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Abstract — Aspects of operational modeling for climate, weather, and space weather forecasts are
contrasted, with a particular focus on the somewhat conflicting demands of “operational stability” versus
“dynamic development” of the involved models. Some common key elements are identified, indicating
potential for fruitful exchange across communities. Operational model development is compelling, driven
by factors that broadly fall into four categories: model skill, basic physics, advances in computer
architecture, and new aspects to be covered, from costumer needs over physics to observational data.
Evaluation of model skill as part of the operational chain goes beyond an automated skill score. Permanent
interaction between “pure research” and “operational forecast” people is beneficial to both sides. This
includes joint model development projects, although ultimate responsibility for the operational code remains
with the forecast provider. The pace of model development reflects operational lead times. The points are
illustrated with selected examples, many of which reflect the author’s background and personal contacts,
notably with the Swiss Weather Service and the Max Planck Institute for Meteorology, Hamburg, Germany.
In view of current and future challenges, large collaborations covering a range of expertise are a must —
within and across climate, weather, and space weather. To profit from and cope with the rapid progress of

computer architectures, supercompute centers must form part of the team.

Keywords: space weather / forecasting / methodology / strategy / meteorology

1 Introduction

Model development in the context of an operational chain
or forecast service implies that one has to deal with the
somewhat conflicting demands of “operational stability”
versus “dynamic development”. On the one hand, one does
not want to touch the operational model, whose compliance
with specifications has been ascertained — a state loosely
referred to as “operational stability” in the following.
Specifications typically depend on the forecast service and
cover aspects from false alarm rate over time-criticality of
model run time to compatibility with the entire operational
chain. On the other hand, model development is compelling for
a number of reasons, to be detailed later. Such “dynamic
development” typically breaks the aforementioned compliance
with specifications, which ultimately has to be re-established to
regain “operational stability”. Although a topic of discussions
and meetings, the subject gets rather little coverage in the
literature (Steenburgh et al., 2014).

*Corresponding author: Doris.Folini@env.ethz.ch

The present paper takes a cross-community view on the
question, from the perspective of climate, weather, and space
weather. Earlier studies demonstrated the potential for mutual
learning across these three communities (Siscoe, 2007). All
three of them aim at predicting the future physical state of the
“Sun—Earth” system in a likelihood sense and rely on the same,
basic building blocks for their models: physical insight and
associated equations — from empirical dependencies to basic
physical laws — that characterize the time evolution of the
system, numerical simulations to integrate the physical
equations in time, and measurement data for model initializa-
tion (often via advanced data assimilation techniques) and
validation (Tsagouri et al., 2013; Bauer et al., 2015; Palmer,
2016). To translate the output of the numerical model into
customer specific products, expert knowledge (forecasters)
and dedicated back end models are essential. For example, in
the context of emergency preparedness in case of a nuclear
power plant accident, a Lagrangian particle dispersion model
may be used as back end model to translate the numerical
weather prediction (NWP) into a fall-out prediction (Szintai
et al.,, 2009). All is time critical, the prediction must be
available before the real event. Differences among the
communities include the envisaged lead time, from minutes
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to centuries, the availability of measurement data for model
initialization and validation, or the interest given to extreme
events.

Customer needs — more accurate and comprehensive
forecasts — may be seen as the ultimate driver behind the
further development of operational forecast models. Specific
drivers of development are suggested to fall into four broad
categories: improvement of model skill, insight from basic
science, exploitation of new computer architectures, and
coverage of entirely new aspects, e.g., an additional physical
model, new observational data, or customer needs. Clearly,
these four categories are not completely independent of each
other. For example, covering additional physics and tran-
sitioning to a more powerful computer architecture may go
hand in hand. The different drivers reflect in the emerging
projects in the form of project size, duration, or composition of
the development team. Their relative importance depends on
the community. Regular examination of driving factors ideally
forms part of the operational context or even, in the case of
model skill, of the forecast operational chain. Permanent
exchange with basic research outside the operational service is
an asset in this process: it provides another perspective,
potentially taps complementary expertise, and enables co-
development projects that translate driving factors into new
(operational) code. The ultimate responsibility for the
operational code (coding rules, documentation, verification,
validation, etc.) resides, however, with the operational service
institution. It is argued that such exchange is beneficial to all
parties involved. On the side of research, benefits lie with the
use of the operational code as a clean, well documented and
well tested starting point for research or a showcase application
demonstrating the power of new technologies. The paper aims
at illustrating these points for each community and at carving
out the potential for mutual learning across communities.

Section 2 takes a community specific point of view, likely
with some bias to the author’s own background in climate,
weather, and astrophysics, especially when it comes to
concrete examples, which are often from the Swiss Weather
Service (MeteoSwiss) and the Max Planck Institute for
Meteorology, Hamburg, Germany. Some aspects of the
operational chain and service are addressed, thereby embed-
ding the focal point of the paper: how different communities
cope with the challenge of “operational stability” versus
“dynamic development”. Section 3 deals with similarities
across communities and what the different communities might
learn from each other. Conclusions are presented in Section 4.

2 Operational predictions and development
in different communities

The objective of this section is to provide some
characterization of the three communities of interest —
NWP in Section 2.1, climate in Section 2.2, and space
weather prediction (SWP) in Section 2.3. Each of these three
sections is structured around roughly the same basic points.
The goals of each community are sketched, including the
targeted temporal and spatial scales. Aspects of associated
operational modeling are given, from institutional issues to
assessment of model skill. Model development within this
context is then illustrated, form factors triggering development

projects, over how such projects work, to integration of the
new development into the operational model. Some examples
are given.

2.1 Weather prediction
2.1.1 Objectives

Operational NWP deals with lead times of hours to days
and seasons (with decadal predictions emerging) on global to
regional to local scales (Meehl et al., 2014). Specific back-end
codes that run after the NWP model are used to meet demands
from a wide range of customers, from governments (e.g., flight
safety, hurricanes) over business (e.g., tourism, water
management) to individuals (e.g., pollen forecast). Interests
are with both, “ordinary weather” and extreme events.

2.1.2 Modeling aspects

The range of involved scales, from global to local,
translates into running a hierarchy of models: a global scale
model (few 10 km grid cell size) provides the large scale
dynamics and “long term perspective”, which are used as
boundary conditions for a more finely resolved (kilometer
scale) regional model or a hierarchy thereof. Coupling across
scales is one way (from coarse to fine) or, more recently, two-
way (from coarse to fine and from fine to coarse) (e.g., Reinert
et al,, 2017). It may involve the same model at different
resolutions, or different models (see below).

For the time scales of interest, initial conditions play a
crucial role. Consequently, much effort has gone in model
initialization techniques that furnish initial conditions close to
observations/reality, yet compatible with the physics covered
by the (imperfect) model (e.g., 4D Var, Courtier et al., 1994;
Trémolet, 2006; Zhang & Pu, 2010; Shaw & Daescu, 2017). To
address the issue of weather being a chaotic system (Lorenz,
1963), modern weather forecasts provide likelihoods. This
means that not one simulation but an ensemble of simulations
differing in their initial conditions must be run in a time-critical
fashion — the prediction must be available way ahead of the
predicted event. More recently, ensembles are also being used
to explicitly sample model uncertainty, for example due to the
choice of numerical values in sub-grid-scale parameterizations
(e.g., Leutbecher et al., 2017). Ensemble predictions provide a
framework to extend the forecast lead time in a meaningful
way (Buizza & Leutbecher, 2015). But they are also a
significant cpu cost factor (e.g., Leutbecher et al., 2017).
Similarly, finer grid resolution increases the cpu costs, yet is
highly desirable to better capture relevant small scale features,
like mountains or coast-lines, and to resolve physical processes
that otherwise have to be included via sub-grid scale
parameterization, e.g., convection and associated precipitation
(e.g., Langhans et al., 2012; Ban et al., 2014).

The above demands — hierarchy of models, observation
based model initialization, ensemble prediction, all time-
critical — necessitate NWP and associated model develop-
ment to be an overall highly collaborative effort. This
although individual weather services typically run an
operational model/chain themselves. An impression can be
obtained from the project web-pages of some regional scale
consortia (COnsortium for Small-scale Modeling, COSMO,
http://www.cosmo-model.org/; High Resolution Limited
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Area Model, http://hirlam.org/; the Weather Research
Forecasting model, http://www.wrf-model.org). From these
consortia it also becomes obvious that hierarchies often go
not only across models but also across institutions (e.g., global
from the European Center for Medium-Range Weather
Forecasts, regional from COSMO), making clean interfaces a
must. The latter enable a comparatively easy hand shake
between different models or also models and observations or
models and costumers. The concrete meaning of the term
interface is correspondingly broad, ranging from definitions for
observations (what, when, how), over unit conventions and
coordinate system definitions to data formats (netcdf and grib)
and detailed documentations of data and model. Some of these
standards have been put forward by the World Meteorological
Organization (WMO, http://www.wmo.int). Others may be seen
more as the result of co-evolution among different stake-
holders. With regard to the model as such, the large consortia
and the strict rules (e.g., coding but also licensing issues) that
have to go with them add to the basic challenge of “operational
stability” versus “dynamic development”.

2.1.3 Model development

A main development driver in NWP is the permanent
evaluation of forecast skill. This is possible because of the
short lead times, because interest is also with ordinary weather,
i.e., each forecast and not only extreme events, and because
there is ample observational data at hand on Earth. Comparison
of forecast and reality is typically done via an institution
specific skill metric. Other measures may be added on top. For
example, as part of the operational chain at MeteoSwiss
forecasters meet after each shift, while memory is still fresh
and as part of the operational chain, with people from modeling
to provide their impression of the model’s performance for the
last forecasting period (personal communication P. Steiner,
MeteoSwiss). Several times a year this information is analyzed
for model deficiencies that escaped the automated skill score.

Model improvement can then come via an internal project
at the weather service or via a joint project with universities (e.
g., improved terrain following coordinates, Schér et al., 2002).
On the university side, a motivation for such a joint project is
the free use of most or all of the operational NWP codes, tools,
and data for their research. For the weather service, this form of
exchange allows to carry out also larger exploratory projects
with a close link to basic atmospheric science, which might be
difficult to realize otherwise, e.g., for lack of expert knowledge
or funding possibilities. Such projects may last anywhere from
months to years and may cover anything from small
adaptations to adding new capabilities/components to the
model. If they lead to improved predictions within the research
context, they are professionally implemented and tested
(verification, validation, calibration/tuning, effect on customer
specific back-ends) by the weather service, following strict
rules and protocols. If all tests are passed, the development
enters the operational code. Corresponding releases take place
several times per year at MeteoSwiss. Note that this implies
that forecasters and customers must cope with frequent —
albeit typically small — changes of the product they get.

Another development driver may be summarized as insight
from basic research. Into this category falls the awareness that
ensemble simulations can be used to translate imperfections in

initial conditions and model formulation into meaningful
probabilistic forecasts. Associated development projects tend
to be rather long and complex.

Yet another development driver is the advance of computer
architectures. The reward is, roughly speaking, more computa-
tion in shorter time, potentially even for less energy. In terms of
the above examples, it enables finer resolution and larger
ensembles. This potential has spurred interest in porting
(operational) NWP to modern computer architectures, in
particular, graphical processing units/GPUs (Michalakes &
Vachharajani, 2008; Shimokawabe et al., 2014; Vanderbau-
whede & Takemi, 2016; Deconinck et al., 2017), but there are
also attempts toward using cloud computing (Molthan et al.,
2015; Siuta etal., 2016; Blaylock et al., 2017; Chen et al., 2017).
Associated challenges comprise scalability (the model should
run on thousands of cores), fault awareness and tolerance (the
model should tolerate failure of a thread or core), advanced data
compression techniques and I/O, or also concepts for portability
(computer architectures may differ among consortia members)
and composability (relevant physics may differ among users, e.
g., mountain snow pack or storm surges) or modularity (Bauer
et al., 2015; Palmer, 2015; Diiben & Dawson, 2017). Tackling
these challenges requires — besides domain scientists — highly
specialized knowledge on computing related topics, ideally in
close collaboration with a large supercompute center, several
years time, and likely some shift of paradigms. Among the latter
are, for example, the question of programming language
(replacement of fortran, at least in parts), the requirement of bit-
reproducibility, partial use of reduced precision arithmetic
(Diiben et al., 2014), online analysis/re-calculation to reduce I/
O, or whether domain scientists are willing to give up control
over parts of the model (e.g., solution of a Laplacian) in favor of
domain specific languages or computer architecture specific
libraries.

On the positive side, the range of stake-holders involved can
also open additional funding opportunities for development
projects. Recent example of this kind are the project on Energy-
efficient Scalable Algorithms for Weather Prediction at Exascale
(http://www.hpc-escape.eu/) or also the Center of Excellence in
Simulation of Weather and Climate in Europe (https://www.
esiwace.eu/). Both initiatives explicitly address both, NWP and
climate. In addition, there are many smaller initiatives e.g., within
the context of Partnership for Advanced Computing in Europe
(http://www.prace-ri.euor). So far, to the author’s knowledge,
only one operational NWP model has been successfully ported to
GPUs, namely that of MeteoSwiss (e.g., Fuhrer et al., 2014; Gysi
et al., 2015; Leutwyler et al., 2016; Prein et al., 2017). The
corresponding development branch of the code was largely
decoupled from the operational version for years. The effort
turned out to be a win-win situation for all partners: a more
powerful yet less energy intense code for operational forecasts
and research, as well as a showcase application that highlights the
possibilities offered by new computer architectures at the Swiss
National Supercompute Center.

2.2 Climate projections
2.2.1 Objectives
Climate projections aim at lead times of decades to

centuries, at global to regional spatial scales. The term
“operational” is hardly used in the context of climate
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modeling. Yet the model data entering the International Panel
for Climate Change (IPCC) reports (IPCC, 2013), for example
the global climate model (GCM) data from the Coupled Model
Intercomparison Project Phase 5 (CMIPS), fulfill some
operational key characteristics: the data are to some degree
customer driven (United Nations Environment Program,
WMO; governments or business for selected back-end
products), have to be available in time (for the IPCC report),
and respect a number of specifications. The specifications arise
from the desire to be able to compare and re-use the model data
submitted to IPCC and are defined by working groups from the
climate modeling community as such (for CMIP, Taylor et al.,
2012; Eyring et al., 2016a). Broadly speaking, they detail the
setup of some common simulations and of some aspects of the
model. An example for the former is the demand to perform a
simulation covering the years 1850-2005 with predefined
input data, like annual mean greenhouse gas concentrations.
Model specifications include that a certain amount of physical
components must be covered (e.g., atmosphere, ocean) and
that standards enabling data exchange be respected (e.g., file
format, unit conventions, coordinate system definitions,
variable names). From this perspective, climate projections
also face the issue of “operational stability” versus “dynamic
development” and accompanying effects on the development
process (Jakob, 2014).

The term “operational” refers, however, to a quite different
product than in NWP, in terms of lead time and spatio-temporal
scales, but also concerning product details — rather customer
tailored in the case of NWP, closer to the model output as such
in the case of climate. Associated are differences in terms of
operational model (e.g., physical components covered),
embedding into an operational chain (more elaborate in
NWP), bodies behind the operational product (larger in NWP),
and model development. The points are further illustrated in
the following, with focus on GCMs/Earth system models
(ESMs) and CMIPS. Similar considerations apply to regional
climate models.

2.2.2 Modeling aspects

The long lead times are a distinguishing feature of
(operational) climate modeling. They have several conse-
quences for the design, operation, and further development of
such models. First, they require ESMs to take into account
additional system components besides the planetary atmo-
sphere, for example oceans, sea-ice, or vegetation. The
exchange between corresponding model components (or
models, for short) is mostly two-way, i.e., information (e.g.,
an energy flux) is passed from one model to another and vice
versa. Developments on one model thereby tend to impact
others. Model components (e.g., atmosphere or ocean) are
typically developed and brought to operational stability on a
stand alone basis, before being coupled and finally adjusted
across components (see e.g., Hourdin et al., 2017). Second, the
long lead times allow for and also demand for longer model run
times, from about a week to several months for one simulation.
Third, data assimilation for initialization is less of an issue than
in NWP, as either the system memory is much shorter than the
lead time (e.g., for the atmosphere) or because comparatively
little observational data for assimilation is available (e.g., for
the deep ocean). To nevertheless arrive at a controlled initial

state, an ESM is typically relaxed by running it for several
thousand years with fixed setup, e.g., conditions as of the year
1850. Fourth, to arrive at a controlled initial state that is
compatible with observed climate variables (e.g., a global
mean temperature remaining around 13.7°C in 1850),
numerical values in sub-grid scale parameterizations have to
be adjusted: the model has to be calibrated or tuned (e.g.,
Hourdin et al., 2017; Schmidt et al., 2017). Because of the long
time scales involved (run time and system memory) this
process takes from several months to over a year and consumes
a significant amount of cpu. The calibration and relaxation
process, as well as the generally long integration times for
actual operational production, reflect in comparatively long
(years) intervals between individual operational code versions.
The production phase of one operational version typically
coincides with the development phase of the subsequent model
version and resources (people, cpu) have to be split between
the two.

Operational climate modeling and associated model
development is essentially shouldered by individual research
institutions (around thirty in the case of the last IPCC report/
CMIPS5, often in a stable team with some supercompute
center). This is in contrast to NWP, where large, often
transnational consortia play an important role (see Sect. 2.1).
The institution based approach has the advantage that the
exchange between development and operation is typically
easier. Operational and research codes are closely related, the
latter just being (research purpose adapted) branches of the
former. In this way, research can rely on the operational code as
a solid basis that continues to be well tested by research and
operational activities. Basic research developments thus are
made already within the context of the operational code,
although often not in “operational coding quality”. On the
downside, an institution shouldering both, research and
operational modeling, must split its resources, like people
or available cpu time, between the two. At times, this may
result in operational goals (like IPCC) being prioritized over
“pure research”, one reason being that the former tend to be
more time critical than the latter. Corresponding concerns were
raised, for example, during a recent workshop on Earth System
Modeling (https://www.4icesm.eu).

Rules and regulations associated with the operational
model are mostly institution specific as well, except for
specifications regarding data exchange (see above). They are a
must given typical code sizes, and range from coding rules
over version control (e.g., svn, git) to validation/model skill
(see below). Yet they tend to be less strict and comprehensive
than in NWP, possibly reflecting the different sizes of the
communities behind a single model. NWP likely also requires
more regulations as the operational model forms part of a
complex operational chain, from data assimilation to user
specific back end models and products (see Sect. 2.1), while
climate projections are more stand alone. They rely on
comparatively simple input data (no data assimilation) and
provide essentially the model output as such (no user specific
back end products or models).

2.2.3 Model development

With climate research and operational climate modeling
coming out of essentially one hand, much model development
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simply results from research projects — except for the
operational implementation itself, which is often done by a
few, specialized people.

A main development driver is again model skill, now
typically with regard to observation based climatological mean
quantities, possibly their variance, like (global mean)
temperature, the Indian monsoon, or El Nifio. Corresponding
skill metrics are typically institution specific. A common skill
metric that would allow to compare model skill across
institutions is suggested for CMIP6 (Eyring et al., 2016a).
Comparison of observed and modeled historical climate,
roughly from 1850 till 2000, is more of a final (yet crucial) test
for an ESM than a primary driver of its development (Hourdin
et al., 2017). Translating a lack of model skill into a concrete,
targeted development project tends, however, to be even more
challenging in an ESM (with atmosphere, ocean, sea ice,
vegetation, etc.) than in NWP.

An emerging field of climate model development is the use
of an ESM in NWP mode and testing its skill correspondingly
(e.g., Simmons et al., 2016). The rational behind is that climate
may be seen as the long-term statistical average of weather,
thus a good climate model should also have good NWP
properties. As the atmospheric component of the ESM is tested
against more detailed observational data than the above
mentioned climatological mean quantities, it is put on more
firm physical ground. The approach is also a step toward
bridging the lead time gap between NWP and climate, thus
toward seamless predictions (Palmer et al., 2008; Simmons
et al., 2016).

A lasting driver of model development in climate is the
coverage of additional system aspects, like for example
replacing prescribed plants and carbon sources/sinks with a
carbon cycle model comprising interactive vegetation (e.g.,
trees growing or dying), carbon storage in oceans, etc.
Associated stand alone models may originate from pure
research. Once such a model seems mature enough, in terms of
science and efficiency of execution/cpu requirements, one may
try to couple this model as yet another component to the ESM.
Keeping ESMs modular such that they allow for easy coupling
of new stand alone models is an endeavor. It is also a challenge
with regard to coding, including the potentially conflicting
demands of modularity on the one hand and optimization for
execution speed on the other hand.

Basic physics in the sense of switching to more physically
sound sub-grid-scale parameterization is another important
driver. However, within the operational context this driver has
the downside that physically improved parameterization may
first result in reduced model skill, as errors that used to
compensate no longer do so (Jakob, 2014; Hourdin et al.,
2017). Additional development time is needed, which is
potentially (too) costly for an individual institution. Similar
considerations apply with regard to exploitation of new
computer architectures. Promises lie, for example, with better
spatial resolution to address regional projections and the role of
clouds. Challenges include lack of man power, large codes,
code portability, and uncertainty about the longevity of
different accelerator technologies — thus about whether
portation would pay off at all.

The situation may change as climate and weather models
approach and synergies can be exploited in larger teams. An
example in this direction is the ICOsahedral Non-hydrostatic

model (ICON) used by the German Weather Service as
operational global NWP model and by the Max Planck
Institute for Meteorology, Hamburg, Germany as global
climate model. Together with other stake-holders from NWP,
supercompute centers, and universities, several joint projects
are under way to explore portation of ICON to new computer
architectures (e.g., within the Platform for Advanced Scientific
Computing, http://www.pasc-ch.org/).

In summary, developments in an operational ESM context
go at a much slower pace than NWP development just because
of the physical and lead time scales involved in the problem.
However, the number of people involved in model develop-
ment likely also plays a role. Whether larger collaborations
would make the development process more efficient and faster
is a matter of debate (Palmer, 2016). One danger to ever
growing collaborations is a loss of diversity.

2.3 Space weather prediction
2.3.1 Objectives

SWP deals with perturbations originating at the Sun —
eruptive perturbations, notably X-ray flares, coronal mass
ejections (CMEs), and solar energetic particle events (SEPs),
as well as more persistent features, notably coronal holes and
associated wind streams — and their propagation toward and
effects at or near the Earth. Customer specific interests include
satellite safety, high frequency communication black outs, or
damages to electrical power grids from geomagnetically
induced currents (e.g., Sibley et al., 2012; Riley et al., 2018).
Lead times depend on the type of event and typically range
from minutes to days, although longer time scales are also of
interest (e.g., recurrence of coronal hole associated with the
solar rotation period of 27 days; the solar cycle of about 11 and
22 years Watermann et al., 2009; Singh et al., 2010).
Operational products range from publicly available activity
indices to customer tailored quantities (see e.g., Araujo-
Pradere, 2009; Tsagouri et al., 2013; Steenburgh et al., 2014;
Schrijver et al., 2015; Bonadonna et al., 2017).

2.3.2 Modeling aspects

Operational space weather providers include consortia (e.
g., the teams participating in the ESA Space Situational
Awareness (SSA) Programme’s Space Weather Service
Network, http://swe.ssa.esa.int/) and organizations engaged
in NWP (e.g., the SWP Center (SWPC), of the National
Oceanic and Atmospheric Administration, http://www.swpc.
noaa.gov). New developments in space weather services are
taking place in a number of countries, e.g., the United
Kingdom, Belgium, Poland, Sweden, Austria, Australia,
Brazil, Mexico, Canada, Korea, Japan, China, Indonesia,
India, or also South Africa. A collaborative network of space
weather service-providing organizations around the globe is
provided by the International Space Environment Service
(ISES). The ISES mission is to improve, to coordinate, and to
deliver operational space weather services through a network
of Regional Warning Centers (http://www.spaceweather.org/).

The different types of perturbations (X-ray flares, SEPs,
CMEs, coronal holes) find their correspondence in rather
separated modeling communities (Zhao & Dryer, 2014;
Luhmann et al.,, 2015; Barnes et al., 2016; Reiss et al.,
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2016; Cranmer et al., 2017; Murray et al., 2017). Further
splitting of modeling activity occurs for regions closer to Earth
(magnetosphere, ionosphere/thermosphere, Earth atmosphere
and surface) because of traditional scientific domains, specific
customer needs, as well as the physical processes involved
(Lathuillére et al., 2002). Models range from empirical to
semi-empirical to physics based. An impression of the
emerging, rather fragmented modeling landscape may be
obtained from the SWPC web-page. A number of projects aim
at combining this existing expertise to arrive at more
comprehensive space weather models. This includes coupling
of different models, i.e., using the output of one model as input
/ initialization of another model. The coupling is typically one
way, with information being passed from Sun to Earth.
Concrete initiatives include the Space Weather Modeling
Framework at the University of Michigan (http://csem.engin.
umich.edu/ Toth et al., 2005, 2012) and the Virtual Space
Weather Modeling Center (VSWMC, https://esa-vswmc.eu/).
A complementary, more integrative approach that stresses the
critical linking of multiple scales at shocks, interfaces, and
reconnection sites, is taken by the Space Weather Integrated
Forecasting Framework (http://www.swiff.eu/ Lapenta et al.,
2013).

Model initialization relies on satellite or other observa-
tional data and uses a range of data assimilation techniques (e.
g., Ensemble Kalman Filtering or Ensemble Optimal
Interpolation methods Hickmann et al., 2015; Murray et al.,
2015). Data assimilation for model initialization is, however,
not as widely spread in SWP as in NWP. Several reasons for
this difference are identified by Lang et al. (2017), a major one
being data availability. Translating the uncertainty from
initialization into probabilistic forecasts using different
ensemble techniques (Schunk et al., 2014; Elvidge et al.,
2016; Knipp, 2016; Owens et al., 2017) is getting standard.
Dependence on initial conditions can be chaotic (as in NWP, e.
g., magnetosphere/ionosphere/thermosphere Horton et al.,
2001; Mannucci et al., 2016; Wang et al., 2016) or non-chaotic
(e.g., CME propagation toward Earth Cash et al., 2015; Lee
et al., 2013, 2015; Pizzo et al., 2015). In the later case, the
accuracy of a prediction will strongly depend on the quality of
the underlying initial data, for example the parameters of a
CME and the characterization of the solar wind to be passed.
Depending on how model skill is evaluated it may then rather
be an evaluation of “initial condition skill” than of actual
model skill. Also, one model may outperform another because
it was designed to take the imperfection of the initial data into
account.

2.3.3 Model development

Regarding model development, the relative importance of
(observation based) model initialization as well as the many
existing, largely stand alone models allow for development of
individual models without affecting others. Together with the
short lead times, thus short run times, this potentially allows
for overall short development cycles. An interesting account of
a concrete development project in the context of operational
SWP is given by Steenburgh et al. (2014). It addresses a wider
scope than the present paper, touching for example also on
visualization tools for the model results. With the rich and
detailed presentation of real world issues that have to be dealt

with to make a model operational, the paper makes an ideal,
complementary reading to the present paper. Like the present
paper, it stresses the importance of close exchange between
research and operational people.

Regarding drivers of model development, model skill is
again a prominent driver, despite the complicating aspects
mentioned above. For the many empirical models used in and
specifically designed for SWP, model skill may be the single
most important development driver. Evaluation of model skill
comes in the form of automated, model specific skill metrics,
but also in at least some institutions in a “soft variant” via
regular meetings between modelers and forecasters (Steen-
burgh et al., 2014). Different actors in (operational) SWP tend
to use different measures of model skill, there is no wide
acceptance of a best approach. There are, however, initiatives
toward more unified and thus comparable model skill
evaluation. The ISES network as well as the ESA SSA Space
Weather Service Network, both mentioned already earlier,
engage in this direction. Efforts by the Community Coordi-
nated Modeling Center (CCMC, https://ccmc.gsfc.nasa.gov/)
build on simulations of the same, real events and use of the
same skill metric for all comparable models. A corresponding
platform for the comparison of real-time forecasts, the
predictions being uploaded to CCMC by different providers,
is operational for CMEs, under implementation for flares, and
planned for SEPs. The approach is interesting as it allows to
identify systematic deficiencies across models. In practical
terms this also means assistance of community wide model
validation efforts (e.g., Pulkkinen et al., 2013; Rastitter et al.,
2014; Glocer et al., 2016; Welling et al., 2017). SWP here is a
trend setter. In climate, a prescribed, common skill metric is
only suggested for the next inter-comparison, CMIP6 (Eyring
et al., 2016b). In NWP, such a common skill metric is less
straightforward and maybe less appropriate, as relevant
weather characteristics are rather regional and very different
in, say, Central Europe and Southern India. Common are,
however, the concepts and ideas behind the skill metric. All
three communities thus may profit from associated guidelines
and recommendations put forward by the WMO Joint Working
Group on Forecast Verification Research (JWGFVR).

Basic physics appears a key driver of operational model
development for those models that are physics based and used
in both research and operational SWP (e.g., WSA-Enlil, see
Mays et al., 2015, for an overview). Much like in climate and
NWP, the use of the same model potentially exploits synergies
(man power, expertise, tools, etc.) and inspires improvements
also of the operational code version. The use of a common code
facilitates transfer from research developments into operation.
As such a code is potentially used in widely different
environments, e.g., in terms of computer architecture,
operating system or file system, possibly in serial and parallel
mode, this promotes overall robustness and portability of the
code (Steenburgh et al., 2014).

Advances in the form of more, better, and different
observational data are a definite driver of model development
in operational SWP. This applies especially but not exclusively
for empirical models, which rely most heavily on observations
for model design and application. Changes in computer
architecture, by contrast, seem less of a driver (see e.g., Feng
et al., 2013). Potential reasons could be lack of free resources
or that advances are expected rather from progress in physical
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understanding and improved models (empirical and physics
based) than from more cpu.

The relative importance of (observation based) model
initialization allows for development of individual models
without affecting others. Together with the short lead times,
thus short run times, this potentially allows for overall short
development cycles.

3 Operational modeling and development —
synthesis across communities

The previous section outlined some characteristics of
modeling and model development in an operational context in
individual communities, notably NWP, climate, and SWP.
What can be synthesized?

A first impression is that exchange between “basic
research” and “operational forecasting” ideally is a two-way
road with added value for both sides. From research to the
operational side, there is the asset of enabling exploitation of
new scientific developments in an operational context. Also,
there is the research view on what a model may or may not be
able to realistically capture. The opposite direction — what
research might benefit from operational modeling — is less
frequently highlighted. Yet it is common practice, at least in
NWP and climate, that operational codes and even entire
modeling chains or parts thereof are used for basic research.
This allows the latter to build on a code that runs reliably, is
well written and tested (verified and validated), well
optimized, and comes with a version history and a wealth
of useful tools, ranging from code development over validation
and visualization to well defined data formats and interfaces.
Also, over time the permanent operational use exposes
potential weaknesses of the model much better than few
dedicated tests in a pure science project. Turning again to the
direction from research to operation, use of the operational
code in research potentially facilitates transfer of improved
functionality back to the operational code.

A second aspect concerns model skill. Skill metrics and
associated scores are an ubiquitous concept. They are a driver
of model development, although typically a lack of skill not
easily translates into a concrete cause thereof, a concrete
development project. They are attractive because they are
quantitative and reproducible, thus comparable, and transpar-
ent. However, they measure only what they are designed for,
and the concrete design of the metric — what quantity is
evaluated, against which benchmark, and what norm is used, e.
g., root mean square or other — often varies with model and/or
institution. This also because models are always imperfect, and
a decision has to be taken as to which aspect of the model
should weigh heavier in the skill score. To compensate for the
first flaw (rigid design), a “soft model skill assessment”
(exchange between modelers and forecasters) forms part of the
operational chain in some NWP and SWP institutions. Climate
modeling is less subject to this flaw in the first place, as
research and operation are much closer, on a personal level,
including exchange about model performance beyond pre-
defined skill metrics. The second flaw (model / institution
specific score) is typically addressed via dedicated model
intercomparison projects, e.g., CMIP mentioned in Section 2.2
or CCMC (see Sect. 2.3). Validation of models against the

same skill metrics and observational data is most valuable as it
allows to identify systematic deficiencies across models. For
regional NWP, model inter-comparison is less practical as
models are calibrated for good performance within their
operational region.

Third, there is the interplay between drivers, lead time, and
time scales of model development. Put simply, short lead times
reflect in short model run times and frequent comparison of
“prediction” and “reality”. The latter can be an essential driver
of model development in an operational context, provided that
enough data for model evaluation are available. For NWP this is
indeed the case, resulting in frequent (possibly) small changes to
the operational model version (up to several times a year in
NWP, see Sect. 2.1). Whether an equally high update frequency
of the operational model is desirable in SWP is less clear. The
short run times would allow for fast development cycles. The
comparatively large number of stand alone models involved
seems of little consequence as they are largely independent of
each other (see Sect. 2.3). An obstacle may be observational data
coverage to evaluate (long term) model performance, especially
when it comes to (rare) extreme events. Also, frequent updates
of the operational model imply that customers have to be
prepared for slight but frequent changes of their products,
similar as in the case of NWP (see Sect. 2.1). Climate modeling
has much longer development cycles. There is no short time
development driver in the form of daily comparison of forecast
and reality. And changes in one of the sub-model components
(ocean, atmosphere) can necessitate adjustments in another
component, if only via “re-tuning” the model (see Sect. 2.2). A
consequence of the longer development cycle is that customer
products (e.g., for IPCC) tend to differ substantially between
subsequent operational versions.

Finally, there are common challenges ahead, a major one
being advances in computer architectures. On the positive side,
these are an important factor enabling better models, better
predictions. However, to take advantage of this progress, one
has to cope with the fact that computer architectures, chips, and
disks, follow their own evolution. It seems highly unlikely that
research or operational services can exert any substantial
influence on chip or disk manufacturers. Slight influence on a
concrete machine procurement might be taken via the
benchmark applications normally run by a supercompute
center before buying a new machine. How much adaptation
then is compelling or rather a matter of choice — Is a GPU code
amust? Is a commercial cloud an alternative? — is a subject of
much debate. Opinions also diverge on adaptation strategies,
one idea being to separate codes into machine specific back
ends and science code front ends. The coding and maintenance
of such back ends beyond show case applications is, however,
an open questions. Whether sufficiently many actors will
embark on this approach and could agree to common back
ends, thereby distributing associated costs, remains to be seen.

What seems certain is that complexity will grow and with it
the need for expert knowledge to develop, optimize, and run
corresponding well structured and modular models. In concert,
there will be a growth in complexity of the hand shake between
“research” and “operation”, as well as between established
categories, such as physics or domain science, scientific
computing, and computational science. A partial answer to this
increasing complexity must lie in education and community
culture, promoting heterogeneous teams that cover all
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necessary expertise and interact on an equal footing. An asset
for such teams would be the possibility for science career
tracks that are situated between or even alternate among
established categories, have a long term perspective, and share
the recognition of “pure science” tracks. Today, such cross-
cutting careers are rather exceptional.

With the necessarily growing investments in codes and
operational infrastructure, licensing issues potentially raise in
relevance. Transnational collaborations and the associated mix
of legal systems potentially add to the issue. Whether open
source licensing could be an answer is a matter of debate.

4 Conclusion

This paper examined the somewhat conflicting demands of
“operational stability” versus “dynamic development” in three
different communities: NWP, SWP, and climate projections.
Similarities and differences in how the three communities deal
with this issue were identified. In all three communities, the
lead is with the operational side, which is obliged or even
legally bound to meet customer demands. The research
community plays, however, an important part in an overall
win-win situation. To what degree the latter is indeed
recognized and appreciated by all partners is difficult to
judge. Both sides have common goals — learn about
dependencies in the system with the goal of making predictions
and, ultimately, understand the underlying mechanism — and
in pursuing them may benefit from each others strengths:
clean, verified, and validated code with plenty of tools and data
on the side of operational services and additional expertise,
man power, time and funding for exploitative scientific studies
on the research side. Mutual awareness of and respect for each
other’s strengths and limitations is essential for success.
Leaving the community specific perspective while writing this
paper, my conviction grew that mutual exchange among NWP,
SWP, and climate may not always be easy but has much
potential given the similarities in physics, equations, goals, and
challanges ahead. Some of these challenges — notably the need
for composability in view of modern computer architectures
and, more generally, the growing complexity in operation and
research — are not only common to all three communities but
call for common action. Community building, education, but
also career paths must account for these developments in order
to ascertain long-term success.
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