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The physical system under consideration is the flow above a rotating disk and its cross-flow
instability, which is a typical route to turbulence in three-dimensional boundary layers. Our aim is
to study the nonlinear properties of the wavefield through a Volterra series equation. The kernels of
the Volterra expansion, which contain relevant physical information about the system, are estimated
by fitting two-point measurements via a nonlinear parametric model. We then consider describing
the wavefield with the complex Ginzburg—Landau equation, and derive analytical relations which
express the coefficients of the Ginzburg—Landau equation in terms of the kernels of the Volterra
expansion. These relations must hold for a large class of weakly nonlinear systems, in fluid as well
as in plasma physics. @000 American Institute of Physids$1054-150000)00204-4

In this paper we analyze the results of a rotating disk
flow experiment, using a Volterra series equation. Volt-
erra models can describe a wide variety of nonlinear be-
havior, with the kernels of the Volterra series carrying
the physical information about the system under study;
in particular, the higher order kernels represent the in-
tensity of nonlinear interactions between the Fourier
components of the wavefield. This approach has mostly
been used to characterize nonlinear phenomena in plas-
mas: here, we explore the possibility of applying the same
kind of approach to fluid mechanics, and present a pro-
cedure for extracting Volterra kernels from experimental
two-point measurements of the fluid velocity. We then
translate our results in terms of a Ginzburg—Landau
model, which is extensively used in fluid dynamics to de-
scribe instabilities and transition to turbulence. More
precisely, we show that the coefficients of the Ginzburg
Landau equation can be analytically calculated as func-
tions of the kernels of the Volterra series equation. This
gives an original method of estimating the Ginzburg-
Landau coefficients from experimental data, which is a
notoriously difficult task, especially when the system is
well beyond the instability threshold.

I. INTRODUCTION

approach has mostly been used for modeling nonlinear inter-
actions and transition to turbulence in plasrfrasn this pa-

per, we apply the same type of analysis to a fluid system: we
use a Volterra equation, whose kernels will be estimated us-
ing two-point measurements of the wavefield, to discuss
some properties of the flow in the boundary layer above a
rotating disk®”’

Our main aim in this article is to examine the relation
existing between the Volterra model and the complex
Ginzburg—LandayGL) amplitude equation, which is one of
the classical tools used to describe the instability of flows
and their transition to turbulené€. We will indeed show
that, if a GL equation is applicable, then its coefficients can
be analytically calculated as functions of the kernels of the
Volterra series equation.

We stress that our approach is not restricted to the GL
equation or to a particular physical system, but holds for a
large class of weakly nonlinear systelttescribed, for ex-
ample, by the nonlinear Schdimger equation, or the Swift—
Hohenberg equation under some general hypotheses that
will be specified in the following.

This way of establishing a quantitative link between the
experimental signal and the GL model, apart from its theo-
retical interest, also has a practical importance, since the
identification of coefficients of the GL equation from finite
and noise corrupted data is notoriously difficult. Volterra

Volterra series equations were first app“ed to the Studyn()dels Can-handle a much Iarggr class of nonlinearities than
of nonlinear systems by Wienleand can be used to describe those described by the GL equation, so our approach can also

a large variety of weakly nonlinear behavfotRecently, this
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be used to test if such an amplitude equation is actually
applicable to a particular physical system. This last point is
important since many experiments have been set up for mea-
suring parameters of the GL equation, without actually pro-
viding efficient means for validating the use of such a model.

© 2000 American Institute of Physics
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The paper is organized as follows: in Sec. Il we will
present the main features of rotating disk flow instabilities,
and briefly describe the experiment that produced the data
we analyze here. In Sec. Ill we will define the Volterra
model and discuss its physical interpretation. Section IV is
devoted to numerical aspects of model identification while a
first overview of the results obtained with the rotating disk
data is given in Sec. V. In Sec. VI we will present the ana-
lytical calculation of the coefficients of the complex
Ginzburg—Landau equation from Volterra kernels. Finally,
the results of Sec. VI are applied to the rotating disk flow in
Sec. VII.

SRR

Il. ROTATING DISK FLOW INSTABILITIES ) o .
FIG. 1. Type | instability waves in the Karman boundary lageef. 2.

Ekmart® was the first in 1905 to formulate the math-
ematical expression of the rotating velocity field of the atmo-
spheric boundary layer at the terrestrial poles. His analysigansition zone where more or less quite localized
was based on the linearization of the fluid motion equationyvavepaCkel?é) appear and form a crown of vortices at the
and the search for self-similar solutions. He supposed thaionlinear stage of their development. Finally, at the periph-
the fluid and the disk angular velocities are very close to one€ry of this zone, the flow is disordered, and presents a tur-
another. The solution he wrote takes the form of a spiralbulent aspect. These three concentric zones are visualized in
now called the “Ekman Spiral,” and is mainly localized in a the illustration of Fig. 1, obtained by dye injectiéh.
thin boundary layer near the rotating disk. Later, in 1921, The anemometric signals we analyze here come from
Karman generalized this search for self-similar soluttbts ~ experiments in which a small roughness element was glued
the full nonlinear case of a revolving disk limiting a semi- on the disk surface, just under the linear thresHokd full
infinite volume of a fluid initially at rest. But it is only from description of the experimental apparatus is given in Refs. 6,
the sixties that the stability of the Ekman or Karman bound-7 and the main features of the setup are the following. A
ary layers was approached. Falfepresented in 1991 a re- stainless steel disk having a diameter of 500 mm, is mounted
view of the stability of these flows. Two types of instabilities on a vertical shaft and immersed in a filled up water tank.
appear in a generic way. They are called type | and type IThe disk angular velocity) is fixed at 1 Hz. Above this
instabilities'® Type Il instability corresponds to a destabili- disk, a circular Plexiglas lid is maintained at a distance of 20
zation by the combined effects of the forces due to the Comm from the disk by a vertical shroud. This cylindrical wall
riolis and viscous effects. It produces waves which are rolledas an inner diameter of 700 mm. Two anemometric probes
up in spirals in a contrary direction to the disk rotation. Onare plunged vertically through openings practiced in the lid
the other hand, the study of Stu&rshows that type | insta- and are positioned at a distance of 0,6 mm above the disk
bility is inviscid and comes from the presence of unstablesurface at the desired radial location; they are oriented as
inflection points in the radial velocity profiles. This instabil- shown in Fig. 2. The sensors are directed radially in such a
ity also produces spiral waves but which are rolled up in thevay that the hot films are mainly sensitive to azimuthal ve-
direction of rotation of the disk. A great amount of experi- locity fluctuations.
mental and analytical work has been devoted to this type | A wave packet of type | instability is generated by the
instability which is a paradigm for the study of laminar— roughness element. Its frequency is centered arowpd
turbulent transition in three-dimensional boundary layer=32 Hz, and its shape widens as its amplitude grows; see
flows >~ |n particular, one of the most recent analyses of
these flows was realized by Lingwoddwho demonstrated
that these instabilities experience a transition from convec-
tive to absolute regimes at given Reynolds numbers which
seem to correspond to the Reynolds numbers where the tran-
sition to turbulence is usually observed.

As the characteristic boundary layer thickness dis
=/v/Q wherev is the viscosity of the fluid an€) the disk
angular velocity, one can define the Reynolds number of the
flow at radiusr by Re=r/8=\Qr?/v. This parameter will
grow as a fluid particle moves away from the center of the
disk. The flow near the center is then dominated by viscous
effects which damp the disturbances: the zone is occupied by

a laminar state. But starting from a critical ReynOIdS FIG. 2. Orientation of the anemometric prob@sarked by dotswith re-

_number? three'dimenSional_diSturbances grow a:md propagatgpect to the flow rotation. The wavenumber we measure is the projégtion
in the boundary layer. This part of the disk is called theof k alongAx. In the present experimentx=8 mm ande~18 deg.
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Re = 250 thogonal decompositiorfS.The inversion problem is known

o B to be difficult in this case of chaotic dynamics because of the
g presence of unavoidable experimental noise that pollutes the
s 0 data.
&

-5t

lIl. DEFINITION OF THE VOLTERRA MODEL

Since our objective is to quantify the wavefield proper-
ties for various Reynolds numbers, it is essential that we use
a model which can be identified in an unambiguous way
from experimental data, while giving direct access to the
physical properties of interest. Volterra models are a good
*l Re=400 ' ' candidate for this. They can accommodate more types of
27 nonlinearities than the Ginzburg—Landau equation, while
still offering a straightforward physical interpretation. Our
decision to apply such models is further motivated by a de-
=2F sire to leave room for possible unsuspected features that
could not be described by the GL equation.

Letv(x,t,Re) be the azimuthal fluid velocity recorded at
time t, positionx and Reynolds number Re. A general dy-

amplitude

amplitude
(@]

§ namical model for the wavefield amplitude is
£
§ ov(%,t,R®

—x ~FW(xtRe),

whereF is a continuous, nonlinear and time-invariant opera-
tor. We write F as a Volterra series:

©

2 9 (ROv; _(x,RE

amplitude

v (X Re)

0 0.2 0.4 0.6 0.8 1
time [sec]

. 21 9ki(ROVi(X,ROv;(X,Re)

HM 8

FIG. 3. Excerpt of the wavefield amplitude as measured by the two probes,
for different Reynolds numbers. The downstream probe signal is in bold,
and amplitude units are arbitrary. The roughness element is approximately

Z Ok m(R&vi—«(X,Re)
located at 0.4 sec. See also Fig. 4 of Ref. 7. -

nMs
nMg

XUi,|(X,Re)Ui,m(X,Re)+"' . (1)

Fig. 3. The critical Reynolds number has been fduldbe  The wavefieldv is sampled at a constant rate, so a discrete
about Re=280, while developed turbulence takes over atversion of the Volterra series is used here, with the notation
Re~500. vi(x,Re)=v(x,t=t;,Re). The coefficientg, gy andgy m

As presented in Ref. 7, finite amplitude effects affect theare, respectively, called first, second and third order Volterra
growth and the dynamics of these waves. In patrticular, it wagernels. In the following, the dependencewvgfon x and Re
qualitatively shown that a one-dimensional complexand the dependence of the kernglsn Re will sometimes be
Ginzburg—Landau equation could model some experimentaimitted, to ease notation.
features such as the growth of harmonic modes or the fre- An expression of the typél) for F, local in space and
guency shift due to finite amplitude of the waves. The ex-convolutive in time, is applicable to a large class of causal
perimental dispersion relation was even successfully testeslystems. In our case, causality is guaranteed by the convec-
against the theoretical one. Note that the Ginzburg—Landative nature of the instability.
equation has been widely used in hydrodynamics in order to In a weakly nonlinear system like the rotating disk
model thermal convectiGAor wake$® for instance. Usually, boundary layer instability, one would expect the lowest order
to evaluate the parameters of the equation, experimentalistsrms of the series to rule the dynamics. This will indeed be
study the impulse response of the system under its instabilitthe case, allowing us to truncate the Volterra series after
threshold. However, when the flow is already in a chaoticcubic terms. Furthermore, since we are dealing with nonlin-
regime, the obtention of the parameters is much more deliearly interacting waves, it is appropriate to consider Fourier
cate and several techniques have already been used moremodes of the wavefield. The discrete Fourier transform in
less successfully: optimization technigtfe or proper or- time of Eq.(1) gives
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a0 (X, @) . IE(X,w)

) — T+ D TaXor,

I IN'(w)vx,w) X 1(X, @) 0 2(X,01,w3)
+ 2 Tylwg,0)0(X01)0(X,0,) + > T3(X, 01,05, 03)+ -+ - .
w1t wr=w w1twrtwz=w

n E Ta(@y,0y,03) The expressions for the first three energy transfer functions

witwytwz=w are
X0 (X, 01)0 (X, 02)0 (X, 03) + - - -, ) T.(X,0)=2Rel 1 (0)E(X,),
wherev(w) stands for the Fourier transform of at fre- _ ~
quency (unless stated otherwise, we shall call frequency T2(X,(1)1,(1)2)—2Rew1+%2:w (Talwg, 02)v(X,01)
what normally should be the angular frequeney The link R R
between the Volterra kernels in Fourier space and their tem- X0 (X,w2)v* (X, w)),
poral counterparts is established by Ref. 27:
w Ta(X,w1,0;,03)=2Re >, (I'3(w1,03,03)

wtwrtwz=w

Ti(w)=2 ge'*, ) )
0 Xv(X,w1)v(X,w5)

2w, ;)= E E gy €' (ko) 3 Xv(xag)u™(xw)),
k=0 150

whereRez stands for the real part af These transfer func-
© o o tions tell us how energy at a given frequengyis redistrib-
[a(wq, 0, w3)= z Z Z Qi el @1k o2l togm) utepl to other Fourie_r modes by nonlinear wave—wave _inter-
=0 /=0 m= v actions; such couplings are a hallmark of weakly nonlinear
systems. A negative quadratic energy tranSfefw,,w,),
Equation(2) shows that the quadratic kerriéj(w;,»,)  for example, implies an energy lossa@which is transferred
is associated with three-wave interactions that satisfy th@y three-wave interactions to Fourier modes with frequencies
resonance conditionw; +w,=w, whereas the cubic term w; and w, (With »,+ w,=w). Negative transfers typically
I'3(w1,07,03) is related to four-wave interactions; + @,  arise when a linear instability needs to be saturated. All these
+w3=w. Typical examples are decay instabilities for the quantities can be directly estimated from both the time-
former and modulational instabilities for the latter. Kernelsqomain and frequency-domain Volterra series.
of different orders are thus directly related to SpeCifiC phyS|' A ﬁna| modiﬁcation concerns the estimation Of the Spa_
cal processes. Likewise, the imaginary part of the linear kertja| derivative from the two-point measurements. If the probe

nel is associated with the wavefield dispersion and its readeparationAx is sufficiently small compared to the wave-
part is associated to the linear growth rate. Much work onength i.e., if k- Ax<1), then we may write

this topic has been done by Zakharov and his co-workers in
the framework of Hamiltonian systems. i(X,Re v;(x+AX,Re)—v;(X,Re

Another motivation for using a Fourier representation of ox AX :
the Volterra equation is that it gives access to a key quantity
for weakly nonlinear wavefields, which is the spectral energyUsing this result, we may express the Volterra model into the
flux. Although the analysis of such spectral energy transfersnore convenient framework of transfer functions. For this
falls beyond the scope of this article, we nevertheless menwe consider the rotating fluid between the two probes as a
tion how they are related to the Volterra kernels. Two appli-causal and open loop system that reacts to a given excitation
cations are described in Refs. 4 and 5. (= the input, or upstream propby giving a responsé= the

We start by assuming that the weak turbulence approxieutput, or downstream propeThe Volterra model then de-
mation holds, which supposes that the number of interactingcribes the nonlinear transfer function between the observa-
waves is sufficiently large for phase decoherence to be effecion points? It can be written as
tive. In this case, the spectral energy den&tywhich de-
scribes the spatial variation of the wavefield energy density, U;=v;(x,Re) (theinpul,

can be defined as (5)
yi=v;(Xx+Ax,Re (the output

=é U.kéé Ok, 1Uj — kUi -

E(X,0,R8=(v*(X,0,RV(X,0',RE) S, o', (4)

where* denotes complex conjugatio®, is the Dirac delta
function, and brackets denote ensemble averagisgumed non n
to be equivalent to time-averaging by ergoditity + Our Ul U et e

Combining Eqgs(2) and (4) gives the kinetic equatih k§=:0 Zo m§=:0 Gt mti - =1 Ui=m €
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wheree; is the residual error to be minimized. The coeffi- Vi=F[Vict, oo Yieno Ui Ui—g, - Ui n,
cientsg of the transfer function are related to the Volterra
kernels[Eq. (1)] by €1, .- €E-nltE, (6)
— whereu; is the input,e; the residual error and a polyno-
g= 9 mial. In contrast to the Volterra series, the output of such
Ax’ models depends on combinations involving past outputs, past
and present inputs and past residual errors. This enhances the
fitting capacity of the NARMAX model considerably.
Physical considerations suggest that our data should be
better described by NARMAX than by Volterra models. In-
deed, the former can handle various featufiessonances,

k-Ax<1) was imposed above to approximate the spatialOng t!:n.e clonsts n)SWhtlﬁh t\:\loggr,\rﬂi)r? ode(ljs Icannotb HOV\{)_.
derivative of the wavefield, it can be relaxed in situationsc Vo1 1t 1S @ISO Known tha models can be arbl-

like here where we are dealing with an amplitude equatioryar'ly well approximated by a Volterra series, at the expense

and one dominating Fourier mode. What matters is that th(g.\)f a(l)arger(o_r p_os&bly mf:cmte) rr:umb_er ol‘/plaj[\rame_terf. d of
characteristic scale associated with the evolution of the wav ARI\x;\er?wlg dg;ge?sl\éieot:) (t:hg()s,sr:1n§|erocoenr1rau tlara]tsioenill ir(w)
envelope and not the carrier itself. This scale should be sma ’ P

as compared to the probe spacing, and yet large enough Ygstment of the former. Furthermore, some of the theoretical

. S . .results needed to recover frequency-domain expressions
make nonlinear effects easily distinguishable. In our experi; q y P

mentk - Ax~1 provides a reasonable compromise in the "n_frorT( NﬁRII\/(;AXtEodeIs arebn tyet |r:jthedpubllcfQO{na:|n. tOur q
ear and weakly nonlinear regimes. work should in this sense be considered as a first step towar

a better adapted model.

We are now left with the determination of the significant
terms in Eq.(5). This is the problem of model structure
selection, which is crucial for a successful identification. Par-

Now that we have selected a physically relevant modelsimony is necessary to avoid ill-conditioning, but the selec-
the next step consists in identifying that model from finitetion of the significant kernels is equally important for a
and noise-corrupted time series. There is vast literature ofroper modeling.

except for the linear term of zero lagy=(go— 1)/AX. Note
that in contrast to Eq(1), the number of considered lags is
now bounded byn, to comply with the finite length of the
time series.

Although the closeness of the probge., the condition

IV. VOLTERRA MODEL IDENTIFICATION

theoretical properties of Volterra modefs*°but relatively In practice, one starts with a model that has large tags
little is known about their statistical properties and their in-and a relatively high polynomial degree. Then, by successive
ference from experimental data. elimination, the unnecessary kernels are discarded until a

Most approaches to Volterra model identification so far“minimum model” is retained. The Error Reduction Ratio
have been carried out in the frequency donfgif32Thisis  (ERR) criterion is generally used for that purpoSe® its
indeed justified when the system dynamics is dominated by gefinition, together with practical aspects of nonlinear model
limited number of interacting modes. The advantage of ddentification, are deferred to the Appendix.
model equation liké2) is that the unknown kernels enter the ~ The final step is the estimation and the validation of the
problem in a linear way, which means that they can be estimodel parameters. There are few rigorous results on nonlin-
mated by standard linear regression techniques. ear model validation; to a large extent one has to rely on

Unfortunately, frequency-domain identification leads tobetter understood results from the linear case; see Ref. 37.
ill-conditioned problems. Because of this, most studies havémong the quantities to be studied are the confidence inter-
been restricted so far to quadratically nonlinear models onlyvals of the parameters, the dependence of the results on the
with relatively few Fourier modes. It is therefore of prime model choice and a statistical analysis of the resideals
importance to find a parsimonious model if we wish to in- Visual inspection of the latter should not reveal any correla-
vestigate cubic and higher order wave interactions in oufion with the in- or output. This can be further quantified by
experiment. hypotheses testing the level of cross correlation between

To alleviate the problem of ill-conditioning, we estimate andy or u.
the Volterra model in the time domain, and subsequently
compute the kernels in the Fourier domain using B).  , \pp| |CATION TO THE ROTATING DISK FLOW
Indeed, the significant kernels are generally easier to identify
and to validate in the time domain. Quite often, less than a The present analysis is based on two-point measure-
dozen suitably chosen kernels suffice to fit the data withments carried out with a fixed probe separationAof=8
reasonable accuracy. mm, at a constant disk rotation speed. We consider 18 series

It should be noted that the time-domain Volterra modelof 32768 samples each, representing 64 rotation periods
(1) belongs to the class of more general parametric modelsach. These series correspond to Reynolds numbers going
called Nonlinear AutoRegressive Moving Average with from 250 to 505, which roughly encompasses the transition
eXogeneous inputdNARMAX ). The ability of such models from laminar to developed turbulent motion.
to fit various types of nonlinear systems has led to a large Two problems we had to overcome before analyzing the
interest in then?**334In NARMAX models, the outpuy; at  data were the oblique orientation of the prolfese Fig. 2
a given time is given by and the lack of calibration. The former means that the two
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probes do not observe exactly the same structures. For scalesthe wavefield, which forbids interactions between waves
of the order of the probe separation, however, the waves amgatisfying the resonance conditior(k;+k,)=w(k;)
essentially planar and so this problem can be neglected. + w(k,), whereas four-wave interactions of the typék;
Calibration of the probes is compulsory for an estimation+k,+ks) = w(k;) + w(ks) + w(k3) are compatible with the
of the linear growth rate. To overcome its absence, we usedispersion relation.
ad hocmethods to correct the signal levels. Satisfactory re-  One of the common signatures of three-wave interac-
sults were obtained by equaling the wavefield power spectrdlons is an up—down asymmetry in the wavefield, which re-
density in a limited band around the frequeney of the  sults in a generation of harmonics. A higher order spectral
fundamental. This choice is justified by the saturation of theanalysis of the wavefield confirms the existence of weak
fundamental mode, which should not vary much over thehree-wave interactions, and the power spectral density in-
range of the probe separation. Adaptive high pass filteringleed has a small peak at2. These interactions are stron-
was also applied in order to eliminate low frequency distur-gest at intermediate Reynolds numbers (8%&<440), for

bances observed at low Reynolds numbers. which the nonlinearity is already significant while the disper-
The Volterra model identification is now detailed for a sion relation still allows for some three-wave interaction.
particular data set, which corresponds to=R387. First, the Four-wave interactions can have various signatures. We

most significant kernels are identified, using the procedurare dealing here with a coupling between frequencies located
described in Sec. IV. For this particular data set, Akaike’sin narrow bands that are centered on the fundamental fre-
information criterion (see the Appendix suggests that a quency. These different results are illustrated in Fig. 4 which

model with seven terms only represents a satisfactorgompares the in- and output, the model prediction and the
tradeoff between parsimony and the ability to fit the resultslinear and nonlinear constituents of the latter. A model with

Out of these seven terms, two are linear and five are cubic. A1 terms was used in order to include the leading quadratic
least squares fit yields the model coefficients: term.

As far as the model performance is concerned, Fi) 4
=-— . au? L — 2 0
Yi=~0.7610 5+0.00325 gui_; ~ 0.01081 i -5 shows that a low order Volterra model succeeds relatively

+0.10221;+ 0.001T; _ pqU; _ ooli _g well in reproducing the real data. The fit can certainly be
improved since the residuals are neither white nor uncorre-
—0.011%); - 14Ui—3Uj— 1+ 0.01084; _p3u; _13U; + € . lated with the input. NARMAX models may be more appro-

The uncertainty level of these coefficients is typically lessPriate here, but the relatively low level of residual noise
than 10% but increases with the model order. The differenfiVe€s Us confidence that the Volterra model still captures the
terms are arranged here in decreasing Error Reduction RatRfent features of the wavefield dynamics. The general per-
(ERR) order, that is, the leading terms are the most importanfo'mance gradually degrades as the wavefield becomes tur-
ones for predicting the output. One should not pay too muciPulent, essentially because the probe spacing is too large as
attention to the values of the delays, especially those appea(l:pmpared to the characteristic scale over which the yvavefleld
ing in the nonlinear terms, since what eventually matters ar§V0IVes. More closely spaced probes would certainly have
the combinations of the terms, as given in Eg). given better results here. o

The most significant kernels are chosen among all pos- 1€ decomposition of the Volterra model output into its
sible combinations of linear, quadratic and cubic terms, wittifferent linear and nonlinear constituents is an interesting
a memory(i.e., a number of delays) equaling up to three EX€rcise, since it revgals how ea_ch type of nonlinearity con-
wavefield periods. We also ran the procedure with modeld/ioutes to the wavefield dynamics. Figure@4-4(f) con-
including fourth and fifth order terms, in order to test for the fifm the ordering(linear > cubic > quadrati¢ of the ker-
possible existence of higher order nonlinearities. All thesd'®lS- The main effect of the linear term is to fit the
tests were negative, suggesting that no higher order terms af@nvective motion by shifting the wave pattern in time by
needed to properly model the wavefield dynamics. This is a@POoUt 30(mseg. This delay is equivalent to one period of the
important point, since it justifies the truncation of the Volt- fundamental mode. Notice that a linear prediction fails to
erra series at cubic terms. Such a truncation not only eas&§Produce the phase shift observed at the center of the pulse,
the identification procedure, but also provides a convenien©" Which a nonlinear correction is needed. This 40 to 50
closure for the analytical expressions. This closure is ofte/€9ree phase shift is taken into account by the cubic term,
imposeda priori as a working hypothesis while we deduce it yvhose (_affect Fherefore_: amounts to an amplitude dependence
from the flow. in the dispersion relation.

Another noticeable result is the strong ordering of the W€ must stress that these results are systematic; by in-
Volterra kernels, regardless of the value of the Reynold§!Uding more or less terms in the Volterra series one changes
number. Linear terms always prevail, as it is expected fo,the_kernels in Fourier space a_llttle, but the conclusions re-
this type of experiment. The dominant nonlinear term, how-Main unaffected. We now consider how V(_)Iterra kernels are
ever, is not quadratic but cubic. Indeed, quadratic terms al€latéd to the parameters of the GL equation.
ways show up much later in the sequence, thereby attestin
the relative weakness of three-wave interactions as compar
to four-wave interactions. The same type of ordering is
found in the nonlinear interaction of gravity waves; both The (one-dimensional Ginzburg—Landau equation de-
have their origin rooted in the nonlinear dispersion relationscribes the evolution, near the critical linear threshold ,Re

. RELATION TO THE COMPLEX
NZBURG-LANDAU EQUATION
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IA(X,1) v IAXL)] A 21 FPA(X,1)

= o gt TVoTax | TRATELTIC)—

>

g —g(1+icy)|AX,D[PAX,),

t))
where

= _ Re—Re

3 H Re. ’

o]

£

Vg is the group velocityy, and¢, are the characteristic time
and length of the instabilityc, and c, are nondimensional
andg is the saturation parameter.

The general solution of a linear stability hydrodynamic
problem can be expressed using a frequency and a wavenum-
ber that verify a complex dispersion relatien= w(k,Re).

The coefficientsry, Vy, &, ¢, are related to the Taylor
expansion of the frequenay(k,Re) near the critical thresh-
old in the following way®

residuals

e “1__iR Jw 9
§ 7-O - | %aReC’ ()
@
.g V_(?(o 10
9T K| (10
C
21 picy = 000 11
&o( |C1)—7% ) (11

c

where|. means that the partial derivatives are calculated at
the critical point Re=Re., k=k..

If the solutionA(x,t) is developed in a temporal Fourier
series,

quadratic term

A(x,t)= >, A(x,v)e ",

cubic term

it is easy to verify that Eq(8) is equivalent to

0 0.1 0.2 0.3 0.4 0.5 Jdw

o=ivA A(X,v) | Pw

i =ivAX, V)= —| ———+ 35—
time [sec] (x,v) x| ox 2 2 C
FIG. 4. Excerpt of the wavefield amplitude at-R887 showing from top to .

bottom (with the downstream probe always in bplda) the measured in- ,92A(x, V) R

and output,(b) the measured output and its predictidn) the measured 5 | (Re—Re)A(X,v)
output and the residualgj) the measured output and the linear constituent X JRe c

of the prediction,(e) the measured output and the quadratic constituent of
the prediction, andf) the measured output and the cubic constituent of the

prediction. The measured signals are centered and reduced. —-q N 2 A(X,v)A(X, ) A* (X, —v3), (12
Vl l}2 l/3: 14

whereq is defined by

of a linearly unstable wave packet centered on the marginal g(1l+icy)
wave of frequencyw., wavenumbek,, and propagating in q= L (13
the directionx. The hydrodynamic field defining the wave 0
packet,v(x,t), can be written as This one-dimensional equation can describe, at least ap-
- - roximately, our 3-dimensional system, because the vortices
v(x,t)=A(x,t)ekex"Tect+ ¢ c., (7) P y Y

produced by the cross-flow instability have a definite propa-

whereA(x,t) is a complex function, slowly varying in space gation direction, so that the system is essentially convective.
and time. The GL equation is an equation for the amplitudeThis one-dimensional approach has been successfully ap-
A(x,t), that, taking into account the lowest order nonlinear-plied in Ref. 7.

ity, has the form Now compareg(12) to the Volterra Eq(2):
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More precisely, we will suppose that, near the critical

(X, .
M=F1(w)v(X,w) threshold ReRe., v(x,t) has the following form:

IX
i A v(x,t) =[A(x,t)eke*"Tect L B(x,t)el?ke 20+ c ¢,
+ 2 Tylwg,0)0(X01)0(X,0,) (15)

w1t wr=w

with A(x,t), B(x,t) slowly varying in space and time. The

+ > Ta(@q,w0,w3)0(X,01) GL equation (14) is then an equation foA(x,t) only,
o1t wyt 3= whereas the quadratic term i8) at w=w. will contain
- - B(x,t) too.

Xv (X, 02)v(X, w3), (14 Equation(15) gives in Fourier space,

considered at ReRe., w=w., and the coordinateis mea- . o
sured along the propagation direction. Both equations de- v(X,w)=€e*A(X,0— w)
scribe the same physical situation. There must then be a re-
lation between the coefficients of the GL equation and the
kernelsl’;, that we \{vill now determine. _ + e i2kexB* (X, — 0—2w,).

One remark is in order: the Volterra expansion has a
structure that is very different from that of the GL equation. The fact thatA(x,t), B(x,t) are slowly varying means
The GL equation involves by construction the slowly vary-inat their Fourier componem%(x,v), E(x,v) are non neg-
ing amplitude of the fundamental wavéd (w.), A(X,t), ligible only for »=0. This implies, of course,
whose Fourier components(x,v) are non negligible only
for v small. On the other hand, the lowest order nonlinear ﬁ(x,wzwc)=e‘chA(x,w—wc),
term in the Volterra expansioril4), considered at Re
=Re,, w=w., is equal to zero if, in the sums, only the 0(X, w=2w.) =€ B(X,w—2w,),
frequencies close to the fundamental angare taken into
account, so that we are obliged to include at least the first l’;(x,w:_wc):efikch*(X,_w_wC)'
harmonic of the marginal wave in our description. In fact,

+e KFA* (X, — 0 — we) + € Z*FB(X,0—2w,)

the sumZ, ,,, -,-,, takes its lowest order contribution b (X, 0= —2wg) =& 1ZKXB* (x, — w—2aw,).
from the termsw;=2w.,w,=—w., and w;=—w;,w,
=2w,. Equation(14) gives then, forw close tow,,

&A(X,a)— we) . . ,\

T=[Fl(w)—lkc]A(X,w—wc)+2 Z I'y(wq,0)B(X, 01— 2w ) A* (X, — wy— w¢)

w1t wr=w,
01=20¢,0p=—w¢
+3 2 Fs(a)l,ﬁ)z,wg)A(X,wl_(I)C)A(X,(I)Z_O)C)A*(X,_ﬁ)g_ﬁ)c), (16

w1 twrtwz=o,
w1=w2= - wszwc

where we used the symmetry of the kernE|swith respect (the spatial growth rate of the first harmonic of the marginal

to theiri arguments. wave is large and negative. The adiabatic approximation is
We want an equation involving onl(x, ), in order to  thus applicablé® so that

establish a relation with the GL equation. We will then con-

sider the second order Volterra expansi@) for o,

=2w.:

~ 1
~ B(X,w;—2w;)=— =——7—
IB(X, 01— 2w¢) o “  Re(l'y(wy))
RS0 Ty (0g) — 20k IB(x 03— 200
X > Iy(w3,04)
w3ztwg=wq,
+ 2 I)(w3,04) W3= W= we
w3ztwyg=wq, R ~
03T W= We XAX, 03— wc) A(X, 04— w¢). (18

X A(X, 03— w) A(X, 04— w¢). (17)

Near the critical point threshold, the real part E{(ch) Substituting this expression i16), we get
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IA(X,0— w) oo Ia(wy,0)'(w3,0,) - -
— o =[Ti(w)~ikJAX 0w~ 2 wl%:wy w3+§=w1, Re(C1(01) A(X, 03— w) A(X, 04— w¢)
W1=200,0p=—W; W3=Wa=0¢
XA*(X,_wz_wc)‘F?’ 2 F3(w1,w2,w3)A(X,wl—wC)A(x,wz—wc)A*(x,—we,— wc),
w1t wrtwz=w,
W= W=~ W3= ¢
|
which can be rewritten as Differentiating Eq.(19) with respect tox we get
8A(X,w— we) .
o =[T1()—ikJAX0— ) ]
2
IA(X, 0 — w¢) . -
—————=[T ()~ ik J*A(X,0— o)
ax?
+ > Aoy, 0;7,03)
w)twrtwz=o, R
1= wp=—wz=wg + > A(X,w1— w¢)
~ ~ w1t wrtwz=o,
XA(X,(U]__ wC)A(X,wz—wC) 0= wy=—w3=wg
XA*(X,—wg— ), (19 XA(X,wZ—wC)A*(X,—w3—wC)
whereA is defined by XA(wl,wz,wg)[(Fl(w)—ikc)
I'y(wq,w0)'5(w0—wg,w _i _i
Ay, 0, 05) = —2 2(wq (l'i) 2( )3 3) + (M (wq) —ike)+ (M1 (wy) —iKe)
Re - .
(@ 0s) +(Ty(wg) ko) )
+3l3(w1, w5, 03). (20
Notice that in the cubic part of E416), WAeAdiAd not take Again, we keep only terms proportional & with n
into account the possible terms proportionaABB*; thisis <3,
justified a posteriori by the fact that, to leading ordeB We will now replace the expressiori$9) and (21) for
J p y g p p
«A?, and we are considering only the cubic nonlinear termdA(x, v)/dx and 9°A(x,v)/dx? in the GL equation(12). We
in the GL equation. get

A dw _ Jw 1w
0=iIAX,0— w,) (w—wc)-HW C[I‘l((u)—lkc]—ﬁc(Re—RQ)—i—E—

[F1(w)- ikc]2]

ak?
C
~ ~ A Jw

+ 2 A(Xlwl_wC)A(X!wZ_wC)A*(Xl_w3_wC)I T A(wllw21w3)

w1twrtwz=o, é]k c

W= W=~ W3=w¢

) .
+§W Moy, wz,03)[I'1(0) +T'1(01) +T'1(02) +'1(w3) = 2ik)] —q . (22)

C

The first thing to observe is that the expression multi-
plying A(x,w—wc) on the first line is approximately zero,

k(w,Re)=k +—(9 w—w:)t — Re-R
( ’ ) C ? C( C) gRe C( e[:)
fOf Re close to R@and w ClOSG to We . In fact, the first

Volterra kernell’; is obviously related to the inverse of the 1 9%k )
complex dispersion relatiom(k,Re): + > F (0= we)”.
w
[
I'i(w,Re=ik(w,Re). (23 Replacing this expression fdt;(w,Re) in(22), we see that

the term linear in&(x,w—wc) is zero, thanks to the follow-
Near the critical point we have ing relations:



Chaos, Vol. 10, No. 4, 2000

k| dw B 04

0-)_(1) é,_k ] ( )
(o3 C

k| dw . k| \?w 0 -

Jw2| Ik dw k2 o 25
c c c c

dw dw| Jk 0 o6

JRel Tk | rd ~O (26)
C C C
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2
5 . B To 3(? I‘l
§0(1+|Cl)—_fvg 902 | 9
C
. I'y(w¢,00)(20c, —wc)
1+ic,)=Vyg| 2

g( 2) g7o Re(I'1(2w,))

— 3l 5(wg, 00, — w) |- (30

The first three relations involve the linear terms of both
models. They are a consequence of the fact that, on the one

Equations(24) and (25) are general, and express the relationpanq, the coefficients of the linear terms of the GL equation
existing between the first and second derivatives of a funcdepend on the dispersion relatiark, Re) and, on the other
tion of complex variable and the derivatives of the inversenanq the linear kernel of the Volterra model is proportional

function. Equatior(26) is specific to a dipersion relation, and
is proved in Ref. 39.
Let us now consider the cubic term in EQ2):

>

w1t wrtwz=w,

A(X, 01— 0) A(X, 03— 0 ) A* (X, — w3~ w)

W)= Wr= "~ W3=We

|

X[Fl(w)+rl(w1)+rl(w2)+rl(w3)_2ikc)]_q]

i o

Jw

_W A(w11w21w3)

CA(w11w21w3)+ 2 W

c

>

w)twrtwz=o,

AX, 01— 0c)A(X, 0~ @)

W= W=~ W3=Wg
XA*(X! — w3 wC)[Q(wllest)_q]'

Expanding Q(wq,w,,w3) around the critical point
(we,0¢:,— ), like it was done fold";(w), we see that the
parameterq has to be identified with the leading term
Q(we,ws,— we). Sincel’1(we)=ik., we get

_ 0}
="K

(7(0‘ [
C

A(wc y We 1wc)
FZ(wC vwc)FZ(sz y
Re(I'1(2w())

w¢)

ok

—3l3(w,0¢, — o)

Explicitly, using Eqgs.(9)—(11), (23), (24)—(26) we get

V= o) ] 2
g=! o . ) 27
ary| 177
1
70~ |R&Vyome : (29

to the inverse dispersion relatid&tfw,Re). The fourth rela-
tion fixes the value of the cubic nonlinear coupling in the GL
equation in function of the nonlinear couplings of the Volt-
erra model, in such a way as to make the two approaches
compatible.

A Volterra model of the typ€2) and the GL equatiofB)
are not always equivalent in the way expressed by E28.
to (30). They are if three hypotheses are satisfi€d: the
system is close to the linear instability thresho(d) the
dynamics is dominated by the marginal wavk, (),
whose amplitude is a slowly varying function of time and
space and3) the first harmonic of the fundamental mode
follows it adiabatically. These hypotheses are in any case
those under which this amplitude equation can be derited.

There is one more point to be underlined: from the be-
ginning, we have neglected kernels of order higher than three
in the Volterra series. While this is often imposed as a hy-
pothesis that cannot be verified, the experiment clearly con-
firms such a truncation. Had 4th or 5th order kernels been
important, then the terms generated by them would have led
to a quintic GL equation and not to a cubic one.

VIl. GINZBURG-LANDAU COEFFICIENTS FOR THE
ROTATING DISK FLOW

Now that a link has been established between the Volt-
erra kernels and the coefficients of the GL equation, we dis-
cuss the inference of the latter from the experimental data.

Note that, in a strict sense, the results derived from the
Volterra equatiorfEgs. (19) and (21)] can be inserted into
the GL equatioriEqg. (12)] only if the spatial derivatives are
taken in the same direction. This direction is given here by
the propagation of the vortices, i.e., the group velocity
dwl ok |k:kc.ExperimentaIIy, however, we only have access

to the spatial derivative of the floww/dx along a direction
which is oblique to the group velocity; see Fig. 2. It should
thus be kept in mind that we are dealing here with a “pro-
jected” Ginzburg—Landau equation. As for the validity of
the adiabatic hypothesid8), it can be checked on the ex-
perimental data, and is indeed satisfied.

We recall that the Volterra kernels contain pertinent
physical information regardless of the model one is actually
trying to fit. The imaginary part of the linear kerngl (w),
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100 05t
0
=
-100 0
-200 ~05 ‘ . .
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Re
300 350 400 450 500

Re FIG. 7. Criterion for convective instability31): the flow becomes abso-
lutely unstable whem, is positive.
FIG. 5. The real part of the linear Volterra kerrg| for various frequencies
and Reynolds numbers. Superimposed on it is the frequepaf the fun-
damental.

ducibility of the experiment, i.e., the difficulty in reproduc-
ing with a single model each pattern triggered by the rough-
for example, is directly related to the wavefield dispersionness element. The error bars are obtained by fitting models
relation. We refer to Ref. 7 for a discussion on that. Like-with various numbers of kernels to different sequences of the
wise, the real part of’j(w) is related to the spatial linear time series. They are therefore conservative.
growth rate. The real paRel';(w) is displayed in Fig. 5 As far as the nonlinear part of the GL equation is con-
together with the frequency. of the fundamental mode. cerned, namely the coefficients andg, our error bars are
Because of the lack of probe calibration, the value of thepresently too large to meaningfully assess the value of these
growth rate is known up to an additive constant. Withalde coefficients. There is strong evidence, however,dgdo be
hoc calibration we used, the uncertainty level is estimated tqositive andc, negative. The absolute value gfdoes not
be about 50m™?) (i.e., one contour interval of Fig.)5In  have any physical meaning in this particular application,
spite of this, positive values of the growth rate confirm thesince the probes measure a voltage and not a velocity. The
onset of the instability around Re300, in good agreement positive sign ofg, however, is important, as it confirms the
with previous studie$.As the Reynolds number increases, supercritical nature of the bifurcation associated with the
the growth rate reaches a maximum and then decays to beross-flow instability.
come slightly negative. A plausible reason for this decay is  The GL equation is in principle applicable only close to
the increasing difficulty in modeling the turbulent wavefield. the linear instability threshold. However, its domain of va-
Using the values of Volterra kernels calculated from ex-lidity is frequently extended to higher Reynolds numbens
perimental data in Eqg27) to (30) we finally get, near the to secondary instabiliti¢sin Fig. 6, we plot the values of the

linear threshold (Re=280), group velocityVy and diffusion lengthé, obtained in ex-
trapolating formulag27) and (29) for Re>Re.. We cannot
Vy=0.16+0.03ms *, do this for r,, because for ReRe, the dependence of the
growth rate of the fundamental mode from the Reynolds
70=15.1=3.2ms, number is rapidly dominated by nonlinear effects: it is then
meaningless to evaluatg, as the derivative of the linear
£,=2.1=0.5mm, growth rate with respect to Re.
In this figure, we see that the group velocity increaggs
c,=—0.47+0.28. with Re, which is what one expectghe diffusion lengthé,

, . ) does not vary much up in the range 28Re< 380, and in-
These results agree with those obtained in Ref. 7. The relac'reases for Re400, as the wave packets triggered by the
tively large uncertainty intervals reflect not only the fit of the roughness element start to spread out and merge. The param-
Volterra kernels by the GL coefficients, but also the irrepro-eterCl does not vary significatively with the Reynolds num-
bers. Its value, which has no straightforward physical inter-
pretation, is in agreement with that found in Ref. 7.

087 Let us finally consider the criterion of convective vs ab-

306} solute instability of the flow. For ReRe;, let
=
2 0.4 Re—Re, Vers
£ "= " Re 122 > (31
®02 &  4&(1+c)

0 . . . As it is discussed in Ref. 8, a flow is convectively unstable

200 300 400 500 when 7 is negative, and absolutely unstable wheis posi-

Re tive. Figure 7 suggests that the transition to absolute insta-

i . ! bility takes place near Re400, in agreement with the linear
FIG. 6. Group velocityV, projected along the probe separation vector, and L ) . .
characteristic lengtl§ as measured using the Volterra model, for different Prediction given in Ref. ]_-9 fora ROSSbY_numb_er estimated at
Reynolds numbers. Notice that they are expressed in different units. Ro=0.73. This feature is also compatible with results ob-
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tained on the same data set, using demodulation techniques: y=p@-+e, (32
in Ref. 20, it is shown that the spatial organization of the .
flow strongly increases at Re380, which might therefore with
correspond to the onset of absolute instability. Y1 01 €
y: : ’ P:[plv "'va]= ®: : , €=
VIIl. CONCLUSIONS YN O €N

In this paper we present some properties of the flow inThe M unknown parameterg are the various kernelg of
the boundary layer above a rotating disk. We describe th&q. (5). TheNXM matrix P (with N>M to avoid underde-
wavefield in terms of weakly interacting Fourier modes, us-termination contains the regressors,, each of which is
ing a Volterra series equation, whose kernels are estimategbme combination of past and present inputs.
using two-point measurements of the wavefield. The minimization of the Euclidian norrje|| leads to a

One of the advantages of Volterra models is that theytandard least squares problem that has a unique sofdtion
provide access to the nonlinear terms at various orders. Sutfarious numerical methods are available for that purpose;
prisingly, the dynamics of the flow is well described by a see Ref. 36.
model containing a limited numbéfive to twelve of linear The ERR criterion proceeds as follows. Consider the
and cubic kernels only. The prevalence of linear kernels iCholesky decompositio® into WA whereW is anNX M
normal because we are in a weakly nonlinear regime. Therthogonal matrix and\ is an M X M unit upper triangular
guasi-absence of quadratic terms, whose manifestations angatrix. The residuals can then be written as
three-wave interactions, is more surprising. It is explained b _
the dispersion relation, which forbidspthreg-wave re?sonancei. e=y—PO=y—(PA"!)(A0)=y-Wg.
Four-wave resonances, however, are not forbidden, and thiEquation(32) thus becomes
rule the nonlinear dynamics.

We have studied the relation of this model to the ampli-
tude equation that is classically used to describe the instabilcomputing the sum of squares of the output gives
ity of flows, the complex Ginzburg—Landau equation. We M
have shpwn that the two apparently different approqches are yry="> glwiw,+e*e,
compatible. Analytical results for this are presented in detail: k=1

they are summarized by relatioi7) to (30). These rela-  \here* denotes complex conjugate transposition. The ERR
tions hold under the same hypotheses as those justifying thg gefined as the fraction of the output variance that is ex-
use of an amplitude equation, and can be applied to a larg&ained by each column vector,

class of weakly nonlinear extended systems. Our results for
the GL coefficients relative to the rotating disk flow are com- gizw’k‘ Wy
patible with those obtained in Ref. 7. ERR=—"—,
Interestingly, the Volterra approach reveals that fourth 'y
and fifth order interactions are not significant, thereby jus-
fifying its truncation at the cubic term. This truncation is

y=Wg+e.

often imposeda priori as a hypothesis while here it is de- 10 ©
duced from the experiment. Moreover, this confirms that our
physical system can indeed be described by means of an T OO
amplitude equation with a cubic nonlinearity. c 10° } OOOOO
Thanks to their general structure and phenomenological W OOOoooooooooooooo
character, Volterra equations can describe a wide variety of ©o
nonlinear behavior, while still offering a straightforward 10
physical interpretation. That is why this analysis could be 0.6
extended to different types of amplitude equations, for ex-
ample to a quintic GL equatiof?, including in this case -0.8;
higher order Volterra kernels in our model. This approach o 4l 605000
gives some insight in the structure and physical meaning of < ~'[o OOO
the different terms of amplitude equation considered, and can 12} oo Oooooooo
eventually be used to test if it really can apply to the system 0%4000°
under study. -14 - . :
0 10 20 30
A. Practical aspects of model identification number of terms M

In this section we briefly describe the numerical proce-FIG. 8. Example of the evolution of the ERR criteri¢top) and the AIC
dure for estimating the different kernels of the Volterra criterion (bottom as the number of coefficients of the model increases.

model. i.e.. the coefficients of the nonlinear transfer functior{\lotice that the ERR criterion is obtained using a single datathetone
R used to estimate the kernglsvhereas the AIC includes an additional stage

[Eq- (5)] ) ) ) ] ) of cross-validation, i.e., the model is first estimated and then tested using
First, the transfer function is written in the matrix form different data sets.
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