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Theory and full particle numerical simulations
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Whistler waves are an intrinsic feature of the oblique quasiperpendicular collisionless shock waves.
For supercritical shock waves, the ramp region, where an abrupt increase of the magnetic field
occurs, can be treated as a nonlinear whistler wave of large amplitude. In addition, oblique shock
waves can possess a linear whistler precursor. There exist two critical Mach numbers related to the
whistler components of the shock wave, the first is known as a whistler critical Mach number and
the second can be referred to as a nonlinear whistler critical Mach number. When the whistler
critical Much number is exceeded, a stationary linear wave train cannot stand ahead of the ramp.
Above the nonlinear whistler critical Mach number, the stationary nonlinear wave train cannot exist
anymore within the shock front. This happens when the nonlinear wave steepening cannot be
balanced by the effects of the dispersion and dissipation. In this case nonlinear wave train becomes
unstable with respect to overturning. In the present paper it is shown that the nonlinear whistler
critical Mach number corresponds to the transition between stationary and nonstationary dynamical
behavior of the shock wave. The results of the computer simulations making use of the 1D full
particle electromagnetic code demonstrate that the transition to the nonstationarity of the shock front
structure is always accompanied by the disappearance of the whistler wave train within the shock
front. Using the two-fluid MHD equations, the structure of nonlinear whistler waves in plasmas with
finite beta is investigated and the nonlinear whistler critical Mach number is determined. It is
suggested a new more general proof of the criteria for small amplitude linear precursor or wake
wave trains to exist. €2002 American Institute of Physic§DOI: 10.1063/1.1457465

I. INTRODUCTION Earth bow shock, the low frequency oscillations of the ion
flux were observed:® Later similar phenomenon was also
Shock waves in plasmas as well as in gases and othgsund in the uranium bow shocdR. These observations can
media are usually considered to be nonlinear waves thasasily be interpreted as a manifestation of the shock front
cause changes of state of the media and are stationary fonstationarity?In addition, Leroyet al****modeled the
some reference frames. Indeed, numerous theoretical papafgnamics of a perpendicular shocks with the use of a hybrid
are devoted to finding stationary solutions to the set of equacode. Simulations with the parameters typical for the Earth
tions describing the plasma dynamiésr a review, see, e.g., bow shock(in particular, forM =8 andB.= ;=0.6, where
Refs. 1-3. However, in the very beginning of the collision- M, is the Alfven Mach numberg,; is the ratio of the ther-
less shock physics, the hypothesis was suggested that highal and magnetic pressureshowed that the shock structure
Mach number shocks can be nonstation@ee, e.g., Refs. 4, varies with time, for example, the maximum value of the
5). As far as we know, the first unambiguous evidence of themagnetic field exhibits temporal variations with a character-
shock wave nonstationarity was obtained by Mcesal® in istic time of the order of ion gyroperiod, the magnitude of
the laboratory experiments with a plasma-wind-tunnel dethese variations being about of 20%. The amplitude of the
vice. They revealed that in the fast mode Mach number rangescillations increases with the Mach number and decreasing
M=4-8 the shock wave oscillates with a frequency com-g;. The oscillations of the fraction of reflected ions, are
parable to the upstream ion gyrofrequency. more pronounced than that of the magnetic field overshoot or
In the early 1980s, in the response both to new observahe maximum value of electric potential. Fif,=10 and
tions of the Earth bow shock and a great progress both iB=0.1 the ion reflection was bursty, oscillating between
computational sciences and computer hardware, the interegts and 70%—75%, although the magnetic field and electric
to the problem concerned is considerably increased. In thgotential overshoot can be considered as quasistationary on
the average because their relative amplitudes of oscillations
@Electronic mail: vkrasnos@cnrs-orleans.fr do not exceed 10%-15%.
DPermanent address: IZMIRAN, Troitsk, Moscow Region, Russia. For the first time, modeling of high Mach number per-
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pendicular shocks Mlo=22, f=0.1) was carried out by simulations with the mass ratie=0.024, Lembge et al>®
Quest:® He found that in the absence of the electron resistound that the cyclic reformation of the front takes place also
tivity the ion reflection process is periodic, the stages withg, oblique shock waves within the same Mach number
100% ion reflection alternating with the stages of 100% ionrange even when the finite resistivity effects due to cross-
transmission. As a result, a periodic shock front reformatioryie|d-current instabilities are self-consistently included. The
was observed rather than a stationary structure. §uest  reformation cycle was found to be of the order of the mean
tended these preliminary simulations to perform a systematign, gyroperiod measured in the shock ramp. Furthermore,
study of high Mach number perpendicular shocks. |Bor the shock front appeared to be rippled rather than uniform.
=0.1 he revealed that the found previou8liendency for a  However, the discussion of these two-dimensional effects is
shock to become increasingly time-dependentMag in- beyond the scope of the present paper.
creases was also observed fdi,=10 and resulted in the The present paper is organized as follows: In Sec. II, the
cyclical wave breaking foM,=20. In addition, forB=1  model suggested in Ref. 19 is briefly outlined. We believe
and M,=10 a non-trivial dependence of the shock frontthat this model describes not only shock front formation for
structure on the resistivity was found. Nonstationarity wasmoderate Mach numbers but the nonstationary reformation
observed both for low and high resistivity while for mod-  of strong shocks as well. Several aspects of the model are
eraten the shocks were stationary upltb,=60. In conclu-  developed in further detail and more rigorously. In particular,
sion, Quest’ argued that a fundamental question concernegye analyze a model equation describing the dynamics of the
with a physical mechanism that controls the stability of theshock wave front with large gradients, when a characteristic
shocks has not been resolved yet. length of the plasma flow within the front is typical for whis-
In addition, it is worth noting that in numerical simula- tler waves. This analysis shows that the dispersion of whis-
tions the intrinsic shock front instability can be obscured byiler waves is not sufficient to prevent the breaking of strong
a number of unphysical effects such as an artificial dissipadisturbances. On the basis of this analysis, we put forward an
tion, dispersion, and/or instability of the computational argumentation that a nonlinear whistler critical Mach num-
algorithm* ber, above which the nonlinear whistler wave train cannot
Analyzing the major achievements of collisionless shockstand within the shock front, is approximately equal to the
physics by the end of 1984 and reviewing the conceptua¢ritical Mach number corresponding to the transition from
issues of the subject, Kennet al!” argued that the shock stationary shock waves to nonstationary ones. In Sec. Ill we
front nonstationarity does exist and they suggested to intropresent the results of the computer simulations making use of
duce the so-called third critical Mach number correspondinghe 1D full particle electromagnetic code. In order to obtain
to the transition between the stationary shocks and nonstanore reliable results concerned with the role of whistler
tionary ones. waves in the shock front nonstationarity, we take a smaller
Krasnoselskikf and Galeewet al.*® suggested the theo- ratio of electron and ion masseg,=0.005, than used
retical models describing the shock front instability due tOprevioushﬁsz?’ To distinguish between the transient pro-
domination of the nonlinear effects over the dispersion angesses during formation of a stationary shock and the intrin-

dissipation. This instability results in a gradient CataStl'Oph%iC nonstationarity of strong shocks, in the present simula-
within a finite time interval and nonstationarity of the ShOthions the total run time covers about 4 ion gyroperiods

wave. Later Galeeet a|.20 showed that the nonlinear whis- calculated with the use of upstream magnetic field

tler wave train can be observed within the front of the qua-previously??3the duration of the runs did not exceed 0.5-1
siperpendicular shock wave under some conditions and theyn gyroperiods The results obtained demonstrate that the
argued that the role of this wave train should be taken intqransition to the nonstationarity is always accompanied by
account when analyzing the problem concerned. To confirhe disappearance of the phase-standing whistler wave train
the hypothesis of shock front nonstationarity, Galeeal™  ithin the shock front. Some auxiliary facts and results are
presented the results of analysis of the experimental datgresented in the Appendices_ In particu|ar, Appendix B con-
obtained onboard Prognoz-8 and Prognoz-10 for severahins a new more general proof of the criteria for small-
crossings of the Earth bow shock. The manifestation of th%mp“tude precursor or wake wave trains to exist. In Appen-
shock front nonstationarity in the ion distribution function dix C the structure of nonlinear whistlers in p|a5ma5 with

was also discussed Later, the presence of the nonstationaryfinite g8 and adiabatic equation of state for electrons is inves-
whistler wave trains in the front of strong quasiperpendiculatjgated using two-fluid MHD equations.

shock waves was also confirmed by direct observations of

the Earth bow shock onboard |nterShOCk'PrognOZ'10 anq_ GRADIENT CATASTROPHES AND INSTABILITY OF
AMPTE UK spacecrafté: STATIONARY SHOCK FRONT STRUCTURE

Lembeaye et al?? also observed the cyclic reformation of ) )
the exactly perpendicular low-beta nonresistive shock wave?ﬁ c?c li";gj;age process of the formation of a strong

in 1D full particle simulations, where the ratio of electron
and ion masses was=m,/m;=0.01. They argue that very As opposed to hydrodynamic shocks, shock waves in
high Mach numbers are not necessary for the reformation toollisionless plasmas usually have much more complicated
exist; in these simulations the reformation was also observestructure. For example, a typical magnetic field profile for a
for relatively low Mach numberdM ,=2-3 corresponding quasiperpendicular supercritical shock is shown in Fig. 1
however to supercritical regimes. In the 2D full particle taken from Ref. 24. It consists of a foot or pedestal, ramp,
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"ramp" formation with the use of simplified sets of equations, where
"foot" l "overshoot" the main features of the stage considered are taken into ac-
upstream N\ / downstream count.

To begin with, let us consider the dispersion relation for
fast magnetosonic waves. Indeed, there exists a multiform
relationship between the structure of shock waves and the
properties of the corresponding linear wavésn particular,
when considering the evolution and structure of high Mach
I number shocks, the dispersion relation for fast magnetosonic
250 K 2500 waves is of particular importance. In the case of the cold

X (km) plasma, the frequency dependence of the refraction index
FIG. 1. The magnetic field profile for a typical supercritical quasiperpen-N'=Kc/w can be easily written in the analytic for(see, e.g.,
dicular shock wave obtained in numerical simulatigfrem Ref. 24 with Ref. 27)_ However, this form of the dispersion relation is
kind permission from Kluwer AcademicThe foot, ramp, and overshoot are rather cumbersome and inconvenient to analyze. Instead of

30
B,()

15

indicated. L. . . . .
it, in the following we use an approximate relationship sug-
gested by Krasnoselskilet al,?®
. . . 2
and overshoot—undershoot oscillations. This large-scale 5 Wpe cos' 6
structure is closely related to the d i f reflected i @ 2 nogr | M7 2 12e2|’ @)
y related to the dynamics of reflected ions. 1+ wi/k2c 1+ wl/k2c

A fraction of the incoming ions is reflected from the ramp,
where the gradient of the magnetic field intensity is the larg\Whereé» andk are the frequency and the wave number, re-
est, then they are magnetically deflected, accelerated by ttf@ectively,¢ is the angle between the wave vector and the
flow electric field, and pass the ramp on the second encourl@gnetic field, and. is the ratio of electron and ion masses,
ter thereby forming the ring distribution in the overshoot—#=Me/m;. Although this equation is approximate, it de-
undershoot region. Assuming that the ions are specularly rescribes all the relevant features of the exact dispersion rela-
flected from the ramp, the foot thickness can be estimatetion. Indeed, for the waves propagating perpendicularly to

a<s the magnetic field §=90°) from Eq.(1) we get
UO kzvi
= g 2 R
L oot 0.68wBiS|n Ogn» 1) 1+k202/w§e' (2

whereU, is the plasma velocity along the shock normal in | js easily seen from Eq2) that the phase velocity of the
the shock framegg; is the upstream ion gyrofrequency, and ;o es is approximately equal to Alffwevelocity v, for

fsn is the angle between the shock normal and the upstreag.; ., <1 and decreases to zero as the wave nurkber

. . pe
magnetic field. The distance between the overshoot apd Uicreased and the frequency approaches the low hybrid fre-
dershoot has the same order of magnittfi&he ramp IS quency.w— (wse wg;) 2 For long waves, the characteristic
significantly thinner, it follows from some observations thatdispersion length is/w,.. For oblique propagation, cb8
it can be of the order of several electron skin demths,, >4, the long waves ﬁ;ve the same velocity, but the
wherec is the speed of light ané . is the electron plasma yhase velocity increases with the increasé,iand the char-

frequency. The dispersion lengtcos f|/wy; , Wherew, IS 5cteristic dispersion length is equal docos f/wp,
the ion plasma frequency, determines the “ramp” thickness
k?c? cog 6)

for oblique subcritical shock waves. Although not explicitly s o2

presented in the large-scale structure, there is a number of @ =Kvp| 1+ 2

other scales, which are closely related to the physical pro- @pi

cesses within the shock front. For instance, the Debye lengtiihe last equation describes also the low frequency whistlers

electrostatic fluctuations due to the ion-sound instability aravith w<wgecosd|. Finally, for kc/wpe>1 the oblique

believed to provide an anomalous resistivity. The length ofwaves are electrostatic with the frequeney: wgcosé and

the order of severat/w,, is believed to be typical wave- small phase velocity.

length of whistler waves observed within the front and Figure 2 shows the dependence of phase velagity

upstreant>?  The thermal electron gyroradius,pe = w/k upon the wave number in the case of oblique propa-

=v+1c/wge, Wherevy, is the electron thermal velocity and gation, co 6= u. As it was noted above, the range of wave

wge IS the electron gyrofrequency, determines the boundarymumbers can be split into three parts correspondingl)to

between two regimes of electron heating, i.e., if the characlong waves,k<wpi/c|cos¢9|, (I whistler waves with a

teristic length of the plasma flow is much larger than the  characteristic wavelength of about/wye, and (Ill)

electron component obey an adiabatic equation of state, otliuasielectrostatic oscillations, respectively.

erwise the nonadiabatic heating takes place. When considering a shock wave formation from a
Since some of the scales within this hierarchy differsmooth initial disturbance of the plasma flow, we can imag-

from others by several orders of magnitude, the theoreticahe that a point representing the characteristic scale length of

analysis of the shock formation is a very complicated probthe disturbance moves along the dispersion curve shown in

lem. However, we can model different stages of the shoclFig. 2. Thereby the evolution of the disturbance resulting in
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infinite gradients develop. Then the plasma flow overturns
resulting in the formation of a multiflow region. We illustrate
this phenomenon by an example of a so-called simple waves.

Using a standard technigé@&we find that the magnetic
field in a simple wave obeys the equation,

Py vie,) =0
T TViBY =0

which has a solution,
x—V¢(By) t=F(B,), ©)

whereF(B,) is an arbitrary function of the magnetic field.
kel The plasma density and velocity can be easily found using
* the Riemann invariants, which are constant in a region occu-
FIG. 2. The dependence of phase velocity of the oblique fast magnetosonigied by a simple wave. Since the thermal effects do not
waves on the wave number. change the qualitative features of the phenomenon, they can
be neglected for simplicity. In this case the Riemann invari-

. . ants are
the shock formation can be considered as a three-stage pro-

cess, each stage corresponding to a particular part of the R :(B>2<+ B2 @
dispersion relation. 1 p ’
In this paper we consider the problem of the formation

. Rl 1/2
of oblique shocks such that ¢og> . R,=V, *+ (?) (B§+ 85)1’4, (5)
B. Large scale phenomena and evolution of the MHD B[R, |2 dB,
type system R;=V I—(—) f— (6)
3 y 2 T (B§+ 83)3/4

Consider a one-dimensional plasma flow such that ini-
tially it is plane-polarized and consists of three regions,The phase velocity of the wave is given by
namely, two regions of approximately steady flow with con- 3
siderably different velocities and the third region between the V= RZIE(
two. Suppose further that the gradients in the third region are
small enough, i.e., a characteristic length of the disturbanc€hoose the lower signs in Eq&)—(7) to consider a wave,
corresponds to the region | on the dispersion cypez Fig. which propagates with respect to the plasma in the positive
2), i.e., this length is much greater than the characteristielirection of thex-axis. From Eq(3) it follows that an infinite
lengths related to both dispersion and dissipation. Choose gradient of the magnetic fielchs well as the gradients of the
reference frame such that the only nonvanishing componentsther parameters describing the plasma Jlalevelops for
of the initial disturbance of the magnetic field and plasmathe first time at
velocity areB, , andV, ,, respectively. Such a flow is gov-

Rl 1/2
?) (BZ+BH)M, (7)

erned by the well-known equations of magnetohydrodynam-  ;_ yin F'(By) _
ics of an ideal mediuntsee, e.g., Refs. 29, R0 V'(By)
dp 9 This gradient catastrophe could happen if the dispersion
EJF &(va)zo’ would not counteract to prevent it. These effects cannot be
described by the magnetohydrodynamic equations. When
IV N Vy ¢z ap By dBy characteristic lengths become shorter thén,,; , one should
at ax  p ax dmp X’ change the model equations to take into account the disper-

sion due to two-fluid nature of the plasma.
aVy daVy By dBy

_ + N = —_—,
ot X  dmp X
C. Dispersion effects and whistler-type precursor

By By Vy IV wave trains

_+ —_— = [
at X ox X ox Yoox '

If the characteristic length of the flow becomes compa-
wherep is the plasma density, is the sound velocity, and rable with the dispersion length, the system goes to the re-
B, =const. This is the hyperbolic quasilinear system of equagion Il on the dispersion curvesee Fig. 2 where its evolu-
tions. The properties of such systems are studied in detaflon is governed by a more complicated system of the two-
(see, e.g., Refs. 29, Bt is well-known that for a multitude fluid magnetohydrodynamics.
of initial disturbances the corresponding smooth solutions to  If the initial disturbance has a small amplitude, its steep-
these equations exist only during finite time intervals. At theening will stop when the characteristic length of the region
end of such an interval a gradient catastrophe occurs, i.ewith the largest gradients attains the dispersion length
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c|cosél/w,; (as it was stated above, here and in the following ~ From the set of equations of the two-fluid magnetohy-
we assume that the dissipation is weak, i.e., the dissipatiofirodynamics, after a cumbersome but straightforward alge-
results in the large scale variations of the plasma parametergfa of the reductive perturbation metfddve obtain a model
but it does not influence considerably the fine structure of th&duation,

front). In this case the equations describing the evolution of au au oo au(t, &)
the shock wave structure can be simplified by neglecting the —+u—+ f K(x—¢) :
electron inertiasee, e.g., Refs. 1, 82Thereby we obtaiif at X * &

This equation was proposed by Whith#nas the sim-
d_V_ i[rot BxB] plest equation which combines two important factors, the
dt  4mp ’ typical hydrodynamical nonlinearity and dispersion of the
arbitrary type. Indeed, the phase speed of the linear waves is
given by the Fourier transform of the kernel of the integral

operator,

dé=0. 9

4mne
rotB=T(V—Ve),

+ o
JB mc dV mec  dV, Uph(k)zf K(x)exp(—ikx) dx,
E_rOt[VXB]_?rOtEJ’_TrOtW, —

andvice versa
whereV=(myV.+m;V;)/(mg+m;) is the bulk plasma ve- 1 fre
locity, Vi are the fluid velocities of the electron and ion K(x)= 2_f v (k) explikx) dk. (10)
components. )~

Then we can introduce two small parameters, Later® it was realized that the energy dissipation and pump-

ing can also be described by H®). Because the main goal

o= B <1, 82:By_80 sin ‘9<1, of the paper is to study the role of the dispersion in the
val? Bo formation and breaking of the shock front, we neglect the
dissipation in order to simplify the problem considered.
where B=v,c? co fl2w5;, | is a characteristic length of Whithant* formulated the conjecture that E€Q) with

the disturbanceB, is the unperturbed magnetic fieldjs the  the kernelK4(x) describing the dispersion of water waves,

angle between the unperturbed magnetic field and the direc-

tion of the wave propagation. VoK)=
Retaining the terms up to the second order with respect P

to these parameters, and considering only the waves propgmereg is the gravitational acceleration ahg is the depth
gating in the positive direction, after some algebra Wesf the water, has stationary solutions with sharp crests as

1/2

gtam’(kho)

obtair* well as breaking nonstationary solutions. He proved that
. 5 peaking of stationary solutions takes plac&ifx) behaves
@Jr . 3vp sin 0 ) @—Bﬂzo g ke |x| "« asx—0, wherea>0. Since in the vicinity of the
gt |\ vA 2By IX axd origin the normalized kernel correspondingge hg=1 has

the asymptoticy(x) ~ (2mx) ~*2 the first part of the con-

where b=B,—B, sinf. This equation is equivalent to jecture is thereby proved. The rigorous proof of the second
Korteweg—de Vries equation, describing nonlinear wavegart requires quite ingenious arguments and was given by
with a positive dispersion. It is well-known that all solutions Naumkin and Shishmaré¥:*® Moreover, they proved a more
to Korteweg—de Vries equation have no sharp crests and dgeneral theorem that a solution of the Whitham equation
not break. This means that the dispersion of short waves idoes break if the slope of the profile of an initial disturbance
strong enough to prevent the growth of gradients due to nonis sufficiently large and negative at some point and at the
linear effects. However, this equation is valid only for small origin of coordinates the kernel of the integral operator has a
and smooth disturbances. singularity, which is weaker thajx| ~ ¢, where 1/2< a<3/5

To analyze the evolution of large-amplitude distur- (the exact statement of the theorem can be found in Ref. 35
bances, we should at least begin with the equations of twoand is also given in Appendix)A
fluid magnetohydrodynamics, where the effects of electron It seems to be quite natural that the order of singularity
inertia are also taken into account. It is generally believedf the kernel is of particular importance. Indeed, breaking as
that under some conditions these equations have no smooiVell as peaking are small scale phenomena corresponding to
solutions. In particular, it is well-known that stationary solu- large wave numbers. On the other hand, it is the short-wave
tions can have sharp cregsee, e.g., Refs. 1)2In addition,  part of the dispersion relation that determines the behavior of
we should expect that these equations describe also the watlee kernel in the vicinity of the coordinate origin. The
breaking of the hyperbolic kind with the development of theKorteweg—de Vries equatiof®) takesv p,=va+ Bk? and
vertical slopga gradient catastrophand a multivalued pro- _ ,
file. Up to now the rigorous proof of the corresponding math- KOX)=0ad(x) = £8"(x)
ematical theorem has not been obtained yet. However, wghere §(x) is the Dirac delta-functiohand is known to have
can suggest several arguments confirming this statement. neither peaking nor breaking solutions. In other words, the
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dispersion of short waves is sufficiently strong to preventions far upstream of the shock “ramp,” we should equate
developing infinite gradients due to nonlinearity. On the conthe upstream plasma velocity to the phase velocity given by
trary, if the kernel has no singularity at the origin and is athe dispersion relation and solve the equation obtained.
monotone decreasing function|od, Seligef’ proved thatin ~ There exists an additional condition for a precursor to exist,
this case the Whitham equation does have breaking solutiomsamely, the group velocity should exceed the corresponding
(see also Ref. 38 Since nonsingular integrable kernels sat-phase velocity(see Appendix B Using Eq.(11) it can be
isfy the conditions of the above-mentioned theorem proveatasily shown that this condition is satisfied for all wave vec-
by Naumkin and Shishmarev, this theorem should be considers within the range & k< 1. The whistler phase velocity is
ered as a substantial generalization of the Seliger result. the highest fork=1, the corresponding Mach number is
Taking into account these considerations, in the follow-called the whistler critical Mach numbérand is given by
ing we use a simplified dispersion relation,

_|cos g,

cos 6 K

Uph="75" ,
p M1/2 1+ k2

It is well-known that the whistler precursor wave train is
an essential part of the oblique subcritical shotk$he very
similar precursors were also evidenced for the supercritical
shocks?®?! We suggest a new proof of the criteria for exis-
tence of the precursor and wake wave traisse Appendix

1 |cosd| B). From_ this p.roof it is evident that these criteri.a. are quite
>r 1 [exp(—Xx)Ei(x) +exp(X)Ei( —x)], general, in particular, they hold not only for subcritical shock
waves but for supercritical shocks as well, because a small
where Eik) is the exponential integral. Using the asymptoti-fr?‘Ction_ of reflef:ted ions doe; not change considergbly the
cal expansiof? dispersion relation for the whistler wavésee Appendix B
for more details

Ei(X)~C+In|x|+x+ - The precursor wave train predecelerates the plasma flow
upstream of the ramp of the shock and makes the contribu-
tion to the energy dissipation. Karpmahal. suggested that

this dissipation can be related to the parametric instability of
K(X)~ — 1 |cos 4| [C+1In|x|+0(x)], the whistler wave® and/or wave-particle interactiéi If the
u'f? Mach number exceedd,,, this mechanism is switched off
and the other components of the shock front structarg.,
. . o the ramp should provide stronger plasma flow deceleration
for all «>0, the condition 1 of the theorem is satisfieste and dissipation. This leads to the growth of gradients and as

Appendix A). It is easily seen that the condition 2 is also : L
satisfied. Thus, nonlinear waves, which are described by th% result, the ramp of the shock is replaced by a soliton-like

model Eq.(9) with the dispersion typical for whistler waves onlinear whistler wave train with a characteristic wave
odet Eq.t € dispersion typica 1o ste Ves, length of about several/w,.. These waves were observed
do break like hyperbolic waves provided the initial distur-

. i i~ " within the Earth and Uranian bow shock?! Using two-
Zzgziésixs,:)fﬂmemly steegsee condition 3 of the theorem in fluid MHD equations, we analyze the properties of these

. . . . . waves in the plasma with cold ions, finifg,, and adiabatic
sio relation fs mode rather han exact, i san qualiatvenCIUAIoN Of State for electionsee Appendix It was
’ d Yshown that the amplitude of these waves increases with

describe the gradient catastrophes within the front of the SUach number and can significantly exceed the value of the

percrmcal' npnstaﬂonary ShOCk. Waves. I.t IS worth noting thatmagnetic field ahead of the shock. However, when Mach
the description of this system is quite similar to that of shal-

low water waves, for which similar theoretical conclusionsnumber exceeds the critical validy,,, such waves do not
T . exist anymore. For cold plasma the corresponding Mach
were approved by direct experimental results.

. r}umber, which can be referred to as a nonlinear whistler
Let us now proceed to more moderate disturbances th%ritical Mach number, is given by

are not steep enough to satisfy the condition 3 of the
Naumkin—Shishmarev theorem. Suppose further that in the
system there exists some kind of dissipation provided by, for _ |cos Og,|

example, an anomalous resistivity. To take the dissipation n (2u)? '

into account, we can modify the kernel of the Whitham equa-

tion (see Ref. 35 and Appendix A for detail$n this case the As it was shown above, the critical Mach numbéy,, cor-
disturbance can asymptotically approach some shock-like sosesponds also to the characteristic Mach number above
lution with a steady profile. Because for oblique propagatiorwhich an initial disturbance resembling the quasistationary
the dispersion of the fast magnetosonic wave is positivewhistler wave train becomes unstable with respect to a gra-
weak shocks have a wave-train precursor damping ouflient catastrophe, which takes place within a finite time in-
upstreant:? To determine the wave number of these oscilla-terval. Thereby we come to the conclusion that, can be

which is valid for kc/w,>1. Herevp,= w/kv, is the di-
mensionless phase velocity are- kc/ w,¢ is the dimension-
less wave number. Substituting E4J) into Eq. (10), after
some straightforward calculations we obtain

K(x)=—

asx—0, we can easily obtain

where C is the Euler constant. Sincex|fx|~*—0 asx—0
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taken as the estimate of the critical Mach numbgy; cor- In the next section we present the results of full particle
responding to the transition between stationary and nonstarumerical simulations that give strong support to our state-
tionary behavior of the shock front. ment that the transition from stationary to nonstationary be-

When M,,, is exceeded, the dispersion and dissipationhavior of the shock waves takes place when the Mach num-
due to reflected ions and anomalous resistivity are no longaser becomes larger thavi,,, .
sufficient to stop the wave steepening due to nonlinear ef-  |astly, we briefly dwell upon the role of reflected ions in
fects and an additional mechanism of the energy dissipatiothe shock wave structure and dynamics. It is well-known that
is required. The additional dissipation can be provided bythe behavior of the reflected ions determines the large scale
several effects accompanying the shock front nonstationaritytrycture of the quasistationary supercritical shock waves and
Indeed, a nonstationary shock should emit the whistler wavgupply the major part of the dissipation requitsee, e.g., a
trains thereby evacuating the energy from the ramp. Howgyiew, Ref. 17. On the other hand, it is the ion dynamics

ever, when the Mach number exceeds the value, that determine the time scale for quasiperiodic overturning of
|cos Bg,| [ 27|12 the high Mach number shocks. However, since the fraction
S . M) of the reflected ions usually does not exceed 10%—20% for

quasistationary shock waves, as a first approximation, we

corresponding to the maximum group velocity of the whis-can neglect its contribution when deriving the criterion for
tler waves, the evacuation of the energy far upstream beransition between stationary and nonstationary shocks. In-
comes impossible. The short nonstationary whistler “precurdeed, the corresponding critical Mach number is determined
sor” can still exist in the foot, where the plasma flow is first of all by dispersion and nonlinearity of the fast magne-
slightly decelerated, however, this wave train cannot propatosonic waves and these properties are predominantly deter-
gate far upstream. mined by the bulk particle populations.
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[ll. TRANSITION FROM STATIONARITY TO piston is generated by applying an external current pulse in
NONSTATIONARITY OF THE SHOCKS: NUMERICAL the vacuum near the boundary between the boxes.
SIMULATIONS The spatial grid is uniform. All the quantities in the code

Present simulations have been performed by use of 13'€ normalized. In particular, the length is measured in the
fully electromagnetic relativistic particle code, where bothSPatial grid increments, that is, the width of the cell. In the

electrons and ions are treated as particles. Standard finitgures in the following, shown are the normalized differ-
size particle techniques are ugBd3All three velocity com- ~ €Nces between tiecomponent of the magnetic field and its
ponents for all particles are taken into account but the proptPStream value. The normalization was performed by multi-
lem considered is one-dimensional, all the variableg?lying the differences by the factefmew;ca, whereeis the

depending ox. The field components are separated into twoProton charge. It is worth noting that for brevity we shall

groups, namely, the transverse componeks, and B, ,, speak in tr_le foII(_meg about the magnetic flek_:i rather t_han

and longitudinal componentg, andB, . To find the trans- the normalized difference. The ion momentum is normalized

verse components, the full set of Maxwell's equations isty dividing it by mew,ca. More details related to the code

solved. Longitudinal component of the magnetic filldis ~ can be found elsewhefé.

constant and the corresponding component of the electric  The present simulations are performed under the follow-

field obeys Poisson’s equation. ing conditions. Size of the simulation box containing the
Initial and boundary conditions are similar to those al-plasma isL =8192. Initially, there areﬁeyizlo particles in

ready described previoust$?® In short, the simulation box each cell. The ratios of the electron and ion temperatures and

is separated into two adjacent parts, there is a vacuum in ormeasses arel./T;=1.58 and w=m,/m;=0.005, respec-

of them and plasma in the another one. The latter box isively. The ratio of thermal and magnetic pressuresBis

bounded by reflecting walls preventing the plasma from pen=0.028.

etrating into the former box. To drive a shock, a magnetic  In the simulations performed by Lerbyit was shown
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that a self-sustained shock is formed after a transitory periothe range mentioned above can be considered as nonsignifi-
lasting about several ion gyroperiods calculated with the useant in this case.
of downstream magnetic field. In the present simulations the  Two series of runs were performed, where the amgle
total run time covers about 4 ion gyroperiods calculated withbetween the shock normal and the magnetic field upstream of
the use of upstream magnetic field. the shock is equal to 57° and 80°, respectively, and Mach
As it was noted above, there exists a close relationshimumber varies in the wide range from about 1.6 to 8.6 in the
between the properties of linear waves and the structure djoth series. Using the simulation results, we describe the
the shock waves in plasm&$.In particular, the dispersion evolution of the shock wave structure as the Mach number
relation influences the shape of the subcritical shock wavesncreases.
In numerical modeling, a special care should be taken to We begin the analysis from thé;,=57° shock waves.
avoid the distortion of the dispersion relation due to theln this case the first critical Mach numberNé.~2.54, the
finite-difference approximation of the equations solvkd. linear and nonlinear whistler critical Mach numbers bfg
Because the role of whistler waves in the formation of shock=3.85, M,,,~5.45, respectively.
wave structure is of special interest, the discretization should In the stackplot shown in Fig. 3 we observe the evolu-
not distort the dispersion relation for fast magnetosonidion of the magnetic field profile of the supercritical shock,
waves with the wave numbers within the rangeKc/ e M ,=2.7. Although the shock is supercritical, the critical
=< 3. Note that the phase velocity of the waves is maximumMach number is only slightly exceeded and the fraction of
at k=wyc/c. To estimate the influence of the finite- reflected ions, which are responsible for a typical structure of
difference approximation on a dispersion relation, one carsupercritical shocks, is quite small in the case considered.
multiply the phase velocity by a factor sk&)/ka, whereais  The quasisteady “ramp” is formed at the very beginning of
the grid increment** In the present paper we choose the computational run. However, the wave train precursor
=c/3wye. The direct calculations show that these effects inexpands upstream up to at ledst2#/wg; with a higher
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speed than that of the shock ramp. This result is quite natural
because the critical whistler Mach number is not exceeded
and the stationary shock wave should have a wave train pre-
cursor standing upstream of the ramp.

The next example is a quite typical supercritical shock of
Alfvén Mach numbeM ,=3.3. In the stackplot foB, com-
ponent of the magnetic field we can clearly see the formation
of the ramp, overshoot, and undershdste Fig. 4. The
other characteristic feature of supercritical shocks, the foot,
is also observed when analyzing the magnetic field profiles.
In the foot region of the shock there is a wave train, which
modulates the mean ion velocity and predecelerates the in-
coming flow. It is worth noting that in the case considered
both linear and nonlinear whistler critical Mach numbers are
not exceeded and the shock front structure is almost station-
ary.

For higher Mach number$/ ,=5.5 and 8.6, when both
the first critical Mach number and the nonlinear whistler
Mach number are exceeded, the shock waves are nonstation-
ary. For the shock wave withl ,=5.5, stackplot is shown in
Fig. 5. Similar nonstationarity of the shock front is also evi-
denced for higher Mach numbers. Figure 6 illustrates the
cycle of the reformation of the magnetic field structure with
the emission of the whistler wave train towards the upstream | .
flow. During the cycle, a new ramp is formed at the forward 3800
edge of the precursor wave. Here a small-amplitude pertur-
bation grows up and becomes larger than the old shock front.

Now we proceed to shock waves witly,=80°. In this
case the first critical Mach numberhg.~2.74, the whistler
linear and nonlinear critical Mach numbers avg,~1.23
andM,,~1.74.

The stackplot in Fig. 7 shows the evolution of the mag-
netic field profile for shock wave with a relatively low Mach
number,M ,=1.6. SinceM ,<M,,, this shock is subcritical
and the fraction of reflected ions is negligible. We observe
that the “ramp” can be considered as almost stationary for
t>0.2- 27/ wg;. Because the whistler critical Mach number N . . .
is exceeded, there is no stationary wave train upstream of the x
ramp. However, the maximum group velocity of whistler
waves is greater than the velocity of shock wave propaga-
tion, thus, a nonstationary wave precursor may be observed
upstream of the ramp, at least, at the first stages of the shock
formation.

In the next example we consider the supercritical shock
with M ,=3.5. In Fig. 8 presenting the evolution of the mag-
netic field profile, it is easily seen that the shock is nonsta-
tionary and a quasiperiodic reformation of the shock front is
observed. The scenario of the reformation is essentially the
same as for high Mach number shocks wih),=57°. At the
first stage shown, the shock has a clearly defined ramp and
upstream of the ramp there is a leading “wave train” of a 3600 300 4000 4200
small amplitude(see also Fig. P A population of reflected
!ons IS Observed betwefen the ramp and t_he pea}k of the Ieagl'G. 6. The magnetic field profiles for a shock wave wit,,=57° and
ing wave train(see the ion phase space display in Fig.l8  v,=55 at(a) t=249w,2, (b) t=28080,2, (c) t=3096w, &, and (d)
this case the whistler precursor consists of only one peak=3480w,, .

(@)
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because in the simulation the whistler phase velocity alonglowever, up to now the estimates M,s were not sug-
the magnetic field has the same order of magnitude as thgested. In the present papét,, is determined for oblique
thermal speed of electrons, so that the damping of the whisjuasiperpendicular fast magnetosonic shock waves.
tlers is considerable. The amplitude of the leading wave train  Theoretical analysis and experiments show that the
is gradually increasing. At some time a new population ofwhistler waves are an intrinsic feature of the oblique colli-
reflected ions appears upstream of the precufsee Fig. sionless shock waves. For supercritical shock waves, the
10). When its amplitude becomes comparable with that oframp region, where an abrupt increase of the magnetic field
the ramp and, finally, exceeds it, thereby a new ramp and gccurs, can be treated as a nonlinear whistler wave of large
new precursor are formetsee Figs. 11 and 12The pro-  gmplitude. In addition, oblique shock waves can possess a
cesses described are repeated quasiperiodically. linear whistler precursor. There exist two critical Mach num-
Finally, the results of the simulations for both chosenperg related to the whistler components of the shock wave,
values ofég, confirm our statement that the transition from 4,4 first is known as a whistler critical Mach number intro-

stationary to nonstationary behavior of the quasiperpendicuduced by Kennekt al,}” M,,, and the second can be re-
lar shock occurs when nonlinear whistler critical Mach NUM-c . od 1o as a nonlinez:lr Whivsvt’ler critical Mach numbr,
w-

her is exceeded. It is worth noting thatM,,<M,,,. When the whistler critical

Much number is exceeded, a stationary linear wave train
cannot stand ahead of the ramp. Above the nonlinear whistler
critical Mach number, the stationary nonlinear wave train
In the present paper we study the problem of the nonstasannot exist anymore within the shock front. In this case the
tionarity of quasiperpendicular high Mach number shocksdispersion cannot prevent steepening of the shock front due
Previously, Kennekt al’ introduced a critical Mach num- to nonlinear effects and a gradient catastrophe occurs. As a
ber M, s above which shock waves become nonstationaryresult, the shock wave becomes nonstationary. Using model

[V. CONCLUSION
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equation description, we carried out the analysis of the dywhistler waves in the vicinity of the Earth bow shock con-

namics of oblique shock waves and found that this equatiofirm this model of the shock front nonstationarity.

does describe the wave breaking of the hyperbolic kind with

To obtain theB- and 6g,-dependencies oM, corre-

adiabatic equation of stateee Appendix €

In accordance with the results of the theoretical analysis,
numerical simulations making use of the 1D full particle
electromagnetic code demonstrated that the transition to the

nonstationarity is always accompanied by the disappearance The authors would like to acknowledge the International

In addition, we suggested a new proof of the criteria for
the development of the vertical slope and a multivalued prosmall-amplitude linear precursor or wake wave trains to exist
file. (see Appendix B It was also shown that these criteria are
quite universal and can be considered as necessary and suf-
sponding to the transition between the stationary and nonstdicient conditions that turn out to be independent on both the
tionary behavior of the shock wave, in the framework of thenature of the waves and dissipative effects provided the me-
two-fluid magnetohydrodynamics we study the structure ofdium far ahead and far behind the shock is stable and the
nonlinear whistlers in plasmas with finite electron beta andissipation is weak enough for weakly damping waves to
exist.
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All present numerical simulations have been performedion are considered® andK? are called the dissipative and

on supercomputers of IDRIS cent@rsay, France conservative parts of the symbigl respectively.
For the Whitham equation Naumkigt al>® proved the
following:
APPENDIX A: GRADIENT CATASTROPHE FOR THE Theorem: Suppose that
WHITHAM EQUATION (1) the kernelK(x) satisfies the conditions
Consider the Whitham equation, K(x)e CHRN\O)NL4(Ry), [K(X)[=c|x|™4,
au  au [K'(0[=clx|7*7%,  xe[—a,a]\o,
—+u—+Ku=0,
ot ox

o . : . f |K'(x)| dx=c,
wherel is a linear pseudodifferential operator. This operator [x|=a

can be written in two forms,

where
U JMK(X‘f) ‘7“;25) d a=3/5-y, ye(0,10, c>0, ae(0,1];
o (2) the integral operator is dissipative, i.e., the symbol of the
or operator satisfies the inequality

1 (+= PR o1 .
Ku=ﬁf exp(ikx)K(k)u(t,k) dk, K'(p)=0 for |k|=h>0;

(3) the initial perturbationT(x) belongs to the Sobolev space
where H”(RY) and has a sufficiently large steepness,
0(t,k) fw p(—ikx)u(t,x) d =|mineeg, WK,
u(t,k)= exp —ikx)u(t,x) dx
2b)2
K

—o0

,_T1C
. N . mp>— (uy++J) +
andK is called a symbol of the operatdt. Let K!=9%(K) ya

andK2=73(K). If only real solutions to the Whitham equa- where
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b= sup(0,—K(k)), u;=maxu’(x)|,
|k|<h xeRq

[ dPuo)®
J—fx< e ) dx

Then there exists a solution u(t,x)
e C*([0,Ty);H”(R,)) breaking at the moment of timg,.

The following two-sided inequalities hold fdr:

My (1+y) I<To<my '(1-y) 2
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and in addition

dw (0]

ak k:ko>E k=kq (52a
for a precursor and

Jw w

K k:k0<k—o - (B2b)

for a wake. The conditioB1) is trivial—the phase velocity
of the waves considered equals the velotity of the flow.
The second criterioiB2) also becomes obvious if we con-
sider a formation of a shock wave from a discontinuity sat-

Suppose that the dissipation is negligible and the W"’“’e%fying the Rankine—Hugoniot conditions and to this end

considered have a dispersion relatien- w(k). Then the

phase and group velocities are

w Jw
Uph:E, Ugrzﬁa

respectively. When considering a precuréeake), suppose
further that the velocity of the plasma far ahdaeéhind the

choose a reference frame where the shock is stationary.
When emitting the waves both upstream and downstream,
this step-like disturbance will be transformed into a steady
shock with a precursor and/or wake wave trains. Since the
wave number like the energy of the waves is transferred with
the corresponding group velocitisee, e.g., Ref. 34 the

waves can penetrate upstream and form a precursor if their

shock isU, , in the frame where the shock is at rest. Then agroyp velocity exceeds the flow velocity ahead of the shock.
steady precursofwake wave train can stand in the flow T4 pe convected downstream thereby forming a wake, the

provided there exists a wave numbersuch that

:U1,21
k=kq

waves should have the group velocity which is less than that
of the flow behind the shock.

It appears that criteria for a steady wave train precursor
or wake of the shock wave to exist were developed for the
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first time by Tidmanet al*® To prove the criteria, they con- tion Do(w,k)=0 we obtain an approximate dispersion rela-

sider a model shock wave, which was represented by ation w= wq(k) giving the real parto, of the wave frequency,
infinite plane discontinuity, and a model dispersion relation

in the form, w=wytiy, (BS)
_ where y is the increment. Substituting E¢B5) into Eq.
D(w,k)=H [w—w;(k)+ie], (B4), in the next approximation the increment is obtained,
where a small positive describes a weak dissipative effects. _ D

(B6)

They suppose that the electric current within the shock tran- Y=o dDgldw
sition oscillates periodically, and using the linearized

Vlasov—Maxwell equations, calculate the electromagnetigf medijum is in a stable state as we suppose to be the case far

field generated by this current. The relationships obtained arghead and far behind the shock, all disturbances should
rather cumbersome, but the above mentioned criteria folloviamp, y<0. Hence,

from them immediately. Perezt al*’ carried these calcula-

(@g(k), K)

tions further using the exact dispersion relation for a cold D, 0
plasma. . dDgldw (oK) k)> '
As was shown above, the criteligl) and(B2) are easy @ot

to understand from the physical point of view and can be

. . Suppose that in the reference frame, where the unper-
considered as necessary conditions for a precursor and/Qr .o plasma is at rest, the shock wave is moving along the

wake to exist for shock waves in a plasma as well as in othe)g axis in the positive direction. Then in the shock frame both

media. However, the question remains as to the correspon%e precursor and wake are stationasys 0, and the velocity
ing sufficient conditions. Indeed, using a stationary point

of the medium upstream and downstream of the shock is
analysis ahead and behind the shock waves in the dissipati ium up W i

: . : \fFegative,U12<O. Using the formulas for the nonrelativistic
magnetphydrodynamp S ?oroﬁﬁshowed tha.t Fhe d|ffere.nt Doppler effect, we find that in the reference frame, where the
dissipative effectqresistivity, thermoconductivity, and vis-

. . ! X medium upstream or downstream is at rest, the precursor and
cosity) are not equivalent in the formation of the shock

X . wake waves have real frequencies,
waves, e.g., the viscosity alone cannot form a fast MHD

shock wave but the resistivity can. On the other hand, the 4=ku,,, (B7)
criteria (B1) and (B2) does not contain any information '

about dissipation. One can suggest the two possibilitiesrespectively, but the corresponding wave numbers will be
First, these criteria are universal and sufficient for a precureomplex, k=kqy+i«, where x is an imaginary part of the
sor (wake) to exist upstream{downstream the dispersive wave number. Substituting E¢B7) into the dispersion rela-
shock wave no matter what kind of waves is considered antlon (B4) and making use of the technique utilized above
what kind of dissipation is significant. Second, these criteriavhen finding the increment, we obtain

are only necessary and in each case (B@) should be re-

placed by a more strong condition, which is characteristic for o= D,
a particular kind of the waves and/or dissipation. It can be dDg  dDg
easily shown that valid is the first statement. 1250 ok

To begin with, suppose that all parameters describing (koU1.2: ko)

a wave depend upon time and coordinates likef,
X exp(—iwt+ikx) and the dispersion relation for these waves
is

Using Eq.(B6) and the definition of the group velocity, this
relationship can be rewritten as

D(w,k)=0. (B3) k=—" .
Vgr™ Uph (kgU1,2: ko)

If the dissipation is present but weak for the waves consid-

ered, Eq.(B3) can be written approximately as If the group velocity exceeds the velocity of the flow, we see

Do(,k)+Dy(w,k)=0, (B4) that x>0 and the amplitude of the waves will vanishas

— +00 as should be the case for the precursor. For the wake

whereDy(w,k) is a function which determines the disper- wave trains, which vanish as— — o0, the opposite condition
sion relationw= wy(k) when the dissipation is absent and should hold. The criteridB2) are thereby proved.
the dissipation is responsible for the second t&p{w,k) Finally, it is worth noting that the well-known criteria for
the absolute value of which is much smaller than that of theexistence of the precursor and wake wave trains in the vicin-
first term. For plasma waves, the tely(w,k) is deter- ity of a dispersive shock are quite universal and can be con-
mined by the Hermitian part of the dielectric tensor and thesidered as necessary and sufficient conditions that turn out to
term D;(w,k) depends on both Hermitian and anti- be independent on both the nature of the waves and dissipa-
Hermitian parts of the tensdsee, e.g., Ref. 27 Equation tive effects provided the medium far ahead and far behind
(B4) can be solved by means of a perturbation method. Athe shock is stable and the dissipation is weak enough for
the first step, the dissipation is neglected, and from the equaveakly damping waves to exist.
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APPENDIX C: NONLINEAR WHISTLER WAVES IN A
PLASMA WITH HOT ELECTRONS

Oblique nonlinear whistler waves in a cold plasma were

studied for the first time by Kazants&Vlf ions are cold and

electrons are “warm” and isothermal, the similar problem

was solved by Kakutargt al> In this appendix, we extend

these results for electrons with an adiabatic equation of state.
For one-dimensional flows, the two-fluid MHD equa-

tions can be written as follows:

an-l— J V,)=0 C1
5 5(” =0, (Cy
N Ny _ ° Viy—Vey)B,— (Vi,— Ve, B
W"' Xﬁ_X_m[( iy ey) z ( iz ez) y]
1 dp

 n(me+m;) ax’ €2
Al va\?‘—eh' ® VB-VB c3
Ve T m 'm_ic( xB—ViBy), (C3
Ve v(?ve e i (VB-VsB c4
ot X % m. 'mec( X By (CH
10E 9B A4mne _ v s
c ot ax c i~ Ve), )
1B JE -
EH_ &7 ( )
B,=B, cos #=const, (C7)
ap ap IV
E-I—VX&'F’)/D ax =0, (C8)

wherev is the specific heat ratio for electron component. We= 87rpo/B§,
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i ni(m +m<)V—)2(+m |Y/e|2+m»|v—i|2
ot e 2 ¢ 2 b2
p_, [BI*+[EP
y—1 8w
+i NVl (m +m-)V—)2<+m |V—E|2+m-|v—i|2
X Xhe 2 €2 "2
¥PVx c
+ v + E(Esz— EZBy)] =0.

For a stationary solution, we can choose a reference
frame such that the time derivatives vanish. Then from Max-
well equations it follows thaE=const and we can iy
=0. Assume further that at infinity the plasma is undis-
turbed. Here we can Ié‘le,izo. Then electric and magnetic
field components are

Bx=Bpcosf#, B,=Bgsing, B,=0,

Y,
E,=0, E,=—-Bosing,
respectively. For definiteness, in the following we assume
that y=2.
After some straightforward algebra we can easily obtain

1
y2+Z2=sir? 9+2M3(1-v)+B 1——2), (C9)
1%
y"+Qz'+cog 6(y—sin §)—Ma(vy—sin 6)=0,
(C10
Z'—Qy'+(cog §—vM3)z=0, (C11)

wherey=B, /B, andz=B,/B, are the dimensionless mag-
netic field componentsyl 5 is the Alfven Mach number;3
Q=(u"?+u Y)coss, and v is the

assume that quasineutrality holds and for both electrons angdcomponent of the dimensionless plasma velocity normal-

ions n denote the number density. Tlkecomponents of the

ized to its unperturbed value at infinity. The primes denote

fluid velocity of electrons and ions are approximately equakhe derivatives with respect to the dimensionless coordinate

and denoted by, . For brevity, we introduce the following
complex parameters: transverse electric field E,+iE,,
transverse magnetic field= By+iB,, and transverse fluid

veIocitiesT/=Vy+iVZ of electron and ion components.
In addition to the continuity Eq(C1), the system(C1)—

introduced by

eBy

—Fdx.
(mem)Y2ve

dé=

At infinity we havev=1, y=sin 6, z=0, and first and sec-

(C8) has the following conservation relations for momentuMmyq derivatives of the magnetic field vanish. Equations

and energy:

1
n(meg+m;)Vy+ —(EyB,— EZBy)}

at 4C
2 1 2 2|
+o n(meg+m;)Vi+p+ g(ﬂ:’ﬂ +[E[»)|=0,
Vorm,)— Bxg
27| N(MeVet miVi)— 7—-
d - . BB
+& nVX(meVe+miVi)—E =0,

(C10—(C1) can be written in the following form:

ov
y'+Qz'+—=0,

% (C12
Z’-Qy'+ £=0, (C13
Jz
where
W=y(r)+(Mi—cog 6)y sin 6, (C14)

andr?=y?+72. It is convenient to write the addeng(r) in
terms of the plasma velocity,
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B cod ¢ 1 1 and v,,<1, i.e., in the waves the plasma density is in-
=T<1—— +,8M§(——1) creased.
v v To determineM,,,, we note at this boundary two zeros
M4 of Eq. (C18) coincide. Thereby we obtain th@-dependence
+M§co§eufm)+7§uﬂ—1y of My,
2MZ-M2,\°

These equations are similar to that describing the motion of a M2 2
charged particle in a uniform magnetic field and nonuniform
potential electric field and have an integral

- B=0.

"\ 2m2,— M2

In accordance with the results obtained by KazantSeve

l=3(y'2+2'2)+W¥(y,2) see thatM ,,= 2Y?M, for B=0. If g is finite but not large,
we have
corresponding to the energy conservation of the particle.
For cold plasma g=0) the equations considered have M. ~olzp | 1 3" (€19
approximate soliton-like solutions with a characteristic n 0 27323

wavelength of several/ w,, for Mach number rand@ _
We observe that for oblique waves such th&g>1, the

cos 0< 2_ cos 6 thermal corrections can be small enough even for figité
du AT 2u B<MS.
Now we can find the3-dependencies of the plasma ve-

(here and in the following we assume that ©6s>u). The locity and magnetic field at the top of the wave fiok,
maximum amplitude of these wavelgos6l/ul’? is much  _

greater than the undisturbed value of the magnetic field. We

nw

can use this fact to simplify the problem considered. If we zv’f’op A Vtopert2) -0
neglect the second term on the right-hand side in(E44), o1+ 2V10p cr p=0,
it is easily seen that Eq$C12 and (C13 will have two . ) )
“integrals of motion,” ,  2TM (M, —Mg)?
rtop cr M 2 M 2.3
:%(y,2+z,2)+lﬂ(r), (C1H9 ( nw— Mp)
Q If B is not too large, from the last equation ai@iL9 we get
L,=r?¢'— E), (C16 3p13
Fopor=2Mo| 1= —22—55 -
where ¢ =arctangly). Using these integrals, we can easily 2""Mg

obtain It is easily seen that the magnetic field at the top of the wave
(B— M2U3)2U,2 can considerably exceed its value far upstream of the wave
A not only in the cold plasma but for finitg as well.
=02(1-v)2M3v?— B(v+1)]
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