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Introduction

Michaelis-Menten kinetics [START_REF] Michaelis | The kinetics of the inversion effect[END_REF] occur in many natural and engineered reactive systems. They were originally developed as a model of catalytic reactions, where the reaction of interest is mediated by binding to a catalyst, leading to saturation effects [START_REF] Michaelis | The kinetics of the inversion effect[END_REF][START_REF] Segel | The quasi-steady-state assumption: a case study in perturbation[END_REF]. This type of kinetics has found applicability in a variety of contexts, such as microbial growth [START_REF] Holmberg | On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities[END_REF][START_REF] Thullner | Microbial controls on the biogeochemical dynamics in the subsurface[END_REF], chemotaxis [START_REF] Novick-Cohen | A gradually slowing travelling band of chemotactic bacteria[END_REF], solute transport in biological tissues [START_REF] Ward | Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures[END_REF][START_REF] Hiltmann | On oxygen diffusion in a spherical cell with michaelismenten oxygen uptake kinetics[END_REF][START_REF] Mcelwain | A re-examination of oxygen diffusion in a spherical cell with michaelis-menten oxygen uptake kinetics[END_REF][START_REF] Nicholson | Interaction between diffusion and michaelis-menten uptake of dopamine after iontophoresis in striatum[END_REF], enzyme reactions [START_REF] Horvath | External and internal diffusion in heterogeneous enzymes systems[END_REF], predator-prey models [START_REF] Hsu | Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system[END_REF],

and reaction-diffusion in electrodes [START_REF] Michael | Reaction/diffusion with michaelis-menten kinetics in electroactive polymer films. part 1. the steady-state amperometric response[END_REF]. In the context of bacterial growth, it is also known as Monod kinetics [START_REF] Monod | The growth of bacterial cultures[END_REF]. They have been used extensively to model biodegradation of contaminants in hydrological and groundwater systems [START_REF] Tompson | Simulation of tce migration and biodegradation in a porous medium under conditions of finite degradation capacity[END_REF][START_REF] Porta | Implications of uncertain bioreactive parameters on a complex reaction network of atrazine biodegradation in soil[END_REF][START_REF] Barry | Modelling the fate of oxidisable organic contaminants in groundwater[END_REF][START_REF] Kindred | Contaminant transport and biodegradation: 2. conceptual model and test simulations[END_REF][START_REF] Blum | Quantification of biodegradation for o-xylene and naphthalene using first order decay models, michaelis-menten kinetics and stable carbon isotopes[END_REF][START_REF] Ginn | Stochastic-convective transport with nonlinear reaction: Biodegradation with microbial growth[END_REF]. These kinetics display a simple non-linearity: the reaction rate is proportional to concentration at low concentrations and saturates to a constant above a threshold concentration. Analytical solutions exist for the Michaelis-Menten kinetics in batch conditions [START_REF] Schnell | Closed form solution for time-dependent enzyme kinetics[END_REF][START_REF] Maggi | Implicit analytic solution of michaelis-mentenmonod kinetics[END_REF]. For nonhomogeneous systems, the reaction-diffusion equation with Michaelis-Menten kinetics has been analyzed mathematically for different applications, leading to approximate solutions in some regimes [START_REF] Ward | Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures[END_REF][START_REF] Hiltmann | On oxygen diffusion in a spherical cell with michaelismenten oxygen uptake kinetics[END_REF][START_REF] Mcelwain | A re-examination of oxygen diffusion in a spherical cell with michaelis-menten oxygen uptake kinetics[END_REF][START_REF] Shanthi | Analysis of non-linear reaction-diffusion processes with michaelis-menten kinetics by a new homotopy perturbation method[END_REF][START_REF] Hsu | On a system of reaction-diffusion equations arising from competition in an unstirred chemostat[END_REF][START_REF] Anderson | Analytical bounding functions for diffusion problems with michaelis-menten kinetics[END_REF][START_REF] Anderson | Complementary variational principles for diffusion problems with michaelis-menten kinetics[END_REF][START_REF] Park | Theory and simulation of diffusion-controlled michaelismenten kinetics for a static enzyme in solution[END_REF]. Here we analyze the effect of chemical gradients on the average kinetic laws for local Michaelis-Menten kinetics. We investigate whether non-homogeneities in concentrations may lead to enhanced or reduced average reaction rates compared with batch kinetics, characterized by homogeneous concentrations.

Under non-linear kinetics, unresolved concentration gradients lead to effective macroscopic reactive transport laws that are different from microscopic laws [START_REF] Battiato | Applicability regimes for macroscopic models of reactive transport in porous media[END_REF][START_REF] Battiato | On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media[END_REF][START_REF] Meile | Scale dependence of reaction rates in porous media[END_REF][START_REF] Guo | Dispersion in porous media with heterogeneous nonlinear reactions[END_REF]. In the context of Michaelis-Menten reactions, the effect of mass transfer limitations on effective macroscopic kinetics has been studied with an emphasis on bioavailability limitations when micro-organisms are located on solid surfaces [START_REF] Heße | Upscaling of the advectiondiffusion-reaction equation with monod reaction[END_REF][START_REF] Wood | Effective reaction at a fluid-solid interface: Applications to biotransformation in porous media[END_REF][START_REF] Hesse | Linear exchange model for the description of mass transfer limited bioavailability at the pore scale[END_REF] or more generally distributed in space [START_REF] Schmidt | Elucidating the impact of micro-scale heterogeneous bacterial distribution on biodegradation[END_REF].

Mixing limitation with Michaelis-Menten kinetics have also been investigated in the context of reactive fronts, where reactants are spatially segregated and mixing is the limiting step to bring reactants into contact [START_REF] Sole-Mari | A kde-based random walk method for modeling reactive transport with complex kinetics in porous media[END_REF][START_REF] Ding | Simulating biodegradation under mixing-limited conditions using michaelis-menten (monod) kinetic expressions in a particle tracking model[END_REF]. Here we study situations where nutrients or reactants are released as discrete pulses in time and space, which encompasses a large spectrum of natural and engineered systems. Examples include pulse of nutrients in soil [START_REF] König | Spatiotemporal disturbance characteristics determine functional stability and collapse risk of simulated microbial ecosystems[END_REF][START_REF] Waring | Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests[END_REF], plants [39], aquifers [START_REF] Bochet | Iron-oxidizer hotspots formed by intermittent oxic-anoxic fluid mixing in fractured rocks[END_REF] or catchments [START_REF] Weigelhofer | How do chronic nutrient loading and the duration of nutrient pulses affect nutrient uptake in headwater streams?[END_REF], which are often consumed by biological agents through Michaelis-Menten kinetics [START_REF] Haefner | Modeling Biological Systems:: Principles and Applications[END_REF]. While other types of non-homogeneous initial conditions could be considered, we argue that the general impact of concentration gradients on the average kinetics will be similar as for pulses.

We study the effective kinetics of diffusing pulses of a single chemical species undergoing degradation with Michaelis-Menten kinetics. We assume that the local kinetics are uniform in space and hence focus on the effect of spatial and temporal changes in reactant concentration on the effective kinetics. We approximate these nonlinear kinetics by a sharp crossover from a linear dependency of the degradation rate on c for concentrations lower than the crossover concentration, to a saturated, constant rate above it. We investigate the dependency of the effective kinetics on the Damköhler number Da and the ratio α between the kinetics' crossover concentration and the initial concentration.

We develop a semi-analytical framework relying on a weak-coupling approximation regarding diffusion and reaction. The results compare favorably to numerical simulations of the coupled equations. Fully-analytical descriptions are also derived for asymptotic regimes corresponding respectively to reactionand diffusion-dominated dynamics.

In the following, we first present, in Section 2, a mathematical description of the dynamics, including the solution under well-mixed conditions, which will serve as the reference scenario. Next, Section 3 is concerned with analysing the dynamics of the effective reaction rate as a function of the Damköhler number and α based on numerical simulations. Section 4 is devoted to the derivation of the semi-analytical theory relying on the approximation of weakly-coupled diffusion and reaction. Section 5 explores the consequences of our results in the context of the consumption of nutrients by bacteria. Conclusions are drawn and the results discussed in terms of their relevance to natural systems in section 6. Additional technical derivations regarding the analytical theory and details on the performance of the weakly coupled approximation may be found in appendix.

Dynamics

The dependence of local reaction rate on local concentration associated with Michaelis-Menten kinetics is given by

r (c ) = µc K + c , ( 1 
)
where c is the concentration, µ is the maximum reaction rate per unit concentration, and K is the characteristic concentration for the transition between first-order and zero-order kinetics. The key qualitative features of these kinetics are (i) saturation of the reaction rate at high concentrations c K, and (ii) linear growth of the reaction rate at low concentrations c K.

We define the normalized concentration and characteristic concentrations respectively as

c = c /c 0 (2) 
and

α = K/c 0 , (3) 
where c 0 is the initial concentration. We associate a characteristic reaction time with the low-concentration regime,

τ = K/µ, (4) 
and we nondimensionalize time as

t = t /τ . (5) 
This leads to a dimensionless reaction rate r = τ r /c 0 , given as a function of dimensionless concentration by

r(c) = αc α + c . (6) 
In nondimensional terms, the saturation condition reads c α, and the saturated rate value is likewise given by r(c) = α. In the following, we present and discuss our results in terms of nondimensional quantities, unless noted otherwise.

For simplicity, in order to elucidate the main mechanisms driving the effective kinetics describing the evolution of total mass under this type of scenario, we consider a piecewise-linear model of kinetics accounting for saturation,

r(c) = cH(α -c) + αH(c -α), (7) 
where H is the Heaviside step function. This corresponds to a linear increase, r(c) = c, of the reaction rate up to the critical concentration α, so that r(α) = α.

Above the critical concentration, the reaction rate saturates and remains equal to its maximum value α (see Fig. 1). This model simplifies the analytical treatment, and allows us to focus on the key features of the interplay between transport-induced mixing and saturation. In Appendix F, we investigate numerically the effect of this simplification and show that it tends to slightly over-estimate the maximum effective reaction rates (Fig. F.16). However, results are very similar since the piecewise-linear approximation is very close to the two regimes over orders of magnitudes in concentrations (Fig. 1 and F.17).

Well-mixed kinetics

We first consider the well-mixed case, corresponding to the conditions found in a batch reactor. The concentration c is then spatially homogeneous and depends only on time t. The dynamic equation describing concentration decay is the well-mixed rate law

ċ = -r(c), (8) 
which describes the decay resulting from the sharp crossover approximation of the Michaelis-Menten kinetics when the rate r(c) is defined according to Eq. ( 7).

Throughout, the dot denotes (nondimensional-time) differentiation.

If the initial concentration is sufficiently large (α < 1), reaction starts in the saturated regime. The reaction then proceeds at a constant rate for a Black dashed: Piecewise-linear kinetics, Eq. ( 7).

dimensionless duration σ B , defined such that c(σ B ) = α. For α > 1, the batch starts in the linear regime and σ B = 0. Thus,

σ B = max 0, 1 -α α . (9) 
For t > σ B , standard linear dynamics apply, and the concentration decreases exponentially. The total mass corresponding to a homogeneous batch of width s 0 is given, in one dimension, by M B (t) = s 0 c (t), which we nondimensionalize as M B (t) = M B (t)/M B (t = 0). Hence, expressed in nondimensional terms, the temporal evolution of the total mass of reactant is given by

M B (t) =      1 -αt, t σ B min{α, 1}e -(t-σB ) , t > σ B . ( 10 
)

Diffusing pulses of reactive solutes

We now consider a pulse of a reactant diffusing in a solution and locally subject to the piecewise-linear reaction rate r(c) defined in Eq. [START_REF] Hiltmann | On oxygen diffusion in a spherical cell with michaelismenten oxygen uptake kinetics[END_REF]. Our goal is to compare the effective reaction kinetics under these conditions to the wellmixed batch reaction kinetics for the same initial mass of reactant and the same initial concentration. For simplicity, we consider transport in one spatial dimension, but the approach can be extended to three dimensions. The initial condition is taken to be homogeneous within a region of width s 0 , centered at x = 0. For a total initial mass of M 0 , the initial concentration corresponding to this injection is c 0 = M 0 /s 0 . In dimensional terms, the corresponding dynamical equation is

∂ t c = D∂ 2 x c -r (c ), ( 11 
)
where D is the diffusion coefficient. Here and throughout, the notation ∂ y denotes the partial derivative with respect to a variable y. Note that equation [START_REF] Hsu | Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system[END_REF] is also relevant for one-dimensional dispersion when substituting the diffusion coefficient by a dispersion coefficient. Hence results derived here for onedimensional diffusion also apply to one-dimensional dispersion, which would be relevant for instance for reactive pulses released in porous media columns under flow [START_REF] Dentz | Mixing, spreading and reaction in heterogeneous media: A brief review[END_REF]. In Appendix G we also discuss the effect of dimensionality by solving the reactive transport equation in spherical coordinate for three-dimensional diffusion. Since the surface available for diffusion is larger in three-dimensions, the effect of average kinetics enhancement is found to be even more pronounced for three-dimensional pulses than for one-dimensional pulses (Fig. G. 18 and G.19).

As above, we nondimensionalize concentration as c = c /c 0 and time as t = t /τ . Furthermore, we normalize position as x = x /s 0 . We introduce also the diffusion time τ D = s 2 0 /(2D), corresponding to the characteristic time needed to homogenize the width of the initial condition, i.e., to homogenize a unit length in dimensionless units. We then define the Damköhler number as

Da = τ D τ = s 2 0 µ 2DK , (12) 
which quantifies the relative importance of reaction versus diffusion and is also simply the diffusion time in dimensionless units. The dynamical equation then becomes

∂ t c = ∂ 2 x c 2 Da -r(c), (13) 
where r(c) is given by equation [START_REF] Hiltmann | On oxygen diffusion in a spherical cell with michaelismenten oxygen uptake kinetics[END_REF] and the initial condition is

c(x, 0) = H (x + 1/2) H (1/2 -x) . (14) 
Since under diffusion and degradation the maximum concentration cannot increase, once the latter reaches the value α the kinetics become linear everywhere and are identical to the well-mixed scenario. Similarly to above, we denote by σ the time at which the maximum concentration reaches α. For t σ, we have

M (t) = M (σ)e -(t-σ) (15) 
and

Ṁ (t) = -M (σ)e -(t-σ) . (16) 
As for the batch problem, α > 1 means all mass starts in the linear regime, corresponding to the linear reaction problem for all times. Furthermore, for any value of α, the limit Da → ∞ reduces to the batch problem. This happens because, in this limit, all mass reaches the linear regime through reaction before diffusion has time to deform the initial uniform concentration distribution. Note that we consider a pulse in a formally infinite domain. This means that our results for the total mass are valid so long as deformation of the pulse by diffusion does not extend to the spatial domain boundaries, at least while the saturated regime lasts. In a finite domain, the limit Da → 0 reduces to a batch of the size of the domain (as opposed to the initial pulse size), corresponding to the initial pulse becoming homogeneous over the entire domain before reaction becomes important.

Effective kinetics of diffusing pulses

In order to quantify the effective kinetics of diffusing pulses, we study the evolution of the total mass of reactant. In dimensionless terms, the effective reaction rate as a function of time is given by

r t (t) = -Ṁ (t). ( 17 
)
We analyze the evolution of the effective reaction rate r t as a function of time and as a function r M of the mass itself,

r M (m) = -Ṁ [T (m)], (18) 
where T (m) is the time at which the total mass M [t = T (m)] is equal to m.

Under well-mixed conditions, the effective kinetics governing the total mass always coincide with the local kinetics, irrespective of the latter. In the pulse scenario and for nonlinear kinetics, however, the mixing state, as encoded in the concentration profile, changes the nature of the effective reaction rate. As we will see, this is reflected in a qualitatively different behavior of r M (m) when compared to the local kinetics r(c) seen as a function of concentration.

Note that, formally, T is the inverse of M , that is, M [T (m)] = m and T [M (t)] = t. This inverse exists for our problem because the mass as a function of time is monotonic for degradation kinetics, meaning that a value of mass corresponds to exactly one value of time and vice-versa. If this were not the case, multiple rates would be associated with a given value of mass, and the effective kinetics would exhibit hysteresis. We do not address this type of scenario in the present work.

Numerical simulations

Before proceeding with the theoretical discussion, we illustrate some key aspects of the dynamics using numerical simulations. To this end, we numerically integrated Eq. ( 13) with a square pulse initial condition, as described in Section 2.2, using Matlab's pdepe method. which may be observed. For high Da and high α (top right panel), reaction dominates over diffusion and the shape of the initial profile remains relatively unchanged until the onset of the linear regime. In fact, this is expected for sufficiently high Da, whatever the value of α. Indeed, in the limit of high Da, diffusion becomes slow compared to reaction, so that each region of the pulse becomes essentially independent, and the pulse behaves as a set of independent batches. Hence, for sufficiently high Da and a square pulse initial condition, the pulse remains homogeneous for the duration of the saturated regime and the effective kinetics tend towards the batch kinetics. For low Da and high α (bottom right), diffusion dominates and the profile approaches a Gaussian before relevant reaction occurs. For decreasing α and increasing Da (left and center panels), corresponding to an initial condition higher above the saturation threshold and faster reaction, there is an enhanced interplay between diffusion and reaction, and the evolution of the concentration profile becomes more complex.

Figure 3a compares the evolution of the total mass over time for diffusing pulses and well-mixed batch conditions. The interplay between diffusion and nonlinear reaction in pulses leads to an enhancement of the effective reaction rate when compared to the batch reaction. The well-mixed conditions are the least efficient, in the sense that the remaining mass is always higher at a given time. This is consistent with the above discussion regarding the convergence to batch behavior at high Da. For low Da, when the effect of diffusion is most pronounced, the effective reaction rate initially increases with time to reach a maximum before decaying at larger times (Fig. 3b). These non-monotonic effective kinetics contrast with the well-mixed scenario, which mimics the local kinetics (constant rate followed by exponential decay, see Eq. ( 16)). The maximum reaction rate r max increases with decreasing Da and increasing α (Fig. 4a). Therefore, the region of maximum reaction rate corresponds to a regime where diffusion dominates over reaction and where the linear regime dominates over the saturated regime for most of the dynamics (see Fig. 1). The time t max at which this maximum reaction rate occurs is largest for high Da and low α, which corresponds to relatively low values of r max , see Fig. 4b. Note that α corresponds to the maximum reaction rate for well-mixed batch dynamics.

Thus, increasing α leads to an increase in r max , but also in the maximum batch To evaluate the reaction enhancement relative to the batch kinetics, we define the instantaneous reaction rate enhancement as

r(t) = Ṁ (t) ṀB (t) . ( 19 
)
Because of the nature of Michaelis-Menten kinetics, the batch reaction rate ṀB (t) is maximum at initial time and equal to α until the time t = σ B when the concentration reaches the transition concentration K. In contrast, the max-imum reaction rate of the pulse kinetics Ṁ (t) is always maximum at an intermediate time t max < σ B (Fig. 3). Hence the maximum reaction rate enhancement is rmax = Ṁ (t max )/α (Fig. 5). The maximum enhancement of the effective reaction is found in the limit of low Da and α. This corresponds to the case of diffusion processes dominating over reaction processes with a saturation concentration far below the initial concentration. Conversely, the minimum en- 

Theory

We will now develop a theoretical description in order to better understand and quantify the numerical results discussed in the previous section. Since the dynamics for the mass are trivially identical to the batch problem whenever there is no saturated regime, we assume in what follows that the initial concentration maximum is larger than α. To develop the theory, we first introduce two key quantities governing the dynamics of the diffusion-reaction system, relating to the dynamics of the spatial boundary between the linear and saturated kinetic regimes. We then develop a weak-coupling approximation to predict the evolution of total mass under reaction and diffusion.

Transition between saturated and linear regimes

For times t < σ, at which the peak concentration is above the saturation threshold α, the spatial domain may be divided into regions in which either the linear or the saturated reaction dynamics are taking place. In this framework, the first key quantity is the position of the interface between these domains. If the concentration profile is symmetric at the initial time, it will remain so at all times. If, further, over the half-space of positive x the initial concentration profile c(x, t = 0) decreases monotonically (i.e., ∂ x c < 0 for x > 0), the profile will remain monotonically decreasing at all times. Hence, the saturated region occurs around x = 0, and is separated from the linear region by an interface at positions ±ξ(t), where ξ(t) is the positive solution to c[ξ(t), t] = α. We may thus separate the concentration field into two terms corresponding respectively to these two regions: c(x, t) = c (x, t) + c s (x, t), with

c s (x, t) = c(x, t)H[ξ(t) -|x|], c (x, t) = c(x, t)H[|x| -ξ(t)], (20) 
where s stands for saturated and for linear kinetics. The total mass is given by

M (t) = ∞ -∞ dx c(x, t) = M s (t) + M (t), (21) 
where the masses in each regime are given by the integrals of the corresponding concentrations.

The second key quantity is the total diffusive flux across the interface between the regions (i.e., between reaction regimes). The net diffusive flux into the linear regime, considering the contributions at both ±ξ(t), is given by

f (t) = |∂ x c(x, t)| x=ξ(t) Da . ( 22 
)
For t σ, when the full profile is in the linear reaction regime, we set ξ(t) = f (t) = 0. Then, c(x, t) = c (x, t), and therefore

M (t) = M (t).
Mass transfer between regimes is governed by the direct effect of the diffusive flux across the interface, as well as by the displacement over time of the interface position due to both reaction and diffusion. By the Leibniz integral rule for differentiation under the integral sign, we have

Ṁs (t) = |x| ξ(t) dx ∂ t c(x, t) + 2α ξ(t), Ṁ (t) = |x|>ξ(t) dx ∂ t c(x, t) -2α ξ(t). ( 23 
)
The first term for each mass is due to the dynamical change of concentration, whereas the second is directly due to the time-dependence of the interface position. As shown in Appendix B, this leads to

M s (t) = M s (0) -R(t) -F (t) -B(t), (24a) 
M (t) = M (0)e -t + G(t) + H(t), (24b) 
where

R(t) = 2α t 0 du ξ(u), (25a) 
F (t) = t 0 du f (u) (25b)
are the saturated-regime mass losses due respectively to reaction and diffusive flux at the boundaries,

B(t) = -2α t 0 du ξ(u) = 2α[ξ(0) -ξ(t)] (25c) 
is the saturated mass loss due directly to the changing position of the interface, and

G(t) = t 0 du e -(t-u) f (u), (25d) 
H(t) = -2α t 0 du e -(t-u) ξ(u) (25e)
correspond to the amount of mass which was transferred to the linear regime at some time u < t by diffusion and directly by change of the interface position, respectively, and then survived (exponential) decay until time t.

In order to simplify the analytical treatment, it is convenient to consider a Gaussian initial condition. The role of the initial condition on the effective reaction kinetics will be discussed shortly. In dimensionless units, we consider an initial profile with unit mass and variance,

c(x, 0) = exp -x 2 /2 / √ 2π. (26) 
Note that the corresponding initial masses are

M s (0) = erf ξ(0)/ √ 2 , M (0) = erfc ξ(0)/ √ 2 , (27) 
where erf and erfc are the error function and the complementary error function, respectively. The initial position of the interface is given by

ξ(0) = -ln (2πα 2 ). ( 28 
)
The numerically-computed time evolution of the total mass and effective reaction rate for the Gaussian initial condition are shown in Fig. 6. For small Da, when diffusion dominates, the behavior is the same as for the square-pulse initial condition because diffusion quickly deforms the initial profile into a Gaussian shape, before appreciable reaction takes place In the limit of small Da, reaction approaches the linear regime for masses arbitrarily close to the initial mass. For high Da, however, the initial condition controls the kinetics, because diffusion cannot deform it substantially before the linear regime is reached. In this case, reaction is much more efficient than for the batch scenario, since a relevant portion of the mass starts in the linear regime, whereas the well-mixed batch is fully saturated. This effect is more pronounced for low α, since, as discussed above, it corresponds to a longer duration of the saturated regime.

In what follows, we will develop approximations to quantitatively analyze the dynamical behavior of the diffusion-reaction system under the unit Gaussian initial condition. It should be kept in mind that the high-Da limit exhibits a behavior which differs from the square-pulse initial condition, which, as discussed above, is identical with a well-mixed batch in this limit. (c) Reaction rate as a function of total mass; the unit-slope dashed green line corresponds to linear kinetics.

Weak-coupling approximation

As formalized in Eqs. ( 24) and ( 25), determining the dynamics of the total mass of reactant M (t) reduces to computing the temporal evolution of the position of the regime interface ξ(t) between the linear and saturated regimes, along with the diffusive flux f (t) thereat. To solve this problem, it is sufficient to develop an approximation for the concentration distribution in the saturated regime c s (x, t), because the reaction dynamics in the linear regime are independent of the concentration profile.

In the saturated regime, the local reaction rate r(c) is constant and equal to α, and the corresponding reactive transport equation is

∂ t c s = ∂ 2 x c s 2 Da -α. (29) 
Defining, for |x| < ξ(t), c D = c s + αt, c D solves the conservative equation

∂ t c D = ∂ 2 x c D 2 Da . ( 30 
)
Solving this equation is not trivial in general, since it depends on the boundary condition at the interface x = ±ξ(t) with the linear regime. Neglecting the effect of the boundary condition on the shape of the saturated part of the profile, we obtain, for |x| < ξ(t), the solution

c D (x, t) ≈ Da 2π(Da +t) e -Da x 2 2(Da +t) , (31) 
and

c s (x, t) = [c D (x, t) -αt]H[ξ(t) -|x|]. (32) 
Thus, assuming that the linear regime does not significantly influence the shape of the profile in the saturated regime leads to a weak-coupling approximation for the dynamics of diffusion and reaction: the concentration in the saturated regime is the result of superimposing a linear concentration decay -αt corresponding to the constant rate r(c) = α on the conservative diffusion problem. This leads, for the interface behavior, to

ξ(t) ≈ Da +t Da ln Da 2πα 2 (1 + t) 2 (Da +t) , (33a) 
f (t) ≈ αξ(t) 1 + t Da +t , (33b) 
valid for t σ, the duration of the saturated regime. For t σ, we set ξ(t) = f (t) = 0 as discussed before.

As mentioned above, we consider configurations for which the saturated regime is present initially, which means that the maximum initial concentration is above α. For the Gaussian initial condition, this means α < √ 2π. Time σ then corresponds to the time when the peak of the concentration profile, at x = 0, reaches α. It follows that σ solves ξ(σ) = 0, which gives

(1 + σ) 2 (Da +σ) ≈ Da 2πα 2 . ( 34 
)
This is a cubic equation for σ with a single positive root. An analytical solution exists, but it is not particularly useful or insightful, and the root can easily be found numerically.

Under the weak coupling approximation, the saturated-regime mass has the analytical solution

M s (t) = erf Da Da +t ξ(t) √ 2 -2αtξ(t). ( 35 
)
While we are not aware of a general closed-form solution for the mass in the linear regime, the latter can easily be obtained by numerically computing the integrals in Eq. (24b). The total mass is then the sum of the two regime masses, and the effective kinetics r M can be computed from Eq. ( 18). In the diffusion-and reaction-dominated limits, analytical solutions can be obtained; these regimes are discussed in detail in Appendix C.

Effective kinetics

We compare the results for the total mass and the temporal effective kinetics r t (t) under the weak coupling approximation against numerical simulations in Fig. 7. Overall, the approximation provides very good predictions. Unsurprisingly, Da ∼ 1 together with low values of α leads to the most discrepancy between simulations and semi-analytical solutions, since it corresponds to a long saturated regime with reaction and diffusion acting on similar timescales.

Nonetheless, the weakly-coupled formulation provides a reasonable approximation even in this regime, capturing the main features of the dynamics of the total mass. A more detailed analysis of the performance of this approximation in terms of the interface dynamics is provided in Appendix D.

We now use the weak-coupling approximation to gain insight into the enhancement and non-monotonic behavior of the effective kinetics. The latter can be understood by examining the derivative dr M /dm. In particular, the condition for non-monotonic effective kinetics is dr M (m = 1)/dm < 0, because the linear regime is always reached for small masses m, so that dr M (m)/dm = 1 > 0.

Using the chain rule in Eq. ( 18) for the effective mass kinetics, we obtain for the change in reaction rate with total mass

dr M (m) dm = M [T (m)] r M (m) . ( 36 
)
As shown in Appendix E, the first and second times derivatives of the total mass are given by

Ṁ (t) = -M (t) -2αξ(t), (37a) 
M (t) = M (t) -f (t). ( 37b 
)
The interpretation of the first result is straightforward: The total rate of loss of mass is the sum of the reactive mass loss rates in each regime, with the linear regime being characterized by a rate proportional to mass, and the saturated regime consuming concentration at a constant rate α within a region of length The result for Ṁ (t) leads, according Eq. ( 18), to

r M (m) = M [T (m)] + 2αξ[T (m)], (38) 
and, using the result for M (t), we find

dr M (m) dm = M [T (m)] -f [T (m)] M [T (m)] + 2αξ[T (m)] . ( 39 
)
The initial condition, corresponding to unit mass m = 1 and time T (m = 1) = 0, is characterized by

dr M (m) dm m=1 = M (0) -f (0) M (0) + 2αξ(0) . ( 40 
)
Thus, if M (0) f (0), the initial change is the reaction rate is nonnegative, and the maximum reaction rate occurs for m = 1 (t = 0). For M (0) < f (0), the effective kinetics are non-monotonic and the maximum reaction rate occurs at some intermediate value m c = M (t c ) = f (t c ), corresponding to some time 0 < t c σ.

We where

Da 2 = α -ln(2πα 2 ) erfc[ -ln(2πα 2 )/2] . (41) 
We note that this criterion is well approximated by the small-and large-α expansions

Da 2 ≈      -ln( √ 2πα 2 ), α 1 
1- √ 2πα 2 π , 1 - √ 2πα 2 1 , ( 42 
)
with the crossover between these two α-dependencies occurring for α ≈ 0.2.

For a given α and Da Da 2 , the effective kinetics are monotonic and the maximum rate occurs at m = 1. It is given by r M (1) = M l (0) + 2αξ(0) (from Eq. ( 38)). Using Eqs. ( 27) and ( 28), we obtain for the maximum enhancement, rmax = r max /α,

rmax = α -1 erfc -ln(2πα 2 )/2 + 2 -ln(2πα 2 ). ( 43 
)
Note the independence on Da. This expression is well approximated by the lowand high-α expansions

rmax ≈      2 1-ln(2πα 2 ) √ -ln(2πα 2 ) , α 1 
√ 2π 1 + (1 - √ 2πα 2 ) , 1 - √ 2πα 2 1 , ( 44 
)
with the crossover occurring for α ≈ 0.1.

Next, we consider the limit of small Da for a given α. For sufficiently small Da, we have Da < Da 2 , so that the effective kinetics are non-monotonic. ). We conclude that r max ≈ M (σ) ≈ 1. This means that, in agreement with the trend observed in Fig. 6c, in the limit of small Da at fixed α the maximum reaction rate is approximately unity and occurs after diffusion has placed roughly all the mass in the linear regime, with little loss due to reaction. Thus, in this limit, the maximum reaction enhancement is

Diffusion-dominated dynamics occur for

rmax = 1/α, (45) 
independent of Da to leading order. Since this regime occurs for Da πα 2 , we set

Da 1 = πα 2 /10, (46) 
so that the regime is characterized by Da Da 1 .

For a given α, the dependence of the maximum effective reaction rate on Da thus follows three regimes: (i) a plateau of maximum enhancement for low Da below a first transition Damköhler Da 1 ; (ii) a decrease of the maximum reaction rate up to a second transition Damköhler Da 2 ; and (iii) a second plateau at large Damköhler. The weak coupling approximation accurately captures the non-monotonic behavior of the effective kinetics (Fig. 8a) and their enhancement relative to the batch kinetics (Fig. 8b). The weak coupling approximation allows for deriving analytical expressions for the two plateaus and the associated transition Damköhler numbers, and for accurate and efficient numerical computation of the complex intermediate-Da behavior. We summarize these findings in Fig. 9. 

Accelerated consumption of nutrient pulses by bacteria

To illustrate the phenomena described above, we compute effective reaction rates for nutrient pulses consumed by bacteria under Michaelis-Menten kinetics and investigate the influence of pulse size on the maximum reaction rate. We consider Michaelis-Menten parameters representative of nutrient consumption by E. coli [START_REF] Natarajan | Glucose uptake rates of single e. coli cells grown in glucose-limited chemostat cultures[END_REF], see Eq. ( 1) and Table 1. We consider a pulse of nutrient in a solution of homogeneous bacterial concentration B. We assume here that the bacterial concentration does not evolve in time, which requires the division rate to be much slower than the nutrient consumption rate. The nutrient is introduced as a pulse of width s 0 in the direction x and uniform in the y and z directions. In the x direction, the spatial domain is assumed much wider than the pulse at all times, and in the y-z plane the latter is assumed to occupy the full available area S. While we focus here on the one-dimensional problem, the derivations above could easily be extended to localized pulses in three-dimensional systems by expressing Eq. ( 13) in radial coordinates. The nutrient pulse thus diffuses in the x direction and follows the reactive transport equation [START_REF] Monod | The growth of bacterial cultures[END_REF], where the maximum consumption rate µ is a function of the concentration B of bacteria,

µ = µ c B, (47) 
with µ c the rate of consumption of the nutrient by a single bacterium. For a given initial (dimensional) mass M 0 of nutrient, the initial nutrient concentra- tion is c 0 = M 0 /(s 0 S). Therefore, α is given by

α = s 0 KS/M 0 , (48) 
covering a broad range of values depending on pulse size.

Figure 10a shows the Damköhler number associated with a given pulse width s 0 and bacterial concentration B, expressed as a fraction of the maximum bacterial concentration B max [START_REF] Koch | Some calculations on the turbidity of mitochondria and bacteria[END_REF]. Since the Damköhler number is proportional to s 2 0 µ, see Eq. ( 12), it varies broadly with pulse size and bacterial concentration.

Expressing s 0 in terms of α, the system's trajectory in the Da-α plane when varying s 0 is therefore characterized by the relation

Da = M 2 0 µ 2DK 3 S 2 α 2 . ( 49 
)
We show these trajectories for different bacterial concentrations in Fig. 10b.

When varying the initial pulse size of a pulse of given mass, all the different regimes discussed in the previous sections are explored, from low Da and α for small pulses, which corresponds to the maximum enhancement relative to the batch, to large Da and α, which corresponds to the reaction-dominated regime,

where the global and local kinetics are identical. For large s 0 , and therefore low c 0 , most of the mass is initially in the linear regime. In this situation, the effective reaction rate is therefore maximum. Similar reaction rates are however reached in the opposite situation of sharp and highly concentrated pulses due to the effects discussed above. The system thus exhibits two optima at low and high s 0 . The lowest effective reaction rate is reached for intermediate pulse sizes (blue area in Fig. 10b), where a large portion of the mass remains in the saturated regime for a long time.

For this simple, yet very common, scenario of a nutrient pulse consumed by bacteria, these results illustrate some of the non-trivial consequences of our findings. For different pulse sizes, a broad range of the Da-α space is explored where the different regimes uncovered in our analysis occur. Our results could therefore provide a guide for understanding natural systems or designing bacterial cultures under non-uniform nutrient conditions. In practice, these phenomena should be expected to be coupled to other important processes such as bacterial growth, chemotaxis, or biofilm development, which further increase the system's complexity.

Table 1: Parameters used to investigate the effective kinetics of nutrient pulses under consumption by bacteria, relating to E. coli [START_REF] Natarajan | Glucose uptake rates of single e. coli cells grown in glucose-limited chemostat cultures[END_REF]. Values are representative of glucose consumption. 

Parameter

Conclusions

We have investigated the kinetics of solute pulses locally subject to a Michaelis-Menten reaction, which occur in many natural and industrial systems. The coupling of diffusion and nonlinear kinetics can lead to non-monotonic effective kinetics, characterized by an initial enhancement of the effective reaction rate up to a maximum, followed by a linear decay of the reaction rate. This enhancement is mediated by diffusion, which transfers mass from regions where the kinetics are saturated to others where it is is linear, i.e., where the reaction rate is locally proportional to concentration. This mechanism can significantly accelerate the effective kinetics of pulse reactors relative to a batch reactor of the same size as the initial pulse, in which reactants are spatially homogeneous.

The precise kinetics depend on the initial condition, as illustrated by comparing the square initial pulse (Fig. 3) to the Gaussian initial pulse (Fig. 6) but the enhancement of effective kinetics through the coupling of diffusion and reaction is expected to be a general result. For any non-uniform initial condition, diffusion always accelerates the transfer of mass from the saturated regime to the linear kinetics regime, leading to faster average kinetics than in batch conditions.

We have numerically explored the different regimes that emerge from this nonlinear reactive transport problem, and shown that they can be adequately understood and quantified using a weak-coupling approximation. This approximation leads to analytical expressions that predict the transitions between different regimes and quantify the enhancement of reaction rates in the end-member scenarios. We have considered here a piecewise-linear approximation of the Michaelis-Menten kinetics to facilitate analytical derivations. Our methodology could be extended to more complex analytical solutions of full Michaelis-Menten kinetics [START_REF] Maggi | Implicit analytic solution of michaelis-mentenmonod kinetics[END_REF][START_REF] Schnell | Closed form solution for time-dependent enzyme kinetics[END_REF] for a more precise analysis of reaction enhancement close to the transition between first-order and zero-order kinetics. The mechanisms of reaction enhancement discussed here for one-dimensional diffusion are qualitatively similar as those occurring in three dimensions as discussed in Appendix G and analytical solutions in spherical coordinates can be derived following the same approach. Since the diffusion-reaction equation is the same of the diffusionreaction equation studied here, the mechanisms described here are also relevant for conventional dispersion processes. The effect of more complex mixing patterns induced by shear and stretching [START_REF] Rolle | Mixing and reactive fronts in the subsurface[END_REF] could be investigated using a similar approach by considering stretching enhanced diffusion captured by lamella mixing models [START_REF] Le Borgne | The lamellar description of mixing in porous media[END_REF].

We have illustrated the consequences of these findings by investigating the dynamics of consumption of nutrient pulses by bacteria. Varying the bacterial concentration and pulse size allows for exploring the different regimes of nonlinear effective kinetics. For a given mass of nutrient, the consumption kinetics are characterized by two maxima, respectively for localized, highly concentrated pulses and for wide, dilute pulses. A minimum consumption rate is obtained for intermediate pulse sizes and concentrations. These findings provide new clues to understand natural bio-reactive systems and potentially optimize engineered bacterial cultures, either to maximize or minimize consumption rates under non-uniform nutrient landscapes. Furthermore, these results provide a new framework to understand and model the effective kinetics of Michaelis-Menten reactions in non-homogeneous concentration fields. While these kinetics are well known in batch reactors, we have uncovered a rich array of behaviors that arise from the coupling of concentration gradients and nonlinear kinetics.

These results are relevant to a broad range of reactive systems characterized by saturating kinetics and non-uniform concentration landscapes. possible value. A value of η = 0 (λ = 1) means that mixing has no effect on the overall reaction efficiency. Negative values of η would mean that the incompletely-mixed system is less efficient than the batch, but these do not occur for Michaelis-Menten reactions.

We show the dependence of the overall reaction enhancement η on Da and α in Fig. A.12. When α is low, both the diffusion and batch problems start from highly-saturated conditions. These conditions correspond to less-efficient overall reaction when compared to linear kinetics, since the effective kinetics are constant rather than linearly increasing with total mass. In the batch problem, exiting the saturated regime requires mass to be consumed until the uniform concentration drops below α, which means reaction proceeds under saturated conditions for a long time. On the other hand, when Da is low, diffusion can quickly deform the concentration profile so that a significant portion of mass reacts under linear conditions, leading to substantially increased overall reaction efficiency. Increasing α corresponds to less-saturated initial conditions; the duration of the saturated regime is reduced, and the difference between the two scenarios decreases. As Da increases, diffusion becomes less important until the linear regime is reached, so that pulse and batch reactors behave similarly. low α. This is due to the fact that the magnitude of the diffusive flux is small in this limit, and therefore has a negligible effect compared to reaction. 

Figure 1 :

 1 Figure 1: Nonlinear kinetics exhibiting saturation. Blue: Michaelis-Menten kinetics, Eq. (6).

Figure 2 Figure 2 :

 22 Figure 2 illustrates the evolution of the concentration profile for all combinations of values of Da ∈ {10 -3 , 1, 10 3 } and α ∈ {0.01, 0.05, 0.26}. These parameter combinations are representative of the different qualitative dynamics

Figure

  Figure 3c compares the evolution of the effective reaction rate as a function of total mass with the local kinetics. The initial value of the reaction rate, corresponding to M = 1, is always the same as the initial batch reaction rate, because the initial conditions are identical. Then, the reaction rate increases up to a maximum value, before decreasing and reaching the linear regime when the peak concentration drops below α. The maximum reaction rates increase markedly with decreasing Da, and the local kinetics are recovered at high Da. Note that the reaction rate is maximum when the mass of the pulse is distributed such that all concentrations lie below α. Local concentrations then obey ċ = -c, which upon spatial integration leads to Ṁ = -M . This linear dependence corresponds to the upper envelope of r M (m), as seen in Fig. 3c. In Appendix A, we present a series of additional numerical simulations and discuss the sensitivity of the non-monotonic effective kinetics on Da and α (Fig. A.11).

Figure 3 :Figure 4 :

 34 Figure 3: Total mass and effective reaction rate for varying Damköhler number Da and α = 0.05 for a square initial condition. The well-mixed batch behavior is shown as dashed blue lines. The dashed green line corresponds to linear kinetics. (a) Time-evolution of the total mass. (b) Time-evolution of the effective reaction rate. Note that, due to the logarithmic time axis, the maximum rate is shifted with respect to the apparent maximum slope in panel (a). (c) Effective reaction rate as a function of total mass.

  hancement of effective reaction by mixing is found in the opposite limit of high Da, where reaction dominates the dynamics, and high α. In Appendix A, we present an analysis of the late time surviving masses to quantify the global reaction enhancement as a function of Da and α. The behavior of the global reaction enhancement follows the same tendencies as the instantaneous reaction enhancement (Fig. 5) described above: it is maximum for low Da and low α (Fig. A.12).

Figure 5 :

 5 Figure 5: Dependence of the maximum reaction enhancement rmax on Da and α.

Figure 6 :

 6 Figure 6: Total mass and reaction rate, computed numerically for the Gaussian initial condition. The maximum batch rate is α = 0.05. The equivalent batch dynamics are shown as dashed blue lines. (a) Time evolution of total mass. (b) Time evolution of the reaction rate.

2ξ.

  The remaining terms involved in the change of the mass in each regime correspond to transfer between regimes and therefore do not affect the total mass. The result for the temporal change M in the rate Ṁ of mass consumption is more subtle, because it is affected by transfer processes. The rate in the linear regime changes according to the negative of the change of mass therein due to the linear character of the reaction. In the saturated regime, the reaction rate changes as 2α ξ due to change in size of the saturated region; thus, the rate of change of mass, which is the negative of the reaction rate, changes as -2α ξ. In turn, the mass in the linear regime changes as -2α ξ due to movement of the boundary, compensating the change in saturated-regime rate. Finally, the mass in the linear regime also increases according to the diffusive flux f (t). The net rate change resulting from these processes is given by M (t)f (t).

  will now identify three qualitative Damköhler number regimes of reaction enhancement. These are characterized by two transition Damköhler numbers, Da 1 and Da 2 , such that the three regimes correspond to Da Da 1 , Da 1 < Da < Da 2 , and Da Da 2 . We consider first the upper transition number Da 2 . Using Eqs. (27), (28), and (33b) for the initial masses, interface position, and boundary flux under the weak-coupling approximation, the condition M (0) < f (0) for dr M /dm to switch signs at some intermediate mass m c becomes Da < Da 2 ,

Da πα 2 ,

 2 see Eq. (Appendix C.23) in Appendix C.2. In this regime, we have M (t) ≈ 1 for t σ. Using Eqs. (Appendix C.20) and (Appendix C.22) for the boundary position and flux under diffusion-dominated dynamics, we obtain t c ≈ σ D , see also Eq. (Appendix C.21

Figure 7 :

 7 Figure 7: Temporal evolution of the effective reaction rate for a Gaussian initial condition, computed from simulations (black) and based on the weak-coupling approximation (dashed red).

Figure 8 :

 8 Figure 8: Performance of the weak-coupling approximation in describing the effective reaction kinetics as a function of total mass, for a Gaussian initial condition. The weakly-coupled model predictions are shown as solid lines and the results of numerical simulations as squares. (a) Effective reaction rate as a function of mass for maximum batch rate α = 0.05 and varying Damköhler number Da. (b) Maximum reaction rate as a function of Damköhler number Da for different α; the dashed lines show the analytical predictions for the high-and low-Da plateaus, occurring respectively for Da Da 1 and Da Da 2 .

Figure 9 :

 9 Figure 9: Regimes of effective kinetics in the α-Da space for a Gaussian initial pulse. The dotted line shows the first transition Damköhler number Da 1 , which marks the upper limit of the maximum-enhancement regime. The dashed line shows the second transition Damköhler number Da 2 , which determines the onset of the second (lowest) reaction enhancement plateau associated with monotonic effective kinetics. Analytical solutions for rmax in the end-member regimes below Da 1 and above Da 2 are indicated.

Figure 10 :

 10 Figure 10: (a) Damköhler number Da as a function of pulse size s 0 for different bacterial concentrations. (b) Trajectories in the Da-α plane corresponding to varying the pulse size s 0 from 10 µm to 10 cm for a given nutrient mass. Solid lines correspond to different bacterial concentrations B, superimposed on the corresponding maximum effective reaction rate rmax.

  We have analyzed the effective (i.e., global) kinetics of such pulse reactors by representing the rate of mass change as a function of mass. While for linear local kinetics the global effective kinetics are also linear, under nonlinear kinetics the global behavior differs from the local kinetics. In the present problem, the nonlinearity arises from the transition from linear to constant local reaction rate due to saturation. Spatial heterogeneity in the concentration profile causes the transition to occur at different times for different spatial locations. This fact underlies the difference between local and global kinetics.

Figure A. 12 : 8 )

 128 Figure A.12: Overall reaction enhancement η relative to the equivalent batch system. (a) Overall reaction enhancement as a function of Da for different α. (b) Overall reaction enhancement as a function of maximum batch rate α for different Damköhler numbers Da.

Figure D. 13 :

 13 Figure D.13: Temporal evolution of the saturated-linear regime interface position. Analytical solutions for ξ(t) in the diffusive and reactive limits are shown as solid black and red lines, respectively. The weak-coupling-based semi-analytical approximation is shown as a dashed blue line and the numerical simulations as a green line with square markers.

Figure D. 14 :Figure D. 15 :

 1415 Figure D.14: Temporal evolution of the diffusive flux f (t) at the saturated-linear regime interface. Results shown and color schemes are analogous to Fig. D.13.

  

  still have u 1 for the dominant contributions due to the exponential cutoff. Thus, we expand the logarithm for small u and obtain It turns out this approximation works well for all values of α. A similar approach yieldsH(t) ≈ 2α ξ R (0)e -σRξ R (t) a-1 e -t isthe upper incomplete gamma function. This approximation is somewhat less accurate for intermediate α values (α ∼ 0.1) Boundary position ξ(t) Boundary position ξ(t) Boundary position ξ(t)

	Da												
														Diffusive
														Reactive
	10 3													Weakly coupled
														Simulation
	1												
								1-√ 2πα 2 0 du	e -u/ √ 2πα 2 √ 2πα 2	ln	1 (1 -u) 2 .
	10 -3 If 1 -hand,	(Appendix C.9) 1 due to the integral bounds. If, on the other 0 2(2πα 2 ) 1/4 √ 1, we have u du e -(σR-u) ξ R (u) ≈ 2πα 2 √ √ 2πα 2 0 σR u (Appendix C.10) du e -u √ Time t Time t Time t 1, we σR 0.01 0.051 0.259
					≈	(2πα 2 ) 3/4 2α	erf (	√ σ R ) -2e -σR σ R π	,
														(Appendix C.11)
	so that											
			H(σ R ) ≈ (2πα 2 ) 3/4 erf (	√ σ R ) -	4σ π	e -σR + 2αξ R (0)e -σR .
														(Appendix C.12)
	+	2 1 + t	e	1+t 2 ξR(t) 2 Γ	3 2	,	1 + t 2	ξ R (t) 2 -Γ	3 2	, t +	1 + t 2	ξ R (t) 2	,
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∞
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Appendix A. Sensitivity of the effective kinetics on Da and α

In this appendix, we provide additional numerical results illustrating how the effective kinetics depend on Da and α. The non-monotonic nature of the effective kinetics is enhanced for decreasing Da and increasing α ( σ for the diffusive problem and σ B for the batch problem. When all the mass is in the linear regime, mass and reaction rates decay exponentially at unit rate regardless of the mixing state, see Eqs. [START_REF] Porta | Implications of uncertain bioreactive parameters on a complex reaction network of atrazine biodegradation in soil[END_REF] and [START_REF] Barry | Modelling the fate of oxidisable organic contaminants in groundwater[END_REF]. Thus, r(t) is constant at times larger than both σ B and σ and given by the ratio of surviving masses,

Asσ is always smaller than σ B , the value of λ can be obtained by evaluating the mass ratio for any time t σ B . Taking t = σ B and using Eqs. ( 10) and ( 15), we find

and η = 1λ is thus a measure of the overall enhancement of the effective reaction rate. The larger η, the more efficient the diffusing-pulse reactor is when compared to the batch reactor, with η = 1 (λ = 0) being the largest Appendix B. Analytical solution for concentration in terms of boundary dynamics

In this appendix, we provide details on the derivation of the concentration dynamics under diffusive transport, in terms of the boundary position ξ(t) and the mass flux f (t). The nondimensional dynamical equations for the saturated and linear regimes may be written as

with the boundary conditions

and a given initial condition c(x, 0).

We write ĥ(k Using these results, along with integration by parts for the spatial second derivatives,

Thus, in Fourier space, we obtain linear ordinary differential equations with the boundary dynamics playing the role of a time-dependent forcing. The standard form of the solutions is

In order to obtain the total masses in each regime, it suffices to set k = 0, since M s, (t) = ĉs, (0, t), see Eq. (Appendix B.3). This leads directly to Eq. ( 24) in the main text.

Appendix C. Analytical solutions for asymptotic regimes

In this appendix, we identify and describe reaction-and diffusion-dominated dynamical regimes. We obtain closed-form analytical solutions for the behavior of the total mass under the weak coupling approximation introduced in section 4.

Appendix C.1. Reaction-dominated dynamics

If we neglect the effect of diffusion on the shape of the concentration profile,

Comparing to Eq. ( 32) for the shape of the profile, we see that we must require Da σ, so that diffusion effects may be neglected for the duration σ of the saturated regime.

The approximate interface position is given by ξ(t) ≈ ξ R (t), where

We thus have a duration of the saturated regime

For the diffusive flux, we have

For consistency, we must also require f (t) 2αξ(t), so that the diffusive flux from the saturated to the linear regime is negligible compared to the saturated mass loss by reaction. This leads to the reaction-dominated condition

which also ensures Da σ R .

For the saturated-regime mass, Eq. ( 35) becomes

For the linear-regime mass, neglecting the diffusive contribution G(t) in Eq. (24b) and using Eq. ( 27) for the initial mass, we have

and intermediate times (t ∼ σ R /2). We also find the limiting forms

For the mass at the transition to the fully linear regime, we obtain

with the limits

This leads to a reaction enhancement

,

which has the limiting behaviors

.

. Diffusion-dominated dynamics

We now neglect the effect of reaction on the saturated-regime concentration profile, which corresponds, for |x| ξ(t), to From this, we find σ ≈ σ D , where

The condition to ensure the validity of this regime for all relevant times is thus The condition σ D 1 implies that the amount of reaction in the linear regime is negligible for t < σ D . Thus, we find that G(t) ≈ F (t) and H(t) ≈ B(t).

As expected for a diffusive profile, we obtain, for t σ D , 2), respectively. In the limit of high Da, for all α, the numerical and semi-analytical solutions show good quantitative agreement and are also well approximated by the reaction-dominated solution. For high α, for all Da, Eq. (33a) also provides accurate predictions.

It interpolates between the diffusion-and reaction-dominated at low and high

Da, respectively, but differs substantially from both at intermediate Da. As expected, low α leads to a worse quantitative approximation, except at high Da, for which the reaction-dominated approximation provides a good description. Note how low α and low Da lead to more complex dynamics, with a non-monotonic evolution of the interface position. This occurs because the interface evolution results from the competition of diffusion and reaction, with diffusion leading to both a widening and a reduction in the maximum of the concentration profile.

Despite the worse quantitative agreement at low α, qualitative features such as non-monotonicity are well captured under the weak coupling approximation. When Da ∼ 1 and α is low, the weak coupling solution predicts non-monotonic behavior, whereas numerical simulations show that the diffusive flux is more closely described by the monotonically-decreasing diffusion-dominated prediction at early times. Nonetheless, the weak coupling approximation captures

Appendix E. Temporal derivatives of total mass

In this appendix, we present details on the calculation of the first and second derivatives of the total mass, Eq. ( 37). Taking the temporal derivative of Eq. ( 24), using the definitions in Eq. ( 25), we obtain

Using Eq. (24b) for the linear-regime mass, the latter equation reads

quantifies the direct effect of boundary movement. Using Eq. (Appendix E.1a), this equation leads to

which, since Ṁ = Ṁ + Ṁs , yields Eq. (37a) for the first time derivative of the total mass.

Next, we differentiate Eq. (37a), yielding

Substituting Eq. (Appendix E.2) for Ṁ (t) leads to Eq. (37b).

Appendix F. Simulations of reactive pulses with full Michaelis-Menten kinetics

In order to evaluate the effect of the piecewise linear approximation for the local reaction kinetics (equation ( 7)), we performed additional numerical simulations using the full Michaelis-Menten reaction kinetics (equation ( 6)).

The temporal evolution of the mass with full Michaelis-Menten kinetics is found to be very close to the one simulated with the piecewise linear approximation