplify the problem considered.

Whitham34 formulated the conjecture that Eq.~9! with
the kernelKg(x) describing the dispersion of water waves,

vph~k!5Fg

k
tanh~kh0!G1/2

,

whereg is the gravitational acceleration andh0 is the depth
of the water, has stationary solutions with sharp crests as
well as breaking nonstationary solutions. He proved that
peaking of stationary solutions takes place ifK(x) behaves
like uxu2a asx→0, wherea.0. Since in the vicinity of the
origin the normalized kernel corresponding tog5h051 has
the asymptoticsKg(x);(2px)21/2, the first part of the con-
jecture is thereby proved. The rigorous proof of the second
part requires quite ingenious arguments and was given by
Naumkin and Shishmarev.35,36Moreover, they proved a more
general theorem that a solution of the Whitham equation
does break if the slope of the profile of an initial disturbance
is sufficiently large and negative at some point and at the
origin of coordinates the kernel of the integral operator has a
singularity, which is weaker thanuxu2a, where 1/2<a,3/5
~the exact statement of the theorem can be found in Ref. 35
and is also given in Appendix A!.

It seems to be quite natural that the order of singularity
of the kernel is of particular importance. Indeed, breaking as
well as peaking are small scale phenomena corresponding to
large wave numbers. On the other hand, it is the short-wave
part of the dispersion relation that determines the behavior of
the kernel in the vicinity of the coordinate origin. The
Korteweg–de Vries equation~8! takesvph5vA1bk2 and

K~x!5vAd~x!2bd9~x!

@hered(x) is the Dirac delta-function# and is known to have
neither peaking nor breaking solutions. In other words, the
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dispersion of short waves is sufficiently strong to prevent
developing infinite gradients due to nonlinearity. On the con-
trary, if the kernel has no singularity at the origin and is a
monotone decreasing function ofuxu, Seliger37 proved that in
this case the Whitham equation does have breaking solutions
~see also Ref. 38!. Since nonsingular integrable kernels sat-
isfy the conditions of the above-mentioned theorem proved
by Naumkin and Shishmarev, this theorem should be consid-
ered as a substantial generalization of the Seliger result.

Taking into account these considerations, in the follow-
ing we use a simplified dispersion relation,

vph5
ucosuu

m1/2

uku

11k2
, ~11!

which is valid for kc/vpi@1. Herevph5v/kvA is the di-
mensionless phase velocity andk5kc/vpe is the dimension-
less wave number. Substituting Eq.~11! into Eq. ~10!, after
some straightforward calculations we obtain

K~x!52
1

2p

ucosuu

m1/2
@exp~2x!Ei~x!1exp~x!Ei~2x!#,

where Ei(x) is the exponential integral. Using the asymptoti-
cal expansion39

Ei~x!;C1 lnuxu1x1•••

asx→0, we can easily obtain

K~x!;2
1

p

ucosuu

m1/2
@C1 lnuxu1o~x!#,

where C is the Euler constant. Since lnuxu/uxu2a→0 asx→0
for all a.0, the condition 1 of the theorem is satisfied~see
Appendix A!. It is easily seen that the condition 2 is also
satisfied. Thus, nonlinear waves, which are described by the
model Eq.~9! with the dispersion typical for whistler waves,
do break like hyperbolic waves provided the initial distur-
bance is sufficiently steep~see condition 3 of the theorem in
Appendix A!.

Although the Whitham equation with the whistler disper-
sion relation is model rather than exact, it can qualitatively
describe the gradient catastrophes within the front of the su-
percritical nonstationary shock waves. It is worth noting that
the description of this system is quite similar to that of shal-
low water waves, for which similar theoretical conclusions
were approved by direct experimental results.

Let us now proceed to more moderate disturbances that
are not steep enough to satisfy the condition 3 of the
Naumkin–Shishmarev theorem. Suppose further that in the
system there exists some kind of dissipation provided by, for
example, an anomalous resistivity. To take the dissipation
into account, we can modify the kernel of the Whitham equa-
tion ~see Ref. 35 and Appendix A for details!. In this case the
disturbance can asymptotically approach some shock-like so-
lution with a steady profile. Because for oblique propagation
the dispersion of the fast magnetosonic wave is positive,
weak shocks have a wave-train precursor damping out
upstream.1,2 To determine the wave number of these oscilla-

tions far upstream of the shock ‘‘ramp,’’ we should equate
the upstream plasma velocity to the phase velocity given by
the dispersion relation and solve the equation obtained.
There exists an additional condition for a precursor to exist,
namely, the group velocity should exceed the corresponding
phase velocity~see Appendix B!. Using Eq.~11! it can be
easily shown that this condition is satisfied for all wave vec-
tors within the range 0<k<1. The whistler phase velocity is
the highest fork51, the corresponding Mach number is
called the whistler critical Mach number17 and is given by

Mw5
ucosuBnu

2m1/2
.

It is well-known that the whistler precursor wave train is
an essential part of the oblique subcritical shocks.1,2 The very
similar precursors were also evidenced for the supercritical
shocks.20,21 We suggest a new proof of the criteria for exis-
tence of the precursor and wake wave trains~see Appendix
B!. From this proof it is evident that these criteria are quite
general, in particular, they hold not only for subcritical shock
waves but for supercritical shocks as well, because a small
fraction of reflected ions does not change considerably the
dispersion relation for the whistler waves~see Appendix B
for more details!.

The precursor wave train predecelerates the plasma flow
upstream of the ramp of the shock and makes the contribu-
tion to the energy dissipation. Karpmanet al. suggested that
this dissipation can be related to the parametric instability of
the whistler waves40 and/or wave-particle interaction.41 If the
Mach number exceedsMw , this mechanism is switched off
and the other components of the shock front structure~e.g.,
the ramp! should provide stronger plasma flow deceleration
and dissipation. This leads to the growth of gradients and as
a result, the ramp of the shock is replaced by a soliton-like
nonlinear whistler wave train with a characteristic wave
length of about severalc/vpe . These waves were observed
within the Earth and Uranian bow shocks.10,21 Using two-
fluid MHD equations, we analyze the properties of these
waves in the plasma with cold ions, finitebe , and adiabatic
equation of state for electrons~see Appendix C!. It was
shown that the amplitude of these waves increases with
Mach number and can significantly exceed the value of the
magnetic field ahead of the shock. However, when Mach
number exceeds the critical valueMnw , such waves do not
exist anymore. For cold plasma the corresponding Mach
number, which can be referred to as a nonlinear whistler
critical Mach number, is given by

Mnw5
ucosuBnu

~2m!1/2
.

As it was shown above, the critical Mach numberMnw cor-
responds also to the characteristic Mach number above
which an initial disturbance resembling the quasistationary
whistler wave train becomes unstable with respect to a gra-
dient catastrophe, which takes place within a finite time in-
terval. Thereby we come to the conclusion thatMnw can be
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taken as the estimate of the critical Mach numberMns cor-
responding to the transition between stationary and nonsta-
tionary behavior of the shock front.

When Mnw is exceeded, the dispersion and dissipation
due to reflected ions and anomalous resistivity are no longer
sufficient to stop the wave steepening due to nonlinear ef-
fects and an additional mechanism of the energy dissipation
is required. The additional dissipation can be provided by
several effects accompanying the shock front nonstationarity.
Indeed, a nonstationary shock should emit the whistler wave
trains thereby evacuating the energy from the ramp. How-
ever, when the Mach number exceeds the value,

Mgr5
ucosuBnu

8 S 27

m D 1/2

,

corresponding to the maximum group velocity of the whis-
tler waves, the evacuation of the energy far upstream be-
comes impossible. The short nonstationary whistler ‘‘precur-
sor’’ can still exist in the foot, where the plasma flow is
slightly decelerated, however, this wave train cannot propa-
gate far upstream.

In the next section we present the results of full particle
numerical simulations that give strong support to our state-
ment that the transition from stationary to nonstationary be-
havior of the shock waves takes place when the Mach num-
ber becomes larger thanMnw .

Lastly, we briefly dwell upon the role of reflected ions in
the shock wave structure and dynamics. It is well-known that
the behavior of the reflected ions determines the large scale
structure of the quasistationary supercritical shock waves and
supply the major part of the dissipation required~see, e.g., a
review, Ref. 17!. On the other hand, it is the ion dynamics
that determine the time scale for quasiperiodic overturning of
the high Mach number shocks. However, since the fraction
of the reflected ions usually does not exceed 10%–20% for
quasistationary shock waves, as a first approximation, we
can neglect its contribution when deriving the criterion for
transition between stationary and nonstationary shocks. In-
deed, the corresponding critical Mach number is determined
first of all by dispersion and nonlinearity of the fast magne-
tosonic waves and these properties are predominantly deter-
mined by the bulk particle populations.

FIG. 3. The stackplot for the componentBz of the mag-
netic field in the shock wave withuBn557° andMA

52.7.
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III. TRANSITION FROM STATIONARITY TO
NONSTATIONARITY OF THE SHOCKS: NUMERICAL
SIMULATIONS

Present simulations have been performed by use of 1D
fully electromagnetic relativistic particle code, where both
electrons and ions are treated as particles. Standard finite-
size particle techniques are used.42,43All three velocity com-
ponents for all particles are taken into account but the prob-
lem considered is one-dimensional, all the variables
depending onx. The field components are separated into two
groups, namely, the transverse components,Ey,z and By,z ,
and longitudinal components,Ex andBx . To find the trans-
verse components, the full set of Maxwell’s equations is
solved. Longitudinal component of the magnetic fieldBx is
constant and the corresponding component of the electric
field obeys Poisson’s equation.

Initial and boundary conditions are similar to those al-
ready described previously.22,23 In short, the simulation box
is separated into two adjacent parts, there is a vacuum in one
of them and plasma in the another one. The latter box is
bounded by reflecting walls preventing the plasma from pen-
etrating into the former box. To drive a shock, a magnetic

piston is generated by applying an external current pulse in
the vacuum near the boundary between the boxes.

The spatial grid is uniform. All the quantities in the code
are normalized. In particular, the length is measured in the
spatial grid incrementsa, that is, the width of the cell. In the
figures in the following, shown are the normalized differ-
ences between thez component of the magnetic field and its
upstream value. The normalization was performed by multi-
plying the differences by the factore/mevpe

2 a, wheree is the
proton charge. It is worth noting that for brevity we shall
speak in the following about the magnetic field rather than
the normalized difference. The ion momentum is normalized
by dividing it by mevpea. More details related to the code
can be found elsewhere.22

The present simulations are performed under the follow-
ing conditions. Size of the simulation box containing the

plasma isL̃58192. Initially, there areñe,i510 particles in
each cell. The ratios of the electron and ion temperatures and
masses areTe /Ti51.58 and m5me /mi50.005, respec-
tively. The ratio of thermal and magnetic pressures isb
50.028.

In the simulations performed by Leroy13 it was shown

FIG. 4. The stackplot for the componentBz of the mag-
netic field in the shock wave withuBn557° andMA

53.3.

1199Phys. Plasmas, Vol. 9, No. 4, April 2002 Nonstationarity of strong collisionless quasiperpendicular . . .



that a self-sustained shock is formed after a transitory period
lasting about several ion gyroperiods calculated with the use
of downstream magnetic field. In the present simulations the
total run time covers about 4 ion gyroperiods calculated with
the use of upstream magnetic field.

As it was noted above, there exists a close relationship
between the properties of linear waves and the structure of
the shock waves in plasmas.1,2 In particular, the dispersion
relation influences the shape of the subcritical shock waves.
In numerical modeling, a special care should be taken to
avoid the distortion of the dispersion relation due to the
finite-difference approximation of the equations solved.11

Because the role of whistler waves in the formation of shock
wave structure is of special interest, the discretization should
not distort the dispersion relation for fast magnetosonic
waves with the wave numbers within the range 0<kc/vpe

<3. Note that the phase velocity of the waves is maximum
at k.vpe /c. To estimate the influence of the finite-
difference approximation on a dispersion relation, one can
multiply the phase velocity by a factor sin(ka)/ka, wherea is
the grid increment.11,44 In the present paper we choosea
5c/3vpe . The direct calculations show that these effects in

the range mentioned above can be considered as nonsignifi-
cant in this case.

Two series of runs were performed, where the angleuBn

between the shock normal and the magnetic field upstream of
the shock is equal to 57° and 80°, respectively, and Mach
number varies in the wide range from about 1.6 to 8.6 in the
both series. Using the simulation results, we describe the
evolution of the shock wave structure as the Mach number
increases.

We begin the analysis from theuBn557° shock waves.
In this case the first critical Mach number isM cr'2.54, the
linear and nonlinear whistler critical Mach numbers areMw

'3.85, Mnw'5.45, respectively.
In the stackplot shown in Fig. 3 we observe the evolu-

tion of the magnetic field profile of the supercritical shock,
MA.2.7. Although the shock is supercritical, the critical
Mach number is only slightly exceeded and the fraction of
reflected ions, which are responsible for a typical structure of
supercritical shocks, is quite small in the case considered.
The quasisteady ‘‘ramp’’ is formed at the very beginning of
the computational run. However, the wave train precursor
expands upstream up to at leastt.2p/vBi with a higher

FIG. 5. The stackplot for the componentBz of the mag-
netic field in the shock wave withuBn557° andMA

55.5.
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speed than that of the shock ramp. This result is quite natural
because the critical whistler Mach number is not exceeded
and the stationary shock wave should have a wave train pre-
cursor standing upstream of the ramp.

The next example is a quite typical supercritical shock of
Alfvén Mach numberMA.3.3. In the stackplot forBz com-
ponent of the magnetic field we can clearly see the formation
of the ramp, overshoot, and undershoot~see Fig. 4!. The
other characteristic feature of supercritical shocks, the foot,
is also observed when analyzing the magnetic field profiles.
In the foot region of the shock there is a wave train, which
modulates the mean ion velocity and predecelerates the in-
coming flow. It is worth noting that in the case considered
both linear and nonlinear whistler critical Mach numbers are
not exceeded and the shock front structure is almost station-
ary.

For higher Mach numbers,MA.5.5 and 8.6, when both
the first critical Mach number and the nonlinear whistler
Mach number are exceeded, the shock waves are nonstation-
ary. For the shock wave withMA.5.5, stackplot is shown in
Fig. 5. Similar nonstationarity of the shock front is also evi-
denced for higher Mach numbers. Figure 6 illustrates the
cycle of the reformation of the magnetic field structure with
the emission of the whistler wave train towards the upstream
flow. During the cycle, a new ramp is formed at the forward
edge of the precursor wave. Here a small-amplitude pertur-
bation grows up and becomes larger than the old shock front.

Now we proceed to shock waves withuBn580°. In this
case the first critical Mach number isM cr'2.74, the whistler
linear and nonlinear critical Mach numbers areMw'1.23
andMnw'1.74.

The stackplot in Fig. 7 shows the evolution of the mag-
netic field profile for shock wave with a relatively low Mach
number,MA.1.6. SinceMA,M cr , this shock is subcritical
and the fraction of reflected ions is negligible. We observe
that the ‘‘ramp’’ can be considered as almost stationary for
t.0.2•2p/vBi . Because the whistler critical Mach number
is exceeded, there is no stationary wave train upstream of the
ramp. However, the maximum group velocity of whistler
waves is greater than the velocity of shock wave propaga-
tion, thus, a nonstationary wave precursor may be observed
upstream of the ramp, at least, at the first stages of the shock
formation.

In the next example we consider the supercritical shock
with MA.3.5. In Fig. 8 presenting the evolution of the mag-
netic field profile, it is easily seen that the shock is nonsta-
tionary and a quasiperiodic reformation of the shock front is
observed. The scenario of the reformation is essentially the
same as for high Mach number shocks withuBn557°. At the
first stage shown, the shock has a clearly defined ramp and
upstream of the ramp there is a leading ‘‘wave train’’ of a
small amplitude~see also Fig. 9!. A population of reflected
ions is observed between the ramp and the peak of the lead-
ing wave train~see the ion phase space display in Fig. 9!. In
this case the whistler precursor consists of only one peak

FIG. 6. The magnetic field profiles for a shock wave withuBn557° and
MA55.5 at ~a! t52496vpe

21 , ~b! t52808vpe
21 , ~c! t53096vpe

21 , and ~d!
t53480vpe

21 .
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because in the simulation the whistler phase velocity along
the magnetic field has the same order of magnitude as the
thermal speed of electrons, so that the damping of the whis-
tlers is considerable. The amplitude of the leading wave train
is gradually increasing. At some time a new population of
reflected ions appears upstream of the precursor~see Fig.
10!. When its amplitude becomes comparable with that of
the ramp and, finally, exceeds it, thereby a new ramp and a
new precursor are formed~see Figs. 11 and 12!. The pro-
cesses described are repeated quasiperiodically.

Finally, the results of the simulations for both chosen
values ofuBn confirm our statement that the transition from
stationary to nonstationary behavior of the quasiperpendicu-
lar shock occurs when nonlinear whistler critical Mach num-
ber is exceeded.

IV. CONCLUSION

In the present paper we study the problem of the nonsta-
tionarity of quasiperpendicular high Mach number shocks.
Previously, Kennelet al.17 introduced a critical Mach num-
ber Mns above which shock waves become nonstationary.

However, up to now the estimates ofMns were not sug-
gested. In the present paper,Mns is determined for oblique
quasiperpendicular fast magnetosonic shock waves.

Theoretical analysis and experiments show that the
whistler waves are an intrinsic feature of the oblique colli-
sionless shock waves. For supercritical shock waves, the
ramp region, where an abrupt increase of the magnetic field
occurs, can be treated as a nonlinear whistler wave of large
amplitude. In addition, oblique shock waves can possess a
linear whistler precursor. There exist two critical Mach num-
bers related to the whistler components of the shock wave,
the first is known as a whistler critical Mach number intro-
duced by Kennelet al.,17 Mw , and the second can be re-
ferred to as a nonlinear whistler critical Mach number,Mnw .
It is worth noting thatMw,Mnw . When the whistler critical
Much number is exceeded, a stationary linear wave train
cannot stand ahead of the ramp. Above the nonlinear whistler
critical Mach number, the stationary nonlinear wave train
cannot exist anymore within the shock front. In this case the
dispersion cannot prevent steepening of the shock front due
to nonlinear effects and a gradient catastrophe occurs. As a
result, the shock wave becomes nonstationary. Using model

FIG. 7. The stackplot for the componentBz of the mag-
netic field in the shock wave withuBn580° andMA

51.6.
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equation description, we carried out the analysis of the dy-
namics of oblique shock waves and found that this equation
does describe the wave breaking of the hyperbolic kind with
the development of the vertical slope and a multivalued pro-
file.

To obtain theb- and uBn-dependencies ofMnw corre-
sponding to the transition between the stationary and nonsta-
tionary behavior of the shock wave, in the framework of the
two-fluid magnetohydrodynamics we study the structure of
nonlinear whistlers in plasmas with finite electron beta and
adiabatic equation of state~see Appendix C!.

In accordance with the results of the theoretical analysis,
numerical simulations making use of the 1D full particle
electromagnetic code demonstrated that the transition to the
nonstationarity is always accompanied by the disappearance
of the stationary whistler wave train within the shock front,
i.e., the nonlinear whistler critical Mach numberMnw is
closely related toMns. The simulations show that front of
the high Mach number shocks overturns quasiperiodically
and the dynamics of the whistler wave trains within the front
are of particular importance as was supposed previously.11,20

Recent experimental observations45 of the nonstationary

whistler waves in the vicinity of the Earth bow shock con-
firm this model of the shock front nonstationarity.

In addition, we suggested a new proof of the criteria for
small-amplitude linear precursor or wake wave trains to exist
~see Appendix B!. It was also shown that these criteria are
quite universal and can be considered as necessary and suf-
ficient conditions that turn out to be independent on both the
nature of the waves and dissipative effects provided the me-
dium far ahead and far behind the shock is stable and the
dissipation is weak enough for weakly damping waves to
exist.
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FIG. 8. The stackplot for the componentBz of the mag-
netic field in the shock wave withuBn580° andMA

53.5.
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APPENDIX A: GRADIENT CATASTROPHE FOR THE
WHITHAM EQUATION

Consider the Whitham equation,

]u

]t
1u

]u

]x
1Ku50,

whereK is a linear pseudodifferential operator. This operator
can be written in two forms,

Ku5E
2`

1`

K~x2j!
]u~ t,j!

]j
dj

or

Ku5
1

2pE2`

1`

exp~ ikx!K̂~k!û~ t,k! dk,

where

û~ t,k!5E
2`

1`

exp~2 ikx!u~ t,x! dx

and K̂ is called a symbol of the operatorK. Let K̂15R(K̂)
and K̂25I(K̂). If only real solutions to the Whitham equa-

tion are considered,K̂1 andK̂2 are called the dissipative and
conservative parts of the symbolK̂, respectively.

For the Whitham equation Naumkinet al.35 proved the
following:

Theorem: Suppose that
~1! the kernelK(x) satisfies the conditions

K~x!PC1~R1\0!ùL1~R1!, uK~x!u<cuxu2a,

uK8~x!u<cuxu212a, xP@2a,a#\0,

E
uxu>a

uK8~x!u dx<c,

where

a53/52g, gP~0,1/10#, c.0, aP~0,1#;

~2! the integral operator is dissipative, i.e., the symbol of the
operator satisfies the inequality

K̂1~p!>0 for uku>h.0;

~3! the initial perturbationū(x) belongs to the Sobolev space
H`(R1) and has a sufficiently large steepnessm0

5uminxPR1
ū8(x)u,

m0
2.

7c

ga
~u11AJ!1S 2b

g D 2

,

where

FIG. 9. The magnetic field profile~bottom panel! and Px–x phase space
~top panel! for a shock wave withuBn580° andMA53.5 att52860vpe

21 .

FIG. 10. The magnetic field profile~bottom panel! and Px–x phase space
~top panel! for a shock wave withuBn580° andMA53.5 att53240vpe

21 .
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b5 sup
uku<h

~0,2K̂1~k!!, u15 max
xPR1

uū8~x!u,

J5E
2`

1`S d3ū~x!

dx3 D 2

dx.

Then there exists a solution u(t,x)
PC`(@0,T0);H`(R1)) breaking at the moment of timeT0.
The following two-sided inequalities hold forT0:

m0
21~11g!21<T0<m0

21~12g!22.

APPENDIX B: PRECURSORS AND WAKES

Suppose that the dissipation is negligible and the waves
considered have a dispersion relationv5v(k). Then the
phase and group velocities are

vph5
v

k
, vgr5

]v

]k
,

respectively. When considering a precursor~wake!, suppose
further that the velocity of the plasma far ahead~behind! the
shock isU1,2 in the frame where the shock is at rest. Then a
steady precursor~wake! wave train can stand in the flow
provided there exists a wave numberk0 such that

v

k U
k5k0

5U1,2, ~B1!

and in addition

]v

]k U
k5k0

.
v

kU
k5k0

~B2a!

for a precursor and

]v

]k U
k5k0

,
v

k0
U

k5k0

~B2b!

for a wake. The condition~B1! is trivial—the phase velocity
of the waves considered equals the velocityU0 of the flow.
The second criterion~B2! also becomes obvious if we con-
sider a formation of a shock wave from a discontinuity sat-
isfying the Rankine–Hugoniot conditions and to this end
choose a reference frame where the shock is stationary.
When emitting the waves both upstream and downstream,
this step-like disturbance will be transformed into a steady
shock with a precursor and/or wake wave trains. Since the
wave number like the energy of the waves is transferred with
the corresponding group velocity~see, e.g., Ref. 34!, the
waves can penetrate upstream and form a precursor if their
group velocity exceeds the flow velocity ahead of the shock.
To be convected downstream thereby forming a wake, the
waves should have the group velocity which is less than that
of the flow behind the shock.

It appears that criteria for a steady wave train precursor
or wake of the shock wave to exist were developed for the

FIG. 11. The magnetic field profile~bottom panel! and Px–x phase space
~top panel! for a shock wave withuBn580° andMA53.5 att53624vpe

21 .
FIG. 12. The magnetic field profile~bottom panel! and Px–x phase space
~top panel! for a shock wave withuBn580° andMA53.5 att54008vpe

21 .
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first time by Tidmanet al.46 To prove the criteria, they con-
sider a model shock wave, which was represented by an
infinite plane discontinuity, and a model dispersion relation
in the form,

D~v,k!5)
i

@v2v i~k!1 i«#,

where a small positive« describes a weak dissipative effects.
They suppose that the electric current within the shock tran-
sition oscillates periodically, and using the linearized
Vlasov–Maxwell equations, calculate the electromagnetic
field generated by this current. The relationships obtained are
rather cumbersome, but the above mentioned criteria follow
from them immediately. Perezet al.47 carried these calcula-
tions further using the exact dispersion relation for a cold
plasma.

As was shown above, the criteria~B1! and~B2! are easy
to understand from the physical point of view and can be
considered as necessary conditions for a precursor and/or
wake to exist for shock waves in a plasma as well as in other
media. However, the question remains as to the correspond-
ing sufficient conditions. Indeed, using a stationary point
analysis ahead and behind the shock waves in the dissipative
magnetohydrodynamics, Coroniti48 showed that the different
dissipative effects~resistivity, thermoconductivity, and vis-
cosity! are not equivalent in the formation of the shock
waves, e.g., the viscosity alone cannot form a fast MHD
shock wave but the resistivity can. On the other hand, the
criteria ~B1! and ~B2! does not contain any information
about dissipation. One can suggest the two possibilities.
First, these criteria are universal and sufficient for a precur-
sor ~wake! to exist upstream~downstream! the dispersive
shock wave no matter what kind of waves is considered and
what kind of dissipation is significant. Second, these criteria
are only necessary and in each case Eq.~B2! should be re-
placed by a more strong condition, which is characteristic for
a particular kind of the waves and/or dissipation. It can be
easily shown that valid is the first statement.

To begin with, suppose that all parameters describing
a wave depend upon time and coordinates likef 5 f 0

3exp(2ivt1ikx) and the dispersion relation for these waves
is

D~v,k!50. ~B3!

If the dissipation is present but weak for the waves consid-
ered, Eq.~B3! can be written approximately as

D0~v,k!1D1~v,k!50, ~B4!

whereD0(v,k) is a function which determines the disper-
sion relationv5v0(k) when the dissipation is absent and
the dissipation is responsible for the second termD1(v,k)
the absolute value of which is much smaller than that of the
first term. For plasma waves, the termD0(v,k) is deter-
mined by the Hermitian part of the dielectric tensor and the
term D1(v,k) depends on both Hermitian and anti-
Hermitian parts of the tensor~see, e.g., Ref. 27!. Equation
~B4! can be solved by means of a perturbation method. At
the first step, the dissipation is neglected, and from the equa-

tion D0(v,k)50 we obtain an approximate dispersion rela-
tion v5v0(k) giving the real partv0 of the wave frequency,

v5v01 ig, ~B5!

where g is the increment. Substituting Eq.~B5! into Eq.
~B4!, in the next approximation the increment is obtained,

g52
D1

]D0 /]v U
(v0(k), k)

. ~B6!

If medium is in a stable state as we suppose to be the case far
ahead and far behind the shock, all disturbances should
damp,g,0. Hence,

D1

]D0 /]v U
(v0(k), k)

.0.

Suppose that in the reference frame, where the unper-
turbed plasma is at rest, the shock wave is moving along the
x axis in the positive direction. Then in the shock frame both
the precursor and wake are stationary,v50, and the velocity
of the medium upstream and downstream of the shock is
negative,U1,2,0. Using the formulas for the nonrelativistic
Doppler effect, we find that in the reference frame, where the
medium upstream or downstream is at rest, the precursor and
wake waves have real frequencies,

v5kU1,2, ~B7!

respectively, but the corresponding wave numbers will be
complex, k5k01 ik, wherek is an imaginary part of the
wave number. Substituting Eq.~B7! into the dispersion rela-
tion ~B4! and making use of the technique utilized above
when finding the increment, we obtain

k5
D1

U1,2

]D0

]v
2

]D0

]k
U

(k0U1,2, k0)

.

Using Eq.~B6! and the definition of the group velocity, this
relationship can be rewritten as

k5
g

vgr2vph
U

(k0U1,2, k0)

.

If the group velocity exceeds the velocity of the flow, we see
that k.0 and the amplitude of the waves will vanish asx
→1` as should be the case for the precursor. For the wake
wave trains, which vanish asx→2`, the opposite condition
should hold. The criteria~B2! are thereby proved.

Finally, it is worth noting that the well-known criteria for
existence of the precursor and wake wave trains in the vicin-
ity of a dispersive shock are quite universal and can be con-
sidered as necessary and sufficient conditions that turn out to
be independent on both the nature of the waves and dissipa-
tive effects provided the medium far ahead and far behind
the shock is stable and the dissipation is weak enough for
weakly damping waves to exist.
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APPENDIX C: NONLINEAR WHISTLER WAVES IN A
PLASMA WITH HOT ELECTRONS

Oblique nonlinear whistler waves in a cold plasma were
studied for the first time by Kazantsev.49 If ions are cold and
electrons are ‘‘warm’’ and isothermal, the similar problem
was solved by Kakutaniet al.50 In this appendix, we extend
these results for electrons with an adiabatic equation of state.

For one-dimensional flows, the two-fluid MHD equa-
tions can be written as follows:

]n

]t
1

]

]x
~nVx!50, ~C1!

]Vx

]t
1Vx

]Vx

]x
5

e

~me1mi !c
@~Viy2Vey!Bz2~Viz2Vez!By#

2
1

n~me1mi !

]p

]x
, ~C2!

]Ṽi

]t
1Vx

]Ṽi

]x
5

e

mi
Ẽ1 i

e

mic
~VxB̃2ṼiBx!, ~C3!

]Ṽe

]t
1Vx

]Ṽe

]x
52

e

me
Ẽ2 i

e

mec
~VxB̃2ṼeBx!, ~C4!

1

c

]Ẽ

]t
5 i

]B̃

]x
2

4pne

c
~Ṽi2Ṽe!, ~C5!

1

c

]B̃

]t
52 i

]Ẽ

]x
, ~C6!

Bx5B0 cosu5const, ~C7!

]p

]t
1Vx

]p

]x
1gp

]Vx

]x
50, ~C8!

whereg is the specific heat ratio for electron component. We
assume that quasineutrality holds and for both electrons and
ions n denote the number density. Thex-components of the
fluid velocity of electrons and ions are approximately equal
and denoted byVx . For brevity, we introduce the following
complex parameters: transverse electric fieldẼ5Ey1 iEz ,
transverse magnetic fieldB̃5By1 iBz , and transverse fluid
velocitiesṼ5Vy1 iVz of electron and ion components.

In addition to the continuity Eq.~C1!, the system~C1!–
~C8! has the following conservation relations for momentum
and energy:

]

]t Fn~me1mi !Vx1
1

4pc
~EyBz2EzBy!G

1
]

]x Fn~me1mi !Vx
21p1

1

8p
~ uBũ21uEũ2!G50,

]

]t Fn~meṼe1miṼi !2
iBx

4pc
ẼG

1
]

]x
FnVx~meṼe1miṼi !2

BxB̃

4p
G50,

]

]t H nF ~me1mi !
Vx

2

2
1me

uṼeu2

2
1mi

uṼi u2

2
G

1
p

g21
1

uBũ21uEũ2

8p J
1

]

]x H nVxF ~me1mi !
Vx

2

2
1me

uṼeu2

2
1mi

uṼi u2

2
G

1
gpVx

g21
1

c

4p
~EyBz2EzBy!J 50.

For a stationary solution, we can choose a reference
frame such that the time derivatives vanish. Then from Max-
well equations it follows thatẼ5const and we can letEy

50. Assume further that at infinity the plasma is undis-
turbed. Here we can letṼe,i50. Then electric and magnetic
field components are

Bx5B0 cosu, By5B0 sin u, Bz50,

Ey[0, Ez[2
Vx0

c
B0 sin u,

respectively. For definiteness, in the following we assume
that g52.

After some straightforward algebra we can easily obtain

y21z25sin2 u12MA
2~12v !1bS 12

1

v2D , ~C9!

y91Vz81cos2 u~y2sin u!2MA
2~vy2sin u!50,

~C10!

z92Vy81~cos2 u2vMA
2 !z50, ~C11!

wherey5By /B0 andz5Bz /B0 are the dimensionless mag-
netic field components,MA is the Alfvén Mach number,b
58pp0 /B0

2, V5(m1/21m21/2)cosu, and v is the
x-component of the dimensionless plasma velocity normal-
ized to its unperturbed value at infinity. The primes denote
the derivatives with respect to the dimensionless coordinate
introduced by

dj5
eB0

~memi !
1/2vc

dx.

At infinity we havev51, y5sinu, z50, and first and sec-
ond derivatives of the magnetic field vanish. Equations
~C10!–~C11! can be written in the following form:

y91Vz81
]C

]y
50, ~C12!

z92Vy81
]C

]z
50, ~C13!

where

C5c~r !1~MA
22cos2 u!y sin u, ~C14!

andr 25y21z2. It is convenient to write the addendc(r ) in
terms of the plasma velocity,
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c5
b cos2 u

2 S 12
1

v2D 1bMA
2 S 1

v
21D

1MA
2 cos2 u~12v !1

MA
4

2
~v221!.

These equations are similar to that describing the motion of a
charged particle in a uniform magnetic field and nonuniform
potential electric field and have an integral

I 15 1
2 ~y821z82!1C~y,z!

corresponding to the energy conservation of the particle.
For cold plasma (b50) the equations considered have

approximate soliton-like solutions with a characteristic
wavelength of severalc/vpe for Mach number range49

cos2 u

4m
<MA

2<
cos2 u

2m

~here and in the following we assume that cos2 u @m). The
maximum amplitude of these waves,ucosuu/m1/2, is much
greater than the undisturbed value of the magnetic field. We
can use this fact to simplify the problem considered. If we
neglect the second term on the right-hand side in Eq.~C14!,
it is easily seen that Eqs.~C12! and ~C13! will have two
‘‘integrals of motion,’’

I 15 1
2 ~y821z82!1c~r !, ~C15!

I 25r 2S w82
V

2 D , ~C16!

where w5arctan(z/y). Using these integrals, we can easily
obtain

~b2MA
2v3!2 v82

5v2~12v !2@2MA
2v22b~v11!#

3@MA
4v31MA

2~MA
222M0

2!v2

1b~M0
222MA

2 !v1bM0
2#, ~C17!

whereM0
25cos2 u1V2/4'cos2 u/4m.

In the vicinity of the undisturbed state, wherev'1, Eq.
~C17! takes the form

v82'4~12v !2~MA
22M0

2!.

We see that nontrivial solutions can exist only under the
conditionMA>M0.

At the top of the wave the last multiplier on the right-
hand side in Eq.~C17! vanishes,

MA
4v top

3 1MA
2~MA

222M0
2!v top

2 1b~M0
222MA

2 !v top

1bM0
250. ~C18!

This equation is biquadratic with respect toMA and is easy
to analyze. From Eq.~C18!, we can obtainMA-dependence
of the plasma velocity at the top of the wave,v top, find that
these waves exist in the finite Mach number range

M0<MA<Mnw ,

and v top,1, i.e., in the waves the plasma density is in-
creased.

To determineMnw , we note at this boundary two zeros
of Eq. ~C18! coincide. Thereby we obtain theb-dependence
of Mnw ,

Mnw
2 S 2M0

22Mnw
2

2Mnw
2 2M0

2D 3

2b50.

In accordance with the results obtained by Kazantsev,49 we
see thatMnw521/2M0 for b50. If b is finite but not large,
we have

Mnw.21/2M0S 12
3b1/3

27/3M0
2/3D . ~C19!

We observe that for oblique waves such thatM0@1, the
thermal corrections can be small enough even for finiteb if
b!M0

2.
Now we can find theb-dependencies of the plasma ve-

locity and magnetic field at the top of the wave forMA

5Mnw ,

M0
2

v top cr
3 ~v top cr12!

112v top cr
2b50,

r top cr
2 5

27Mnw
4 ~Mnw

2 2M0
2!2

~2Mnw
2 2M0

2!3
.

If b is not too large, from the last equation and~C19! we get

r top cr.2M0S 12
3b1/3

24/3M0
2/3D .

It is easily seen that the magnetic field at the top of the wave
can considerably exceed its value far upstream of the wave
not only in the cold plasma but for finiteb as well.
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23B. Lembége and P. Savoini, Phys. Fluids B4, 3533~1992!.
24C. S. Wu, D. Winske, Y. M. Zhou, S. T. Tsai, P. Rodriguez, M. Tanaka, K.

Papadopoulos, K. Akimoto, C. S. Lin, M. M. Leroy, and C. C. Goodrich,
Space Sci. Rev.37, 63 ~1984!.

25W. A. Livesey, C. T. Russel, and C. F. Kennel, J. Geophys. Res.,@Space
Phys.# 89, 6824~1984!.

26J. D. Scudder, A. Mangeney, C. Lacombe, C. C. Harvey, T. L. Aggson, R.
R. Anderson, J. T. Gosling, G. Paschmann, and C. T. Russel, J. Geophys.
Res.,@Space Phys.# 91, 11019~1986!.

27V. L. Ginzburg,The Propagation of Electromagnetic Waves in Plasmas,
2nd ed.~Pergamon, Oxford, 1970!.

28V. V. Krasnosel’skikh, E. N. Kruchina, G. Thejappa, and A. S. Volokitin,
Astron. Astrophys.149, 323 ~1985!.

29A. I. Akhiezer, A. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N.
Stepanov,Plasma Electrodynamics~Pergamon, Oxford, 1975!, Vols. 1, 2.

30L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media,
2nd ed.~Pergamon, Oxford, 1984!.

31B. L. Rozhdestvensky and N. N. Yanenko,Systems of Quasilinear Equa-
tions ~Nauka, Moscow, 1968! ~in Russian!.

32V. I. Karpman,Non-Linear Waves in Dispersive Media~Pergamon, Ox-
ford, 1975!.

33T. Taniuti, Prog. Theor. Phys. Suppl.55, 1 ~1974!.
34G. B. Whitham,Linear and Nonlinear Waves~Wiley–Interscience, New

York, 1974!.
35P. I. Naumkin and I. A. Shishmarev,Nonlinear Nonlocal Equations in the

Theory of Waves, Transl. Math. Monographs~American Mathematical So-
ciety, Providence, 1994!, Vol. 133.

36P. I. Naumkin and I. A. Shishmarev, Dokl. Akad. Nauk SSSR288, 90
~1986! ~in Russian!; English translation in Sov. Phys. Dokl.31, 384
~1986!.

37R. L. Seliger, Proc. R. Soc. London, Ser. A303, 493 ~1968!.
38S. A. Gabov, Dokl. Akad. Nauk SSSR246, 1292 ~1979! ~in Russian!;

English translation in Soviet Math. Dokl.20 ~1979!.
39I. S. Gradshtein,Tables of Integrals, Series, and Products~Academic,

New York, 1980!.
40V. I. Karpman and R. Z. Sagdeev, Sov. Phys. Tech. Phys.8, 606 ~1964!.
41V. I. Karpman, Space Sci. Rev.16, 361 ~1974!.
42A. B. Langdon and B. F. Lasinski, inMethods of Computational Physics,

edited by B. Alderet al. ~Academic, New York, 1976!, Vol. 16, p. 300.
43A. T. Lin, J. M. Sawson, and H. Okuda, Phys. Fluids17, 1995~1974!.
44C. K. Birdsal, A. B. Langdon, and H. Okuda, inMethods of Computational

Physics, edited by B. Alderet al. ~Academic, New York, 1970!, Vol. 9, p.
241.

45M. Balikhin, S. Walker, T. Dudok de Wit, H. Alleyne, L. Woolliscroft, W.
Meir-Jedrzejowicz, and W. Baumjohann, Adv. Space Res.20, 729 ~1997!.

46D. A. Tidman and T. G. Northrop, J. Geophys. Res.73, 1543~1968!.
47J. K. Perez and T. G. Northrop, J. Geophys. Res.75, 6011~1970!.
48F. V. Coroniti, J. Plasma Phys.4, 265 ~1970!.
49A. P. Kazantsev, Zh. E´ksp. Teor. Fiz.44, 1283~1963! ~in Russian!.
50T. Kakutani, T. Kawahara, and T. Taniuti, J. Phys. Soc. Jpn.23, 1138

~1967!.

1209Phys. Plasmas, Vol. 9, No. 4, April 2002 Nonstationarity of strong collisionless quasiperpendicular . . .


