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ABSTRACT

We present the first detection of solar flare emission at middle-ultraviolet wavelengths around 2000 Å by the channel

2 of the Large-Yield RAdiometer (LYRA) onboard the PROBA2 mission. The flare (SOL20170906) was also observed
in the channel 1 of LYRA centered at the H I Lyman-α line at 1216 Å, showing a clear non-thermal profile in both

channels. The flare radiation in channel 2 is consistent with the hydrogen Balmer continuum emission produced by

an optically thin chromospheric slab heated up to 10000 K. Simultaneous observations in channels 1 and 2 allow the

separation of the line emission (primarily from the Lyman-α line) from the Balmer continuum emission. Together

with the recent detection of the Balmer continuum emission in the near-ultraviolet by IRIS, the LYRA observations
strengthen the interpretation of broadband flare emission as the hydrogen recombination continua originating in the

chromosphere.
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1. INTRODUCTION

Solar flares and associated coronal mass ejections are

the most powerful energy release events in the solar

system. Surprisingly little is known about the distri-

bution of the flare energy over the full solar spectrum
(Veselovsky & Koutchmy 2006). Routine measurements

of the X-ray and extreme-ultraviolet (EUV) emissions

probe only a small part of the total energy radiated

during a flare (e.g. Emslie et al. 2012). Most of the

flare radiation is emitted at longer wavelengths, but ob-
servations in this spectral range covering spectral lines

and broadband continua are rare (Kretzschmar 2011;

Kleint et al. 2016). The parts of the solar spectrum

between 1000 and 3000 Å, i.e. far ultraviolet (FUV),
middle ultraviolet (MUV), and near ultraviolet (NUV),

have a probably important but still poorly known con-

tribution to the total energy emitted during flares (e.g.

Woods et al. 2006; Milligan et al. 2014).

Solar spectra at the FUV to NUV wavelengths have
been measured by rocket-borne and space-borne exper-

iments (Durand et al. 1949; Bonnet & Blamont 1968;

Curdt et al. 2001; Woods et al. 2012; Meftah et al.

2018). Semi-empirical quiet-Sun models have been de-
veloped (Vernazza et al. 1981; Fontenla et al. 1993).

As described e.g. by Gingerich et al. (1971) and

Phillips et al. (2008), below 1527 Å the quiet Sun spec-

trum consists of emission continua and emission lines

(the strongest line being the H I Lyman-α line at 1216 Å)
and is mostly produced by the chromosphere. Above

∼1800 Å the spectrum consists of a number of continua

blanketed by numerous absorption lines (Labs & Neckel

1972), mostly produced by the upper photosphere. The
spectrum between 1527 Å and ∼1800 Å is an absorption

continuum with mostly emission lines, and is produced

around the temperature minimum.

The FUV to NUV spectra taken during flares are

quite rare (Cook & Brueckner 1979; Lemaire et al. 1984;
Doyle & Cook 1992; Brekke et al. 1996). Woods et al.

(2006) have observed FUV irradiance spectra for four

of the largest flares of solar cycle 23; however, with the

exception of the Mg IIk line, the flare signature above
1900 Å was too low to be detected. Heinzel & Kleint

(2014) presented the first IRIS (Interface Region Imag-

ing Spectrometer, De Pontieu et al. 2014) measure-

ments of the Balmer continuum during flares in the

NUV channel around 2826 Å. Other, quite rare flare de-
tections in the Balmer continuum were made close to the

Balmer recombination edge at 3646 Å by ground-based

instruments (e.g. Hiei 1982; Neidig 1983; Kotrč et al.

2016). The contributions of the spectral line emission
and continua into the total flare radiation may vary

strongly, with either line or continuum emission being

dominant depending on time and location (Kleint et al.

2017). The hydrogen Balmer continuum is produced

by the recombination of free electrons generated during

strong flare heating in the chromosphere (Avrett et al.
1986). The flare emission in the recombination con-

tinua is expected to be almost synchronous with the

non-thermal hard X-rays bremsstrahlung emission pro-

duced by the beam of accelerated electrons (see e.g.

Heinzel & Kleint 2014).
In this Letter, we report the first detection of the so-

lar flare emission in the middle-ultraviolet Balmer con-

tinuum, as measured by the Large-Yield RAdiometer

(LYRA) onboard the PROBA2 mission.

2. DATA DESCRIPTION

LYRA (Hochedez et al. 2006; Dominique et al. 2013)

onboard the PROBA2 mission takes high-cadence (nom-

inally 20 Hz) solar irradiance measurements in four wide

spectral channels (see first two columns of Table 1), two
of which are in the FUV and MUV. Channel 1 (also

called the Lyman-α channel) takes observations around

the Lyman-α line and nearby continua. Channel 2 (his-

torically called ”Herzberg channel” due to its relevance

to the Herzberg continuum of molecular oxygen in the
Earth’s atmosphere) observes between 1900 and 2220 Å.

LYRA was calibrated before the launch at the

PTB/BESSY II synchrotron (Dominique et al. 2013).

The pre-launch effective area for channels 1 and 2 is
shown in Figure 1. One can notice that channel 2 has a

high spectral purity, i.e. almost 100% of the measured

signal effectively comes from the 1900 to 2220 Å wave-

length range. However, this is not the case for channel

1, for which only 35% of the measured irradiance comes
from the spectral range around Lyman-α, while 65%

originates from a plateau in the channel responsivity

around 2000 Å. The latter interval overlaps the spectral

range of channel 2, which can be used to disentangle
the emission measured in the two channels. The last

two channels observe the soft X-rays/EUV range and

respectively cover the 1–800 and 1–200 Å intervals.

We also use the data from the 1–8 Å channel of GOES-

15 (acquired at a cadence of 2 s), as well as the Solar
Dynamics Observatory/Helioseismic and Magnetic Im-

ager (SDO/HMI) continuum images (Schou et al. 2012)

to determine the surface of the flaring region.

3. OBSERVATIONS

In September 2017, the NOAA AR 12673 produced 27
M-class flares and 4 X-class flares, among which the two

strongest flares observed so far during the solar cycle 24:

the X9.3 flare on September 6 and the limb X8.2 flare

on September 10.
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Figure 1. Solar radiance corresponding to typical quiet-Sun conditions and the increase (without the quiet-Sun background)
of radiance produced by the flare. The spectrum Iλ (red line) of the flare of 2017 September 6 has been calculated following
the procedure described in Section 4. The quiet-Sun spectrum (blue line) measured on 2010 January 7 is shown for comparison.
The effective areas of the LYRA channels 1 (solid line) and 2 (dashed line) of the spare unit used during the flare campaign are
overplotted in black.

At the time of these events, LYRA was performing

a special flare observation campaign, involving one of

its spare unit (i.e. its calibration unit, or unit 1). As
this unit was only sporadically opened over the mission,

it is relatively well preserved from the ageing process

that otherwise affects the instrument (BenMoussa et al.

2013), so it delivered clear observations of the X9.3 flare
in all channels. Although about 35% and 20% of the

sensitivity has been lost since the launch in channels 1

and 2 respectively, the degradation, which is thought

to be caused by the deposit of a ∼10 nm-thick layer of

carbon on the entrance filter, did not modify the spectral
characteristics of the instrument.

The LYRA data set for the X9.3 flare is rather unique.

The SXR/EUV channels of LYRA (channels 3 and 4)

are specifically used for monitoring solar flares and have
captured hundreds of them, but flare observations are

relatively rare in channel 1 (Kretzschmar et al. 2013).

The X9.3 flare was the first flare detected in the channel

2 of LYRA.

The X8.2 flare, despite being the second strongest
flare of the solar cycle, did not produce any signature

in LYRA channels 1 and 2. This may be due to the

fact that at least one of the footpoints of this flare

was located behind the solar limb, hiding the source of
the chromospheric emission (see also Chamberlin et al.

2018). Channels 3 and 4, which are the only channels

of LYRA measuring coronal emissions, provided clear

observations of the flare.

The increase of irradiance produced by the X9.3 flare
observed by LYRA1 and by GOES (in the 1– 8 Å pass-

band) is listed in Table 1 and shown in Figure 2. The

estimated residual Lyman-α irradiances listed in Table 1

were extracted from LYRA channel 1 following the pro-
cedure described in Section 4. In Figure 2, the pre-flare

irradiance has been subtracted from each timeseries.

Unfortunately, no hard X-ray measurements are avail-

able for this flare. Therefore, we plotted in Figure 2

the derivative of the GOES data, which constitutes a
good proxy for the flare non-thermal emission (Neupert

1968). One immediately sees from Figure 2 that the

emission in channels 1 and 2 looks different from the

one in GOES and LYRA channel 4: it is highly mod-
ulated and is peaking around 5 minutes earlier. It is

similar to the derivative of the GOES 1-8 Å curve. It

confirms the non-thermal temporal behavior of emission

observed in LYRA channels 1 and 2.

4. SPECTRAL MODELING

To assess what causes the flare emission in the chan-

nel 2 of LYRA, we need to model the flare spec-

trum around 2000 Å. Emission in the hydrogen free-

1 The data in the LYRA channel 3 look very similar to the data

taken in channel 4 and are not shown in Figure 2.
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Figure 2. Solar irradiance during the X9.3 flare of 2017 September 6 (with the pre-flare irradiance subtracted), observed by
GOES (orange line) and LYRA channels 1, 2 and 4 (respectively the purple, green, and black lines for E1, E2 and E4), as well
as the Lyman-α residual irradiance E

′

1 (red line) extracted from E1. The LYRA data were rebinned to the cadence of 1 s. The
time derivative of GOES 1–8 Å data is also shown (blue line) as a proxy of the non-thermal flare emission. Different scales were
used for the various time series for the sake of clarity.

bound and free-free continua, in the H− continuum,

as well as in spectral lines, has been considered in

the literature (Damé & Cram 1983; Damé & Vial 1985;
Avrett et al. 1986; Neidig et al. 1993; Kerr & Fletcher

2014; Heinzel et al. 2017). For strong flares in the

wavelength range of interest, the emission in the free-

bound continuum is expected to be by far the strongest
(Avrett et al. 1986; Neidig et al. 1993).

We therefore adopt the hypothesis that the increase of

the irradiance in channel 2 during the flare is primarily

due to enhancement of the free-bound continuum of Hy-

drogen. To calculate the Balmer continuum, we assume
that the emission is produced by an optically thin chro-

mospheric slab of plasma with the electron density ne

that is enhanced due to increased ionization during the

flare. This model was tested e.g. by Neidig et al. (1993),
and for Paschen continuum by Kerr & Fletcher (2014)

and recently by Heinzel et al. (2017). Dominant contri-

bution of the Balmer continuum in MUV and NUV was

also predicted by Avrett et al. (1986). The input param-

eters for a simple slab model are the electron tempera-
ture T , the electron density ne, and the thickness of the

emitting layer L. The emissivity in the hydrogen recom-

bination continua takes the form (Hubeny & Mihalas

2015):

ηiν = n2

eFi(ν, T ) , (1)

where i=2 or 3 for Balmer or Paschen continuum, re-

spectively, and ν is the frequency of the continuum ra-

diation. The function Fi is expressed as

Fi(ν, T )=1.166× 1014g(i, ν)T−3/2Bν(T )×

ehνi/kT (1 − e−hν/kT )/(iν)3 , (2)

where νi is the continuum-head frequency, g(i, ν) the

Gaunt factor, Bν(T ) the Planck function, and h and k

are the Planck and Boltzmann constants, respectively

(Hubeny & Mihalas 2015). For an optically-thin case,
this emissivity is multiplied by L to get the continuum

radiance Iν (i.e. the specific intensity). Here we as-

sumed an equality between proton and electron densi-

ties which is a good approximation in a flaring chromo-
sphere. Furthermore, for the sake of simplicity we took

g(i, ν)=1, which is accurate enough for the considered

continua. Here the continuum radiance Iν has units erg

s−1 cm−2 sr−1 Hz−1, which we convert to Iλ in erg s−1

cm−2 sr−1 Å−1 by multiplying Iν with the factor 3 ×

1018/λ2, where λ is the continuum wavelength in Å.

We assumed a typical flare slab temperature of

10000 K. Then, we adjusted the emission measure n2
eL

so that the resulting spectral radiance, once converted
into irradiance, multiplied by the instrumental response

of the channel 2 of LYRA (see dashed line in Figure

1) and integrated over its bandpass, provides a result

consistent with the channel 2 measurements at any time
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Table 1. Characteristics of the X9.3 flare of 2017 September 6 observed by LYRA and GOES. The Lyman-α residual E′

1 is
obtained from the channel 1 irradiance E1 after subtraction of the contribution of the hydrogen Balmer continuum derived from
channel 2 irradiance E2 (see Section 4). E

′

1 is dominated by the emission in a few strong lines, mostly the Lyman-α and the C
lines in the 1200–1550 Å range.

channel Bandpass, Pre-flare irradiance, Peak irradiance (11:58 UT), Flare increase, Flare increase,

Å erg s−1 cm−2 erg s−1 cm−2 erg s−1 cm−2 %

channel 1 (Lyman-α) 1200 – 1230a 6.85 6.92 0.07 0.97

channel 2 (Herzberg) 1900 – 2220a 690.1 692.6 2.5 0.35

channel 3 (Aluminum) 1 – 800 4.2 30.0 25.8 614

channel 4 (Zirconium) 1 – 200 1.45 25.5 24.05 1658

Lyman-α residual 1200–1550 - - 0.05 -

GOES 1 – 8 0.007 1.35 1.34 19185

aThe bandpass provided here is as listed in Dominique et al. (2013). See Figure 1 for the detailed spectral transmissions of
LYRA channels 1 and 2 that are of importance for this work.



6

t:

E2(t) = C2

∫
λ

A
Iλ(t)

d2
S2(λ)λdλ (3)

where E2 is the irradiance measured by the channel 2

of LYRA, d is the Sun-Earth distance, C2 is the calibra-

tion coefficient of the channel 2, S2 is the effective area

of channel 2. A is the emitting area estimated using the
method by Mravcová & Švanda (2017) to be 240 Mm2

at 11:58 UT (the peak time in LYRA channel 2) based

on the SDO/HMI observations of the flare in the wing

of the Fe I 6173 Å line (M. Švanda, private communica-

tion).
The value of the emission measure n2

e
L producing a

spectrum that matches the observations of channel 2 was

found to be of 9.1× 1034cm−5 at the time of the peak of

the flare. Heinzel et al. (2017) derived the slab thickness
around 200 km for a limb flare detected by SDO/HMI.

Considering this value as a representative value for the

Balmer-continuum formation region, this results in elec-

tron densities of the order of 6.7 × 1013cm−3, consis-

tent with the values found by Neidig et al. (1993) and
Kerr & Fletcher (2014). Under these conditions, we es-

timate the optical thickness at 2000 Å to be around

0.015, which confirms the hypothesis of an optically thin

slab.
The obtained spectral radiance increase produced

by the flare (without the quiet-Sun background) is

shown with the red line in Figure 1. A composite

mean quiet-Sun background spectrum is also shown

as the blue line for comparison. This spectrum was
obtained by merging the full-Sun integrated datasets

taken on 2010 January 7 by three spectrometers:

TIMED/SEE (Woodraska et al. 2004) from 1000 to

1300 Å, SORCE/SOLSTICE (Rottman et al. 1993)
from 1300 to 3100 Å, and SORCE/SIM (Harder et al.

(2005)) from 3100 to 4000 Å, and converting it into

spectral radiance per unit of emitting surface assuming

the uniform emission of the quiet Sun disk.

As was mentioned in Section 2, only 35% of the irra-
diance measured by the channel 1 of LYRA at low solar

activity comes from the spectral range around Lyman-α,

while 65% originates from a plateau in the channel re-

sponsivity around 2000 Å. Once the Balmer continuum
spectrum has been calculated based on the measure-

ments of channel 2, its contribution can be subtracted

from the channel 1 measurements:

E′

1(t)=E1(t)− C1

∫
λ

A
Iλ(t)

d2
S1(λ)λdλ. (4)

The remaining emission that we call here ”Lyman-

α residual” consists mostly of the hydrogen Lyman-α

emission and a few strong lines, the most prominent of

them being the Si III line at 1206 Å, the C II line at

1335 Å, the Si IV doublet around 1400 Å, the Si II line

at 1533 Å, and the C IV doublet at 1548 Å (Avrett et al.

1986; Simões et al. 2018). According to Table 1, the
Lyman-α residual contributes around 70% to the total

flare emission measured in channel 1 of LYRA.

If the entirety of the remaining signal were attributed

to the emission in the Lyman-α line, here modelled by

a Gaussian centered at 1216 Å with a 1 Å FWHM (al-
though the line, far from being Gaussian, has extended

wings), then the line would be around 500 times more

intense than the Balmer continuum, as shown by the

peak on the red curve in Figure 1. It is important to
note however that even if the Lyman-α line were respon-

sible for most of the remaining signal, the contribution

of other neighbouring lines should not be excluded. In

comparison to the line contributions, the emission in the

continua around Lyman-α is expected to be small.

5. SUMMARY AND DISCUSSION

The X9.3 flare on 2017 September 6 was observed by

PROBA2/LYRA in its four channels. This was the

first LYRA observation of a solar flare in the MUV

wavelengths around 2000 Å. We demonstrated that the

emission detected at these wavelengths by LYRA is
consistent with the hydrogen Balmer continuum emis-

sion produced by an optically thin chromospheric slab

heated up to 10000 K. The densities around 6.7 × 1013

cm−3 required for the slab thickness of around 200 km
are consistent with previous works (Neidig et al. 1993;

Kerr & Fletcher 2014; Heinzel et al. 2017). Simultane-

ous observations in channels 1 and 2 of LYRA allow

the separation of the line emissions (primarily from the

hydrogen Lyman-α line at 1216 Å) from the Balmer con-
tinuum emission generated at longer wavelengths.

Recently, the Balmer continuum emission from an X1

flare was observed by IRIS around 2826 Å, as reported

by Heinzel & Kleint (2014). Our radiance at the flare
peak computed at 2000 Å is 5.7 × 105 erg s−1 sr−1

cm−2 Å−1. Converting this to IRIS NUV we get 2.3 ×

106 erg s−1 sr−1 cm−2 Å−1, about eight times more as

compared to the value given by Heinzel & Kleint (2014)

for a weaker X1 flare. We can also convert our radiance
to wavelength 6173 Å used by SDO/HMI (i.e. domi-

nated by Paschen continuum), getting the value 2.6 ×

105 erg s−1 sr−1 cm−2 Å−1. This latter value can be

compared with visible-continuum flare detections, but
one has to keep in mind that our value of the radiance

is the mean value averaged over the flare area. Also a

comparison with HMI enhancement may be problematic

because during strong flares the HMI ’continuum’ signal
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seems to be strongly contaminated by the flare emission

in the Fe I line (Švanda et al. 2018).

The contribution of other continua around 2000 Å

(which are usually produced by the quiet photo-
sphere, see Bonnet & Blamont 1968) is probably small

(Avrett et al. 1986). Our value of the peak radiance at

2000 Å is consistent with models of Avrett et al. (1986)

and lies somewhere between the radiance produced by

their F2 and F3 models. This may contribute to bet-
ter understanding of the physics of white-light flares,

although we are detecting enhancements in MUV, not

in the white (visible) light. However, the conversion to

Paschen-continuum enhancement is a signature of the
white-light flare.

Reports of flares in Lyman-α in the literature

(e.g. Lemaire et al. 1984; Rubio da Costa et al. 2009;

Kretzschmar et al. 2013; Milligan et al. 2017) are rel-

atively rare and often debated. A recent paper by
Milligan & Chamberlin (2016) questioned the origin of

the Lyman-α flare emission reported by broad-band in-

struments (in particular SDO/EVE, Woods et al. 2012,

and LYRA), as these detections displayed a thermal-
like temporal profile and peaked much later than the

non-thermal emission, contrarily to the spectroscopic

observation by Lemaire et al. (1984). They suggested

that these observations might rather correspond to out-

of-band emission. LYRA produced very few observa-
tions of flares in its Lyman-α channel (channel 1, see

Kretzschmar et al. 2013) due to its fast degradation

(BenMoussa et al. 2013). The previous few LYRA ob-

servations were all acquired with its nominal or the main
backup unit, and they showed a thermal behaviour sim-

ilar to that described by Milligan & Chamberlin (2016).

The X9.3 flare on 2017 September 6 is the first flare

observed by the channel 1 of the calibration unit, which

was better preserved from degradation.

The temporal correlation of the flare emission mea-

sured by LYRA channels 1 and 2 with the GOES deriva-
tive confirms that the emission in those channels comes

from regions of non-thermal behaviour. The Lyman-α

residual irradiance clearly follows a non-thermal profile.

It is therefore likely that the anomalous behaviour (re-

ported by Milligan & Chamberlin 2016) of the previous
detections by SDO/EVE and in channel 1 of the other

two units of LYRA is of instrumental origin (in the case

of LYRA, it is probably due to the fast degradation of

the nominal unit and the broad spectral range of the
main backup unit).

A limitation of the presented observations is that

LYRA integrates the solar flux over the full solar disk

and over wavelengths. This does not allow for a clear

separation of different continua and spectral lines in the
wavelength range of interest (1150–2500 Å). Spatially

and spectrally resolved observations of flares over a wide

wavelength range (including the visible light) are neces-

sary to constrain the physics of the broad-band emission
in flares (Veselovsky & Koutchmy 2009).
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the Physikalisch-Meteorologisches Observatorium Davos
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the Swiss Bundesamt für Bildung und Wissenschaft. M.

D., L. D., S. S., and A. N. Z. thank the European Space

Agency (ESA) and BELSPO for their support in the

framework of the PRODEX Programme. P.H. acknowl-
edges a partial support by the Czech Funding Agency

through the grant No. 16-18495S .
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