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ABSTRACT

Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geo-
logical events have impacted the evolution and diversification of this biodiversity. During the last two decades, around
90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased
understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel,
extended geological and palacoclimatic records together with detailed numerical simulations have refined our under-
standing of past geological and climatic changes in Africa. To date, these important advances have not been reviewed
within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodi-
versity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences.
We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing
89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan
biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with
tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late
Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current
tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant
clades and discuss three major models of speciation: (z) geographic speciation via vicariance (allopatry); (iz) ecological spe-
ciation impacted by climate and geological changes, and (uz) genomic speciation za genome duplication. Geographic
speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We
conclude with four important challenges faced by tropical African biodiversity research: (z) to increase knowledge by
gathering basic and fundamental biodiversity information; (i) to improve modelling of African geophysical evolution
throughout the Cenozoic via better constraints and downscaling approaches; (i2z) to increase the precision of phylogenetic
reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together
with better fossil calibrations; (i) finally, as done here, to integrate data better from Earth and life sciences by focusing on
the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.

Key words: tropical Africa, dated molecular phylogenies, palacoclimate models, speciation models, fossils, African
geology, Cenozoic
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I. INTRODUCTION

The African continent is a land of biological contrasts
(Linder, 2001). Africa hosts the largest desert in the world, the
Sahara, together with some of the most endemic-rich
(e.g. Cape Flora; Linder, 2003) and species-rich (e.g. African
rain forests; Linder ¢t al., 2012) ecosystems worldwide. In this
review, we focus on tropical Africa, loosely defined as the region
below the Sahara and excluding southern (austral) Africa and
Madagascar (Fig. 1). A central focus is the tropical rain forests
as they contain the highest levels of species diversity and ende-
micity for both plants (Linder e al, 2012; Droissart
et al., 2018) and animals (Jenkins, Pimm, & Joppa, 2013) across
the continent. Tropical rain forests are distributed from West
Africa into the Congo Basin, Guineo-Congolia, and in smaller
patches along the East African coast and Eastern Arc Moun-
tains (Tanzania—Kenya). African rain forests are, however,
overall less species rich than tropical rain forests in other tropical
regions such as the Neotropics (Richards, 1973; reviewed in
Couvreur, 2015).

Besides tropical rain forest, numerous other biomes have
been identified but their limits and characteristics depend
on the biota studied, the data and the approach used
(White, 1983; Linder, 2001; Klerk e al, 2002; Linder
et al., 2005, 2012; Lévéque e al., 2007; Droissart
et al., 2018). East Africa is particularly diverse with substan-
tially more bioregions identified than in West or Central
Africa, reflecting higher topographic and climatic diversity
(Linder, 2017; Droissart ¢t al., 2018). Remarkably, bioregions
defined using different groups (e.g. plants, animals) show
broad general congruence (Linder ¢ al., 2012). Finally, using
a slightly different concept to that of a biome (which is solely
based on species composition), Linder (2014) identified six
different groups of clades or ‘floras’ for Africa, which shared
similar geographical distributions, extra-African geographi-
cal affinities, diversification histories, and maximum ages.

Africa contains eight of the now 36 recognized global bio-
diversity hotspots (Fig. 1B; Mittermeier ¢t al., 2011). Addi-
tional hotspots defined in terms of species richness have
been identified in the coastal regions of Cameroon, Gabon,
the Republic of Congo, and Mozambique (Kuper
et al., 2004; Sosef et al., 2017). Noteworthy are the East Afro-
montane hotspots which contain the second highest total
number of endemic vertebrate genera on Earth
(Mittermeier et al., 2011). The Eastern Arc Mountain hot-
spot, as originally defined but now comprising two separate
hotpots (Mittermeier et al., 2011), was estimated to have the
highest concentration of endemic plants (number of
endemics per 100 km?) of all hotspots (Myers et al., 2000).
Opverall, African biodiversity is vulnerable with a high risk
of extinction by the end of this century for both plants
(McClean et al., 2005; Blach-Overgaard et al., 2015; Stévart

et al., 2019) and animals (Thuiller et al, 2006; Tolley
et al., 2016), and Africa is expected to host more than half
of global population growth by 2050 (Gerland et al., 2014).

Understanding the evolutionary history of regions and how
clades originated and diversified are important facets of biodiver-
sity conservation (Erwin, 1991). Indeed, molecular dating and
subsequent biogeographic and diversification analyses of recon-
structed phylogenetic trees have become routine in many studies
on the evolution of biodiversity (Sauquet, 2013; Morlon, 2014;
Sanmartin & Meseguer, 2016; Silvestro et al., 2018). However,
as for all methods, these approaches have potential limits
(e.g. Garruthers & Scotland, 2020; Louca & Pennell, 2020) which
are important to keep in mind when interpreting their outcome.
The latest review on the evolution of tropical African flora and
fauna, mainly focused on the tropical rain forest biome, is now
15 years old (Plana, 2004), and concluded that “The small num-
ber of species-level phylogenies for African rainforest plants hin-
ders a more incisive and detailed study into the historical
assembly of these continental forests” (p. 1585).

To date, around 90 dated molecular phylogenies have been
published documenting the diversification of tropical African ani-
mals and plants (see online Supporting Information, Appendix S1).
Most clades diversified within tropical Africa and this will be the
focus of our review. Biogeographic analyses of pantropical plant
clades tend to support the idea that Africa has been an important
source of tropical diversity (the ‘out of Africa’ hypothesis), with
numerous major tropical families inferred to have originated in
Africa (e.g. Muellner ¢ al, 2006; Zhou e al, 2012,
Couvreur, 2015). In animals, the origin of major groups is less clear
with studies disagreeing on the geographical origin of groups such
as Mammalia (Springer ¢ al., 2011; O’Leary ¢t al., 2013).

In parallel, knowledge of the geophysical settings of Africa
has improved. Information from both modelling and field-
work has improved our understanding of the topographic
history of the continent, and numerical climate simulations
have begun to clarify how these changes influenced the cli-
mate of Africa. This new wealth of information provides a
unique opportunity to improve our understanding of the
diversification of tropical African biodiversity.

Here, we first review African geodiversity and climate
events throughout the Cenozoic and link these to diversifica-
tion processes in tropical African terrestrial plant and animal
clades. Finally, using dated molecular phylogenetic and
diversification studies, we synthesize the different speciation
models and mechanisms proposed for tropical Africa.

II. THE PHYSICAL CONTEXT

Climatically, tropical Africa is bounded by three regions
receiving less than 200 mm of precipitation per year

Biological Reviews (2020) 000-000 © 2020 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



4 Thomas L.P. Couvreur et al.

ATLANTIC -
OCEAN

I Guineo-Congolian Evergreen & Semi-Evergreen Rainforest [ African Montane Grassland & Shrubland

I Eastern & Southern African Lowland Evergreen & Semi-Evergreen Forest | Tropical Herbaceous Swamp & Aquatic Vegetation
[ Eastern African Dry Semi-Deciduous Forest | Eastern African Xeric Scrub

[ Afromontane Dry Forest | Saharan Desert

I Eastern African Swamp Forest | Nama Karoo Semi-Desert Scrub & Grassland

I Guineo-Congolian Swamp Forest | Namib-Gariep Desert

I Sahelian Swamp Forest B Sahara Warm Desert Scrub & Grassland

[ African Temperate Herbaceous Swamp & Aquatic Vegetation "] North Sahel Semi-Desert Scrub & Grassland

|| Tropical Herbaceous Swamp & Aquatic Vegetation I Albany Subtropical Thicket

| Northern African Phreatophyte Vegetation I Atlantic & Caribbean & East Pacific Mangrove

| Mopane Savanna [ Indo-West Pacific Mangrove

| Sudano-Sahelian Dry Savanna | African Temperate Cliff & Scree & Rock & Dune Vegetation
| Miombo & Associated Broadleaf Savanna | Northern African Salt Pan

| Eastern African Moist Woodland & Savanna | Eastern African Salt Pan

| West-Central African Mesic Woodland & Savanna [ Northern Aftrican Temperate Coastal Marsh

| Eastern & Southern African Dry Savanna & Woodland [ Southern Aftrican Temperate Coastal Marsh

| Sudano-Sahelian Dry Savanna [ Tropical Coastal Salt Marsh

[ Southern African Montane Grassland I Water

(Figure legend continues on next page)
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(Fig. 1B): the Sahara Desert to the north; the Kalahari and
Namib deserts to the south; and the Ogaden desert in the
Horn of Africa to the northeast. The rainfall regime in trop-
ical Africa also varies longitudinally, with the western African
monsoon region and the western Congo Basin being far wet-
ter (Fig. 1B; >2000 mm/year) than the margin of the conti-
nent east of the East African and Ethiopian Domes.
Rainfall over the Congo Basin is considered to follow a
bimodal regime, with the rainiest seasons (precipitation
~200 mm/month) occurring during so-called ‘transition
seasons’, from March to May and September to November.
During these two seasons, convective activity is at its peak
and as a result, the Congo Basin climate has considerable
influence over atmospheric dynamics at the planetary scale
(Washington e al., 2013). The transition seasons are sepa-
rated by two dry seasons from June to August and December
to February. While the western and southern regions of the
Congo Basin exhibit this precipitation regime, the dry season
1s less pronounced to the east of the Basin, along the western
flank of the East African Dome. Further north and south of
the Congo Basin, the bimodal rainfall regime subsides, and
a single rainy season occurs.

Rainfall patterns in the East African Dome region also dis-
play a bimodal distribution, although less pronounced than
in the Congo Basin. Precipitation is highest over the topo-
graphical highs, enhanced by orographic lift and the conver-
gence of the Atlantic and Indian air masses. To the east,
surface winds over coastal areas are controlled by the Asian
monsoon circulation over the Indian Ocean. The dry season
occurs during boreal summer, when moisture from the
Indian Ocean is transported north-eastward toward the
Indian continent. Conversely, during boreal winter wet air
masses blowing from the tropical Indian Ocean enter coastal
East Africa and trigger rainfalls. To the north, the region of
the Horn of Africa is arid and marked by repeated events
of severe inland droughts (Viste, Korecha, &
Sorteberg, 2013), and even hyper-arid with deserts near the
coast (Somali—Chelbi deserts). Conversely, the Ethiopian
highlands (i.e. Ethiopian Dome) capture moisture from mul-
tiple sources (Viste & Sorteberg, 2013) and are characterized
by high rates of orographic precipitation.

Finally, the climate of western tropical Africa is character-
ized by a monsoonal regime, the so-called West African mon-
soon. Thermal contrasts between sea-surface temperatures in
the Gulf of Guinea and the surface temperature in the Sahel-
ian region drive the seasonal reversal of surface winds,

bringing moisture inland. West African monsoon progres-
sion inland is characterized by a Gump’ between a first
regime of high rainfall along the Guinean coast in May to
July and a second period of less-intense precipitation over
the Sahel from July to September (Im & Eltahir, 2018). Dur-
ing boreal winter, the Sahelian region is dry, with the tropo-
spheric dynamics driven by north-easterlies channelled by
the topographic features at the border of the Chad Basin,
namely Hoggar, Tibesti and Darfur reliefs.

The modern topography of Africa (Fig. 1A; Guillocheau
et al., 2018) is characterized by a set of heterogeneously ele-
vated plateaus that strongly influence temperature and rain-
fall patterns at the continental scale. The largest, the
southern African (or Kalahari) Plateau, extends from 1500
to 2000 km longitudinally, and 2500 km latitudinally, with
an elevation ranging between 1000 and 1500 m. In contrast
to other major tropical regions such as South America and
Southeast Asia, Africa is defined by passive rather than active
continental margins (Goudie, 2005). The distribution of ele-
vation in Africa is bimodal, an ancient feature probably
inherited from the upper Palacozoic (Doucouré & de
Wit, 2003), with one peak around 300—400 m above sea level
(asl) in central and west Africa and one ranging from 900 to
1100 m asl in southern and East Africa (Guillocheau
et al., 2018). The highest elevations correspond to the Kala-
hari Plateau, and the East African and Ethiopian Domes,
but also to the Cameroon Highlands, Darfur, Tibesti, Hog-
gar and the Guinea Rise (Fig. 1A). The lowest elevations cor-
respond to the Sahara and the Congo Basin (Fig. 1A).

Overall, the present-day topography of Central Africa is
mostly a post-Eocene product of so-called very long
(1000-2000 km) wavelength deformations that result from
mantle dynamics. The study of planations surfaces
(i.e. large-scale mainly flat surfaces) recording these deforma-
tions shows that the growth of the Cameroon Dome and East
African Dome initiated 34 million years ago (Ma), the Angola
mountains at 15-12 Ma, and that the low-elevation Congo
Basin was uplifted between 10 and 3 Ma (Guillocheau e
al., 2018). However, understanding of the precise timing of
topographic changes in Africa remains limited at the regional
scale.

The relief in the East African Dome (East African Plateau,
Fig. 1A) results both from large-scale doming [deformation of
the crust due to mantle dynamics (plume, convection cell)
and characterized by a long horizontal wavelength
(500-1000 km) and some uplift of the Earth’s surface

Fig 1. The modern geophysical, climatic and vegetation setting of tropical Africa. (A) Topography of tropical Africa, modified from

Guillocheau et al. (2018). Topographic and bathymetric data taken from the GEBCO 2020 Grid (doi:

10.5285/

a29¢5465-b138-234de053-6c86abc040b9). Scale on bottom left is altitude in meters. Numbers refer to major rivers: 1, Niger;
2, Benue; 3, Ogooué; 4, Ubangi; 5, Uele; 6, Congo; 7, Zambezi; 8, Shire; 9, White Nile; 10, Blue Nile; 11, Nile. (B) Summed
annual rainfall amount (colour-shading, in millimetres) and averaged surface wind velocity (vectors, in m/s); rainfall data retrieved
from the 1961-1990 climatology from the Climate Research Unit data set, wind velocities are averages from the 1989-2010
ERA-Interim reanalyses [data from New et al. (2002) and Dee ¢t al. (2011)]. (C) Major vegetation types across Tropical Africa
following Sayre e al. (2013). Major divisions are shown according to Sayre ¢f al. (2013). Delimitation of biodiversity hotspots taken
from https://zenodo.org/record/3261807#.Xvu691VKiUk (doi: 10.5281/zenodo.3261807).
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(0.1-2 km)] and from rifting [stretching and thinning of the
lithosphere leading to the formation of a single or several cen-
tral linear depressions bounded by normal faulting and, in
the case of a single depression, by rift-flank uplifts] propaga-
tion within the East African Rift System (EARS) during the
Late Miocene and the Pliocene (Macgregor, 2015). The
EARS i1s divided into two major branches: the eastern
branch, running from northern Ethiopia to northern Tanza-
nia, and the western branch from Uganda to central Mozam-
bique (Fig. 1A). Active rifting started during the Oligocene
(30—24 Ma) along the northern East branch (Afar and Ethio-
pian plateau) progressing southwards raising the East African
plateau (Chorowicz, 2005; but see Roberts ¢t al., 2012). Rift-
ing in the western branch remains controversial (Roberts
et al., 2012) and is suggested to have initiated either during
the middle Late Miocene, around 12 Ma
(Chorowicz, 2005) or synchronously with the East branch
around 25 Ma (Roberts et al., 2012). Nevertheless, the Middle
Miocene was an important period of tectonic activity and
major uplift phases of the rift shoulders (Chorowicz, 2005;
Ring, Albrecht, & Schrenk, 2018). Dynamic topography
modelling suggests that the Kenyan dome uplifted from
500 m to 1000 m asl between 15 and 10 Ma (Wichura
et al., 2015).

Finally, the Eastern Arc Mountains consist of a series of
13 isolated fault-bounded mountain blocks that stretch from
southern Kenya to eastern Tanzania (Burgess et al., 2007)
independent from the EARS (Fig. 1A). Geologically, these
reliefs belong to the Mozambique Orogenic Belt, a major
suture zone along which eastern and western Gondwana col-
lided to form the Gondwana continent (Muhongo &
Lenoir, 1994; Johnson et al., 2003). The Eastern Arc Moun-
tains were mainly formed by block faulting, which results
from tensional forces in the Earth’s crust causing large bodies
of rock to uprise. The origin of this geological relief is possibly
the result of thickening of the continental crust (due to mag-
matic underplating) ca. 640 Ma that subsequently exhumed
in response to the continental collision that led to the forma-
tion of Gondwana at ca. 550 Ma (Muhongo, Kroner, &
Nemchin, 2001; Johnson et al., 2003). FFaulting was suggested
to have occurred between 290 and 180 Ma during the Kar-
roo period (Griffiths, 1993; Newmark, 2002). Since then,
the Eastern Arc Mountains have gone through repeated
cycles of erosion and uplifting, with the latest uplift suggested
to have occurred during the last 7 million years (Myr) coin-
ciding with the development of the EARS (Griffiths, 1993;
Newmark, 2002). Thus the Eastern Arc Mountains are geo-
logically very old (>100 Ma), with their modern topography
the result of more recent activity occurring in the region.

Understanding how these topographic changes altered the
environment and biota during the Neogene is still challeng-
ing, as it requires (z) a rare combination of fine topographic
reconstruction in space and time with climate simulations,
and (z) deciphering signals from larger climate changes
induced by variations in atmospheric carbon dioxide concen-
tration (COy partial pressure, pCOs) and/or insolation.

Thomas L.P. Couvreur et al.

III. SIX MAJOR ‘GEO-CLIMATIC’ PERIODS
IMPACTING TROPICAL AFRICAN
BIODIVERSITY

Understanding climate change in tropical Africa requires the
consideration of multiple drivers, including greenhouse gas-
induced global cooling/warming, oceanic upwellings, conti-
nental drift, tectonic uplift, rifting, and insolation variations.
Knowledge of African climatic evolution over the Cenozoic
1s incomplete because of (7) under-sampling compared to
other continents, (1) the relative rarity of fossilization in
humid environments that was prevalent through the Ceno-
zoic and, (i) the weak sedimentation rates that affect most
of the continent with the exception of East Africa.

The opening of the Equatorial Atlantic Ocean during the
Albian (ca. 100 Ma) isolated the African continent from other
landmasses which lasted until the closure of the east-Tethys
seaway during the Middle Miocene Climatic Transition at
ca. 14 Ma [see Hamon et al. (2013) for a review]. This
~84—65 Myr isolation contributed to the radiation of the
Afrotheria, a unique group of mammals found only in Africa
(Meredith et al., 2011; O’Leary et al., 2013). It was suggested
as an important reason for the absence or low diversity of sev-
eral major tropical plant clades in Africa compared with
other tropical regions (e.g. Chloranthaceae, Elacocarpaceae,
Lauraceae, Winteraceae; Morley, 2000). Long-distance dis-
persal from Africa to other regions has been inferred for at
least one plant family before the Cenozoic (Baker &
Couvreur, 2013). Nevertheless, Late Cretaceous land con-
nections between Gondwana landmasses might still have
been possible. Such land connections have been suggested
to explain distribution patterns within the Gondwanan salt-
intolerant frogs Microhylidae and Natatanura which
diverged during the Late Cretaceous (Van Bocxlaer
et al., 2006). The African continent has drifted northward
by ~15° and rotated counter clockwise since the Early Ceno-
zoic (Figs 2, 3A). This drift and the latitudinal palaco-position
of the African continent were likely crucial in determining the
location of moisture advection and convection, and associ-
ated palaeo-temperature and rainfall patterns, as well as oce-
anic currents (Walker, 1990). Yet, among the numerous
detailed accounts of the African fossil record for plants and
animals throughout the Cenozoic, few have considered the
influence of this drift and palaeo-position on biodiversity
(Morley, 2000; Murray, 2000; Werdelin & Sanders, 2010;
Gardner & Rage, 2016).

In this section, we review the climatic, geological and fossil
history of Africa during the Cenozoic by focusing on six
defining periods suggested to have impacted the diversifica-
tion of tropical African biodiversity above the species level.
We synthesize the latest data from Earth sciences — namely
from geological fieldwork, palacoclimate and palacovegeta-
tion modelling — and life sciences (mainly dated molecular
phylogenies). We do not review how these changes affected
the evolution of hominoids which is covered elsewhere
(e.g. Joordens et al., 2019). Finally, we do not review in detail
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Fig 2. Geological evolution of Africa during the Cenozoic. The maps depict the geological setting for six periods of the Cenozoic:
(A) Late Paleocene (59-56 Ma), (B) Middle Eocene (48—41 Ma), (C) Early Oligocene (3428 Ma), (D) Early Miocene (23-16 Ma),
(E) Late Miocene (11.5-5.5 Ma) and (F) Early Pliocene (5.5-3.5 Ma). These maps characterize the palaecotopography and the
palaecohydrography (drainage divides, catchment areas and paths of the main rivers) of Africa. They also include data such as
shorelines, deltas, depositional alluvial plains and lakes. Reconstruction of the palaeotopography was based on the restoration of
the stepped planation surfaces constituting the plateaus (Guillocheau et al., 2018). These planation surfaces, mainly pediments and
pediplains associated with weathering processes of laterite type, result from uplifts sometimes enhanced by climate (precipitation)
changes. See Guillocheau et al. (2018) for details. The highest surfaces are the oldest (from Late Cretaceous to Middle Eocene) and

the lowest are the youngest (Pliocene).
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climate evolution during the Pleistocene (Trauth, Larra-
soana, & Mudelsee, 2009; see Hoag & Svenning, 2017).

(1) Mass extinction? The Cretaceous—Paleogene
boundary (~66 Ma)

Although global climate exhibited a long-term cooling trend
at the end of the Cretaceous (i.e. the late Maastrichtian),
deposits of black shales in Egypt indicate a hot and humid cli-
mate in northern Africa at that time (Fathy et al., 2018). How-
ever, both marine and continental records indicate a highly
perturbed climate system in the 100000 years preceding the
Cretaceous—Paleogene boundary (KPB) (Barnet ¢t al., 2018;
Huber ¢t al., 2018). The KPB is marked by the last recorded
mass extinction, triggered by global-scale environmental per-
turbations driven by both the massive volcanic eruptions of
the Deccan Traps (India) (Courtillot & Fluteau, 2014;
Schoene et al., 2015; Zhang et al., 2018) and the Chicxulub
bolide impact (Schulte et al., 2010).

Our understanding of how these climatic fluctuations of
variable length altered tropical African biodiversity remains
limited because of the near absence of studied KPB fossils
(Nichols & Johnson, 2008; Schulte et al., 2010; Spicer &
Collinson, 2014; Vajda & Bercovici, 2014). This is mirrored
by few dated molecular phylogenies stretching back to the
KPB (e.g. Koenen e al., 2020). Based on these few data,
extinction events are inferred at the KPB across the tropical
African flora and fauna (Coetzee, 1993; Morley, 2000; Pan
et al., 2006; Schulte et al., 2010). However, there is mounting
evidence that the KPB did not lead to a large-scale taxo-
nomic disruption in plants globally in contrast to marine bio-
diversity (McElwain & Punyasena, 2007;Cascales-Mifiana &
Cleal, 2014; Silvestro et al., 2015). To a certain extent, this is
also visible for the western African palm fossil record where
most fossil genera span the boundary, going extinct during
the Paleocene rather than at the KPB (Morley, 2000; Pan
et al., 2006). The study of west to central African palaeofloras
by Salard-Cheboldaeff (1990) also documents a continuous
transition in fossil taxa throughout the boundary, with many
forms common to the Late Cretaceous and Early Cenozoic.
Globally, diversification analyses of vascular plant fossils sug-
gested little extinction rate variation across the KPB
(Cascales-Mifiana & Cleal, 2014; Silvestro e al., 2015). Dated
molecular phylogenies also inferred little or no diversification
rate changes across the KPB for several key pantropical line-
ages which originated during the Cretaceous (e.g. Arecaceac;
Couvreur, Forest, & Baker, 2011a), although these should be
interpreted with caution given the few data points available
during that time period. Rather the KPB initiated an
increase in speciation leading to a rapid increase in generic
diversity (Cascales-Mifiana & Cleal, 2014). Overall, the
KPB also provided more ecological opportunities for
increased global diversification of major animal groups such
as mammals (Meredith et al., 2011), frogs (Feng ¢t al., 2017
Portik et al., 2019), birds (Feduccia, 2014; Jarvis ¢t al., 2014)
and certain plant groups such as
(or Fabaceae), one of the most dominant plant families in

Leguminosae
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African biomes (Koenen et al., 2020). Thus, the meteorite
impact and the Deccan volcanism could have led to short-
lived ecosystem traumas and extinction, with plant and ani-
mal clades quickly recovering (Spicer & Collinson, 2014),
especially in tropical ecosystems (Johnson & Ellis, 2002).
Opverall, the KPB was the start of a second large-scale flower-
ing plant and animal diversification burst (O’Leary
et al., 2013; Silvestro et al., 2015; Feng et al., 2017; Koenen
et al., 2020), which initiated the diversification of tropical
African biota (Linder, 2014).

(2) Extreme conditions: the Paleocene—Eocene
climatic optimum (66-51 Ma)

The Paleocene and Eocene were the warmest intervals of the
Cenozoic, dominated by ‘greenhouse’ climates, character-
ized by the absence of polar ice caps (Foster et al., 2018).
The Paleocene ended with the short-lived Paleocene—Eocene
Thermal Maximum (PETM) (ca. 56 Ma, Fig. 3A), a
‘hyperthermal’ period characterized by 5-7°C global warm-
ing (Turner, 2018). The early Eocene was marked by the lon-
gest and warmest interval of the Cenozoic (Zachos,
Dickens, & Zeebe, 2008), the Early Eocene Climatic Opti-
mum (EECO; 53-51 Ma, Fig. 3A). A final climatic optimum
occurred during the Mid-Eocene Climatic Optimum
(MECO; ~40 Ma, Fig. 3A), followed by a cooling trend that
culminated with the Eocene—Oligocene transition (EOT;
34.1-33.6 Ma, Fig. 3A). During the Paleocene, Africa had
a lower elevation than at present and most of the northern
part of the continent was submerged by the large Sahara
Sea (Fig. 2A). Exceptions include southern Africa which
inherited the Late Cretaceous uplift of the South African Pla-
teau (Flowers & Schoene, 2010) and the Guinea Rise in west-
ern Africa (Fig. 1A), a remnant of the early Cretaceous rift
shoulders of the Equatorial Atlantic Ocean Rift (J. Ye
et al., 2017a). Other reliefs were likely present in Ethiopia
and Cameroon, but are quite difficult to map in detail
because of active magmatism. Volcanic activity was main-
tained in the Cameroon Volcanic Line over the last 42 Ma
(Marzoli et al., 2000). Continental palacoclimate data is
almost non-existent for the Paleocene—Eocene in Africa,
and large uncertainties remain especially regarding precipi-
tation. Results from cores in Tanzania suggest “overall hot
and arid conditions punctuated by intense, perhaps seasonal,
precipitation events” in East tropical Africa during the
PETM (Handley et al., 2012, p. 10), but do not document
pre- and post-PETM climate states. Climate models of the
early Eocene in Africa simulate temperatures warmer than
present-day by 4°C to 18°C, depending on the prescribed
pCOy and the region considered (Lunt et al., 2012). Precipi-
tation responses in tropical Africa to Eocene conditions are
highly variable, ranging from less than 1000 mm/year to
more than 3300 mm/year, depending on the model used
(Huber & Caballero, 2011; Lunt et al., 2012; Carmichael
et al., 2016).

Few fossil sites are recorded for the Paleocene and Eocene
for both plants (Bonnefille, 2010; Jacobs, Pan, &
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Fig 3. Geo-climate evolution and biological diversification of tropical African biodiversity. (A) Global temperature change during the Cenozoic
(Hansen ¢ al., 2008) and major climate and tectonic events across Africa. KPB, Cretaceous—Paleogene Boundary; PETM, Paleocene—Eocene
Thermal Maximum; EECO, Early Eocene Climatic Optimum; MECO, Mid-Eocene Climatic Optimum; EOT, Eocene—Oligocene
transition; MCO, Miocene Climatic Optimum; MCT, Miocene Climate Transition; PPT, Pliocene—Pleistocene Transition. (B) Temporal
representation of major uplift and volcanic events in central and eastern Africa (Sepulchre ¢t al, 2006; Guillocheau ¢ al., 2015, 2018).
(C) Origin of major mountain peaks, lakes and arid regions in Africa (Marzoli ¢ al., 2000; Gehrke & Linder, 2014; Zhang ¢ al., 2014).
(D) Origin of extant species of plants and animals based on time-calibrated molecular phylogenies (see Appendix S1). (E) Crown node mean
age estimates of plant and animal genera based on time-calibrated molecular phylogenies (see Appendix S1).
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Scotese, 2010) and animals (Mayr, 2009; Werdelin &
Sanders, 2010; Gardner & Rage, 2016) across tropical
Africa, leading to a poor understanding of vegetation distri-
bution and biodiversity at this time (Mayr, 2009; Jacobs
et al., 2010; Gardner & Rage, 2016). Nevertheless, the
favourable warm and humid Paleocene—Eocene climate is
suggested to have led to an important period of diversifica-
tion in plants and animals, ultimately defining tropical
Africa’s current biodiversity (Plana, 2004; Morley, 2007;
Tolley, Townsend, & Vences, 2013; Koenen ¢t al., 2020).

(a) A pan-African rain forest?

During the Paleocene and Eocene a pan-African rain forest is
suggested to have extended continuously from western to
East Africa linked to the favourable climatic conditions
(Axelrod & Raven, 1978; Coetzee, 1993; Lovett, 1993;
Morley, 2000, 2007; Willis & McElwain, 2014). Its existence
plays a central role in explaining present-day faunal and flo-
ral biogeographic patterns across tropical  Africa
(Moreau, 1966; Hamilton & Faden, 1974; White, 1979).
The repeated fragmentation of this pan-African rain forest
into western/central and East or West and Central blocks
(Morley, 2000), during drier periods of the Late Oligocene,
mid-Miocene and Pliocene, is invoked to explain the origin
of major trans-African disjunct distributions (Hamilton &
Faden, 1974; Loader et al., 2007; Couvreur et al., 2008;
Zimkus, Rodel, & Hillers, 2010; Pokorny et al., 2015).

The existence of a continuous Eocene coast-to-coast rain
forest, however, has been called into question
(Bonnefille, 2010; Linder, 2017). Fossil evidence suggesting
the presence of a humid closed-canopy type vegetation dur-
ing these times is clearly documented, especially in the west
(Salard-Cheboldaeff, 1990; Morley, 2000). Fossil taxa
belonging to characteristic rain forest plant families, such as
Annonaceae, Arecaceae, Meliaceae and Myristicaceae were
recovered from the Paleocene and Eocene (Morley, 2000;
Jacobs et al., 2010). These conditions were also suggested to
be favourable for animal taxa, with, for example, dated
molecular phylogenies documenting the radiation of modern
chameleon genera during the Eocene, ancestrally inferred to
be arboreal in closed-canopy forests (Tolley et al., 2013).
However, there 1s very little direct fossil evidence for rain for-
est vegetation in East Africa during the Paleocene and
Eocene. This is not surprising given the few fossil sites avail-
able in that region (Jacobs & Herendeen, 2004; Jacobs
et al., 2010; Linder, 2017). The Middle Eocene Mahenge site
from north-central Tanzania in East Africa documents a
woodland resembling present-day miombo rather than rain
forest vegetation (Jacobs & Herendeen, 2004). However,
during the Eocene, Africa was located some 10° south of its
present location and Arabia was still connected to the conti-
nent (Figs 2B, 3A). Climate simulations of the Eocene suggest
a hot climate and a strong hydrological cycle in the tropics,
but also show reduced precipitation south of 20°S (Sagoo
et al., 2013, see Fig. S1). Thus, it is likely that during the
Paleocene—ecarly Eocene the Tanzanian region, including
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Mahenge, was too far south (about 15°S) to permit the devel-
opment of rain forest vegetation. In contrast to Mahenge, the
Kaninah Formation, a Middle Eocene fossil site in Yemen
located near the palaeo-equator during that time, documents
the presence of rain forest-type vegetation, with fossils linked
to, for example, Annonaceaec (As-Saruri, Whybrow, &
Collinson, 1999). Additionally, evidence of rain forests from
the Paleocene was found along the Red Sea in Egypt
(Boureau et al., 1983). Thus, Paleocene and Eocene rain for-
est vegetation on the east coast of Africa is not undocu-
mented, but was probably located further north than its
current location (Bonnefille, 2010).

Biogeographic studies based on dated molecular phyloge-
nies of clades restricted to rain forests also support the exis-
tence of a once-continuous pan-African rain forest during
the Cenozoic. If the fragmentation of this pan-African forest
was responsible for the observed disjunct patterns between
East and West/Central blocks we expect vicariant events to
be synchronous with periods of increased African aridity
(Loader et al., 2007; Couvreur et al., 2008). In addition, we
would expect these events to be temporally concordant
between different rain forest clades. Interestingly, indepen-
dently inferred vicariant events have been dated to around
the EOT (~33 Mya) in at least two major plant (Annona-
ceae; Couvreur ef al., 2008) and animal clades (chameleons;
Tolley et al., 2013). These were suggested to be the result of
the break up of the pan-African forest, leading to the isolation
and speciation of lineages in western/central and East Africa.
Unfortunately, there are only two studies to date that
uncover this pattern for the Eocene, as most extant clades
diversified after the Eocene (Fig. 3D, E). Nevertheless, the
concordance in the recovered dating of these vicariant events
between clades is quite striking, favouring a common
response between these groups, rather than relying on ran-
dom processes such as long-distance dispersal (Linder, 2017).

The history of forest fragmentation between the West
(or upper Guinea) and Central (or lower Guinea) Africa,
which are separated by the ¢a. 200 km wide drier ‘Dahomey
gap’ corridor located in Benin and Togo (Salzmann &
Hoelzmann, 2005), is less clear. Differences in species diver-
sity are less marked between these two forest blocks than
between West/Central and East Africa (Linder e/ al., 2012;
Droissart et al., 2018). Even though there are high levels of
taxonomic endemicity in West Africa (Linder, 2001; Penner
et al., 2011), numerous species are common between both
regions (Linder ez al., 2012; Droissart et al., 2018). In addition,
diversity studies in plants or animals still do not agree on
where the biogeographic separation lies between West and
Central Africa (e.g. Volta and Niger rivers, Dahomey gap
or the Cross River region in eastern Nigeria), and this is prob-
ably species dependent (Booth, 1958; White, 1979; Nicolas
et al., 2010; Penner et al., 2011; Linder et al., 2012; Droissart
et al., 2018). This suggests a closer biogeographic link
between these regions than between West/Central and East
Africa. Numerous phases of savanna expansions are docu-
mented for the last 7 Myr (Dupont e al, 2000,
Bonnefille, 2010), linking and unlinking west and central
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forests, potentially allowing recent floristic and faunistic
exchanges. Estimated ages of vicariance, based on dated phy-
logenies between animal species on either side of West and
Central Africa, span the Late Miocene and Plio-Pleistocene
(e.g. Nicolas et al, 2006, 2019; Hassanin et al., 2015;
Huntley & Voelker, 2016; Gaubert ¢ al., 2018; Jongsma
et al., 2018). The late Pliocene—early Pleistocene, between
3 and 2 Ma, appears to concentrate most of these vicariance
events across studies. Indeed, this period is marked by a sud-
den and strong increase in savanna across West Africa (see
Section II1.6). Finally, more recent forest fragmentation (last
150 Kyr; Dupont ez al., 2000) mainly impacted within-species
genetic diversity structuring (e.g. Nicolas et al., 2012; Fuchs &
Bowie, 2015; Demenou, Doucet, & Hardy, 2018; Huntley
et al., 2019; Leaché et al., 2019).

(6) The golden age of mangroves

The warm Paleocene and Eocene climates were favourable
for mangrove vegetation (Morley, 2000). Probably, the most
striking geological feature of the Paleocene was the presence
of the epicontinental Sahara Sea in northern Africa (Fig. 2A).
It was connected to the Tethys Ocean to the north and at its
maximum extent reached western Africa in present-day
northern Nigeria (Luger, 2003; Guiraud et al., 2005; Ye
et al., 2017a). This marine incursion originated during the
middle Cretaceous (ca. 98 Ma) and disappeared during the
middle Eocene (Guiraud et al., 2005). The influence of this
incursion on African biodiversity has been little studied, pos-
sibly because it is just too old to have had lasting effects on
present-day biodiversity (Fig. 3D, E) in contrast to a similar
event during the Early Miocene in the Amazon region (the
Pebas system; Hoorn et al., 2010). Nevertheless, the presence
of marine-like herring fishes in east and west African lakes has
been linked to the existence of this palaco-sea (Wilson, Teu-
gels, & Meyer, 2008). It was also suggested to have provided
a passage between northern and western Africa for fossil
ostracod taxa (Luger, 2003) and marine fishes such as lamni-
form sharks and rays (Murray, 2000). This extended shore-
line of the Tethys sea was inferred to be the origin of the
mangrove vegetation (Descombes et al., 2018), which became
well established during the Paleocene and Eocene across
Africa based on palynological data (Morley, 2000). During
the Eocene, mangrove taxa represented up to 20% of plant
diversity in certain sites around the Benue River catchment
(Utescher & Mosbrugger, 2007). The Paleocene and Eocene
correspond to a global increase and diversification of man-
groves worldwide and models suggest a strong presence of
mangrove taxa along most of the African coast at that time
(Descombes et al., 2018).

(3) ‘Descent into the icehouse’: Eocene—Oligocene
transition (34.1-33.6 Ma)

Following the MECO, global temperatures decreased grad-
ually, a trend that culminated with abrupt cooling at the
EOT (Zachos ¢t al., 2008). During this time, Earth switched
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from a greenhouse to an ‘icehouse’ climate state
(Thomas, 2008), characterized by a permanent ice sheet over
Antarctica (Fig. 3A; Zachos et al., 2008; Thomas, 2008; Inglis
etal., 2015). The onset of the Antarctic glaciation is attributed
to a decrease in pCOq (Ladant et al., 2014) and/or continen-
tal reconfiguration opening the southern seaways (the Drake
passage and the Tasman seaway), ultimately modifying
ocean heat transport (Lear & Lunt, 2016). How the EOT
altered the African climate remains unclear mainly because
of uncertainties in pCGO4 reconstructions during the Eocene
and Oligocene (Steinthorsdottir ez al., 2016). While a cooling
trend has been recorded by ocean proxies, continental indi-
cators have shown contradictory results (Pound &
Salzmann, 2017). Numerical simulations suggest that the
intensification of the Atlantic meridional overturning circula-
tion associated with the EOT also caused a northward shift of
the Inter Tropical Convergence Zone (ITCZ), increasing
precipitation over northern Africa (Elsworth et al., 2017).
The inception of Antarctic glaciation is also thought to have
produced a ~70-m sea-level drop (Miller ¢ al., 2005). Mean-
while, the growth of the Hoggar swell in northern Africa
(Fig. 2B, C) led to the establishment of a modern-like west
African drainage geometry (Grimaud et al., 2017). Alluvial
deposits in the Niger Basin, as well as along the northern Afri-
can coast, testify to humid conditions and rivers flowing both
towards the Atlantic and Tethys oceans during the early Oli-
gocene (Fig. 2C). The Sahara Sea slowly shrank due to dom-
ing, leaving large lakes in huge depressions in western Africa
from Mali to Chad (Fig. 2B). In East Africa, the onset of vol-
canic activity is dated to 45-40 Ma (Roberts ¢ al., 2012;
Prave et al., 2016) but reached a peak with the outpouring
of important magma ca. 31 Ma leading to formation of the
Ethiopian traps (Figs 2C, 3B).

As for the rest of the Paleogene, the Oligocene is poor in
fossil sites for animals and plants as well as palacoclimate
proxy records (Murray, 2000; Jacobs e al, 2010;
Seiffert, 2010; Gardner & Rage, 2016). The Kwa-Kwa
palaeoflora core near present-day Douala in Cameroon
documents an important turnover of the vegetation at or
around the EOT, with numerous taxa disappearing followed
by a rapid increase in new, mainly angiosperm taxa (Salard-
Cheboldaeft, 1979). Morley (2000, p. 87), based on a compi-
lation of west African palacoflora data (Salard-Cheboldaeff;-

1990), documents a decrease in overall plant diversity
immediately after the EOT. This decrease in rain forest
palacodiversity appears to be a tropical-wide phenomenon
at the EOT, with similar patterns reported in the Neotropics
(Jaramillo, Rueda, & Mora, 2006). Fossil data document con-
siderable extinction in palms, more so than across the KPB
(Morley, 2000; Pan et al., 2006), for example with the man-
grove palm Mypa disappearing from records across Africa.

Diversification analyses using dated phylogenies also doc-
ument (mass) extinction around the EOT in several clades,
such as climbing palms (Faye et al., 20165) and the legume
tribe Podalyriecae (Crisp & Cook, 2009). By contrast, other
groups did not show signs of mass extinction across the
EOT, for example in the mainly African legume tree clade
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Detarioideae, although extinction rates were inferred to be
generally quite high in this clade between 45 and 15 Ma (de la
Estrella et al., 2017). The EOT also marked an important
evolutionary turn in grasses (Poaceae), which shifted and
subsequently diversified from their ancestrally closed habitats
into open ones (Bouchenak-Khelladi e al., 201005;
Bouchenak-Khelladi, Muasya, & Linder, 2014a), although
it does not correlate with the well-studied origin of C4 metab-
olism in grasses (Edwards e al., 2010).

Overall, rain forests are thought to have retracted
significantly during the EOT, breaking up the Eocene
pan-African forest that potentially persisted until then
(see Section III.2a). In northern Africa, there is fossil evi-
dence for the extinction of tropical taxa and the appear-
ance of savannah- and woodland-associated ones
(Boureau et al., 1983). This pan-African fragmentation
had an important impact on the distribution of present-
day diversity, leading to the first vicariance of once-
widespread groups into west/central and east clades and
the origin of endemic East African genera (Couvreur
et al., 2008; Tolley et al., 2013).

The EOT led to what is known as the ‘Grande Coupure’
for primates, a sudden reduction in their diversity mainly
documented in the fossil record of Europe and North Amer-
ica. Interestingly, molecular diversification analyses either
failed to find support for a turnover of primate palacodiver-
sity overall (Springer ¢t al., 2012; Herrera, 2017) or detected
moderate support for declining diversification rates at the
EOT (Herrera, 2017). In Africa, despite the few fossil sites
available, the EOT potentially led to a gradual reduction
in primate diversity, linked to a continent-wide contraction
of rain forests, although only a few major linecages went
extinct (Seiffert, 2007). It also marked the origin of the old-
est present-day primates, the Galagidae or bush babies,
which started to diversify at 33 Mya just after the EOT
(Pozzi, Disotell, & Masters, 2014; Pozzi, 2016).

More favourable conditions after the EOT might have led
to a renewed expansion of rain forests, reconnecting the west
and ecast forest blocks (Morley, 2000). Indeed, analyses of
palacosurface formed during the Late Oligocene
(29-24 Ma) depict a hot climate with seasonal precipitation
in West Africa (Beauvais & Chardon, 2013) and increased
humidity (Robert & Chamley, 1987). This is consistent with
the northward drift of Africa and the position of the equator
south of western Africa, above the present-day Gulf of
Guinea. Rain forest-resembling fossil taxa are documented
from Ethiopia and Cameroon (Bonnefille, 2010; Jacobs
et al., 2010). Although palm diversity never recovered after
the EOT, palm fossils remained an important component
of the few documented Oligocene palacofloras (Salard-
Cheboldaeff, 1979; Pan e al., 2006). Finally, dated molecular
phylogenies support the idea that the post-EOT period
marked an important phase of diversification for certain rep-
tile groups such as burrowing snakes (Aparallactinae; Portillo
etal., 2018) and chameleons (Tolley et al., 2013) and for major
clades in skinks (Scincidae; Medina et al., 2016).
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(4) Renewed warm climates: early Miocene to the
middle Miocene climatic optimum (~17-14.7 Ma)

The Miocene (ca. 23-5.3 Ma) is considered one of the most
pivotal periods for tropical Africa (Plana, 2004), with several
climatic, geological and physiographic changes hypothesized
to have led to a complex evolution of African biodiversity
(White, 1981; Morley, 2000; Senut, Pickford, &
Ségalen, 2009; Bonnefille, 2010). How African vegetation
responded to these changes is far from clear, since (2) absolute
dating of the fossil record is rare for the early and Middle
Miocene of Africa, and (zz) numerous factors, either proximal,
like mountain uplift and rifting, giant lakes and palaeodrai-
nage upheavals, or remote, like pCO, variations, closure of
tropical seaways (e.g. Hamon ¢ al, 2013; Sepulchre
et al., 2014) and orbital cycles, altogether altered the tropical
climate of Africa during this period (Linder, 2017).

The global long-term cooling trend initiated after the
EECO 15 less marked in the early Miocene deep-sea record
(Fig. 3A), and is obscured by the major interruption of the
Middle Miocene Climatic Optimum (MCO;  ca.
17-14.7 Ma, Fig. 3A). This interval was characterized by
global temperatures about 3-8°C higher than the pre-
industrial period of the late Holocene, similar to those of
the late Oligocene (You et al., 2009; Holbourn et al., 2015),
and an increase in pCO, when compared to the
Oligocene—Miocene transition (Kiirschner, Kvacek, &
Dilcher, 2008). Given the lack of constraints on palacobota-
nic dates and the absence of direct continental palacoclimate
proxies for the Middle Miocene in Africa, inferring how the
ca. 2 million-year-long warming of the MCO influenced the
fate of tropical African biodiversity remains very challenging.

In western Africa, the fossil record documents the presence
of rain forests and the reappearance of mangrove vegetation
following its EOT demise (Salard-Cheboldaeff, 1979; Jacobs
et al., 2010). In addition, the lack of charred grass cuticles and
pollen indicates the absence of widespread open habitats
(Morley & Richards, 1993). There is also fossil evidence of
early Miocene (ca. 19 Ma) rain forest assemblages from Kivu
in the East Democratic Republic of the Congo (Jacobs
et al., 2010). In addition, unfavourable conditions for dry-
adapted plants during the Early Miocene led to the first
vicariance events inferred within some elements of the Rand
Flora (Pokorny et al, 2015; Mairal, Sanmartin, &
Pellissier, 2017), an assemblage of unrelated drought-
adapted taxa co-distributed around the subtropical and drier
margins of Africa (Sanmartin e al., 2010).

In East Africa, the picture is even less clear, with several
fossil sites documenting the presence of rain forest, a mix of
rain forest and grassland patches, woodland or grasslands
(Andrews & Van Couvering, 1975; Bobe, 2006;
Bonnefille, 2010; Jacobs e al., 2010; Wichura et al., 2015;
Linder, 2017). This heterogeneity in the East African early
Miocene fossil record could either reflect stronger climate
variability, or an early role of changing elevations leading
to different palacoenvironmental, geomorphological, and
palaeohydrogeological settings. Indeed, although the overall
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elevation of the African continent was still lower than
present-day (Fig. 2C), the East African surface underwent
large-scale doming during the Early to Middle Miocene,
and changes in basin configuration were initiated in the west-
ern branch (Lake Albert) of the East African Dome during
the Early Miocene (17 Ma; Simon ¢t al., 2017; Guillocheau
et al., 2018).

The extent of the Early to Middle Miocene rain forests in
East Africa remains controversial (Bonnefille, 2010; Fer
et al., 2017; Linder, 2017), and the question is open as to
whether a pan-African rain forest was once again in place.
Climate and vegetation modelling have produced a variety
of results, depending on the experimental design (You
et al., 2009; Henrot ¢t al., 2010, 2017; Hamon et al., 2012;
Goldner, Herold, & Huber, 2014). Henrot et al. (2017)
showed an increase in temperature and rainfall in East Africa
during the MCO, but no clear signal could be extracted
amongst the five models tested regarding a continuous rain
forest band across tropical Africa. By contrast, other experi-
ments with low topography suggested numerous combina-
tions of rainfall and temperatures which could have allowed
the presence of a pan-African rain forest (Fer et al., 2017).
However, the above-mentioned models are based on an
homogeneous East African Dome ranging from 500 to
800 m asl (Herold et al., 2008) and are likely over-simplifica-
tions, since evidence of high elevations (1400 m asl) shortly
after the MCO (13.4 Ma) suggests a very rapid uplift in this
region during the Middle Miocene (Wichura ¢t al., 2010).

Several Oligocene to early Miocene fossil sites suggest the
presence of rain forest in Eastern Africa (Ethiopia, Kenya,
and Uganda). Interestingly, these palacofloras and faunas
were shown to have elements linked to West/Central African
forests (Andrews & Van Couvering, 1975; Vincens, Tierce-
lin, & Buchet, 2006; Jacobs et al, 2010; Wichura
et al., 2015; Linder, 2017). The presence of a 17-Myr-old
whale fossil (Wichura et al., 2015) from the now 600 m high
Turkana Basin (northern Kenya, Fig. 1 A) attests to an active
eastward-directed drainage basin linking the African interior
with the Indian Ocean. This, coupled with fossil pollen evi-
dence for closed-canopy vegetation and humid (rainfall
>1000 mm/year) conditions (Vincens et al., 2006), suggests
a possible role of the Turkana Basin as an important corridor
for faunal and floral transcontinental connections
(Feibel, 1993).

In addition, the Eastern Arc Mountains, an ancient crys-
talline mountain chain ranging from East Tanzania to
south-east Kenya (Lovett, 1993) could have played a crucial
role in connecting west/central and east forests. Indeed, this
mountain range has been suggested as climatically stable on a
multimillion year scale, probably continuously harbouring
forests since the Miocene (Lovett ¢t al., 2005). Dated molecu-
lar phylogenies of certain Eastern Arc clades find support for
Oligocene-Miocene origins and long-term persistence in
these forests (Tolley et al., 2011; Dimitrov, Nogués-Bravo, &
Scharff) 2012; Loader et al., 2014; Grebennikov, 2017). This
stability has been linked to the proximity of the mountain
range to the Indian Ocean, providing significant and
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constant moisture through time (Lovett e al., 2005; Finch,
Leng, & Marchant, 2009).

Finally, the presence of rain forest habitat in East Africa is
also suggested by the evolutionary history of forest-restricted
lineages that diversified extensively during the Early Mio-
cene, such as chameleons (Matthee, Tilbury, &
Townsend, 2004; Tolley et al., 2011). Thus, even though a
continuous pan-African forest might not have persisted
throughout the entire Early Miocene (Bonnefille, 2010;
Linder, 2017), evidence from vegetation and climate models,
fossil sites, and dated molecular phylogenies favours the
hypothesis of a rain forest band reconnecting cast and west
forests blocks after the EOT fragmentation (Andrews &
Van Couvering, 1975; Morley, 2000; Couvreur ¢ al., 2008).

(5) The middle Miocene climate transition
(15-13 Ma)

Shortly after the MCO, global cooling resumed (Fig. 3A) and
the marine isotopic record suggests a phase of important Ant-
arctic ice sheet expansion (Shevenell, Kennett, & Lea, 2008),
termed the Middle Miocene Climate Transition (MCT; ca.
15-13 Ma; Fig. 3A). Amongst the hypothesized drivers of this
cooling are (i) tropical seaway constrictions, in particular
Tethys sea closure around 14 Ma (Zhang et al., 2011; Hamon
et al., 2013), () a major pCOy decrease between 15 and
14 Ma (Kiirschner et al., 2008), and (z2) tectonic uplift at a
global scale.

Climate modelling shows that the changing topography of
East Africa dramatically influenced climate at the continental
scale. Sensitivity experiments to eclevation change of the
EARS showed that the first-order response to uplift was a
precipitation reduction in tropical East Africa (Sepulchre
et al., 2006). Altering air mass dynamics also had remote con-
sequences such as the drying of the Congo Basin (Sepulchre,
Ramstein, & Schuster, 2009; Prommel, Cubasch, &
Kaspar, 2013; Sommerfeld, Prommel, & Cubasch, 2016).
Another interesting geological development was the uplift
of the Central African Atlantic Swell (Fig. 1A), a low moun-
tain range (max. 1200 m asl) stretching from Ngovayang
massif (South Cameroon) to the Mayombe massif (South
Republic of the Congo), possibly since the Middle Miocene
(ca. 16 Ma; Guillocheau et al., 2015).

The reconnection of Africa and Eurasia via the closure of
the Tethys seaway (20-14 Ma) (Hamon et al., 2013) ended
the 80 million-year-long isolation of Africa. This led to major
faunal interchanges via the Arabian plate. Turnover of previ-
ous African lineages, that had evolved in isolation within
Africa (Springer et al., 1997), with northern migrants are evi-
denced from the fossil record in Fast Africa already at the
start of the reconnection during the Oligocene-Miocene
transition and later during the Miocene—Pliocene transition
(Leakey et al., 2011). Several dispersal events between Africa
and Asia are also recorded (e.g. Lecompte et al., 2008).

Several authors infer that during the Middle Miocene,
overall drier conditions led to the expansion of open habitats
such as grasslands and woodlands, providing diversification
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opportunities for numerous dry-adapted plant and animal
taxa (Retallack, Dugas, & Bestland, 1990; Morley &
Richards, 1993; Morley, 2000; Davis et al., 2002; Senut
et al., 2009; Jacobs et al., 2010). The Middle Miocene corre-
sponds to the first inferred shifts of forest-adapted species into
open and drier habitats followed by subsequent diversifica-
tion (Davis et al., 2002; Bouchenak-Khelladi et al., 2010a;
Armstrong et al., 2014; Veranso-Libalah et al., 2018). This
period also marks the presence of Cy carbon fixation in
grasses, or Cy grasses, in Africa, a dominant component of
present-day African savannas which evolved independently
in numerous Poaceae (Bobe, 2006; Ségalen, Lee-Thorp, &
Cerling, 2007; Bouchenak-Khelladi e al, 2009, 2014b;
Edwards ¢t al., 2010; Uno et al., 2011).

Globally, the Middle Miocene marks the retraction of rain
forest towards the equator and the expansion of savannas
(Morley, 2007). In Africa, the lowland rain forest which
may have connected east and west forest blocks during the
Early Miocene (see Section III.4) retracted again, as evi-
denced by semi-arid conditions in the Congo Basin in the
Middle Miocene (Senut ez al., 2009). In East Africa, rain for-
ests greatly reduced with a marked increase in grassland and
gallery forests (Retallack ez al., 1990; Morley, 2000; Jacobs
et al., 2010). This fragmentation was suggested to have
spurred diversification in forest-dwelling animals, such as
guenons (tribe Cercopithecini; Guschanski et al, 2013).
Numerous independent molecular-dating studies support
vicariance within forest-restricted clades around the MCT
(15-13 Ma) in plants (Davis e al, 2002; Couvreur
et al., 2008; Dimitrov et al., 2012; Pokorny et al., 2015; Tosso
et al., 2018; Brée et al., 2020), snakes (Menegon et al., 2014;
Greenbaum et al., 2015), amphibians (Loader et al., 2007; Bell
et al., 2017), birds (Voelker, Outlaw, & Bowie, 2010) and
rodents (Bryja et al., 2017). Once again, these studies strongly
support the idea of continental-wide pan-African forest frag-
mentation (Couvreur ¢ al., 2008) as a main driver of east/
west  disjunctions rather than random long-distance
dispersals.

During the Middle Miocene, the continued uplift of the
East African Plateau is contemporaneous with the first radia-
tions of the tropical alpine or Afrotemperate/Afromontane
(White, 1981; Linder, 2017) frost-tolerant clades (Galley
et al., 2007; Antonelli, 2009; Linder et al., 2013). However,
these resulted in lower numbers of species (Cox ¢t al., 2014;
Gehrke & Linder, 2014) compared with other tropical Alpine
regions like the Andes (Hughes & Eastwood, 2006). The East
African Plateau provided an important migration route link-
ing north and south Africa, allowing Cape elements to dis-
perse northwards (Galley et al, 2007), and FEurasian
elements to disperse southwards (White, 1981; Gehrke &
Linder, 2009; Mairal ¢t al., 2015; Gizaw et al., 2016), favour-
ing longitudinal transcontinental exchanges (Galley
et al., 2007). Diversification also occurred in the Cameroon
Volcanic Line for certain montane clades such as puddle
frogs which find their origins in the mountain range during
the Early Miocene (Zimkus & Gvozdik, 2013). Other typical
Afromontane clades also started to diverge during this time,
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such as the conifer montane-restricted genus Podocarpus
(Quiroga ¢t al., 2016). Fossil pollen evidence of Podocarpus is
recorded off the Somali coast as early as 11 Ma (Feakins
et al., 2013) however clear presence of this genus in continen-
tal Africa dates only to 2.7 Ma from West Africa
(Morley, 2011).

(6) The end of equable climates: from the late
Miocene to the mid-Pleistocene (11-1.5 Ma)

The last 11 Myr appear critical in the evolution of tropical
African biodiversity, as most extant species or genera have
originated during this time interval (Fig. 3D, E). In terms of
climate, sea-surface temperature reconstructions depict a
global and sustained cooling from 11 Ma to 5.3 Ma, with a
steeper decrease in temperatures between ca. 7 and 5.4 Ma,
the so-called Late Miocene Cooling (LMC), that was very
likely driven by a decrease in atmospheric pCOq (Herbert
et al., 2016). Between 11 Ma and the end of the LMC
(5.4 Ma), high-latitude temperatures dropped by as much
as 13°C to reach near-modern values, whereas cooling was
less marked in the tropics. The resulting increase in the tem-
perature latitudinal gradient is expected to have reinforced
and contracted the Hadley cells (atmosphere circulations
around the tropics), thereby expanding arid areas in the sub-
tropics (Herbert et al., 2016). Between 6 Ma and 5.4 Ma, mul-
tiple glacial-to-interglacial fluctuations have been inferred
from the isotopic record, with a precession-like periodicity
(Hodell et al., 2001), likely explaining Late Miocene evidence
for partial glacial and ephemeral glaciation in Greenland
(Larsen et al., 1994). The LMC also partly overlapped with
the Messinian Salinity Crisis (MSC, 5.97-5.33 Ma), during
which the Mediterranean turned into deep desiccated basins,
with partial or full closure of the Gibraltar Strait (Krijgsman
et al., 2018). However the consequences of the MSC on the
tropical climate of Africa remain hard to quantify (Murphy
et al., 2009).

At the scale of the African continent, the Late Miocene cool-
ing is thought to have triggered a progressive aridification, and
overall the Late Miocene palacovegetation records depict a
trend to more open habitats and the rise of grasslands. How-
ever, stating that the African biota responded linearly to global
climate changes would be an oversimplification, as major prox-
imal factors (e.g. topography, Paratethys retreat) likely altered
temperature and precipitation patterns, driving various biota
responses during the last 11 Myr. Previous reviews of the Neo-
gene continental and marine palacobotanical records
(Jacobs, 2004; Bonnefille, 2010) show strong heterogeneity of
the Miocene ecosystems of tropical Africa. Pollen data also sug-
gest that savannah expansion occurred at ca. 10 Ma in East
Africa, whereas it would have occurred later in western Africa
(8-7 Ma). The northern Chad record shows that between 7.5
and 7 Ma, the vegetation cover of the region was characterized
by a “mosaic environment, including closed forest patches,
palm groves, and mixed/grassland formations” (Novello
et al., 2017, p. 66) whereas a grass-dominated signal appears
only during the Pliocene, after 4.5 Ma. The same region has
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also provided the earliest firm evidence for a Sahara desert,
dated at 7 Ma (Schuster et al., 2006), the onset of which is
inferred by climate simulations triggered by the retreat of the
Tethys Sea (Zhang et al., 2014). Still, fluctuations among lacus-
trine, swamp and arid environments in the Chad Basin during
the Late Miocene testify to higher-frequency, maybe orbitally
paced, climate variations during the Late Miocene in northern
Africa (Vignaud et al., 2002). Extensive tropical rain forests were
unlikely in north-East Africa any time during the last 12 Ma
(Feakins e al., 2013) and Ethiopia was more likely covered by
seasonal, deciduous woodland dominated by a diversified Faba-
ceac family before grassland expansion (Bonnefille, 2010;
Feakins et al., 2013). The rise to dominance of C4 photosynthesis
is complex and decoupled from the earliest evolutionary origins
of C4; grasses during the EOT (Bouchenak-Khelladi
et al., 20144). The transition to Cj4 grass-dominated biomes
has been discontinuous and spatially heterogeneous, with at
least two phases of Cy grass biomass increase (11-9 Ma and
4.3-1.4 Maj; Ségalen et al., 2007; Feakins et al., 2013). A similar
trend is seen in the clade Amaranthaceae/Chenopodiaceae, a
group of plants characteristic of arid lands and with the
largest diversity of C4 eudicot plants (Kadereit, Ackerly, &
Pirie, 2012), where two main peaks are recorded across
northern East Africa: Late Miocene 8-6 Ma and Pliocene
5.5-2.5 Ma (Bonnefille, 2010). In addition, C4-dominated
ecosystems rose abruptly in north-western and East Africa
around 10 Ma (Uno et al., 2016). Finally, it has recently
been suggested that this transition happened in the
absence of any significant aridification signal, rather sug-
gesting a major role for cooling and pCO, decrease in this
process (Polissar et al., 2019).

In animals, the evolutionary shift to C4-grazing amongst
large mammalian herbivores seems to have been immediate
for some lineages like the proboscideans (elephants), which
started to include C, plants in their (browsing) diet as early
as 9.9 Ma and became grazers at 7 Ma (Uno et al., 2016),
and more gradual for others (Ségalen et al, 2007; Uno
et al., 2011). In particular, there is a documented rise in her-
bivorous mammals during the Late Miocene in East Africa
(Bobe, 2006) followed by a clear decline in megaherbivores
from 7 Ma onwards (Faith, Rowan, & Du, 2019). By contrast,
large carnivore species richness declines after 3 Ma possibly
linked to the decrease in megaherbivores across East Africa
and the expansion of Cy-dominated ecosystems (Faith
et al., 2019). In addition, numerous animal clades are sug-
gested to have progressively diversified during the Late Mio-
cene in relation to more-open ecosystems such as bush
crickets (Voje et al., 2009), gazelles (tribe Antilopini; Hassanin
et al., 2012), and burrowing snakes (subfamilly Aparallacti-
nae; Portillo ¢t al., 2018).

At lower latitudes, offshore marine pollen data from the
Niger delta document a possible forested wet phase between
7.5 and 7.0 Ma (Morley, 2000; Bonnefille, 2010). This is in
agreement with vegetation simulations of the Turonian
period (11.61-7.25 Ma) where rain forests were likely in
West, Central and East Africa (Ethiopia and Somalia; Pound
etal., 2011).
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In the rift system in Kenya, vegetation patterns are biogeo-
graphically complex throughout the last 12 Ma, suggesting
that palaeobotanical change from wet forest to savanna was
not unidirectional (Jacobs el al., 2010). This is likely due to
increased topographic complexity linked to ongoing rifting
throughout the region during the Late Miocene and the
Pliocene.

The transition from the Miocene to the Pliocene depicts a
renewal of warm climate at the global scale. Temperatures
peaked during the early Pliocene (ca. 4 Ma) to reach values
globally ~4°C greater than the preindustrial, and 1°C
warmer than the following mid-Pliocene warm period (also
referred to as the mid-Piacenzian warm period; see
Haywood et al., 2013). Numerical simulations suggest this
time interval, besides ephemeral cold events [e.g. the Marine
Isotope Stage (MIS) M2, 3.31-3.26 Ma; Tan et al., 2017],
was characterized by a slowdown of the Hadley circulation
that led to increased precipitation over subtropical regions
of Africa (Brierley et al., 2009), and a strengthening of the
African summer monsoon (Zhang et al., 2016). The early to
mid-Pliocene interval was termed the ‘Golden Age’ with
tropical rain forests re-expanding and savannas contracting
(Morley, 2000). Indeed, several fossil sites from East Africa
document the presence of moist-adapted taxa and forest
between 5 and 3 Ma (Morley, 2000; Pickford, Senut, &
Mourer-Chauviré, 2004; Jacobs et al., 2010; Linder, 2017;
Joordens ¢t al., 2019). The East African coastal forests were
suggested to extend from southern Africa to the Horn of
Africa prior to 3 Ma (Joordens et al., 2019). Once again, this
favourable climate possibly allowed west/central and east
rain forest blocks to reconnect, either as a continuous forest
block (Fer et al., 2017) or via moist vegetation corridors linking
East and West/Central regions (Joordens et al., 2019). For
example, the Turkana gap fossil site in southern Ethiopia
dated to 3.4-3.3 Ma documents the presence of evergreen
or semi-deciduous forests (Hernindez Fernandez &
Vrba, 2006; Bonnefille, 2010) with the presence of plant
(Antrocaryon, Anacardiaceae) and animal (Potadoma, Pachychi-
lidae) taxa known today only from Central African rain for-
ests (Bonnefille & Letouzey, 1976; Williamson, 1985).
Isotopic data on pedogenic carbonates also indicate
increased woody plant (tree) cover in the Awash Valley and
north Turkana Basin in north East Africa (Cerling
et al., 2011). Interestingly, this period might also have led to
reversals from open to forested habitats in some Mimosoi-
deae (Fabaceae) clades (Bouchenak-Khelladi e al., 2010a).

Following the mid-Pliocene warm period, the climate
gradually cooled during a time interval referred to as the
Pliocene—Pleistocene Transition (PPT, 3.6-1.4 Ma; see
Fig. 3A). PPT cooling was marked by the intensification of
Northern Hemisphere glaciation (INHG; e.g. Haug
et al., 2005). Starting from 2.7 Ma onwards, the Earth system
entered full glacial/interglacial cycles with hemispheric glaci-
ations, in contrast to the previous ephemeral ice sheets wax-
ing and waning that characterized the Miocene and the
Pliocene. These fluctuations between glacial and interglacial
periods had a strong impact on all vegetation types across
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Africa during the Pleistocene (Trauth e al., 2009). Interest-
ingly, 2.7 Ma also coincides with a marked shift in both west-
ern and eastern African pollen records during which a
minimum in tree cover density is reached (Bonnefille, 2010)
indicating a hypothetical link between the hemispheric-scale
iINHG and vegetation in tropical Africa. Indeed, the INHG
and associated growth of massive ice sheets likely altered
atmospheric dynamics through orographic and radiative
effects, but did not coincide with any major change in tropi-
cal sea surface temperature (SST) patterns (Ravelo
et al., 2004). Aridification 1s inferred from the increased abun-
dance of sub-desertic pollen taxa and C4 plants
(e.g. Amaranthaceae s..) at the expense of grasses and arbo-
real taxa in west and east Africa (Feakins ez al., 2013; Liddy,
Feakins, & Tierney, 2016), and from the increase of terres-
trial dust flux off the east, north and west African coasts
(Trauth et al., 2009). The numerous palacoenvironmental
records of East Africa [see Maslin e al. (2014) for a review]
also showed a transition from Cs to Cy plants during the
Plio-Pleistocene in East Africa, that was attributed to “a
gradual progression towards a more variable climate with
intensified arid periods” (Maslin et al., 2014, p. 5). Palacosol
data from the Awash valley and the Omo-Turkana Basin
depict a transition from woodland/bushland to wooded
grasslands during the PPT (Cerling et al., 2011), but the trend
to aridification and the increase in variability of the tropical
African climate are subject to ongoing debates regarding
their pace and driving mechanisms (e.g. stepwise or gradual;
deMenocal, 2004; Trauth ¢ al., 2009). The difficulty comes
from the hard task of deciphering between () the long-term
secular trend to more open environments recorded since
the Late Miocene and («) the orbital-scale vegetation varia-
tions recorded in the marine cores or inferred from the cycles
of rift lake fluctuations in East Africa (Trauth et al., 2009;
Joordens et al., 2011). Indeed, palacoenvironmental records
potentially include (7) threshold effects linked to the ongoing
uplifting and rifting in the EARS and (iz) changes in moisture
availability and rainfall seasonality driven by the local solar
heating, ultimately paced by precession forcing (Larrasoafia
et al., 2003; Trauth et al., 2009). Interestingly, the analysis of
biomarkers retrieved from the eastern Mediterranean Basin
for two time slices at 3.05 and 1.75 Ma suggests no significant
increase in Cy-plant cover in the eastern Sahara between
those two intervals, while showing large orbital-scale vari-
ability within each interval (Rose et al.,, 2016). The latter
authors suggest that the Pleistocene expansion of C, vegeta-
tion could have been restricted to the East African domain
and was not a pan-African vegetation transition. This could
be explained by the onset of a modern-like Walker circula-
tion at 1.9-1.6 Ma (Ravelo e al., 2004), that would have
changed SST patterns in the tropics and ultimately increased
variability and aridity over East Africa, without influencing
the eastern Saharan environments.

The major climatic shifts described above have greatly
impacted vegetation and herbivore communities. In West
Africa, these changes are suggested to have triggered specia-
tion in certain animal clades (e.g. mammals; Nicolas
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etal., 2019) and also led to vicariant speciation between West
and Central species as discussed above (see Section III.2a).
Interestingly, these changes appear to have had little impact
on mammal diversification in East Africa, with speciation
and extinction rates estimated from the fossil record to have
been generally continuous during the Plio-Pleistocene
(Bibi & Kiessling, 2015). Nevertheless, about two thirds of
the extant African biota for which we complied age estimates
(1482 events) originated during the last 5 million-years
(Fig. 3D). How did the secular trends and orbital oscillations
combine and influence diversification? On the one hand, the
increase in aridification could have led to novel ecological
niches which spurred the radiation of dry-adapted clades in
animals (e.g. Mus; Bryja et al., 2014) and plants [e.g. Coccinia
(Holstein & Renner, 2011), Guibourtia (Tosso et al., 2018),
Melastomateae (Veranso-Libalah e al., 2018)]. On the other
hand, cycles of forest expansion and contraction during the
Plio-Pleistocene could have increased allopatric speciation
rates for forest-adapted lineages such as birds (Voelker
et al., 2010), frogs (Portik et al, 2019), insects (Hemp
etal.,2015), and plants (Couvreur et al., 20115). Overall, oscil-
lating climates during the last 10 Ma, between relatively sta-
ble warm and wet conditions with colder and drier ones
appears to have spurred the evolution of the tropical African
biota in general, and of hominid evolution in particular

(deMenocal, 2004; Joordens ¢t al., 2019).

IV. MAJOR SPECIATION MODELS OF TROPICAL
AFRICAN BIODIVERSITY

It is within the above-described geodiversity matrix, with
dramatic climatic shifts, continental drifting, rifting and
mountain uplifts, that the modern tropical African biota
evolved. We now review diversification and molecular-
dating studies providing insights into the different speciation
mechanisms possibly involved across tropical Africa (see
Appendix S1, Tables SI and S2). In most cases, the cited
studies do not explicitly test these speciation models but their
results are generally concordant with them. Based on our
review, we also find that most animal or plant genera show
mixed vegetation zonation, with species occupying two or
more zones (lowland, 0-700 m; premontane, 701-1500 m;
montane, 1501-3000 m; alpine, <3000 m; see Appendix S2,
Table S2). Note that several speciation mechanisms might
act together within clades with mixed zonation.

Speciation is the process during which new species are
formed as a result of reproductive isolation. Although there
are numerous speciation models that could apply to tropical
fauna and flora (e.g. Hill & Hill, 2001), we here consider
three major model types, each of which have nuanced,
underlying mechanisms that could apply depending on the
clade, temporal scale or environment considered (Table 1,
Fig. 4): (1) the geographic model primarily driven by allopat-
ric speciation; (i) the ecological model primarily driven by
ecological speciation (Orr & Smith, 1998; Givnish, 2010);
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and (uz) the genomic model primarily driven by genome
duplication. For each model, we discuss below the proposed
mechanisms linked to spatial and/or temporal factors relat-
ing to tropical Africa.

(1) The geographic model

In the geographic model of speciation, widespread species
become geographically disconnected to form isolated popu-
lations, with vicariance impeding gene flow resulting in allo-
patric speciation (Coyne & Orr, 2004). This vicariance can
be caused by the appearance of environmental barriers such
as novel vegetation types or the formation of, for example,
rivers, mountains or arid valleys due to climatic or geological
changes. Vicariance can also arise due to biotic factors such
as competition, predation or diseases fragmenting an initially
widespread population into disconnected areas. Although
multiple factors could be involved during allopatric specia-
tion (Gavrilets, 2003), we highlight below mechanisms that
could drive the speciation process through random genetic
drift and mutation (i.c. in the absence of direct selection).
Genetic drift can be accentuated in founder events, but will
also occur in large populations (as a result of vicariance)
and can lead to different allele frequencies given sufficient
generations since disruption of gene flow (Gavrilets, 2003).
These allopatric species will remain adapted to their ances-
tral habitat (Table 1). The geological and climatic history of
Africa has provided numerous opportunities for allopatric
speciation.

One major mechanism by which the geographic model
can lead to speciation is via repeated fragmentation and con-
traction of once-continuous populations into refugia areas
[we use the term refugium/refugia rather than refuge, see
Keppel et al. (2011) for a definition], leading to diversification
via allopatric speciation (Fig. 4). Several different variants of
this mechanism could have led to speciation in tropical
Africa, and these are considered in detail below.

(a) Pleistocene lowland forest refugia mechanism

One potential explanation for the large number of species in
lowland tropical rain forests is the Pleistocene lowland refu-
gia mechanism (Haffer, 2008). Alternation between humid
and dry climatic phases during the Pleistocene
(2.58-0.01 Ma) 1s linked to orbitally paced glacial-
interglacial Milankovitch cycles resulting in cyclical variation
of insolation. These phases have been hypothesized to frag-
ment continuous lowland forest vegetation into refugia in
which populations of forest-adapted organisms can persist
during adverse climatic periods. Long-term vicariance of
these forest patches will promote allopatric speciation
between isolated populations. This mechanism was applied
to tropical African species based on studies of diversity/ende-
mism patterns and palaeobotanical data (Aubréville, 1975;
Diamond & Hamilton, 1980; Mayr & O’Hara, 1986; Ham-
ilton & Taylor, 1992; Sosef, 1994; Maley, 1996;
Robbrecht, 1996; Plana, 2004). However, the impact of

17

Pleistocene climatic fluctuations on rain forest fragmentation
across tropical Africa is contested (Cowling et al., 2008;
Hardy et al., 2013; Levinsky et al., 2013; Lézine et al., 2019).

Under this mechanism, we expect to find phases of allopat-
ric speciation in lowland rain forests during the Pleistocene
(<2.58 Ma) across multiple taxa (Table 1). Indeed, several
dated phylogenetic studies across a suite of animal groups
have provided support for this. In mammals, Old World fruit
bats (megabats, Pteropodidae) show a strong Pleistocene sig-
nal of speciation (Nest ef al, 2013; Cunha Almeida,
Giannini, & Simmons, 2016). In particular, the forest-
restricted tribes Myonycterini (11 species) and Scotonycterini
(four species) originated during the last 2.8 Myr, with allopat-
ric speciation linked to rain forest refugia (Nest et al., 2013;
Hassanin et al., 2015). Species of the largely forest-restricted
guenons (tribe Cercopithecini), a diverse clade of African pri-
mates (63 species), were inferred to have diversified mainly
via allopatric speciation during the Pleistocene, but also dur-
ing the Late Miocene (Guschanski et al., 2013). Other exam-
ples of allopatric speciation linked to isolation in refugia
during the Pleistocene have been reported in mammals
(Johnston & Anthony, 2012; Missoup et al., 2012; Bohoussou
et al., 2015; Gaubert et al., 2018; Nicolas et al., 2019, 2020)
and frogs (Bell ¢t al., 2017). In insects, this mechanism was
suggested for the East African Coastal forests of Tanzania
and Kenya, where the origin of 25 species of East African
flightless grasshoppers (Parepistaurus) was dated to the Pleisto-
cene and attributed to allopatric speciation linked to climatic
fluctuations (Hemp et al., 2015).

For plants, there is less evidence for this mechanism.
Molecular dating of the African genus Begonia indicated that
around half of the species sampled originated during the
Pleistocene, with the other half originating earlier, during
the Pliocene/Miocene (Plana et al., 2004). Because Begonia
species are generally restricted to lowland rain forests and
are poor dispersers (Sosef, 1994), this supports, at least in
part, a role of Pleistocene cycles in generating plant biodiver-
sity. In the Zingiberales lowland rain forest herbaceous genus
Aframomum, most speciation events were initially proposed to
have taken place during the Pleistocene (Harris et al., 2000),
although a revised temporal framework for this genus indi-
cated that only a few species originated during the last 2.5
Myr (Auvrey et al., 2010). A worldwide sampling of the trop-
ical and subtropical montane forest genus Impatiens dated
part of its diversification to the Pleistocene, although no spe-
cific study was undertaken in Africa (Janssens ef al., 2009).
Most tree species of the genera Carapa (Meliaceae) and Piplos-
tigma (Annonaceae) originated during the Pleistocene
(Koenen et al., 2015; Brée et al., 2020). Within the tribe Cof-
feeae (Rubiaceae), which are mainly trees, about half of the
species were dated to have originated during the Pleistocene
(Kainulainen et al., 2017).

While most studies to date have focused on testing forest
refugia, Pleistocene refugia for savanna-restricted clades
have been suggested to occur in Sudanian and Zambezian
regions, linked to savanna fragmentation (e.g. primates:
Dolotovskaya et al., 2017). However, it i1s unclear whether
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Table 1. Main diversification models and mechanisms documented in tropical Africa, with phylogenetic and ecological predictions.

Citations refer to studies of African biota.

. General phylogenetic Specific geographlc. . . Selected references
Model Mechanism - and/or phylogenetic Geographic locality .
predictions . for Africa
predictions
Geographic  Pleistocene Sister species have similar ~ Speciation predominant Lowland rain forests ~ Johnston &
lowland forest ecologies and during the Pleistocene; of West, Central Anthony (2012);
refugia allopatric/parapatric young species in lowland and East Africa; Bell e al. (2017)
distributions; high rain forests; evidence of savanna
phylogenetic niche population contraction/
conservatism; evidence expansion
of past fragmentation or
separation
Fragmentation Speciation throughout the ~ Lowland rain forests ~ Couvreur
— refugium Cenozoic of West, Central et al. (2008);
(see Fig. 4) and East Africa; Tolley
savannas of West el al. (2013)
and East Africa
Riverine barrier Sister species occur on Along major river Voelker et al. (2013)
opposite sides of river; systems of Africa,
no evidence of Congo Basin, East
population contraction/ and West African
expansion deltas
Montane Sister species occur on Montane regions, Voelker
refugia different mountain East African Rift, et al. (2010);
blocks (allopatry) and Eastern Arc Tolley
have overlapping Mountains, etal. (2011)
altitudinal ranges, Cameroon
speciation is temporally Volcanic Line,
decoupled from Guinea rise
mountain orogeny, but
congruent with climatic
fluctuations
Ecological Ecotone Sister species have Sister species parapatric; Vegetation gradients, ~ Smith et al. (1997)
speciation different ecologies and numerous transitions Congo Basin, West
(see Tig. 4) sympatric/parapatric between habitats across Africa; mountain
(sometimes allopatric) clades regions of Africa
Montane distributions; moderate  Sister species co-occur on Gradient in montane  Voje et al. (2009);
gradient to low phylogenetic same mountain block regions, East Cox et al. (2014)
speciation niche conservatism; and have non- African Rift,
evidence of ecological overlapping elevational Eastern Arc
selection distributions; speciation mountains,
concordant with Cameroon
mountain orogeny Volcanic Line,
Guinea rise
Peripatric Species with restricted Potentially Lawson et al. (2015)
distributions sister to everywhere, but
more widely distributed more likely in
species (strong dynamic
asymmetrical ecosystems,
distributions); sister especially high-
species have different elevation regions
ecologies; genetic signals
of founder events
Vanishing Sister species have Highly dynamic Barratt et al. (2018)
refugia (see allopatric/parapatric or ecosystems, East
Fig. 4) disjunct distributions; Africa, savannah—

evidence of habitat
fragmentation at time of
speciation

forest ecosystems in

Clentral Africa

(Continues)
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Model

Mechanism

General phylogenetic
predictions

Specific geographic
and/or phylogenetic
predictions

Geographic locality

Selected references
for Africa

Rapid adaptive
radiation

Key innovation leading to
ecological opportunities;
numerous species
originating in a short
period of time;
convergent evolution
expected, with similar
phenotypes originating
in geographic isolation,
resulting in independent

Newly formed
ecosystems, lakes,
savannas, montane
regions

Salzburger (2018)

adaptations to similar
ecological conditions

Genomic Polyploidization  Sister species have
different ecologies but
not necessarily

sympatric/parapatric

Evidence of genome
duplication prior to
speciation

Potentially
everywhere

Evans et al. (2015);
Donkpegan
et al. (2017)

the savanna biome simply shifted in latitude in response to gla-
cial/interglacial fluctuations, rather than becoming fragmented.
Nevertheless, intra-specific genetic structuring within savanna
species (Lorenzen, Heller, & Siegismund, 2012; Odee
et al., 2012; Engelbrecht et al., 2020) linked to Pleistocene cli-
matic fluctuations supports historical fragmentation and expan-
sion cycles of this vegetation type.

The Pleistocene was an important period for speciation
across tropical Africa for both animal and some herbaceous
plant clades (Fig. 3D, E). However, these speciation events
generally occurred in clades that were already diversifying
(Fig. 3D, E). Thus, it seems unlikely that the Pleistocene low-
land forest refugia mechanism was the primary driver of
diversity across African rain forests. This mechanism may
be more relevant in explaining phylogeographic patterns
observed within species rather than diversification at the spe-
cies level or above (Nicolas ¢t al., 2011; Hardy et al., 2013;
Faye et al., 2016a; Portik et al., 2017).

(b)) Fragmentation—refugia mechanism

The Pleistocene lowland refugia mechanism discussed above
was focussed on the Pleistocene (last 2.58 Myr). The
fragmentation—refugia mechanism (Fig. 4) extends this across
the Cenozoic. Indeed, dated molecular phylogenies demon-
strate that speciation events for some extant plant and animal
groups in tropical Africa can be dated at least to the Oligo-
cene, although the majority of species-level diversification
appears to have taken place from the Late Miocene to Plio-
cene (Fig. 3D, E) (Plana, 2004; Couvreur et al., 2008; Voelker
et al., 2010; Tolley et al., 2013; Koenen et al., 2015; Barlow
et al., 2019; Portik et al., 2019; Brée et al., 2020). As reviewed
above, Africa is characterized by numerous alternating
phases of marked climatic change throughout the Cenozoic.
Such climate cycles could lead to a similar pattern to that
posited for the Pleistocene of fragmentation of vegetation

types into refugia followed by re-expansion. This repeated
habitat fragmentation and contraction could promote allo-
patric speciation through vicariance, particularly for the Oli-
gocene and Miocene epochs as suggested by numerous dated
molecular studies (Fjeldsa, 1994; Plana, 2004; Couvreur
et al., 2008; Voelker e al, 2010; Branch, Bayliss, &
Tolley, 2014; Hughes ¢t al., 2018). It has been invoked to
explain major faunistic and floristic disjunctions between
Guineo-Congolian and East African rain forest species (see
Section III.2g), presumably resulting from climatic shifts
from the Oligocene through the Pliocene (Loader
etal., 2007; Couvreur et al., 2008). Evidence for this fragmen-
tation mechanism is abundant in rain forest-restricted animal
lineages. For example, speciation has been linked to forest
fragmentation during the Oligocene and Miocene for at least
three genera of chameleons from tropical Africa (Tolley
etal.,2013; Branch et al., 2014; Ceccarelli ez al., 2014; Hughes
et al., 2018). In birds, recurrent forest fragmentation from the
Miocene through the Pliocene has been implicated as the
main factor impacting diversification (Fjeldsa et al., 2007,
Njabo, Bowie, & Sorenson, 2008; Voelker ¢ al., 2010). In
African woodpeckers, despite the absence of an absolute time
frame, the main process of diversification proposed was
repeated cycles of fragmentation followed by allopatric speci-
ation (Fuchs, Pons, & Bowie, 2017). Frog lineages also show a
strong pre-Pleistocene diversification pattern, especially from
the Late Miocene into the Pliocene (Evans et al., 2015;
Bittencourt-Silva et al., 2016; Larson et al., 2016; Liedtke
et al., 2016; Zimkus et al., 2017; Portik et al., 2019). For exam-
ple, speciation in clawed frogs started during the Late Mio-
cene, and high diversity in central Africa was linked to
persistence of forest refugia that remain today (Evans
et al., 2015). Finally, Miocene and Pliocene speciation was
suggested to explain diversification of several rodent clades
(Demos et al., 2014; Bryja et al., 2017; Nicolas et al., 2020)
and within African colobines (Ting, 2008).
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Fig 4. Schematic representations of three selected mechanisms of speciation relevant to tropical Africa. The fragmentation—refugia
mechanism is an example of the geographic model, the ecotone speciation mechanism is an example of the ecological model, and the
vanishing refugia mechanism has elements of both model types. The figure provides predictions in relation to rate of speciation, and
the roles of ecology, phylogenetic niche conservatism and climate change in the speciation processes (see Table 1 for further details).

The time axis is not equivalent between mechanisms.

In plants, Miocene speciation due to lowland rain forest
fragmentation was suggested for Annonaceae trees
(Couvreur et al., 2008, 20115). Most sister species in this fam-
ily are allopatric in distribution and show strong ecological
similarities (Couvreur e al., 2011)) supporting pre-
Pleistocene allopatric speciation. Numerous other studies
have dated speciation to before the Pleistocene in palms
(Faye et al, 2016a; Faye et al, 2016b), trees (Tosso
et al., 2018; Migliore et al., 2019; Monthe et al., 2019; Brée
et al., 2020) and herbs (Plana e al., 2004; Auvrey
et al., 2010), although to date there have been no attempts
to link this to vicariance and allopatric speciation.

Fragmentation as a mechanism for speciation has been
suggested for other habitats in tropical Africa that contracted
due to climatic shifts. A study of West African lizards showed
that ecotone speciation potentially supports a savannah refu-
gia model (Leaché et al., 2014). Vicariance was posited to
explain the present-day distribution of the dry Rand Flora
elements (Mairal et al., 2015; Pokorny et al., 2015) via the frag-
mentation of ancestral populations linked with the formation

of the Sahara desert during the Late Miocene (Mairal
et al., 2017). Given that tropical Africa has undergone sub-
stantial habitat shifts over the Cenozoic, fragmentation of
habitats into refugia could apply to a wide range of taxa
and circumstances. However, the greatest signal in the exist-
ing data appears for allopatric speciation in forest specialists,
most likely because of the increasing loss of forest during the
Cenozoic (Kissling et al., 2012).

(¢) Montane refugia mechanism

Tropical mountains harbour exceptional biodiversity
(Barthlott et al., 2005, 2007) and have been described as ‘evo-
lutionary arenas’ (Muellner-Riehl, 2019). Mountains are
topologically complex regions with high levels of geodiversity
which has been shown to correlate with high levels of biodi-
versity (Antonelli et al., 20185; Rahbek et al., 2019). In tropical
Africa, the East African Rift System, the Eastern Arc Moun-
tains and the Cameroon Volcanic Line are exceptional in
terms of their species diversity and endemicity at a global
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scale (Fjeldsa & Lovett, 1997; Barthlott et al., 2005; Burgess
et al., 2007; Antonelli et al, 2018b; Hoorn, Perrigo, &
Antonelli, 2018b; Dagallier ¢ al., 2020). The evolutionary pro-
cesses leading to high biodiversity in (tropical) mountain regions
are complex (see Hoorn, Antonelli, & Perrigo, 2018a) but have
recently been summarized under the mountain-geobiodiversity
hypothesis MGH) (Mosbrugger ¢ al., 2018; Muellner-Riehl,-
2019). The MGH posits that (z) steep ecological gradients along
elevation zones allow adaptation and ecological speciation of
species to new environments or immigration of pre-adapted
taxa; (z) climatic fluctuations leading to cycles of disconnection
and reconnection of populations could drive allopatric specia-
tion i vicariance (‘species pumps’); and (i2z) there is a lower risk
of local extinction under climate change (compared with low-
land species) because a change in temperature can be compen-
sated by an elevation shift, requiring limited horizontal
displacement (Fjeldsa et al., 2007; Mosbrugger et al., 2018).
Thus, tropical mountains may be ‘cradle’ regions where taxa
can diversify and/or ‘museum’ regions allowing taxa to persist
over evolutionary time. This has been shown to apply to tropical
African mountains, mainly in the east, for both animals and
plants (Fjeldsa & Lovett, 1997; Dagallier ¢ al., 2020).

In the present context, the montane refugia mechanism refers
to speciation of montane taxa by vicariance linked to climatic
fluctuations (condition 4 of the MGH; Moritz et al., 2000; Mos-
brugger et al., 2018; Rahbek et al., 2019), rather than by ecological
speciation and adaptation linked to the evolution of novel habi-
tats appearing during geological events such as mountain orog-
eny or volcano formation (condition a of the MGH;
Mosbrugger ¢t al., 2018; Rahbek ¢ al., 2019). The latter condition
1s referred to herein as the montane gradient speciation mecha-
nism and 18 discussed in Section IV.25. Under the montane refu-
gia mechanism (see Table 1), we expect speciation or
diversification of clades to be congruent with periods of significant
climatic fluctuations (Voje ¢ al., 2009; Voelker et al., 2010;
Muellner-Riehl ¢ al., 2019).

Numerous studies have provided evidence for this mechanism
in tropical African mountains. The exceptional and unique biodi-
versity of the ancient Eastern Arc Mountains of Tanzania and
Kenya (Burgess ¢t al., 2007) was suggested to be driven by long-
term persistence of montane forests together with recurrent con-
nections and disconnections between montane isolates since the
Oligocene-Miocene (Lovett, 1993; Lovett ¢ al., 2005; Fjeldsa &
Bowie, 2008; Voelker ¢t al., 2010; Loader ¢t al., 2014). This mech-
anism was Inferred for several clades such as songbirds
(Passeriformes) (Bowie ¢ al., 2004; Ijeldsa & Bowie, 2008;
Voelker ¢ al., 2010; Feldsa, Bowie, & Rahbek, 2012), rodents
(Mizerovska et al., 2019; Nicolas et al., 2020), forest-restricted cha-
meleons (Tolley ¢t al., 2011; Ceccarelli ¢ al., 2014), brevicipitid
frogs (Loader ¢t al., 2014), various insect groups such as Orthop-
tera (Voje e al, 2009; Hemp e al, 2010) and weevils
(Grebennikov, 2017), and plants (Dimitrov ¢t al., 2012). Evidence
suggests that most montane sister species in the Eastern Arc
Mountains are allopatric but located on different montane areas,
refuting  sutu speciation (Hemp et al., 2010; Voelker et al., 2010,
Missoup ¢ al., 2012; Ceccarelli ¢f al., 2014; Taylor et al., 2014).
This mechanism has also been proposed in other mountain
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regions of Africa such as the Albertine Rift and Kenyan High-
lands (Demos ¢t al., 2014; Hughes ¢ al., 2018), the Cameroon
Volcanic Line (Zimkus & Gvozdik, 2013; Taylor ¢t al., 2014; Mis-
soup ¢ al., 2016) and the inselbergs of northern Mozambique
(Branch ¢t al., 2014; Bittencourt-Silva ¢t al., 2016).

(d) Riverine barrier mechanism

Wide river systems can limit the distribution of terrestrial ani-
mals or zoochorous, balochorous or non-water-dispersed
plant species and serve as barriers to gene flow leading to
allopatric speciation (Wallace, 1852; Moritz et al., 2000;
Plana, 2004; Voelker et al., 2013). Tropical Africa is home
to several large rivers systems (Fig. 1A) such as the Niger,
Volta and Cross River in West Africa, the Sanaga in Camer-
oon, the Ogooué in Gabon, the Congo in the Democratic
Republic of Congo (the second longest river in Africa after
the Nile), and the Zambezi in East Africa amongst others
(Goudie, 2005).

In tropical Africa, the role of river systems in speciation
remains ambiguous and few studies have explicitly tested this
mechanism above the species level. In vertebrates, river systems
appear to be important barriers delimiting the distribution of
some extant species but not historically [e.g. Colyn, Gautier-
Hion, & Verheyen, 1991; Louette, 1992; Katuala et al., 2008;
Nicolas e al. (2011) and references therein; Kennis
et al., 2011]. Some studies have shown that barriers provided
by rivers such as the Congo or Ogooué could explain some spe-
cies divergences, for example in Ammrana (Ranidae) frogs
(Jongsma et al., 2018), between bonobos (Pan paniscus) and chim-
panzees (P. troglodytes) (Gonder et al., 2011), or certain rodent
groups (e.g. Praomys; Kennis et al., 2011). The timing of specia-
tion events was not congruent within and among clades
(Jongsma et al., 2018), which could be linked with the highly
dynamic nature of river basins and substantial changes in their
courses during the Cenozoic (Goudie, 2003).

To test whether rivers represent an effective barrier to
gene flow in animals, several intra-specific studies of genetic
variation within taxa occurring on both sides of major rivers
have been carried out (Anthony et al., 2007; Nicolas
etal.,2011; Olayemi et al., 2012; Voelker et al., 2013; Jacquet
etal., 2014; Bell et al., 2017; Huntley et al., 2019). The results
are mixed. In a study of 10 bird species distributed north and
south of the Congo River (near Kisangani), Voelker
et al. (2013) found genetic variation across only four under-
storey species, providing limited support for the riverine bar-
rier mechanism (see also Huntley & Voelker, 2016). Rivers
were not found to be important barriers within certain frog
species complexes [Hyperolius (Bell et al., 2017); Chiromantis
rufescens (Leaché et al., 2019)] or in the common pangolin
Mans tricusps (Gaubert et al., 2018). By contrast, rivers were
shown to be intra-species barriers in several other animal
groups including insects (Simard e al, 2009), mammals
(Nicolas et al., 2011; Guschanski et al, 2013; Jacquet
etal., 2014; Huntley et al., 2019; Mizerovska et al., 2019), rep-
tiles (Leaché & Fujita, 2010) and certain bird clades (Huntley
etal., 2018, 2019).
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For terrestrial plants in tropical Africa, there is no evidence
that rivers play a role in diversification. This is possibly
because rivers are poor barriers to seed dispersal (Muloko-
Ntoutoume et al., 2000) as confirmed by recent work on trees
(Hardy et al., 2013) and herbs (Ley ¢ al., 2014).

The riverine barrier mechanism has yet to be tested prop-
erly above the species level in tropical Africa. Intra-specific
studies of animals suggest that rivers might play a role in lim-
iting gene flow, a possible precursor to speciation, depending
on the biological traits of that species (e.g. specialists versus
generalists, water tolerant versus water intolerant, dispersal
capacity, body size). Moreover, detailed information about
African river systems and their history in terms of riverbed
position or water level fluctuations remain poorly documen-
ted, limiting our understanding of whether rivers played a
significant barrier role.

(2) The ecological model

Ecological speciation is defined as a process by which gene
flow between populations is suppressed as a result of ecolog-
ically based divergent selection (Orr & Smith, 1998;
Rundle & Nosil, 2005; Givnish, 2010). In contrast to the geo-
graphical model, ecologically dependent traits (e.g. habitat,
pollinators, feeding/mating systems) drive speciation. Eco-
logical speciation can occur in allopatry, parapatry or sym-
patry (Coyne & Orr, 2004). Although research on
ecological speciation in the tropics is relatively scarce
(Beheregaray et al., 2015), several studies have been carried
out in Africa. Several different mechanisms can lead to speci-
ation under this model, either acting alone or in concert.

(@) Ecotone speciation mechanism

This mechanism (Fig. 4) postulates that adaptation via natu-
ral selection to different habitats along ecological gradients
(i.e. ecotones) drives phenotypic diversification and ulti-
mately speciation (Smith e al., 1997; Schluter, 1998; Moritz
et al., 2000). Parapatric populations occurring along an eco-
tone progressively adapt to different habitats leading to spe-
ciation in the presence of gene flow (Fig. 4). Without
physical barriers between these populations, speciation can
occur through divergent selection on different ecological
traits, if selection is stronger than the homogenizing effects
of gene flow (Moritz et al, 2000; Smith, Schneider, &
Holder, 2001). Different factors can induce or enhance
reproductive isolation (e.g. phenological shift in plants,
changes in behaviour in animals). In addition, models have
shown that selection gradients of intermediate strength along
the  ecotone  promote  speciation  (Doebeli &
Dieckmann, 2003). In tropical Africa, ecotones are com-
monly found on the periphery of west/central rain forests
that gradually give way to drier habitats such savanna/wood-
land/gallery forests, or elevational gradients in mountainous
regions. Increased aridity in Africa since the Miocene has led
to novel arid ecosystems (see Section III.6), and this may have
been an important driver of speciation in both animals and
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plants (Matthee & Davis, 2001; Davis e al., 2002; Voje
et al., 2009). The latter has been linked to the evolution of
the G, photosynthetic pathway in plants (Bouchenak-
Khelladi et al., 2009).

In birds, high levels of recent lineage diversification were
identified in forest/savannah ecotones at the periphery of
rain forests in the Congo Basin and West Africa, implying
that the ecotone speciation mechanism may be relevant
(Fjeldsa, 1994; Smith et al., 2001). Based on a global phyloge-
netic analysis, ecological speciation was suggested as the pos-
sible mechanism by which the evolution of more-open
vegetation could have promoted the origin and diversifica-
tion of the parrot genus Poicgphalus from forest-dependent
ancestors (Schweizer, Seehausen, & Hertwig, 2011). Specia-
tion linked to ecological gradients was also suggested for
some rodents (Cricetomps, Nesomyidae; Olayemi ¢t al., 2012)
and shrews (Nicolas ¢t al., 2019). Two sister species with very
different ecologies in the duiker genus Cephalopus, the central
African forest-dwelling C. nigrifrons and the Sahel savanna
species C. rufilatus, were found to have diverged during the
Pleistocene (Johnston & Anthony, 2012). Another interesting
case might be the forest versus savanna elephant species, esti-
mated to have diverged during the Pliocene (Rohland
etal., 2010; Brandt et al., 2012). In the latter two cases at least,
rapid speciation via ecological selection to contrasting ecolo-
gies might have played a fundamental role.

Detailed population-level studies have provided evidence
for the ecotone speciation mechanism in Central and West
Africa (Smith e al., 1997). Populations of the little greenbul
(Adropadus virens) distributed along an ecological gradient in
Cameroon showed positive selection for certain morpholog-
ical traits (Smith et al., 1997, 2001) and local adaptation to
different habitats even in the presence of gene flow (Zhen
et al., 2017). In another study, genomic evidence for early
adaptive diversification to different habitats along a rain
forest—savanna ecotone in Cameroon was suggested for the
lizard species Trachylepis affinis (Freedman et al., 2010).
Although these studies do not document species-level diversi-
fication per se, they do provide evidence of morphological
and/or genetic adaptation to different habitats within a spe-
cies, a prerequisite for this mechanism to operate (Coyne &
Orr, 2004, p. 184).

There are examples in plant clades of frequent transitions
between closed/forest and open/savanna habitats. Although
explicit tests have not been carried out, phylogenetic analyses
suggest that these transitions took place by ecological adapta-
tion of ancestral wet-forest species to dry woodland or
savanna regions throughout the Miocene. Several transitions
between an inferred ancestral forested habitat to a dry forest/
savannah ecosystem have been found across a wide range of
families and genera such as Coccinia (Cucurbitaceae;
Holstein & Renner, 2011), Guibourtia (Fabaceae; Tosso
et al., 2018), Erthrophleum (Fabaceae; Duminil et al., 2015),
Acridocarpus (Malpighiaceae; Davis et al., 2002), African Mela-
stomataceae (Veranso-Libalah et al., 2018), Entandrophragma
(Meliaceae; Monthe et al., 2019) and Mamilkara (Sapotaceace;
Armstrong ¢t al., 2014).
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() Montane gradient speciation mechanism

Mountains concentrate high topographic complexity and
habitat heterogeneity, potentially leading to ecological speci-
ation (Graham et al., 2018). In contrast to the montane refu-
gia mechanism (Section IV.1¢), in this case biodiversity arises
from within-mountain (i situ) diversification as populations
adapt to the variety of different micro-habitats or along lati-
tudinal/elevational gradients (condition a of the MGH;
Moritz et al., 2000; Graham e al., 2018; Mosbrugger
et al., 2018;Muellner-Riehl, 2019; Rahbek et al., 2019).
Mountain or volcano formation provides a wide range of
new niches which could also allow, in the latter case rapid,
ecologically driven diversification (Muellner-Riehl, 2019;
Rahbek et al., 2019).

Evidence for this mechanism in African mountain biota
remains poor, with most available studies supporting the
montane refugia mechanism (see Section IV.1¢). One study
focusing on the east African montane white-eyes
(Zosteropidae) found evidence of niche divergence between
species suggesting ecological speciation (Cox et al., 2014),
although no clear mechanism was concluded.

(¢) Peripatric speciation mechanism

Under this mechanism, a small peripheral population
becomes isolated and diverges from the source population
(Losos & Glor, 2003). The main driver behind peripatric spe-
ciation is the geographic isolation of small populations, how-
ever this might also be accompanied by shifts into novel
habitats, which would involve ecological speciation after
physical isolation (Coyne & Orr, 2004). These peripheral iso-
lates originate via founder events where either a few individ-
uals disperse to different areas, or the appearance of a
geographical barrier isolates (vicariance) a small population
from the larger population (Coyne & Orr, 2004). The newly
formed species should show signs of severe population con-
traction (bottleneck) at the time of the divergence. This
mechanism has been poorly documented in nature, and
appears to be rare (Losos & Glor, 2003). We include it here
under the ecological model because the few cases reported
in tropical Africa have also involved ecological adaptation
of peripheral populations.

An interesting case of peripatric speciation was suggested
for the six species of the spiny-throated reed frog (Hyperolius)
complex distributed in the East Arc Mountains (Lawson
et al., 2015). Species with restricted distributions were recov-
ered as sister to more widely distributed species. However,
two out of three species pairs showed a difference in ecology:
the peripheral species had adapted to rain forest, montane
grassland or forest mosaics. This implies a role of ecology
during speciation, which is not incompatible with peripatric
speciation (Losos & Glor, 2003). Peripatric speciation was
proposed as the main speciation mechanism in the rat genus
Otomys across the Afromontane regions (Taylor et al., 2014).

In plants, there is little evidence for peripatric speciation,
although this may be because it has never been explicitly
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tested. There are, however, numerous examples of wide-
spread species with sister relationships to range-restricted
species. For example, the Fast African range-restricted Mono-
dora hastipetala (Annonaceae) was inferred to be sister to the
widely distributed M. junodii (Couvreur et al., 20115) and
although not explicitly discussed this could be due to peripa-
tric speciation.

(d) Vanishing refugia mechanism

The vanishing refugia mechanism (VRM; Vanzolini &
Williams, 1981) is an explicit mechanism (Fig. 4) whereby
ecotone speciation (Section IV.2a) occurs in concert with
peripatric or allopatric speciation (Section IV.2¢). Under
the VRM, a forest gradually contracts and fragments and is
replaced by open habitat vegetation with some or all of the
forest patches eventually vanishing. Forest-adapted species
become trapped in the vanishing forest refugia. These peri-
patric populations will either go extinct, or adapt to their
new conditions through ecological speciation through direc-
tional selection. Concurrently, some populations might per-
sist long-term in more stable patches of core forest habitat
and remain adapted to that core habitat. Initially, gene flow
could occur between the stable core patch and the contract-
ing fragments, but as the fragments become fully isolated,
populations undergo allopatric diversification through
mutation-order speciation (Nosil & Flaxman, 2011).

The diminishing patches of forest refugia would be sur-
rounded by ecotonal vegetation and embedded in a matrix
of novel vegetation. As the forest patch completely disap-
pears, the ecotone habitat initially increases, but eventually
gives way to the new habitat. Trapped populations would
first be under directional selection for the ecotone, and later
for the novel habitat. The distinguishing feature of the
VRM from the ecotone speciation mechanism is that gene
flow between the core forest patch and the forest fragments
has ceased due to vicariance. This provides a clear mecha-
nism for the diversification that is not implicit in the ecotonal
mechanism where gene flow still occurs. The VRM requires
one of the isolated refugial populations to persist and adapt to
the new habitat after which it can expand into the new hab-
itat. The resulting sister species should be genetically, mor-
phologically, functionally and ecologically divergent and
are separated by an ecological barrier that prevents subse-
quent gene flow (Vanzolini & Williams, 1981; Damasceno
etal., 2014).

Whether the VRM has influenced the biota of tropical
Africa is not known, as it has not been explicitly tested. Test-
ing would require evidence for the timing of habitat shifts,
interpreted with respect to the date of diversification through
either phylogenetic studies or population-level genetics. The
latter approach can also be used to examine whether there
has been a population expansion in the newly adapted spe-
cies, and coalescent methods can be used to examine
population-level divergence with absence of gene flow. Vali-
dation of the VRM also requires evidence for adaptation to
the new habitat, such as differing morphological features that
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are linked to functional traits that are optimal for the respec-
tive habitats (Vanzolini & Williams, 1981; Damasceno
etal., 2014). It is, however, possible that some of the examples
of speciation discussed above could have been driven by this
mechanism, such as Coccinia (Holstein & Renner, 2011), sev-
eral frog taxa where allopatric sister groups occur in different
habitats (Bell et al., 2017), and white-eyes (Losterops) from East
Africa where closely related species show niche divergence
(Cox et al., 2014). In plants, the VRM was suggested as a
potential driver of intra-specific genetic differentiation within
the semi-deciduous forest tree species Erythrophleum suaveolens
(Duminil et al., 2015), although this has not led to full
speciation.

(¢) Adaptive radiation

Adaptive radiation is a special case of species diversification
where a single ancestor rapidly gives rise to numerous
descendant species that are adapted to novel habitats
through  ecological — opportunity  [Schluter,  2000;
Linder, 2008; Rundell & Price, 2009; but see Gillespie
et al. (2020) for an in depth discussion]. Although it has some
similarities to ecotone speciation, adaptive radiation does not
rely on ecological gradients but rather on ecological opportu-
nity, that is the presence of non-exploited resources or habi-
tats. Adaptive radiation requires colonization of, or
dispersal to, new habitats or to habitats vacated following
extinctions, or the evolution of key innovations allowing
rapid exploitation of these new or existing niches
(Givnish, 2010; Gillespie et al., 2020).

Besides the classic example of adaptive radiation of cichlid
fishes in the East African Great Lakes (Salzburger, Van
Bocxlaer, & Cohen, 2014), adaptive radiations have been
suggested as a mechanism for diversification in other terres-
trial tropical African animal clades. For example, the mega-
bat tribe Epomophorini (Rousettinae) radiated into
12 species during the last 2.5 Myr. These species now occur
across a number of different habitats, such as deciduous
and montane forests, and savanna woodlands, and are
thought to have arisen from an ancestral species inhabiting
rain forest (Cunha Almeida et al., 2016). Adaptive radiation
has also been reported in the diverse clade of Afrobatrachian
frogs (Portik & Blackburn, 2016), especially in the Hyperolii-
dae family, linked to the origin of sexual dichromatism, sug-
gesting that speciation by sexual selection triggered this
radiation (Portik ef al., 2019). Although sexual selection is
assumed to be decoupled from ecological speciation, and
thus considered a non-ecological process (Coyne &
Orr, 2004), others have recognized a correlation between
habitat type and sexually selected traits (Kraaijeveld,
Kraaijeveld-Smit, & Maan, 2011), highlighting the role of
sexual selection in adaptive radiations.

Compared to plant clades in southern Africa
(Linder, 2003), there are relatively few clear cases of plant
adaptive radiations for tropical Africa. Adaptive radiations
have however, been suggested for the tropical-alpine flora
(e.g. East African Rift; Linder, 2014; Hughes &
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Atchison, 2015) resulting from novel habitats created during
the uplift of East Africa (Linder, 2017). Adaptive radiations
were proposed for genera such as Alchenulla (Rosaceae;
Gehrke et al., 2008), Lychms (Caryophyllaceae; Gizaw
et al., 2016) and giant senecios (Dendrosenecio, Astercacace;
Knox & Palmer, 1995; but see Kandziora, Kadereit, &
Gehrke, 2016), although neither of these clades are particu-
larly speciose (Gehrke & Linder, 2014). A final example is
the woody genus Cyffea (Rubiaceae) which was suggested to
have radiated in lowland and high-altitude forests of tropical
Africa and shows probable convergent evolution in caffeine
production (Anthony et al., 2010; Hamon ¢t al., 2017).

(3) The genomic model: polyploidization

Polyploidization, the duplication of entire genomes either via
hybridization between different species (allopolyploidy) or
within single species (autopolyploidy), is recognized as an
important mode of speciation especially in plants (Estep
et al., 2014; Vamosi et al., 2018). Polyploids are suggested to
have higher genome plasticity (Leitch & Leitch, 2008) allow-
ing adaptation to different environments in both plants
(Leitch & Leitch, 2008; te Beest et al, 2012; Diallo
et al., 2016; Han et al., 2020) and animals (Schoenfelder &
Fox, 2015). Thus, polyploidization can be a first step in eco-
logical speciation and adaptive radiation (Rundle &
Nosil, 2005). To date, few studies have provided indisputable
links between polyploidization and ecological speciation in
tropical Africa.

Polyploidization appears less common in animals than in
plants (Van de Peer, Mizrachi, & Marchal, 2017). The
African clawed frogs (Xenopus, Silurana, Pipidae) provide an
unusual case where allopolyploid species have arisen on mul-
tiple occasions (Evans et al., 2004, 2015). Over half of the
diversity of these frogs is concentrated in Central Africa,
and there are several species with high ploidy levels (octo-
ploids and dodecaploids), which has been suggested to have
led to selective advantages (Evans et al., 2004, 2015).

Similarly, very few studies report on the impact of poly-
ploidization on speciation in tropical African plants. In the
genus Afzelia (Leguminosae), which contains four rain forest
tetraploids and two dry forest diploid species, there appears
to be a strong association between polyploidization and spe-
cialization to different habitats (Donkpegan et al., 2017). Dip-
loids and polyploids were also documented in the tree genera
Guibourtia (Tosso et al., 2018), Adansonia (Pettigrew et al., 2012),
and Acacia (Diallo et al., 2016) but were not linked to biome
shifts. Finally, the origin of coffee (Coffea arabica, Rubiaceac;
allotetraploid) might be the result of recent polyploidization
between two wild diploid species: C. eugenioides and
C. canephora (Lashermes et al., 1999). More studies are needed
to clarify how polyploidization events have affected the evo-
lution of tropical African biodiversity. In particular it would
be interesting to test if polyploidization events in plants and
animals enabled successful ecological shifts into novel habi-
tats across Africa (e.g. Han et al., 2020) or occur randomly.
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V. CONCLUSIONS

(1)

Tropical Africa has undergone a long and complex
evolution, resulting in a spectacular and unique biodi-
versity (Fig. 3). Modelling past climate, topography
and vegetation coupled with the fossil record and
dated molecular phylogenies of plants and animals
provides a wealth of data allowing us to consider the
evolutionary history and diversification processes
behind this biodiversity.

Africa underwent numerous climatic fluctuations at
different timescales, linked to tectonic, greenhouse
gas, and orbital forcing. One major impact was the
fragmentation of African rain forests leading to multi-
ple vicariant speciation events. While the presence of a
pan-African rain forest remains subject to debate,
there is little doubt from the fossil record, vegetation
simulations and dated molecular phylogenies that
West/Central and East African rain forests were con-
nected and disconnected several times during the
Cenozoic, even after the uplift of the East African rift
valley. Evidence for such connections should not only
be sought in present-day east Africa but also further
north given the northward movement of the African
continent during the Cenozoic.

Compared to other tropical regions, Africa is charac-
terized by significantly increased aridification since
the Late Eocene. This led to a number of extinction
events generally invoked to explain the lower species
diversity across Africa compared to other tropical
regions (Kissling ¢t al., 2012; Couvreur, 2015). These
events also provided numerous opportunities for speci-
ation and radiation within the newly evolved drier eco-
systems (Davis ¢t al., 2002), with the evolution of Cy
plant-dominated ecosystems contributing significantly
to the diversification of the African megafauna.

We discuss three main speciation models (geographic,
ecological and genomic) and 10 mechanisms that may
apply across tropical Africa (Table 1, Fig. 4). Allopatric
speciation wa vicariance of fragmenting vegetation
(rain forests, savannas or montane biota) is likely to
be one of the most important mechanisms, linked to
the large-scale climate changes during the entire
Cenozoic. Overall, these mechanisms are generally
implied rather than tested within a phylogenetic and
biogeographic framework. This is an important first
step, but more detailed studies need to be undertaken
to clarify their role in generating biodiversity. In addi-
tion, numerous studies underline that several different
mechanisms may have led to diversity within the same
clade (Tolley et al, 2011; Cox et al., 2014; Bell
et al., 2017; Barratt ¢t al., 2018). Thus, like in other
tropical regions such as Madagascar (Brown
etal., 2014), no single model will be sufficient to explain
patterns of diversification and diversity across tropical
Africa. These models and mechanisms have similarly
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been suggested to explain biodiversity in other tropical
regions such as the Neotropics (Gentry, 1989; Anto-
nelli et al., 20184), Madagascar (Vences et al., 2009)
and South East Asia (Lohman et al., 2011; Kooyman
et al., 2019). It will be interesting to compare the roles
of these mechanisms among continents to explain the
origin of tropical diversity at global scales.

We still lack fundamental biodiversity information for
tropical African taxa, including accurate taxonomy,
ecological studies and estimates of distribution, com-
pared to temperate or other tropical regions. Recent
efforts to compile and synthesize currently available
data (Klopper et al., 2007; Tolley et al., 2016; Sosef
etal.,2017; Stévart et al., 2019) have led to the identifi-
cation of both well-inventoried regions and important
knowledge gaps. Continued efforts to acquire primary
data from the field will remain an important challenge
across tropical Africa.

Despite numerous improvements in terms of data and
modelling during the last decade, constraining models
of the geophysical evolution of the African continent
throughout the Cenozoic remains challenging. First,
additional field data are required to qualify environ-
mental and topography changes at multimillion year
scales. New numerical simulations using Earth System
Models, forced by surface conditions, will be required
to quantify trends in African climate through time. As
computing power increases and geological field and
model data improve, more realistic climate simulations
will be possible. However, linking these simulated cli-
mate changes to biotic evolution requires consider-
ation of the spatial scale. Reconciling the coarse
spatial resolution of climate models with biotic phe-
nomena calls for downscaling techniques that cur-
rently are only applied to future climate projections.
Such a framework will allow us to address questions
regarding geologic—climatic-biotic evolution in Africa.
Next-generation sequencing is providing a massive
amount of data leading to larger and more robust phy-
logenies (Ojeda et al., 2019; Brée et al., 2020; Koenen
et al., 2020; Streicher et al., 2020), but has yet to be
applied widely to the African biota. Increased
sequence data, together with better fossil calibrations,
will provide a more precise understanding of the evolu-
tion of African biodiversity. In addition, sequence data
from different genomic regions (e.g. plastid versus
nuclear) can lead to different age estimates
(e.g. Tosso et al., 2018) which will need to be resolved.
Future studies should also perform demographic
modelling at intra-specific levels to examine alternative
scenarios of  population divergences (Portik
et al., 2017). Phylogenomic data together with more
refined divergence time estimates and additional test-
ing of demographic scenarios will allow a re-evaluation
of our understanding of the timing and diversification
of tropical African biodiversity.
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(8) Finally, we need to integrate data from Earth and life
sciences better, in order to synthesize patterns between
major living clades. A huge amount of data has been
gathered in recent decades, but this is often only
loosely integrated in biogeographic studies. Better
interactions between these fields will take us a step
closer to ‘a trans disciplinary’ biogeography
(Antonelli et al., 2018a) in the geodiverse region of trop-
ical Africa.
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VIII. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.
Appendix S1. List of dated molecular phylogeny studies
used to generate Fig. 3D,E.

Fig. S1. Palacoclimate during the Eocene across Africa.
Table S1. Studies used to estimate the origin of extant spe-
cies within groups with dated molecular phylogenies.
Appendix S2. Assignment of genera to elevation zones as
presented in Table S2.

Table S2. Studies used to estimate crown and stem nodes
for genera or clades, and to estimate vegetation zonation fol-
lowing methodology provided in Appendix S2.
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