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Abstract  17 

This study assesses the worth of routinely collected hydraulic data (groundwater head, stream 18 

stage and streamflow) and lesser collected water chemistry data (Radon-222, Carbon-14, 19 

electrical conductivity (EC)) in the context of making regional-scale surface water-groundwater 20 

(SW-GW) exchange flux predictions. Using integrated SW-GW flow and transport numerical 21 

models, first-order, second-moment (FOSM) analyses were employed to assess the extent of the 22 

uncertainty reduction or lack thereof in SW-GW exchange flux predictions following acquisition 23 

of hydraulic and water chemistry observation data. With a case study of the Campaspe River in 24 

the Murray-Darling Basin (Australia), we explored the apparent information content of these 25 

data during low, regular and high streamflow conditions. Also, a range of spatial and temporal 26 

prediction scales were considered: catchment-wide and reach-based spatial scales and annual and 27 

monthly temporal scales. Generally, the data worth evaluations showed significant variability 28 

across predictions that were dependent on the spatiotemporal scale of the SW-GW exchange, the 29 

magnitude and direction of the SW-GW exchange flux and the prevailing streamflow conditions. 30 

These dependencies serve to emphasise the importance of prediction specifity with respect to 31 

SW-GW exchange. Among existing data, the most worth was found in Radon-222, groundwater 32 

hydraulic head, EC,
 
and streamflow data showing average reductions in uncertainty of 41%, 33 

38%, 32%, and 23% respectively. Assessment of type and spatiotemporal locations of potential 34 

data showed Radon-222 to be the next most important observation type across many predictions 35 

in locations with data paucity of all data types. Hydraulic observation data types were found to 36 

inform SW-GW exchange flux best under high- and regular- streamflow conditions when the 37 

magnitude of exchange fluxes were largest, whereas the water chemistry data was of highest 38 



value for low- and regular- streamflow conditions where groundwater is discharging to the 39 

stream.  40 



1 Introduction 41 

Observation data underpins effective water resource management, and managers have 42 

significant responsibility in decisions around data collection strategies. Conjunctive surface 43 

water (SW) and groundwater (GW) resource management requires having a quantitative insight 44 

into SW-GW exchange flux. Furthermore, the models that support such management are often 45 

required to provide the SW-GW exchange across multiple spatiotemporal scales.  46 

Numerous methods exist for SW-GW exchange flux measurement and estimation 47 

(Fleckenstein et al. 2010; Kalbus et al. 2006). Means of estimating SW-GW exchange include 48 

direct methods (e.g., seepage meters), aimed at measuring the actual SW-GW exchange flux in-49 

stream at a point. Direct methods are limited to very small spatial scales less than a few square 50 

metres and cannot be extrapolated to reach or regional scale SW-GW exchange (Cook 2015). 51 

Furthermore, such methods are limited by difficulty in identifying net SW-GW exchange – as 52 

opposed to hyporheic flow – and thus have limited utility at larger spatial scales (e.g. kilometre 53 

scale and greater).  54 

The estimation of SW-GW exchange along stream reaches, as opposed to at a point, 55 

include methods based on stream water balance, hydraulic head gradient, river chemistry and 56 

ground water chemistry (see review by Cook 2015). The stream’s water balance (through 57 

differential gauging) can be used where the SW-GW exchange is a significant component of the 58 

stream’s water balance, greater than any uncertainties associated with other components of the 59 

balance. SW-GW exchange can be estimated by Darcian flux based on the average hydraulic 60 

head gradient across the stream and the average hydraulic conductivity of the streambed/aquifer. 61 

The exchange can also be estimated with stable and radioactive geochemical tracers (Cook 62 

2013), requiring information on features such as the flow in the stream, stream geometry, and 63 



hyporheic cycling. Electrical conductivity (EC) is one stable tracer that, given significant 64 

differences between the GW and SW EC can be used with end-member mixing analysis to 65 

estimate inflow of GW to a stream (Barthold et al. 2011). The presence of Radon-222 (
222

Rn) in 66 

SW is indicative of GW discharge (Ellins et al. 1990), in the absence of significant hyporheic 67 

flow. When the concentration of 
222

Rn in the GW is measured at multiple locations along a 68 

stream along with adequate sampling in the SW, then areas of GW discharge at the time of 69 

sampling can be pinpointed, and exchange fluxes estimated. As 
222

Rn is a gas with a half-life of 70 

3.8 days, it will only remain in the stream for short periods of time. The conservative nature of 71 

EC allows for differentiation of river water that briefly enters the streambed for a period before 72 

returning to the stream, which with accumulation of 
222

Rn could be otherwise misinterpreted as 73 

regional GW discharge. Thus it is possible that these two observation data types contain unique 74 

information (i.e. uncorrelated) with respect to SW-GW exchange fluxes, which will be tested 75 

herein. 76 

The use of physically based numerical modelling of flow in SW-GW systems, which is 77 

commonly applied to support managing water resources, allows for groundwater hydraulic head, 78 

stream stage and streamflow data to be integrated (e.g., Schilling et al. 2018; Wöhling et al. 79 

2018). Furthermore, coupling of transport to such a flow model affords further integration of 80 

various stream chemistry and geochemical data, e.g. EC, 
222

Rn or 
14

C. Numerical models 81 

simulating SW-GW exchange that support water resources management provide an important 82 

basis for assessing the extent to which observations can build confidence in the prediction of 83 

SW-GW exchange, i.e., data worth (Fienen et al. 2010).  84 

The level of confidence in regional scale predictions of SW-GW exchange flux obtained 85 

from various models is partly limited by the quality (measurement noise), quantity and types of 86 



available data that inform such model predictions. Predictions of surface water-groundwater 87 

exchange at a regional scale are critical to support conjunctive management of surface and 88 

groundwater resources within strongly connected SW-GW systems, i.e. systems whereby change 89 

to management of a river has a notable impact on the underlying aquifer and vice versa. 90 

Determining the most informative observational data types and spatiotemporal quantities of such 91 

data is an ever increasing need for water resource management practitioners (Kikuchi 2017). 92 

The use of numerical models as a tool to formally assess the benefit of different data 93 

types and optimal data acquisition/experimental design within a formal “data worth” assessment 94 

framework is continually growing in popularity (Kikuchi 2017). The problem of “data worth”, in 95 

the context of water resources modelling, can be defined in terms of the reduction or lack thereof 96 

in the uncertainty of any key prediction of management interest that is afforded through the 97 

acquisition of observation data. A popular method used is first-order, second-moment (FOSM) 98 

analysis, which assumes the model behaves linearly with respect to its input parameters and 99 

simulated outputs. This approach is commonly used because of its suitability to be applied in 100 

combination with complex models (which are often used to support environmental management) 101 

owing to its computational efficiency (e.g. Dausman et al. 2010; Fienen et al. 2010; Moore and 102 

Doherty 2005). Brunner et al. (2012) used this approach to explore the worth of groundwater 103 

hydraulic head, ET and soil moisture observations in informing regional scale groundwater 104 

models. Wallis et al. (2014) demonstrated the utility of a FOSM-based data worth analysis of 105 

bromide, temperature, methane and chloride in the context of aquifer injection trials following 106 

coal seam gas-related water production. Schilling et al. (2014) investigated the utility of novel 107 

tree ring data in reducing predictive uncertainty of SW-GW exchange. More recently, Zell et al. 108 

(2018) used a similar approach to analyse groundwater hydraulic head, stream discharge, SF6, 109 



CFCs and 
3
H in GW transport times. Finally, Knowling et al. (2019b), explored the worth of 110 

tritium-derived mean-residence time data for forecasts of spring discharge. 111 

In the current study, the worth of existing and potential different hydraulic and water 112 

chemistry data are quantitatively investigated in the context of SW-GW exchange flux 113 

predictions over monthly and annual timescales and over a range of length scales (whole of river 114 

(141 km) vs reach (0.8 - 40.4 km)), for a field site in south-eastern Australia (Campaspe River 115 

catchment). We specifically consider the worth of: groundwater hydraulic head, streamflow, 116 

stream stage/depth, stream EC, stream 
222

Rn, and groundwater 
14

C for such predictions. To the 117 

best of the authors’ knowledge, the benefit or otherwise of these tracer methods have not been 118 

quantitatively evaluated compared to more traditional and routinely collected data types in the 119 

context of SW-GW exchanges at the regional scale. This paper aims to answer: 120 

Q1. To what degree, if at all, does the addition/omission of existing hydraulic observation 121 

and/or chemical observation data reduce/increase the uncertainty of SW-GW exchange fluxes 122 

and what is the spatiotemporal variability of such reductions/increases during low, regular 123 

and high streamflow conditions? 124 

Q2. Through consideration of potential future sampling locations and times, which hydraulic 125 

and/or chemical data should be targeted in the future to yield the best reductions in 126 

uncertainty of SW-GW exchange flux during low, regular and high streamflow conditions? 127 

2 Case Study: Campaspe River 128 

The Campaspe River, located in north-central Victoria, lies within the Murray-Darling 129 

Basin, shown in Figure 1. The river runs for 220 km, beginning in the hilly terrain of the Great 130 

Dividing Range and flowing down through undulating foothills to the wide flat riverine plain in 131 



the north before it joins the Murray River; the river provides 0.9% of the inflow for the basin. 132 

The Campaspe River overlies a series of alluvial aquifers, namely the Coonambidgal Formation, 133 

Shepparton Formation, Calivil Formation and Renmark Group (the latter two also commonly 134 

referred to collectively as the Deep Lead aquifer) which interact with the river along its length. 135 

As shown in Figure 1, the hydrogeological units of the Lower Campaspe valley area are made up 136 

of a Palaeozoic basement of fractured and faulted rocks, overlain by the Renmark Group which 137 

contains a blanket of thinly bedded carbonaceous sand, silt, clay and peaty coal, then overlying 138 

this is the Calivil Formation comprising coarse grained quartzose sand and gravel sheet with 139 

minor kaolonite clay, and atop of the Calivil Formation the Shepparton Formation is made up of 140 

fine-grained clastics and polymitic sand and gravel. Finally, incised into the Shepparton 141 

Formation, the Coonambidgal Formation is made up of primarily light grey or brown silty clay, 142 

with sand beds often at the base (Arad and Evans 1987). The main groundwater resource in the 143 

Lower Campaspe Valley is the Deep Lead aquifer. Conjunctively managing both the Campaspe 144 

River and Deep Lead aquifer necessitates estimation of SW-GW exchange flux. 145 

Figure 1.  Campaspe River study area (a), location of Campaspe River catchment within 146 

the Murray-Darling Basin (b), and 3D model of hydrogeological units within the study area 147 

(c). 148 

Average annual rainfall ranges from 424 to 746 mm, with the higher rainfall occurring at 149 

higher elevations above Lake Eppalock, and lower rainfall occurring in the Lower Campaspe 150 

Valley. On average, the highest rainfall occurs between June and August, with the driest months 151 

being January to March. As well as providing sustained flow, the Lake Eppalock dam 152 

(completed in 1964) allows enhanced recharge to the Lower Campaspe Valley, due to its use in 153 

providing irrigation water in the area. The focus of this study is the area downstream of Lake 154 



Eppalock and all the way to where the Campaspe River joins the Murray River. Large diversions 155 

from the Campaspe River until recent years were made through offtakes from the Campaspe 156 

Weir (constructed in the late 1800s) in the Campaspe Irrigation District (CID). Significant 157 

groundwater pumping developed in the Lower Campaspe area in the 1960’s. 158 

2.1 Existing and potential observation data 159 

Observation data types considered in this study include routinely collected and publicly 160 

available hydraulic data, i.e., streamflow (daily), stream stage (daily) and groundwater hydraulic 161 

head data (variable, usually quarterly) (Australian Bureau of Meteorology 162 

(http://www.bom.gov.au), Victorian Government (http://data.water.vic.gov.au)). We also used 163 

existing EC data from the Victorian Government at stream gauges (http://data.water.vic.gov.au). 164 

As part of this study we collected surface (multiple times) and groundwater (once) 
222

Rn data 165 

(spot sampling), and new groundwater 
14

C to supplement existing 
14

C data collected in previous 166 

studies (Cartwright et al. 2012; Cartwright et al. 2006; Cartwright et al. 2010) (spot sampling). 167 

All considered observation data sampling locations are shown in Figure 2, where it can be seen 168 

that the majority of groundwater head observations are located in the north of the study area. All 169 

data collected previously and part of this study is herein referred to as “existing data”, as opposed 170 

to “potential data” which herein refers to as yet uncollected data. A dense network of future 171 

potential observation locations (i.e. data not yet collected) was considered spanning the entire 172 

study area, which includes GW sampling locations for groundwater hydraulic head and 
14

C and 173 

SW sampling locations for stream stage, streamflow, stream 
222

Rn and stream EC. The potential 174 

locations were chosen with the aim of filling the spatial gaps in data, e.g. hydraulic head in the 175 

south of the study area. 176 



Figure 2. Locations for observation data, including a) existing hydraulic (groundwater 177 

hydraulic head, stream stage and streamflow) and b) chemical (stream 
222

Rn, 
14

C, stream 178 

EC) data. Potential future observation data (c) collection locations considered are also 179 

shown. The potential GW observations cover the extent of the aquifers, with gaps existing 180 

in the south of the study area due to the presence of only bedrock. The number of locations 181 

for each data type is shown in brackets in the legend. 182 

3 Methodology 183 

3.1 Integrated SW-GW model setup 184 

The integrated SW-GW numerical models described below collectively serve as a tool for 185 

quantifying regional-scale SW-GW exchange flux prediction uncertainty and its reduction (or 186 

lack thereof) through the collection of various types of hydraulic and chemical data. A 187 

requirement for effective model usage in this context is that the models provide a robust basis for 188 

representing the primary processes and parameters on which predictions of interest may depend. 189 

For example, Fienen et al. (2010) showed that spatially distributed parameterisation schemes are 190 

necessary for effective predictive uncertainty estimation and to avoid corrupted data worth 191 

interpretations that may arise when adopting more parsimonious parameterisation schemes. As 192 

such, the numerical models employed here are physically based and highly parameterised (> 193 

1500 parameters), to allow simulation of surface and subsurface hydraulics (hydraulic head, 194 

stream stage and flow) and transport (
222

Rn, 
14

C and EC), and to robustly express uncertainty in 195 

regional-scale SW-GW exchange flux predictions (e.g., Hunt et al. 2007; Knowling et al. 2019a), 196 

respectively. 197 



The integrated models considered herein comprise a series of SW-GW flow models and a 198 

series of SW-GW and SW solute transport models (Figure 3). The flow modelling in this study 199 

was carried out using MODFLOW-NWT (Niswonger et al. 2011). Assimilation of the hydraulic 200 

data (groundwater hydraulic head, streamflow, stream stage) is achieved through the integrated 201 

SW-GW flow models. The flow models simulate 3D saturated groundwater flow (ignoring 202 

unsaturated flow) and 1D surface flow routing through rivers (by the kinematic wave equation; 203 

SFR2 (Niswonger and Prudic 2005)). The flow model focuses representation of surface flow on 204 

the Campaspe River, ignoring some of the small tributaries that feed into the main river 205 

downstream of Lake Eppalock. This simplification is made as little flow arises from these 206 

tributaries other than in large rainfall events. 207 

The flow solutions obtained from the steady and transient MODFLOW-NWT models 208 

were subsequently used to simulate transport of 
14

C using MT3D-USGS (Bedekar et al. 2016a; 209 

Bedekar et al. 2016b). Due to existing limitations in simulating radioactive decay and 210 

evapoconcentration with the stream flow transport (SFT) package of MT3D-USGS, the 211 

simulation of EC and 
222

Rn stream concentrations was carried out with an analytical steady-state 212 

transport model which accounts for evapoconcentration, decay and hyporheic exchange (similar 213 

to that of Cook et al. (2006) but rearranged to solve for concentration as shown in the Appendix) 214 

using the MODFLOW-simulated streamflows and SW-GW exchange fluxes as inputs. With this 215 

SW transport model, GW 
222

Rn and EC concentrations were treated as a static boundary (see 216 

Table 2). It is assumed that over the monthly time-step used in the flow model that the river is 217 

completely flushed and that all inflows (and corresponding concentrations) are steady, hence the 218 

use of the steady-state transport model. 219 



The series of flow and transport models, shown in Figure 3, were used as a basis for 220 

representing the different hydraulic and chemical data types. Firstly, groundwater hydraulic 221 

head, streamflow, and stream depth/stage, are simulated under pre-clearance conditions in a 222 

steady-state flow model (SS) (MODFLOW-NWT). Secondly, transient SW-GW flow (TR) is 223 

simulated spanning the period 1840 to 2018. In the transient flow model, it is assumed that 224 

clearance of native trees and shrubs was immediate (1840) and that irrigation was static (using 225 

long term average). 
14

C was simulated in two models, firstly using the output from the SS flow 226 

model but simulating transport for 40,000 yrs (TR1C14) with an initial concentration of 
14

C set to 227 

0 PMC across the model domain; subsequently the final concentration of 
14

C in the TR1C14 228 

simulation was passed as the initial conditions for the post-clearance to present day simulation of 229 

14
C (TR2C14). Inflow from recharge was assigned as 100 PMC in both 

14
C simulations. The 230 

Campaspe river flows and SW-GW exchange fluxes simulated at each stream reach in the period 231 

of interest from the transient flow solution (TR) (June 2016-May 2017) were passed to the 1D 232 

transport model for simulation of 
222

Rn (SSRn) and EC (SSEC) at each of the months within this 233 

period of interest. Groundwater concentrations for 
222

Rn and EC were assigned as static.  234 

 235 

Figure 3. a) The series of flow and transport models employed and the associated data 236 

types simulated by each, b) a 3D model schematic, including spatial grid and boundary 237 

conditions: drains (DRN), Campaspe River (SFR), general head (GHB), Murray River 238 

(RIV), pumping (WEL), and recharge (RCH), which is depicted in the overlaid and 239 

elevated surface with 11 time invariant recharge zones. 240 



The numerical grid was discretised into 1 km x 1 km cells (Figure 3b) with 7 layers of 241 

variable thickness covering the 6 hydrogeological units shown in Figure 1c. The mean, minimum 242 

and maximum values of each unit are shown below in Table 1.  243 

Table 1. Summary of hydrogeological layer thicknesses including, mean, minimum, 244 

maximum thickness and percent volume. Hydrogeological units are abbreviated as 245 

Coonambidgal (co), Shepparton (sh), Calivil (ca), Renmark (re), Newer Volcanics (nv), 246 

Basement (ba). 247 

 Variable time steps are employed that are 40 yrs (1840-1880), 84 yrs (1881-1965), 20 248 

yrs (1966-2005), 10 yrs (2006-2015) and then monthly from January 2015 to March 2018. SW-249 

GW exchange flux predictions of interest considered herein for the purposes of the current data 250 

worth analysis are made over a one year period of simulation between the start of June 2016 and 251 

the end of May 2017. The exchange fluxes are considered along the entire river from Lake 252 

Eppalock to the Murray River (141 km), and for reaches between river gauges along this length 253 

of river (11 reaches ranging from 0.8 to 40.4 km in length). The outputs of SW-GW exchange 254 

flux from the transient flow model at each reach were considered at the monthly (important for 255 

river operations and ecological assessment) and yearly resolution (important for water 256 

allocations). Also considered was the spatial sum of the SW-GW exchange flux along the whole 257 

river at monthly and annual time scales (important for groundwater use management strategies). 258 

These different spatiotemporal predictions give rise to a total of 156 predictions of interest. 259 

The MODFLOW-NWT models were forced by recharge using the RCH (specified flux) 260 

package, by groundwater pumping using the WEL (specified flux) package (applied from 1966 261 

onwards), and by rivers and drains using the SFR (streamflow routing and head-dependent 262 

exchange flux, applied to the Campaspe River, which is the focal point of this study), RIV (head-263 

dependent exchange flux applied to the Murray River) and DRN (head-dependent flux) 264 



packages. Stream diversions in-to and out-of the Campaspe River are also captured using the 265 

SFR package. The locations of the boundary conditions are shown in Figure 3. There is no 266 

pumping or artificial drainage in the pre-clearance steady-state (SS) flow model. Zonal rainfall 267 

reduction parameters (11 zones) are set to 1% (i.e. assuming very low recharge at a time when 268 

the land was densely covered in vegetation) and are multiplied by the spatially varying map of 269 

temporal long-term average rainfall over this period for specifying the recharge boundary 270 

condition. As rainfall reduction parameters were used for recharge, evapotranspiration was not 271 

explicitly modelled in this study. In the post-clearance transient flow model (TR) the zonal 272 

values for each of the 11 zones are modified to reflect the land use, soil type and mean annual 273 

rainfall and multiplied by temporally varying spatial maps of rainfall to provide the temporal 274 

recharge input maps for the model. In the post-clearance transient flow model (TR) irrigation is 275 

embedded in the recharge factor for requisite zones as reflected by the land use. Temporally 276 

static aquifer and stream properties were spatially parameterised using pilot points. The locations 277 

of pilot points, which also correspond with the locations of potential observations, were 278 

automatically generated (see SI). 279 

Model history matching was performed on the basis of groundwater hydraulic head, 280 

streamflow, stream stage, stream 
222

Rn, groundwater 
14

C and stream EC, at the locations shown 281 

in Figure 2. Model parameters (Table 2) for stream and aquifer properties were subject to 282 

estimation through history matching. History matching was carried out using the parameter 283 

estimation suite PEST (Doherty 2016) using Tikhonov regularisation.  284 



Table 2. Summary of model parameterization. For the aquifer property parameters, the 285 

hydrogeological units are abbreviated as follows: Coonambidgal (co), Shepparton (sh), 286 

Calivil (ca), Renmark (re), Newer Volcanics (nv), Basement (ba). 287 

The flow and transport models were built utilising FloPy (Bakker et al. 2016). The in-288 

stream transport model for 
222

Rn and EC was implemented in Python (see SI).  289 

3.2 Assessment of predictive uncertainty in SW-GW exchange flux 290 

The worth of data is considered herein as the reduction or lack thereof of the uncertainty 291 

of the prediction of interest (SW-GW exchange) with the addition of various acquired or 292 

potential observation data. A brief overview of the key theoretical aspects underlying the 293 

approach adopted for the quantification of predictive uncertainty and data worth is now provided. 294 

The posterior (i.e., post-history matching) parameter covariance matrix (     can be 295 

estimated with Schur’s complement as (Christensen and Doherty 2008; Doherty 2015; Tarantola 296 

2005; White et al. 2016): 297 

           
      

     
        (1) 298 

Where,    is the prior parameter covariance matrix,    is the epistemic noise covariance 299 

matrix (i.e. accounting for both measurement and model error), and   is the Jacobian matrix of 300 

partial first derivatives of model outputs (for which there are corresponding observations) with 301 

respect to parameters θ. The second term on the RHS of (1) expresses the reduction in 302 

uncertainty surrounding parameters as a result of conditioning the model on the information 303 

contained in the observations. 304 

The prior and posterior uncertainty variance for a prediction s,    
 , respectively can be 305 

estimated via uncertainty propagation: 306 



  
           (2) 307 

And 308 

   
            (3) 309 

Where   is the sensitivity vector for prediction s with respect to the parameters θ (a row 310 

extracted from the   matrix). 311 

This study assumes the parameter covariance matrix (  ) is a diagonal matrix (does not 312 

contain non-zero off-diagonal elements). This assumption means that zero correlation exists 313 

between parameters. The assumption of zero correlation between spatially distributed 314 

parameters, and in particular pilot point aquifer and river property parameters was considered 315 

appropriate given the limited spatial coverage of both aquifer and river property information as 316 

well as the large distance separating pilot points (on average, 6 km x 6 km). The lower and upper 317 

bounds of the parameter range (see Table 2) are specified based on hydrological and geological 318 

expert knowledge (in this case conservative) and are assumed to represent the 5
th

 and 95
th

 319 

percentile of the (assumed Gaussian) parameter distribution.  320 

The Jacobian matrix   was populated using 1% two-point derivative increments. These 321 

derivatives with respect to a parameter set were obtained following a history matching 322 

undertaking that is unrelated to the implementation of the data worth analyses presented herein 323 

(see SI for details). 324 

The epistemic noise covariance matrix (  ) is also assumed diagonal. It is specified 325 

practically by assigning observation weights (inversely proportional to the standard deviation of 326 

noise) (Doherty 2015). Observation weights are specified on the basis of a subjective assessment 327 

of the measurement noise standard deviation (Table 3), before being adjusted in accordance with 328 



model-to-measurement residuals to account for model error. Weight adjustment is undertaken in 329 

such a way that the weight of any observation cannot be increased (thereby respecting the 330 

contribution to epistemic noise from measurement noise), and that the contribution of each 331 

observation group to the model-to-measurement objective function is equal to the number of 332 

non-zero weighted observations in that group (Doherty 2016). The use of model-to-measurement 333 

residuals to approximate model error is deemed appropriate given that this quantity can never be 334 

known, and that the residuals constitute the only information available for reflecting model error 335 

with respect to different types of observation and simulated outputs.  For potential observations, 336 

i.e., where no measurements exist for which to undertake the above-described weight adjustment, 337 

weights are specified based on the average (adjusted) weight assigned to existing observations of 338 

the same group/type.  The observation noise variance for all but stream flow was fixed as stream 339 

flow measurement error is known to become larger at higher flows, particularly when 340 

extrapolating the rating curve (Di Baldassarre and Montanari 2009) and an assumed 40% error 341 

accounts for a worse case evaluation of this error. The posterior parameter covariance matrix and 342 

ensuing data worth analysis was calculated using the Python package pyEMU (White et al. 343 

2016). 344 

Table 3. Assumed observation noise (used together with model-to-measurement residual 345 

information to populate   ). 346 

The worth of different observation data is evaluated in different ways in this study. 347 

Firstly, we consider the worth with observation data groups by themselves, i.e. the ability of an 348 

individual observation data group to reduce uncertainty on a prediction of SW-GW exchange. To 349 

do this, predictive uncertainty with that particular observation data group is estimated by 350 

evaluating equation 1 and 3 twice, once where the particular observation data does not appear in 351 



  , which we term the ‘base’ uncertainty (        ), and again where    contains the particular 352 

observation data group, which gives the ‘group’ predictive uncertainty (           . The 353 

calculation of reduction in uncertainty through adding the observation data type group (DWadd%) 354 

is calculated as: 355 

           
         

        
         (4) 356 

Secondly, to evaluate the mutually exclusive information that exists in each observation 357 

data group we consider the difference between predictive uncertainty reduction using all 358 

observation data groups and omitting an observation data group from all groups. To do this, we 359 

again evaluate equation 1 and 3 twice, once where in    all observation data groups are 360 

considered together (       ), and again with all observation data groups except for the one of 361 

interest considered (             ). Then we compare the two against the ‘base’ uncertainty:  362 

            
                     

        
         (5) 363 

Finally, in the context of the potential observations, we evaluate the next most important 364 

observations (using built in functions in pyEMU; White et al. (2016)) by iterating over each of 365 

the potential observations alone (for select predictions) and in groups (for all predictions within a 366 

group) to find the best reduction in uncertainty, then we add that observation or group of 367 

observations to the list of existing observations and repeat the process. The addition of the 368 

previously identified best observation or observation group accounts for any correlation between 369 

observations or groups of observations. 370 

In order to answer the first question posed (Q1) regarding the degree to which water 371 

chemistry data and hydraulic data reduces the uncertainty surrounding the 156 predictions of 372 

SW-GW exchange, each of the observation data types (or “groups”) were first considered 373 



individually for existing observation data with the “base” containing no observation data (Table 374 

4). Then the potential data (Q2) were evaluated with the “base” consisting of all existing 375 

observation data. The individual contribution of each potential observation to the whole of river 376 

exchange at three different times covering low, regular and high streamflow conditions was 377 

examined to determine the worth of particular potential data types and quantities of value.  378 

Table 4. Data worth assessments employed for the range of SW-GW exchange predictions 379 

from the Campaspe transient flow model (TR). 380 

4 Results and Discussion 381 

4.1 Simulated SW-GW exchange behaviour 382 

The behaviour of SW-GW exchange flux is first examined at each of the TR model’s 122 383 

stream segments on a monthly basis as a means of establishing an understanding of dynamics 384 

and spatiotemporal variability of the exchanges before considering the data worth analysis. 385 

Throughout the results section we adopt the convention of denoting gaining conditions in 386 

a stream by negative values and losing conditions by positive values. The monthly flows are 387 

herein subjectively categorised as either low (<35
th

 percentile), regular (between 35
th

 and 80
th

 388 

percentile), or high (>80
th

 percentile). Each of the flow categorisations is also associated with 389 

clearly differing SW-GW exchange patterns.  390 

The post-clearance transient flow simulation generally showed that SW-GW exchanges 391 

along the length of the river exhibit gaining behaviour (Figure 4). The exception to this being 392 

during high flow events, when the river transitions to a largely losing river (0.23 m
2
/d) as 393 

significant inflows from Lake Eppalock raise the stream stage and reverse the hydraulic gradient 394 

along the majority of the river. The exchange fluxes per unit length of stream at any point along 395 



the stream during the simulation period range from losing by 9 m
2
/d during the October 2016 396 

high flow event to gaining at -9 m
2
/d as the system recovers in the following month. The 397 

spatially and temporally averaged SW-GW exchange along the entire river is gaining at 398 

approximately -1.1 m
2
/d. Reach r3 shows the strongest variance in exchange flux along its length 399 

through differing inflow conditions followed by r5, r6 and r8, while r10 and r11 show the least 400 

variance and are always gaining. 401 

 402 

Figure 4. Simulated SW-GW exchange fluxes per unit length of stream at each reach along 403 

the Campaspe River. Coloured lines depict exchange fluxes under differing low, regular or 404 

high flow conditions for each month. The black line depicts the temporally averaged 405 

exchange flux. The dotted grey vertical lines indicate gauge locations with the 11 between-406 

gauges-reaches annotated at the top of the graph.  407 

The simulated SW-GW exchange fluxes for the whole river and for each of the 11 river 408 

reaches for annual average and monthly average time scales (i.e. 156 predictions) range from -409 

3.08 to 2.23 m
2
/d (shown in Figure 5). The strongest losing flux appears along reach 3 during the 410 

high flow event in October 2016. The simulated SW-GW exchange flux was highest along reach 411 

3. Reach 6 (r6) just upstream of the Campaspe weir exhibits losing conditions, while all other 412 

reaches show gaining conditions. For the examined year, there is a clear link between the inflow 413 

from Lake Eppalock and the pattern of exchange fluxes (Figure 5). 414 

 415 

Figure 5. Heatmap of simulated SW-GW exchange per unit length along the whole of the 416 

river and along each of the 11 reaches at annual and monthly time scales, which comprises 417 



the 156 predictions of interest. Red cells in the heatmap indicate losing conditions and blue 418 

cells indicate gaining conditions. The left panel shows the location and length of each of the 419 

reaches for reference. The bottom panel indicates the annual average (mean) inflow from 420 

Lake Eppalock to the system as well as the monthly inflow with the colours of the bars 421 

indicating whether the flow is low, regular or high. 422 

4.2 Worth of existing hydraulic and water chemistry data types (Q1) 423 

Assessment of the worth of individual observational data types alone (i.e., DWadd%) for 424 

the spatial and temporally aggregated whole of river annual exchange showed that hydraulic 425 

head followed by EC, 
222

Rn and flow observation groups had sizeable worth of > 40% (the green 426 

dots in Figure 6a). Similar relative trends across data types were seen for the uncertainty 427 

increases without individual data groups when compared to all data groups (DWremove%). The 428 

lower values in DWremove% as compared to DWadd% arise because the former yields the unique 429 

information contained in an individual data group; this allows for assessment of the extent of 430 

correlation and redundancy of individual data groups. It was evident from the analysis of 431 

DWremove% for the spatially and temporally averaged SW-GW exchange prediction, that the head, 432 

streamflow, 
222

Rn and EC data contain unique information. 433 

Across all 156 predictions for SW-GW exchange flux predictions along the Campaspe 434 

River, the median worth obtained from both DWadd% and DWremove% showed that head data were 435 

significant whereas the streamflow data were less informative. Furthermore, there appears to be 436 

redundancy in the flow data. Also, the median worth of 
222

Rn was significant whereas the EC 437 

data was much lower (Figure 6a). Stream stage and 
14

C were both poor, with the distribution of 438 

DWadd% for stream stage data close to zero. The large range in worth of head, flow, 
222

Rn and 439 

EC data types and the degree of information redundancy across the 156 predictions highlights the 440 



nature of the local information content that particular data types have for specific predictions. 441 

The local information content is highlighted by the outliers in DWremove% showing unique 442 

information in head, 
14

C and 
222

Rn for some predictions of SW-GW exchange. 443 

Figure 6. Analysis of worth for the whole of river annual exchange (green dots) shown by a) 444 

% reduction in predictive uncertainty for SW-GW exchange associated with each 445 

particular observation group (DWadd%), and b) difference in reduction between using all 446 

observation data types and using all except for a particular group from the combination 447 

(DWremove%). Furthermore, boxplots are shown for the distributions across all 156 SW-448 

GW exchange predictions. 449 

The worth for the 156 SW-GW exchange predictions shows distinct patterns that are 450 

associated with inflow to the Campaspe River from Lake Eppalock (Figure 7). During the large 451 

flow event during October 2016, across all reaches and the whole river there was consistently 452 

poorer worth for predictions within that month. The relative lack of information resident in the 453 

data types continues in the following months associated predictions, while the system recovers. 454 

The whole of river predictions show an expected dampened variability and higher average worth 455 

due to its spatially integrated nature. At the end of the river system in reaches r10 and r11 all data 456 

types are seen to have quite low worth, except 
222

Rn which appears to be the only data-type to 457 

show value in reach r10. The poor performance at the end of system could be due to a “boundary 458 

effect”, related to the fact that both the Murray River boundary condition and underlying 459 

groundwater general head boundary conditions possibly influence the model to such an extent 460 

that they overpower the information content of any existing observational data. Potential 461 

boundary effects could be avoided by extending the northern boundary of the model past the 462 



Murray River and converting the Murray River to a flow routing representation rather than the 463 

fixed head representation that was implemented. 464 

Figure 7. Heatmaps of percentage reduction in SW-GW exchange uncertainty obtained 465 

with all data (a), and with each of the observation data types alone (b-g). The reduction is 466 

shown for each SW-GW exchange flux considered, i.e. for each of the stream reaches (r1-467 

r11) and whole of river (nrf), and at each of the temporal scales of annual and monthly 468 

between the start of June 2016 and end of May 2017. The inflow to the system is shown 469 

under the first heatmap (a) from which the high flow event in October can be seen. The 470 

locations and lengths of reaches (r1-r11) are shown to the left of the first heatmap for 471 

reference. 472 

The analysis of existing observation data types, firstly, identified that the temporal 473 

integration in annual predictions (both whole of river and reach scale) generally led to better 474 

reductions in uncertainty than in the monthly predictions. These are plausible given that the 475 

annual signal is smoothed. For hydraulic head, 
14

C and 
222

Rn, there were not data available in 476 

every month of the year, but particular data were at least present enough in the seemingly 477 

dependent months (during large exchanges) required to inform the annual SW-GW exchange 478 

prediction. 479 

4.3 Worth of individual potential future hydraulic and water chemistry data points (Q2) 480 

We analysed the worth from individual potential in-stream observations to explore the 481 

extent to which the whole of river SW-GW exchange prediction reliability could be improved 482 

through data acquisition at new sampling locations. The worth of individual potential 483 

observations of stage, flow, 
222

Rn and EC at select times when flow conditions were low (July 484 



2016), high (October 2016) and regular (November 2016) are shown in Figure 8; the 485 

corresponding SW-GW exchange along the stream at each of these times is also shown. The 486 

value of both stage and EC potential observations are shown to be poor across these flow 487 

conditions, with only 
222

Rn (low and regular flow conditions) and flow (high and regular flow 488 

conditions) showing considerable value. Under low flow conditions, 
222

Rn data displayed the 489 

highest utility where existing data were not present and where the stream exhibits strong gaining 490 

conditions in the first 40 km of the stream. Also, 
222

Rn showed considerable value in the slightly 491 

gaining areas at around 130 km downstream, likely due to the paucity in local existing data for 492 

all data types. However, 
222

Rn data were seen to be of low utility when high flow conditions 493 

prevail with a corresponding reversal of hydraulic gradient resulting in a mostly losing river, as 494 

simulated during the high flow event in October 2016. In the high flow event instance, there is a 495 

trend of increasing flow data worth with distance downstream. 496 

 497 

Figure 8. Further reduction in uncertainty for net SW-GW exchange in October 2016, 498 

November 2016 and May 2017 obtained through potential observations of stream stage, 499 

flow, 
222

Rn and EC at 80 locations along the stream. Each potential observation is 500 

considered alone but added to the existing observations across all observation data types. 501 

Underlying each uncertainty reduction plot is the pattern of exchange along the river 502 

during each of the months with the scatter showing the exchange rate (m
2
/d) and the 503 

colours representing the exchange flux along the reach at that location; reds indicate losing 504 

and blues indicate gaining conditions. The mean exchange rate is shown in light grey on 505 

each of these plots to give context to the exchange conditions relative to the mean. 506 



To explore the extent of reduction in uncertainty obtained through potential addition of 507 

subsurface data to the existing dataset, we analysed the whole of river SW-GW exchange flux 508 

during low, high and regular flow conditions through both head and 
14

C in the shallow and deep 509 

aquifers at the potential sampling locations (Figure 9). The SW-GW exchange along the 510 

Campaspe River in the highest (southern) parts of the model domain is very sensitive to the GW 511 

level which is strongly connected at the top of the catchment to the heads in the narrow alluvial 512 

channels and hence it is observational data located here that appears to inform the whole of river 513 

SW-GW exchanges the most, although the reductions in predictive uncertainty are only 514 

marginal. This generally highlights opportunity for more value from targeted observations in the 515 

southern part of the catchment in the narrow alluvial valleys. The deep heads are seen to hold the 516 

least value of the potential observations across flow conditions. As expected, due to the lesser 517 

variance of subsurface data as compared to stream data, spatial patterns of worth are more 518 

consistent across the low, regular and high flow conditions. Furthermore, there is clear crossover 519 

of high utility potential sampling locations for shallow and deep 
14

C and shallow head too in the 520 

southern part of the catchment, although shallow head also appears of some value along the 521 

entire length of the stream.  522 

 523 

Figure 9. Percent reduction in uncertainty for annual whole of river SW-GW exchange 524 

fluxes of the Campaspe River obtained through hydraulic head and 
14

C at potential 525 

sampling locations (identical to pilot points) in the shallow and deep aquifers. 526 

4.4 Worth of potential future hydraulic and water chemistry data types (Q2) 527 

For all of the potential data and also each of the data type groups, we examined the 528 

benefit of using all potential data (Figure 10), which highlights the extent to which particular 529 



predictions can be improved (as compared to existing data) under comprehensive sampling of all 530 

data types and individual data types. The potential hydraulic head data showed improvement in 531 

terms of SW-GW prediction reliability in the middle section of the river prior to the largest of the 532 

high-flow events and a few months after the recovery of this event (Figure 10b). The stage data 533 

again shows little value, no matter the location or time of sampling (Figure 10c). The ubiquitous 534 

poor worth of stage data was surprising as it could be assumed that the intrinsic link between 535 

hydraulic head and stage in the calculation of the exchange flux would result in stage data 536 

containing prediction-relevant information. We posit a potential reason for this is the stream 537 

stage as simulated by the numerical model showed less variance (minimum and maximum of 538 

1.21E-4 and 1.11E-2) then the observed data owing to the representation of a rectangular channel 539 

and associated parameterisation. For example, the effective stream width may have been 540 

overestimated in the model and hence the associated error with the simulated stage was 541 

potentially overrated. This led to a poor rating in stage data but is likely more linked to the 542 

modelling assumptions, e.g. a perfectly known riverbed elevation, and structure for the 543 

Campaspe River, rather than the “true” worth of the data itself. 544 

Further reductions in predictive uncertainty up to around 25% are seen with the addition 545 

of the flow, head and EC data. The addition of potential 
222

Rn data (Figure 10f) shows clear 546 

improvements for reaches r2–r9. Especially of interest are those improvements in worth at the 547 

time prior to the high flow in October 2016 and just after. Assessment of potential 
14

C data 548 

showed significant improvement of a further 40% reduction in most predictions along reaches 549 

r1–r5 (Figure 10e), suggesting that the existing spatiotemporal 
14

C data locations were 550 

suboptimal in this context of SW-GW exchange. However, the comprehensive sampling of both 551 



222
Rn and 

14
C through space and time is likely impractical due to the costs, especially for 

14
C 552 

which would incur drilling costs. 553 

Figure 10. Difference in uncertainty reductions between existing and potential observation 554 

data for all data (a) and for each of the individual observation groups (b-g). 555 

The analysis of the ten “next best” most important observations to collect on top of all 556 

existing data during low, high and regular streamflow conditions showed that the optimal 557 

location set is different under differing flow conditions. 
222

Rn was the most beneficial data type 558 

to collect next with head, 
14

C, and flow also in the top ten (Figure 11). Interestingly, during low 559 

and high streamflow conditions, within-stream observations of 
222

Rn and flow were distributed 560 

in the upper, middle and lower reaches of the stream, whereas for regular flow conditions, the 561 

observation data were in the middle and lower reaches only. The role of 
14

C observations in the 562 

top left of the maps (Figure 11a-c) are at first perhaps counter-intuitive, however, this location 563 

represents the longest flow path through the aquifers before exiting through the northern 564 

boundary, informing the velocity of flow and its variation and hence the hydraulic conductivity 565 

of the aquifers and its effective porosity, the former of which in turn informs the SW-GW 566 

exchange along the river. 567 

Figure 11. Locations and rank of 10 next most important potential observations to add to 568 

the existing observations for whole of river exchange during months of low, high and 569 

regular streamflow conditions (a-c). Further reduction in uncertainty (%) due to each of 570 

the 10 next most important potential observations (d-f).  571 

Finally, we examined the next most important observation groups for each of the 156 572 

SW-GW exchange predictions (Figure 12), i.e. using all potential data within each data type. 573 



This assessment showed that potential 
222

Rn was the most important group across the majority of 574 

predictions, followed by shallow head, 
14

C, EC, flow, deep head and lastly stage, which was 575 

ranked  7
th

 for the majority of predictions (Figure 12). 576 

Figure 12. Ranking (x-axis) of best uncertainty reduction across each of the 156 predictions 577 

of interest in a “next most important” type analysis. The uncertainty reduction is based on 578 

each observation group for potential observations when added to the existing data.  579 

4.5 General observations 580 

The above results have demonstrated that the worth of different hydraulic and chemical 581 

observations in the context of making SW-GW predictions is dependent on the prevailing 582 

streamflow conditions, the magnitude and direction of the SW-GW exchange and the spatial and 583 

temporal scale of the exchange considered. It has also demonstrated the large variability in worth 584 

across different SW-GW exchange predictions as a result of these dependencies. These findings 585 

are in addition to previously reported dependence of data worth on prediction specificity more 586 

generally (e.g. Dausman et al. 2010; White et al. 2016).  587 

4.5.1 Influence of streamflow conditions and magnitude and direction of SW-GW exchange 588 

The prediction-specificity of data worth with respect to prevailing stream flow conditions 589 

can be explained by the sensitivities of the different SW-GW exchange predictions to uncertain 590 

model parameters that are conditioned on the basis of both existing and potential hydraulic and 591 

chemical observational data. During high-flow conditions, generally lower data worth is 592 

apparent. This is because SW-GW exchange predictions under high-flow conditions depend on a 593 

larger portion of uncertain model parameters (e.g., recharge and aquifer properties for the TR 594 

model); this results in lower worth given the limit on the ability of information to “spread” from 595 



data in space and time. That is, there are a number of prediction-parameter sensitivities that are 596 

heightened as the Campaspe flow system is perturbed firstly by large losing SW-GW exchanges, 597 

and secondly by the presence of distributed above-average recharge which also propagates 598 

through the subsurface. Furthermore, the uncertainty in the flow observations increases with high 599 

flows. As the stream is largely losing during high flows, the SSEC and SSRn transport parameters 600 

become less sensitive with respect to the corresponding SW-GW predictions. During low-flow 601 

conditions, where rainfall recharge is often relatively small and the river is generally weakly 602 

gaining along the Campaspe River, the SW-GW exchange predictions are generally less sensitive 603 

to the flow model parameters. This allows for the information contained in the 
222

Rn and EC 604 

observations to be used more effectively through the SSEC and SSRn transport parameters.  605 

For example, in the annual whole of river SW-GW exchange flux prediction, it was 606 

apparent (Figure 8) that in-stream sampling of 
222

Rn can lead to a further reduction in uncertainty 607 

(up to 10%) during low flows, with some value during regular flow conditions (up to 6%) but 608 

with reduced utility (<0.5%) in high streamflow conditions. This is because the predictions 609 

during lower flow show higher sensitivity to the parameters that are conditioned by the 610 

information contained in the 
222

Rn observations. It is thus necessary to target the particular time 611 

and location carefully for sampling water chemistry data due to the transient and local 612 

information content. This is further evidenced by the improvements through all potential data for 613 

each data type which showed the theoretically possible improvements when comprehensive 614 

sampling takes place in space and time. This differs in comparison to the hydraulic data, which 615 

seems to show similar patterns across sampling times in worth for groundwater hydraulic head 616 

and streamflow data points as explained above (Figure 8 and Figure 9). Despite the similar 617 



patterns, the “flow of information” from hydraulic observation data appears to be larger under 618 

regular and high flow conditions.  619 

As was explained at the start of the results (4.1), the general patterns between flow 620 

conditions and SW-GW exchange are clear. The apparent information content in all observation 621 

data appears linked to the magnitude and direction of the SW-GW exchange flux in many 622 

predictions. It was evident that for the very weakest exchanges, the poorest worth was found, no 623 

matter the data type; however, the opposite was not true for the strongest SW-GW exchanges 624 

which exhibit more complex worth patterns across data type. 625 

4.5.2 Influence of spatial and temporal scale of SW-GW exchange 626 

The simulated variability in monthly reach-scale SW-GW exchange in the Campaspe 627 

River was clear, and so were the corresponding reductions in predictive uncertainty due to data 628 

collection. When averaging the SW-GW exchange over the whole of the river, the worth of data 629 

was reasonably consistent on a monthly basis for each data type alone and for all data types, with 630 

a clear trend in variability being linked to the flow conditions (discussed above). Furthermore, 631 

the consistent data worth across months was also consistently close to the best uncertainty 632 

reductions from the reaches, i.e. the reductions were not a simple average of the individual reach 633 

uncertainty reductions, but more closely linked to the best reductions. This is expected due to the 634 

spatial integration of information contained in the hydraulic and chemical data. A similar pattern 635 

with respect to temporal integration of information is present in comparing monthly to annual 636 

SW-GW exchanges.  637 

There was no clear relationship between the length of the reach and annual reductions in 638 

predictive uncertainty. However, the lowest uncertainty reductions were apparent in the shortest 639 



reach r10 (0.8 km). The lack of a clear relationship is likely due to a combination of the above-640 

mentioned factors of prevailing flow conditions and magnitude of the SW-GW exchange fluxes.  641 

4.5.3 Model simplifications and assumptions 642 

Interestingly, even though the water chemistry data provide more indirect means to 643 

calculate SW-GW exchange flux than the hydraulic data (i.e., chemistry data serve as proxy for 644 

flux), these data types alone showed greater worth in many predictions. For the cases in which 645 

the river is not experiencing low-flow conditions and gaining, we would posit that this is partly a 646 

result of the simplified 1D transport models (SSRn and SSEC) used to map the 
222

Rn and EC 647 

observations to SW-GW exchange predictions through the SSRn and SSEC transport parameters. 648 

The parameterisation, spatial scale of river segments, and process assumptions that were applied 649 

to the simplified 1D transport model (e.g., the uniform fixed groundwater concentrations of 
222

Rn 650 

and EC, and the monthly steady-state assumption) likely inflates their sensitivity for these data 651 

types and hence their worth to SW-GW exchange predictions (Fienen et al. 2010). Future 652 

modelling of in-stream 
222

Rn and EC transport would benefit from testing this by further 653 

evaluating the worth of these data types in a transient transport model with spatiotemporally 654 

varying parameters, including the inputs of both 
222

Rn and EC. With appropriate data collection 655 

of times series data of near-stream GW 
222

Rn and EC, future modelling of the Campaspe system 656 

may benefit from explicit modelling of groundwater transport of 
222

Rn and EC to help 657 

demonstrate that current the boundary simplification of 
222

Rn and EC to static GW conditions 658 

does not introduce large impacts to the data worth analysis.  659 

The simulation of SW-GW exchange is of course subject to some simplifying 660 

assumptions that were employed to develop a tractable regional-scale model of the Campaspe 661 

system for the data worth analysis. Such simplifications include, but are not limited to, that of 662 



ignoring unsaturated zone flow processes, ignoring representation of overland flow during 663 

flooding and mostly non-contributing small tributaries, and the exclusion of a hyper-resolution 664 

model grid for solving the governing equations. For example, in the case of ignoring unsaturated 665 

flow, it has been shown previously by Brunner et al. (2010) that the violation of the assumption 666 

of a hydraulically connected losing-gaining system will lead to underestimation of infiltration of 667 

GW. More generally, model simplifications (e.g., 1D steady-state transport, surface flow 668 

representation, ignoring unsaturated flow processes, numerical discretization errors, etc.) are 669 

likely to lead to uncertainty variance under-estimation (e.g., Knowling et al. 2019b; White et al. 670 

2014); however, our relativistic (i.e., concerning changes in second moments) analysis of worth 671 

is expected to be somewhat immune to the impact of such model simplifications. As the 672 

Campaspe system becomes better characterised in the future and the model employed herein is 673 

refined, exploration of such simplifications could potentially benefit the interpretation of worth.   674 

4.5.4 Choice of data types 675 

This study focused on the worth of particular observational data in the context of SW-676 

GW exchange. It was not exhaustive of all possible data types, and didn’t include, e.g. other 677 

stream chemistry data, such as stream 
14

C, dissolved organic carbon (DOC) or total inorganic 678 

carbon (TIC), due to the complexity of additional carbon processes required to model these. It is 679 

recognised that, e.g., hydrometeorological data such as evapotranspiration and precipitation data, 680 

physical stream property measurements, aquifer property measurements and data informing the 681 

3D hydrostratigraphic model including its geometry and internal facies distribution may also be 682 

of worth and warrant investigation in future studies.  683 



4.5.5 Choice of FOSM 684 

Our use of FOSM techniques involves consideration of only relative quantities (i.e., 685 

changes in uncertainty following parameter conditioning). A number of works have 686 

demonstrated its particular robustness in this context (e.g., Dausman et al. 2010; Herckenrath et 687 

al. 2011). The computational efficiency of FOSM ultimately allowed for a detailed exploration 688 

of a number of different predictions in this study; far more than would have been possible within 689 

reasonable time constraints on the basis of a less approximate but more computationally 690 

demanding non-linear uncertainty quantification method (Nowak et al. 2012; Wöhling et al. 691 

2018; Wu et al. 2014). However, in highly non-linear models (Herckenrath et al. 2011; 692 

Kunstmann et al. 2002), FOSM has been shown to yield similar results to the Monte Carlo type 693 

methods. It would nevertheless be of benefit in the future to quantify the impact of the linearity 694 

assumption in this case study through a Monte Carlo sampling-type approach. 695 

5 Conclusions 696 

As water resource management and the understanding of river ecosystem functioning 697 

both rely on estimation of SW-GW exchange fluxes, meaningful estimation of the exchange flux 698 

at appropriate scales must be accompanied by a corresponding quantitative assessment of the 699 

exchange flux uncertainty, which, ideally is minimised through smart data collection. The FOSM 700 

analysis of spatiotemporally varying SW-GW exchange flux predictions presented in this study 701 

provides useful insight into the worth of various hydraulic and water chemistry observation data 702 

types in isolation, in various combinations and under individual and comprehensive sampling 703 

strategies during low, regular and high streamflow conditions.  704 

The worth of particular data types is dependent on streamflow conditions, the magnitude 705 

and direction of the SW-GW exchange flux and the spatiotemporal resolution of the SW-GW 706 



exchange prediction of interest. The unique information in different data types is evidenced by 707 

the significant spread of uncertainty reductions across the different predictions. For the 708 

spatiotemporal averaging of whole of river annual SW-GW exchange flux predictions, 709 

reductions in predictive uncertainty were generally higher than for the finer scale reach and 710 

monthly predictions. For the finer scale, the necessity of local scale (time and space) 711 

observations is more pertinent for obtaining considerable uncertianty reductions. 712 

With the large variability in worth of varying data types for different specific predictions 713 

of SW-GW exchange, we have shown where and when particular data might be of most worth. 714 

Hydraulic groundwater head and stream flow were found to inform SW-GW exchange flux best 715 

under high- and regular- streamflow conditions. 
222

Rn and EC were of highest value for low- and 716 

regular- streamflow conditions where the stream is gaining. 717 
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Appendix A: 1D steady-state transport model for 
222

Rn and EC 

The 1D steady-state model presented in Cook et al. (2006) for determining SW-GW 

flows with 
222

Rn observation data, used a mass balance of streamflow and radon similar to 

the following, but here we have added in inflows from tributaries and precipitation: 

     

  
                                            (A.1) 

        

  
                                                                            

   (A.2) 

Where Q is the rate of streamflow [L
3
/T], x is the distance along the stream [L]. 

Varying along the x-axis, IGW(x), OGW(x), ITR(x) and L(x) are the groundwater inflow rates, 

stream losing rates, tributary and diversion inflows, and losses through direct pumping 

[L
3
/L/T]. E(x) is the evaporation rate [L/T] P(x) is the precipitation rate [L/T], and w(x) is the 

width of the river [L] along x. cS, cGW, cTR, and cR are the concentrations [M/L
3
] of the stream, 

groundwater, tributaries and rainfall respectively. k is the gas transfer velocity across the 

water surface [L/T], λ is the radioactive decay constant [T
-1

], d is the mean stream depth [L] 

and F is the flux of radon through the hyporheic zone [ M/L/T]. 

  
    

     
 

    

     
    (A.3) 

Where γ is the production rate within the hyporheic zone [M/L
3
/T], h is the mean 

depth of the hyporheic zone [L], and θ is its porosity [-]. th is the mean residence time of 

water within the hyporheic zone. Expanding the partial derivative in (2) and substituting in 

(1) with the chain rule and rearranging yields: 

    
   

  
                                                                

                         (A.4) 



For a given stream length dx with a boundary upstream concentration of cS we can 

solve for the downstream concentration cS/DS with: 

               
  

    
                                                   

                                       (A.5) 

Noting the conservative nature of EC (we have no degassing, decay or production in 

the hyporheic zone) we can write a similar expression for EC as: 

            
  

    
                                                   

                (A.6) 



 



 



 



 

 



 



 



 



 



 



 



 

Table 1. Summary of hydrogeological layer thicknesses including, mean, minimum, 

maximum thickness and percent volume. Hydrogeological units are abbreviated as 

Coonambidgal (co), Shepparton (sh), Calivil (ca), Renmark (re), Newer Volcanics (nv), 

Basement (ba). 

Hydrogeological Unit 
Thickness Percentage of 

active model 

volume (%) Mean (m) Minimum (m) Maximum (m) 

Coonambidgal 5.9 1.0 31.8 0.67 

Shepparton 52.3 0.3 122.3 26.58 

Calivil 26.1 1.0 82.7 9.76 

Renmark 40.4 0.4 163.4 11.90 

Newer Volcanics 4.6 0.1 14.3 0.05 

Basement 74.4 9.7 109.5 50.93 

 

 



Table 2. Summary of model parameterization. For the aquifer property parameters, the 

hydrogeological units are abbreviated as follows: Coonambidgal (co), Shepparton (sh), 

Calivil (ca), Renmark (re), Newer Volcanics (nv), Basement (ba). 

Parameter set Model Type Number Initial Range Log Variance (σθ
2
) 

Aquifer properties (7 HGUs) 

Horizontal hydraulic  

conductivity (Kh) 

SS, TR Pilot 

points 

(PP) 

(416) 

co: 31 

sh: 107 

ca: 77 

re: 58 

nv: 4 

ba: 137 

co: 4.44 – 444 m/d 

sh: 0.1 – 10 m/d 

ca: 4.25 – 425 m/d 

re: 6.75 – 675 m/d 

nv: 5 – 500 m/d 

ba: 0.1 – 10 m/d 

0.25 (m/d)
2
 

0.25 (m/d)
2 

0.25 (m/d)
2 

0.25 (m/d)
2 

0.25 (m/d)
2 

0.25 (m/d)
2
 

Vertical hydraulic  

conductivity 

SS, TR - 1 - - 

Specific storage SS, TR PP (416) see Kh 1E-6 – 1E-4 (-) 0.25 (-) 

Specific yield SS, TR PP (416) see Kh 1E-2 – 0.44 (-) 0.53 (-) 

Porosity (7 HGUs) TR1C14, 

TR2C14 

Zonal 7 0.05 - 0.4 (-) 5.1E-2 (-) 

Dispersivity (7 HGUs) TR1C14, 

TR2C14 

Zonal 7 1E-5 – 100 m 3.06 m
2
 

Recharge  

Pre-clearance rainfall  

Proportion for recharge 

TR  Zonal 16 1E-3 – 0.5 (-) 0.46 (-) 

Rainfall proportion for  

recharge 

SS Zonal 16 1E-4 – 0.9 (-) 2E-3 - 0.55(-) 

GW boundary under Murray 

GHB level adjuster SS, TR - 1 0.01 – 70.0 m 9.9E-3 m
2
 

GHB conductivity SS, TR - 1 1E-8 – 50.0 m/d 5.88 (m/d)
2
 

Murray River properties 

Murray River streambed K SS, TR - 1 1E-8 – 20.0 m/d 5.41(m/d)
2
 

Drain properties 

Drain bed K  TR - 1 1E-8 – 20.0 m/d 5.41(m/d)
2
 

Drain bed adjust TR - 1 0.001 – 0.1 m 0.25 m
2
 

Campaspe River properties 

Stream dispersivity TR1C14, 

TR2C14 

- 1 1E-5 – 1000.0 m 4.0 m
2
 

Riverbed hydraulic cond. SS, TR PP 80 1E-4 – 10.0 m/d 1.56 (m/d)
2
 

River width SS, TR PP 80 4.0 – 40.0 m 6.25E-2 m
2
 

Riverbed roughness SS, TR PP 80 0.001 – 0.1 d/m
1/3

 0.25 (d/m
1/3

)
2
 

GW EC concentration SSEC - 1 1E3 – 5E3 µS/cm 0.03 (µS/cm)
2
 

GW 
222

Rn concentration SSRn - 1 1E4 – 5E4 mBq/l 0.03 (mBq/l)
2
 

Gas transfer velocity SSRn - 1 0.6 – 1.4 m/s 8.46E-3 (m/s)
2
 

Hyporheic zone porosity SSRn - 1 0.1 – 0.4 (-) 2.27E-2 (-) 

Hyporheic zone production SSRn - 1 1E3– 1E4 mBq/l/d 0.0625 (mBq/l/d)
2
 

Hyporheic zone residence 

time 

SSRn - 1 0.05 – 5.0 d 0.25 d
2
 

Hyporheic zone depth SSRn - 1 0.0 - 1.0 m 0.26 m
2
 

TOTAL  1546  

  

 



Table 3. Assumed observation noise (used together with model-to-measurement residual 

information to populate   ). 

Observation data type Observation noise (σϵ) 

Hydraulic head 1 m 

Stream stage 1 m 

Streamflow 40% of observation value [m
3
/d] 

222
Rn 50 mBq/l 

14
C 10 PMC 

Electrical conductivity 100 µS/cm 

  

 

Table 4. Data worth assessments employed for the range of SW-GW exchange 

predictions from the Campaspe transient flow model (TR). 

      Combinations Predictions 

Q1 
Adding individual data types with existing  data 6 All (156) 

Removing individual data types with existing  data  6 All (156) 

Q2 

Added benefit of each potential observation for 

annual  whole river exchange: SW observations  

316 Whole river exchange (4) 

Added benefit of  each potential observation for 

annual whole river exchange: GW observations 

376 Whole river exchange (4) 

Next best observation group (potential 

observations)  

7 All (156) 

Next best observation (potential observations) for 

low, regular and high streamflow conditions 

10 Whole river exchange  (4) 
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Highlights 

 Worth of data depend on spatiotemporal scale, flow and exchange conditions 

 Hydraulic data informs SW-GW exchange flux best under high/regular flow 

conditions 

 Radon-222 and EC data hold value for low/regular flow conditions where gaining 

 

 


