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Abstract. The Ice, Atmosphere, Arctic Ocean Observing
System (IAOOS) field experiment took place from 2014 to
2019. Over this period, more than 20 instrumented buoys
were deployed at the North Pole. Once locked into the ice,
the buoys drifted for periods of a month to more than a year.
Some of these buoys were equipped with 808 nm wavelength
lidars which acquired a total of 1777 profiles over the course
of the campaign. This IAOOS lidar dataset is exploited to
establish a novel statistic of cloud cover and of the geometri-
cal and optical characteristics of the lowest cloud layer. The
average cloud frequency from April to December over the
course of the campaign was 75 %. Cloud occurrence frequen-
cies were above 85 % from May to October. Single layers are
thickest in October/November and thinnest in the summer.
Meanwhile, their optical depth is maximum in October. On
the whole, the cloud base height is very low, with the great
majority of first layer bases beneath 120 m. In April and Oc-
tober, surface temperatures are markedly warmer when the
IAOOS profile contains at least one low cloud than when it
does not. This temperature difference is statistically insignif-
icant in the summer months. Indeed, summer clouds have a
shortwave cooling effect which can reach −60 Wm−2 and
balance out their longwave warming effect.

1 Introduction

The Arctic is a key region of climate change: it is warming
about twice as fast as the middle latitudes. This phenomenon,
called “Arctic amplification”, is most commonly attributed
to the ice–albedo feedback, which is due to areas of open
ocean exposed by melting sea ice absorbing more solar ra-
diation. However, some models with fixed albedos also ap-

pear to show amplified warming in the Arctic, pointing to
other mechanisms at work (Winton, 2006; Pithan and Mau-
ritsen, 2014). Clouds are one of the main contributors to un-
certainty in global climate models because cloud feedbacks
and cloud–aerosol interactions are still poorly understood;
however, clouds appear to be of particular importance in the
Arctic (Tjernström et al., 2008), where they play a very im-
portant role in the climate system. Indeed, Arctic clouds are
observed to influence the melting of sea ice (Kay and Gettel-
man, 2009) and may exert control on the ice–albedo feedback
this way. However, these effects and processes are seasonally
variable and not well represented by annual means (Kay and
Gettelman, 2009).

Firstly, the cloud cover in the Arctic has a large sea-
sonal variability: it is especially extensive in the summer and
reaches a minimum in the winter (Curry et al., 1988, 1996).
This result is well attested in the literature although values
and trends tend to differ between studies and instruments. For
example, during the Surface Heat Budget of the Arctic Ocean
(SHEBA) campaign, winter cloud occurrence measured from
a combined radar–lidar was 70 %. It increased to over 80 %
in the summer months and reached a 95 % peak in Septem-
ber (Shupe et al., 2006). Using data from CALIPSO (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tions), Zygmuntowska et al. (2012) find two peaks of 85 %
and 90 % in May and October, respectively, and a minimum
in January–March around 70 %, in good agreement with
Shupe et al. (2006). However, in the same study, cloud frac-
tions retrieved from the space-borne Advanced Very-High-
Resolution Radiometer (AVHRR) instrument were < 60 %
for the whole October–April period and never rose above
80 %.
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Cloud microphysical characteristics and radiative impact
are also seasonally dependent. Winter clouds contain mostly
ice and are therefore less emissive than summer liquid-
containing clouds, although mixed-phase clouds maintain
themselves throughout the year (Morrison et al., 2011). How-
ever, seasonal statistics of cloud optical depth (COD) over the
Arctic ocean are scarce and uncertain: based on the AVHRR
radiometer data for example, Wang and Key (2004) found
a slight seasonal variation in the cloud optical depth over
the Arctic ocean, with a peak in May and October (> 6) and
lower values (≈ 5) in the winter. It has been shown that cloud
radiative forcing is positive (i.e. clouds warm the surface) for
much of the year, except for a short period in late June to
early July when the cloud shortwave forcing is larger than the
longwave forcing (Intrieri et al., 2002a). Indeed, in contrast
to winter, clouds impact the surface radiative budget in two
competing ways in the summer. As in winter, they provide
longwave warming, but they also have a shortwave cooling
effect, by preventing solar radiation from reaching the sur-
face.

Large uncertainties remain about the characteristics of
Arctic clouds and their surface impact, in part because more
data and observations are needed (Kay et al., 2016). Ground-
based measurements are sparse in the Arctic because of the
harsh conditions and the lack of permanent settlements. The
ground-based measurement stations of the International Arc-
tic Systems for Observing the Atmosphere (IASOA) network
(Uttal et al., 2016), for example Eureka (Nunavut, Canada)
or Barrow (Alaska), are necessarily coastal. Nevertheless,
ground-based stations have continuous data coverage with
a record covering several years and have therefore given
precious information on Arctic clouds and their properties
(Shupe et al., 2011; Nomokonova et al., 2019). Measure-
ments on the sea ice take the form of ship-based or airborne
campaigns, covering only a narrow spatial and temporal win-
dow. The first such campaign was SHEBA, which covered a
full year from October 1997 to October 1998. Although it
yielded significant results (Stramler et al., 2011; Shupe et al.,
2006), it is now more than 20 years old and not representa-
tive of the modern Arctic. Subsequent campaigns aimed at
studying the Arctic’s changing conditions such as the Arc-
tic Summer Cloud Ocean Study (ASCOS) (Tjernström et al.,
2014), the ACLOUD/PASCAL campaign (Wendisch et al.,
2019), the Arctic Clouds in Summer Experiment (ASCE)
(Sotiropoulou et al., 2016) or the Norwegian Young Sea
Ice Experiment (N-ICE) (Walden et al., 2016) covered 1 to
6 months, disproportionately in the summer. Most recently,
the Multidisciplinary drifting Observatory for the Study of
Arctic Climate (MOSAiC) campaign is a 1-year-long study
of the Arctic climate, with clouds as one of many research
axes. The drift is due to end in September 2020.

In this context, many established statistics – e.g. Wang
and Key (2004) – make use of satellite measurements, which
have large coverage but are flawed at high latitudes. Indeed,
spectroradiometers (such as MODIS or the AVHRR) may

have difficulties in distinguishing clouds from the underly-
ing sea ice. Their performance also differs between the dark
winter months and the summer (Zygmuntowska et al., 2012).
All in all, there are large differences in measured values be-
tween instruments (Chan and Comiso, 2013). Satellite-based
lidars such as the instrument aboard CALIPSO give more re-
liable measurements but are limited to 82◦ N because of the
satellite flight path (Winker et al., 2009). Their record is also
more limited in time than that of ground-based stations (from
2006 for CALIPSO).

This paper presents results of the Ice, Atmosphere, Arc-
tic Ocean Observing System (IAOOS) field experiment li-
dar measurements. This novel database offers a ground-based
view of lower tropospheric clouds at very high latitudes (over
80◦ N) over a significant period of time – from 2014 to 2019
(Mariage, 2015). A small part of this dataset has already been
analysed in Di Biagio et al. (2018) and Mariage et al. (2017).
Here it is treated as a whole to extract a multiyear statistic
of the April to December cloud cover along the track of the
drifting buoys. First, the IAOOS field campaign and other rel-
evant datasets are presented (Sect. 2). Then the treatment of
the IAOOS lidar data and the derivation of cloud character-
istics are explained (Sect. 3). The obtained statistics of cloud
frequency as well as geometrical and optical properties are
presented in Sect. 4. Finally the impact of clouds on surface
temperatures and radiative balance is explored (Sect. 5).

2 Data used

2.1 The IAOOS field campaign: a 5-year study of the
Arctic troposphere

2.1.1 Deployed instruments

The IAOOS field experiment was led by Sorbonne Univer-
sity – through the LATMOS and LOCEAN laboratories –
with the support of several structures, among which were the
French polar institute IPEV (Institut polaire français Paul-
Emile Victor) and the technical division of the Institute for
Earth Sciences and Astronomy (CNRS-INSU) from 2014 to
2019. The main campaign objective was to “collect real-time
observations of the ocean, ice, snow and atmosphere of the
Arctic”, offering a complementary viewpoint to that of satel-
lites (Sorbonne Université, 2016). In order to do this, several
instruments were installed on an autonomous floating plat-
form (or buoy). These buoys were then locked into the pack
ice and left to drift with it for a duration of several months
to a year. During that time period, the buoys were tracked by
GPS and communicated the acquired data to the IPEV office
in Brest (48◦23′24′′ N, 4◦29′24′′W) every day.

The main instrument on the “atmosphere” side of the
buoys was a micro-lidar, which was designed to study lower
troposphere and has a clear-sky range of around 4.4 km in the
daytime and 13.7 km at night, with a vertical resolution of

Atmos. Chem. Phys., 21, 4079–4101, 2021 https://doi.org/10.5194/acp-21-4079-2021



J. Maillard et al.: Arctic cloud characterisation from the IAOOS field experiment 4081

15 m (Mariage, 2015; Mariage et al., 2017). The wavelength
was chosen in the near infrared (808 nm) in order to avoid
disturbing the local fauna while maintaining a distinct molec-
ular signal. This is similar to many commercial ceilometers
(Mariage, 2015). However, it had to be custom-made to resist
the tough Arctic conditions. Indeed, several key components
of a lidar are sensitive to ambient temperature variations, and
the buoys’ operating conditions in the pack ice could be up
to 40 ◦C colder than the lab where it was calibrated. The li-
dar therefore had to be modified and isolated in order to keep
it at a near-constant temperature (Mariage, 2015). Further-
more, the tube containing the lidar emitter and receiver was
topped with a window that, in operating conditions, was of-
ten covered by frost. This layer of frost attenuates the sig-
nal and, in extreme cases, totally blinds the lidar. In order to
overcome this problem a window heating system was put in
place. The actual heating was limited to the 10 min interval
before the two- to four-time daily profile acquisition in order
to avoid draining the battery too fast. Theoretically, this en-
sured that the lidar window was clear during measurement.
However, in practice, the frost prevented lidar measurements
from mid-December to early March. The frost problem will
be further detailed in Sect. 3.1.1.

The buoys were also equipped with temperature and pres-
sure sensors for measuring outside conditions, as well as in-
ternal temperature and humidity sensors for monitoring the
lidar system. On the underwater portion of the buoys, a float
measured ocean temperature and salinity while an ice mass
balance system acquired temperature profiles of the snow, ice
and liquid water layers – see Koenig et al. (2016).

2.1.2 Buoys and tracks

The first IAOOS platform was deployed in 2013. Since then,
more than 20 buoys have drifted in the Arctic pack ice, and
the last one was deployed in August 2019. However, not all
buoys were equipped with lidars and not all deployed lidars
operated successfully. In particular, the data transmission
system of the 2016 buoys functioned poorly, and there are
no exploitable lidar profiles from July 2015 to March 2017
(see Table 1). All in all, five buoys yielded usable lidar data,
amounting to 1777 profiles covering the April to December
months. A vast majority of the drift took place north of 82◦ N
(red circle, Fig. 1). Furthermore, apart from one buoy, all
trajectories were confined to the Atlantic sector of the Arc-
tic, reflecting the transpolar drift stream. Indeed, most buoys
studied here were locked into the ice close to the North Pole.

2.2 Other data

2.2.1 N-ICE

The Norwegian Young Sea Ice Experiment (N-ICE) cam-
paign took place from January to June 2015. During that
time, the research vessel Lance drifted with four different

Figure 1. Map of the IAOOS buoy tracks, 2014–2019 (this map
only includes buoys which delivered the lidar data exploited in this
article). The different colours correspond to the different buoys,
with the year of launch indicated. The red circle corresponds to the
82◦ N latitude: north of this circle, no satellite lidar data are avail-
able.

Table 1. Start and end date of the buoy lidar data acquisition and
number of exploitable profiles. Note that buoy B07 also yielded
some profiles (Di Biagio et al., 2018) which are not treated here.

Buoy Start date End date Nb of exploitable
(dd/mm/yyyy) (dd/mm/yyyy) profiles

B02 13/04/2013 02/12/2014 462
B12 26/04/2015 05/06/2015 73
B24 06/04/2017 20/11/2017 322
B25 15/08/2017 28/10/2018 429
B27 19/04/2018 17/03/2019 491

ice floes (Walden et al., 2016; Cohen et al., 2017; Walden
et al., 2017). The first two drifts took place during the winter
(January–March 2015) while the last two drifts occurred in
the late spring to early summer period (April to June 2015).
On each floe, a “supersite” ice camp was installed about
300 m away from the research vessel. Atmospheric measure-
ments were mostly performed at this supersite. Surface long-
wave fluxes (up and down) were measured with a Kipp &
Zonen CGR4 pyrgeometer, which has a 4.5 to 42 µm band-
width. The shortwave fluxes (up and down) were measured
with a Kipp & Zonen CMP22 pyranometer (200 to 3600 nm
bandwidth). Both these instruments were heated and venti-
lated using a Kipp & Zonen CVF4 unit. Their accuracy is
3 % (or 5 Wm−2) for the shortwave and 2 % (or 3 Wm−2)
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for the longwave (Walden et al., 2017; Hudson et al., 2016).
The temperature at 2 m was measured with a ventilated and
shielded Vaisala HMP-155A sensor which has an accuracy of
2.4 % (or 0.3 ◦C) (Graham et al., 2017; Cohen et al., 2017).
In addition, radiosondes were launched twice daily from the
research vessel, yielding profiles of relative humidity, tem-
perature and wind speed (Walden et al., 2017).

Four IAOOS buoys were deployed during this campaign
and drifted in the ice floe close to the research vessel. In par-
ticular, the B12 buoy was locked into the third ice floe 200 m
away from the supersite from the end of April to the begin-
ning of June 2015 (Fig. 1). Because of the proximity of the
buoy to the supersite over this period, the N-ICE surface ra-
diative flux and temperature measurements can be used as a
complement to the IAOOS data. This allowed us to evaluate
the radiative impact of clouds on the surface in late spring to
early summer (Sect. 5.2.1 and 5.3).

2.2.2 ERA5

ERA5 is the new reanalysis from the European Centre for
Medium-Range Weather Forecast, replacing ERA-Interim
(Hersbach et al., 2020). ERA5 provides hourly or four-times-
daily estimates of many weather variables on a 0.25◦× 0.25◦

grid and with 137 vertical levels. It is made available online
with a 3-month delay (Hersbach et al., 2018). Here we inter-
polated the ERA5 values on the IAOOS positions using bi-
linear interpolation in space (and linear interpolation in time)
during the N-ICE drift period. This allowed us to compare the
radiative flux values measured during N-ICE with the ERA5
reanalyses (see Sect. 5.2.1).

3 Methodology of the IAOOS lidar data treatment

3.1 Overcoming Arctic-specific challenges

3.1.1 Lidar window frost

Several problems are associated with the autonomous drift of
a lidar in harsh Arctic conditions, as outlined in Sect. 2.1. In
particular, the cold conditions cause frost to form on the lidar
window, because the installed window heating system could
not operate the whole time in order to preserve batteries. This
caused the signal to be attenuated and therefore the system
constant C – which is the ratio of the raw signal in photon
numbers to the actual signal – to diminish.

Because it is crucial to know the system constant value in
order to extract geophysical information from the raw lidar
signal, this effect had to be corrected. The correction method
was put in place by Mariage (2015). First a frost index, γ , is
defined:

γ =
P0

P
,

where P is the lidar window reflection peak, and P0 is the
minimal value taken by P over the course of a drift. P0 is

therefore assumed to be the value of the reflection peak when
the window is entirely frost-free. γ then ranges from approx-
imately 1 when the window is frost-free to very low values
(< 5 · 10−2) when the window is totally opaque. In fact, this
frost index becomes a proxy for the window transmittance.

Under the assumption that aerosol load is very low in the
high Arctic, C can be calculated from cloud-free profiles. Its
values are then compared to the frost index. As could be ex-
pected, 1

C
diminishes with γ : that is, the signal is dampened

when the window is covered with frost. An empirical fit of 1
C

as a function of γ can then be established (Mariage, 2015).
This allows us to deduce the value of C for each profile from
the value of γ . The fitting coefficients were determined inde-
pendently for each buoy when possible, since the frost index
depends on P0, which is buoy specific.

It should be noted, however, that when the frost is too thick
(γ ≤ 0.05), no usable signal is recoverable. This means that
there were no exploitable lidar profiles in late December to
early March. Furthermore, this frost correction method natu-
rally causes uncertainty on the obtained value of C. Around
11 % of profiles have values of γ between 0.1 and 0.3. In this
case, Mariage (2015) estimates that the window frost correc-
tion leads to a 30 % error on C. A further 3 % of profiles
have 0.05≤ γ < 0.1, in which case the error on C can be up
to 60 %. For γ ≥ 0.3, the C error tends towards the frost-free
system constant determination error, which is around 10 %
(Mariage, 2015). The system constant is used in the calcula-
tion of the attenuated scattering ratio, from which all cloud
quantities are derived (Sect. 3.2). However, it is difficult to
quantify the impact of its error on cloud detection, in part be-
cause it depends on the sign of the error. An overestimated
C would lead to under-detection of cloud layers, and vice
versa. In practice, visual inspection of the profiles indicates
that the cloud detection algorithm outlined below is robust
to the errors that may be incurred through the window frost
correction.

3.1.2 Receiver saturation due to reflective low clouds

The detectors used in the IAOOS lidar are avalanche photo-
diodes and can reach saturation. This means that if they are
exposed to a signal which is too intense, the photon count
goes down. If the saturation is very intense, the photon count
can even reach zero (Excelitas, 2018). Following saturation,
the photon number count then slowly increases back up to its
normal background value. Saturation is not usually an issue
in most lidar operation situations; however, during the Arctic
summer, background noise levels are high due to shortwave
radiation, and the reflective sea ice and the signal reflected by
the very low cloud cover is often enough to saturate the de-
tector. This problem was observed from the very first deploy-
ment of the IAOOS buoys (Mariage, 2015). It translates vi-
sually into a lidar signal which dips below background noise
levels at a certain altitude and then slowly increases back
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to the background. Over the whole IAOOS period, approxi-
mately 30 % of profiles were concerned by this phenomenon.

A saturated profile may contain some geophysical data
above the saturation altitude; therefore, it was important to
correct this effect. We hypothesised that the saturated signal
Ssat resulted from the convolution of the true signal S with a
saturation impulse response function (IRF):

Ssat(z)= S(z)∗IRF(z).

The goal was therefore to deduce S from the measured pro-
file, i.e. Ssat. A deconvolution algorithm was therefore put
into place (Richardson, 1972; Refaat et al., 2008). The de-
convolution process recovered useful signal from the satu-
rated profiles in about a third of cases. In the remaining two-
thirds, the true signal was only background noise. This repre-
sented an appreciable gain in data for the IAOOS campaign.

3.2 Derivation of cloud characteristics from raw lidar
data

The lidar profile treatment program is a simplified version of
the CALIPSO treatment algorithm described by Winker et al.
(2009).

3.2.1 Attenuated scattering ratio calculation

The first step involves calculating the attenuated scattering
ratio:

SRatt =
(S−B) · z2

C ·O(z) ·βm(z)Tm(z)2
= (1+

βp(z)

βm(z)
) · Tp(z)

2, (1)

where

– S is the raw signal;

– B is the background noise (calculated as the mean of the
raw signal above 20 km, where there is no geophysical
signal due to attenuation);

– z is the altitude above the lidar, which is at sea level;

– C is the system constant, which varies with the lidar
window frost as described above;

– O(z) is the overlap factor between the lidar source
and receiver: this factor is determined for each buoy
as the average ratio of the raw signal to the calculated
Rayleigh signal for very clear, cloudless days; the over-
lap creates a minimum height underneath which the sig-
nal cannot be resolved – a sort of lidar blind zone;

– βp(z) and βm(z) are the particulate and molecular
backscatter ratios at altitude z, respectively; and

– Tp and Tm are the particulate and molecular transmis-
sion at altitude z, respectively.

The Rayleigh (molecular) backscatter and transmission are
calculated according to Bucholtz (1995), using vertical tem-
perature and pressure profiles from ERA5 reanalyses.

3.2.2 Cloud detection

Clouds are then detected by applying a threshold to SRatt,
since in the absence of particulate attenuation the attenuated
scattering ratio will be equal to 1 (βp = 0, T 2

p = 1). The ini-
tial threshold, St, is set to 1.1 at z= 0 and increases with
altitude in order to take into account that noise increases on
the vertical (Winker and Vaughan, 1994).

The base of a feature is detected when seven consecutive
points are above the threshold. The top is detected either
when SRatt has fallen beneath the threshold and has stopped
decreasing (a condition inspired by Winker and Vaughan,
1994) or when the signal is below the noise level. The noise
level is defined as 2σz2, where σ is the standard deviation of
the raw signal above 20 km. Assuming Gaussian noise, 95 %
of pure noise fluctuations are therefore beneath this level.

Above the features, SRatt will again be constant but equal
to T 2

f (ztop), where ztop is the top altitude of the features and
Tf its transmission, because of the particle attenuation. This
means that new features above this feature will be missed
unless the threshold is modified to take the feature attenua-
tion into account. Therefore, above a feature, the threshold is
updated to T 2

f · St.
Once detected, a feature is determined to be a cloud if

its spread, defined as the ratio of maximum feature SRatt to
average below-feature SRatt, is greater than 100 (or 20 for
higher-altitude layers for which average below-feature SRatt
is strongly impacted by noise).

3.2.3 Calculation of optical depth and lidar ratio

When the lidar beam goes through the cloud layer and
reaches the particle-free air on the other side, the cloud trans-
mission can be directly calculated as the ratio of the mean
SRatt above and below the cloud layer over a minimum of 20
points (or 300 m).

However, this was rarely the case during IAOOS, espe-
cially in the summer when the noise level is high. Over
the whole IAOOS campaign, only 14 % of all features
were transparent to the lidar. In all other cases, the cloud
transmission T 2

c was calculated from the integrated atten-
uated backscatter (IAB), assuming a constant lidar – or
backscatter-to-extinction – ratio Sc within the cloud layer:

IAB=

z1∫
z0

βp(z) · e
−2
∫ z
z0
ηαp(z

′)dz′dz=
1

2ηSc
(1− T 2

c ), (2)

with z0 and z1 the bottom and top of the cloud, αp the
particle extinction coefficient, and η the multiple-scattering
coefficient (Platt, 1973). The IAB can then be calculated
from the attenuated scattering ratio and molecular backscat-
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ter (Winker et al., 2009):

IAB≈

z1∫
z0

SRatt(z) ·βm(z)dz

−
1
2
(z1− z0) · (βm(z0)SRatt(z0)+βm(z1)SRatt(z1)). (3)

The (relatively few) cases where the cloud layer transmission
could be independently calculated were used to derive values
of the multiple-scattering lidar ratio S∗ = ηSc by inverting
Eq. (2).

For both Rayleigh- and IAB-derived Tc, the cloud optical
depth τc can then be deduced:

Tc = e
−η·τc . (4)

The multiple-scattering coefficient η was assumed constant
and equal to 0.8, based on previous analyses of the IAOOS
data (Mariage et al., 2017; Di Biagio et al., 2018).

3.2.4 Uncertainty and limits of the method

Equation (2) implies that as T 2
c → 0, IAB→ 1

2ηSc
. This

means that for optically thick clouds, a small error on the
value of IAB or Sc risks propagating to a large error on COD.
The error is also asymmetrical: an overestimation of IAB or
Sc yields a much worse result on COD than an underestima-
tion of these same quantities. In practice, if the lidar ratio of
a cloud of true optical depth 1.5 is underestimated by 10 %,
the measured optical depth will be ≈ 1.1. On the other hand,
if it is overestimated by the same amount, the measured op-
tical depth will be ≈ 2.2. In some cases, overestimation of
lidar ratio or IAB can even lead to negative T 2

c values, which
are non-physical and do not allow for the calculation of op-
tical depth. In practice, therefore, this method is appropriate
mainly for optically thinner cloud layers. We will refer to
“low-IAB” cloud layers, for which the method does not lead
to non-physical results (i.e. the cloud layer is thin enough that
this method works well). This accounts for 42 % of all fea-
tures. We will call “high-IAB” cloud layers those for which
calculated T 2

c is negative. These mathematically correspond
to clouds with higher IAB, and therefore higher COD, than
low-IAB cases. The inclusion of these high-IAB COD values
in the statistic will be discussed in Sect. 4.3.

Although uncertain in other respects, this COD calculation
method has the advantage of being only faintly impacted by
background noise levels. On the other hand, noise levels can
have a strong impact on the cloud top determination. Tests
with simulated lidar signals indicate that cloud top determi-
nation error reaches up to 150 m for typical summer noise
levels and optically thicker clouds (τc ≈ 2.5). This error is
much lower for low noise levels, such as are found in the high
Arctic during the polar night (October–March). This differ-
ence must be kept in mind when interpreting seasonal varia-
tion of cloud geometrical thickness (Sect. 4.2).

4 Seasonal variability of Arctic low cloud properties
during IAOOS

4.1 Frequency of cloud presence

IAOOS data confirm that low clouds (i.e. with a base under
2 km) are very frequent in the Arctic, especially in the sum-
mer. Average monthly cloud frequency from March to De-
cember, defined as the average of monthly ratios of profiles
containing at least one cloud with a base lower than 2 km
to all profiles, is 75 %. This value is coherent with previous
statistics of cloud fraction above 80◦ N derived from satel-
lites, for example Wang and Key (2004) and Curry et al.
(1996), which usually give a global annual cloud cover of
around 60 %–70 %, with a maximum in summer and a mini-
mum in November–April.

Observed seasonal variation of cloud fraction can dif-
fer strongly between satellites (Wang and Key, 2004; Zyg-
muntowska et al., 2012). Chan and Comiso (2013) found
large disagreements between MODIS and CALIOP in the
Arctic, for example, especially over sea ice and during the
polar night. This is because MODIS finds it difficult to dif-
ferentiate between the surface and the clouds when relying
only on IR channels. On the other hand, Blanchard et al.
(2014) show that there is good general agreement and sim-
ilar trends in cloud fraction over Eureka (Nunavut, Canada)
between CALIOP, MODIS, CloudSat and the IIR instrument
aboard CALIPSO, with a global maximum in September–
November and a minimum in March–May. However, dis-
crepancies between passive and active instruments remain
(Blanchard et al., 2014). Ground-based measurements play a
key part in quantifying seasonal cloud cover variability in the
Arctic, although they are often sensitive primarily to lower-
level clouds. Averaging visual observations from ships and
ice camps above 80◦ N, Hahn et al. (1995) found that cloud
cover was globally stable around 60 % in winter, increas-
ing to 80 % from April to June and decreasing again from
September to November. A maximum of 85 % was reached
in August/September. The combined lidar–radar measure-
ments at SHEBA give slightly higher values of 70 % in win-
ter and 90 % in summer, with an earlier transition (February
to April) and a peak in September (Intrieri et al., 2002b).

The results of the IAOOS dataset are shown in Table 3 and
Fig. 2. Note here that the number of profiles available for
each month is variable, both because of the more favourable
operating conditions in the summer and the timing of the
buoy deployment (usually in May). As such, there are more
than 200 profiles from May to September, around 100 in
April and October, and fewer than 54 in November and De-
cember (months with fewer than 30 profiles, i.e. January,
February and March, are not treated in this article). Care must
therefore be taken in analysing the results of late autumn and
winter. A 90 % confidence interval for the cloud occurrence
frequency can be estimated from a Bayesian calculation, as-
suming that the number of cloudy profiles follows a binomial
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distribution and supposing an appropriate a priori distribution
for the cloud frequency from the literature (Appendix A).

The IAOOS data show a similar trend to the literature, with
generally higher cloud cover values. From May to October,
clouds are present over 85 % of the time (Fig. 2). In contrast
to the previous ground-based climatologies outlined above,
there are two peaks at more than 0.9 in the monthly cloud
frequency, although they differ little from the summer base-
line. The first is in June, which has a mean cloud frequency
of 0.92 and a confidence interval of [0.88, 0.94]. The second
peak is in October, also with a mean cloud frequency of 0.92
but with a slightly wider confidence interval of [0.85, 0.95]
because of the lower number of profiles. This is reminiscent
of the results of Zygmuntowska et al. (2012), from CALIPSO
data, which show a peak in cloud occurrence above 0.9 in Oc-
tober. July and August have slightly lower cloud frequency
values (0.85 [0.82, 0.88] and 0.85 [0.8, 0.89] respectively).
However, since there is non negligible overlap between the
confidence intervals of June/October and the other summer
months, it is difficult to draw solid conclusions as to May–
October variability.

In the IAOOS dataset, April and November appear to mark
a sharp transition in cloud occurrence frequency from the
summer values. April has a cloud frequency of 0.59 [0.52,
0.67] while the cloud frequency in November is 0.56 [0.48,
0.68]. While the confidence intervals are quite wide here due
to the lower number of profiles, there is no overlap with the
summer confidence intervals. This suggests that the lower
cloud frequencies observed during the months of April and
November are meaningfully different from that of the months
of May through October. December cloud frequency is lower
still, at 0.32 [0.29, 0.51]. Note, however, the width of the
confidence interval and the fact that the December data cor-
respond to a single year of measurement (2017).

It is not possible to robustly quantify interannual vari-
ability in Arctic cloud cover from the IAOOS dataset since
there are at most 4 years of data for each month. Qualita-
tively, however, the April–May transition in cloud frequency
observed by the buoys is quite variable. In 2014, the B02
buoy observed a very sharp spring transition in cloud fre-
quency: from 0.4 [0.35, 0.6] in April 2014 to more than 0.9
[0.89, 0.97] in May and June 2014 (blue circles, Fig. 2).
On the other hand, this transition was much more gradual
in 2017 (buoy B24, orange diamonds). The June 2017 cloud
frequency is less than 0.8 [0.69, 0.85], overlapping signifi-
cantly with the May 2017 cloud frequency confidence inter-
val of [0.56, 0.78]. This is not an effect of spatial variability
as both B02 and B24 were drifting in the Atlantic sector of
the Arctic (Fig. 1).

It has been observed from satellite data that the Atlantic
sector is the cloudiest part of the Arctic Ocean (Liu et al.,
2012; Wang and Key, 2004). This is linked to the low-
pressure systems and the storm tracks arriving from the
northern Atlantic Ocean. Since most of the IAOOS buoys
drifted in this sector, the IAOOS dataset must be regarded

as most representative of these specific conditions and not of
the ocean-wide cloud characteristics.

Furthermore, the results above pertain to the low cloud
cover, i.e. clouds with a base underneath 2 km. Clouds with
a base between 2–5 km are much rarer in the IAOOS dataset,
occurring only 3 % of the time from March to December,
with a peak at 8 % in July. However, as the lidar signal is of-
ten dampened by the first cloud layers, IAOOS statistics of
cloud cover above 2 km are expected to be biased low.

4.2 Cloud geometrical properties

Multilayer clouds were detected 7 % of the time by the
IAOOS lidar over the course of the campaign. This value is
small compared to previous observations: for example, Liu
et al. (2012) find that multilayer clouds are present 20 %
of the time year-round, with very low seasonal variation.
These results are drawn from satellite observations and Liu
et al. (2012) note that they are also underestimated. Ground-
based measurements generally attest to frequent multilay-
ering in the summertime, with layers separated by several
hundred metres (Curry et al., 1988, 1996). SHEBA mea-
surements even show that multilayer clouds exceeded single-
layer clouds in June and July 1998 and occurred on av-
erage 45 % of the time over the whole experiment period
(Intrieri et al., 2002b). IAOOS measurements also attest to
a higher frequency of multiple layered clouds in summer:
they occur more than 10 % of the time July–October and
only 4 % of the time in April and May (Table 2). Only one
IAOOS profile contains multilayered clouds in November
and none in December. Despite the low number of total pro-
files in these months, these values are different from the
July multilayered cloud frequency at a statistically signifi-
cant level: for November, Fisher’s exact test yields a p value
of 0.007 (Fisher, 1922). IAOOS measurements strongly un-
derestimate the frequency of multilayered clouds due to the
fact that the lowest cloud layer entirely attenuates the lidar
signal in most profiles. Furthermore, cloud layers separated
by less than 300 m were counted as one in the IAOOS data
treatment in order to have a better estimation of cloud trans-
mission (Sect. 3.2.3). However, the robust measurement of
the geometry of the first cloud layer derived from the IAOOS
measurement base is a useful statistic. Indeed, the base of the
lowest cloud layer is expected to have the strongest impact on
surface radiative fluxes as compared to higher cloud layers.
Hereafter, all cloud statistics refer to single cloud layers – in
most cases, the lowest.

Clouds in the IAOOS dataset are extremely low, with little
seasonal variability. From April to December, at least 85 %
of first layer clouds have a base below 120 m, which is the
minimum altitude at which the lidar overlap factor can be
corrected for all buoys (Table 2). The median base altitude
is therefore at 120 m in nearly every month. During ASCOS,
which took place in August 2008, the lowest cloud base dis-
tribution peaked beneath 100 m (Tjernstrom et al., 2012). The
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Figure 2. Monthly variation of low cloud frequency, defined as the number of profiles that contain at least one cloud layer with a base lower
than 2 km divided by the total number of profiles for the month for five IAOOS buoys. The dashed line represents the total monthly cloud
frequency over all IAOOS profiles. It is only calculated for months with more than 30 profiles in total.

Table 2. Cloud multiple layer and base characteristics for all profiles from April to December. Np is the total number of lidar profiles for
each month (for all years and buoys), and Nml is the number of profiles containing multilayered clouds. The last four columns represent the
percent of first layer cloud bases in each altitude range. The 120 m cut-off corresponds to the minimum altitude at which the lidar overlap
factor can be corrected for all buoys. Cloud bases above 5 km, which correspond to high-level clouds in many reanalyses such as ERA5, are
not included because the lidar range in perfectly clear daytime conditions is only 4.4 km (Sect. 2.1).

Month Np (no.) Nml
Nprofiles

(%) First cloud base (%)

< 120 m 120–500 m 500 m–2 km 2–5 km

April 94 4 96 0 2 2
May 359 4 95 2 1 1
June 330 8 87 8 3 1
July 342 14 93 1 3 3
August 205 12 91 2 5 2
September 251 10 90 5 4 1
October 98 13 98 2 0 0
November 54 2 93 3 3 0
December 44 0 93 7 0 0

median first cloud base from SHEBA measurements (Shupe
et al., 2007) was also less than 120 m for all months ex-
cept March (179 m) and April (209 m). Nevertheless, higher-
altitude first cloud layers were more frequent than during
IAOOS, especially in spring to early summer (Intrieri et al.,
2002b).

On the other hand, Fig. 3 highlights a significant difference
in measurements of single-layer cloud geometrical thickness
between summer (May to September) and the months of
April, October and November. The median cloud thickness
from June to August ranges between 360 and 390 m, whereas
it is nearly 750 m in October and March and more than 1 km
in November. This difference appears significant at a statis-
tical level. The Mann–Whitney U for the July and October
cloud thickness distributions was 9834.5 (with sample sizes
n1 = 355 and n2 = 104), yielding a p value < 0.001 (Mann

and Whitney, 1947). The same is true for July and April
(U = 5940.5, n1 = 355 and n2 = 60, p value < 0.001).

As explained in Sect. 3.2.3, it is expected that summer
cloud thickness would be underestimated by up to 150 m
due to higher noise levels in this period. However, this is too
small an error to explain the different median values observed
between summer and spring/autumn. Furthermore, these val-
ues and trends are coherent with previous studies of single-
layer clouds at Barrow and Eureka. For example, the aver-
age thickness of single-layer clouds at Barrow from June to
August 2000 was 320 m, while the September average was
550 m (Dong and Mace, 2003). Over the 2005 to 2008 pe-
riod the average single-layer mixed-phase cloud thickness at
Eureka varied from 200 to 700 m with maxima in autumn and
minima in spring (de Boer et al., 2009). Total thickness of all
clouds, single layered or not, may, however, be much larger.
During SHEBA, median total cloud thickness from radar data
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Figure 3. Monthly evolution of first layer cloud geometrical thickness (in km) for five IAOOS buoys. The markers represent the median
value, and the whiskers indicate the 25th and 75th percentiles. The open circles represent individual cloud thickness values where the lidar
signal sees through the cloud layer; i.e. the cloud top is clearly detected. The median and 25th and 75th percentiles are only calculated when
more than 15 data points are available.

Table 3. Monthly median temperature for cloudy and cloudless pro-
files from April to December over the whole IAOOS period. Cloudy
profiles contain at least one cloud with a base underneath 2 km.
Cloudless profiles contain no clouds or (very rarely) contain higher-
level clouds. 1 is the difference between cloudy and cloudless pro-
file median temperatures.

Month Number of Cloud fraction Median temperature (◦C)
profiles (%)

Cloudy Cloudless 1

April 94 59 −17.7 −21.2 3.5
May 359 88 −9.9 −13.6 3.7
June 330 92 −1.5 −1.5 0
July 342 85 −0.1 −0.5 0.4
August 205 85 −0.9 −1.1 0.2
September 251 89 −3.7 −6 2.3
October 98 92 −6.6 −14.6 8.
November 54 56 −16.7 −25 8.4
December 44 32 −27.9 −28.5 0.6

was above 1 km in every month, with peaks at around 3 km
in April and October (Shupe et al., 2007). These values are
from 3 (March/April) to 7 (July/August) times larger than the
IAOOS monthly median values.

4.3 Cloud optical properties

As noted in Sect. 3.2.3, cloud layers for which both IAB
and T 2

c are determined independently can be used to calcu-
late the multiple-scattering lidar ratio S∗. In total, there were
207 such cloud layers during the IAOOS period, covering
the March to December period. They are shown in Fig. 4a,
along with the median and the 25th and 75th percentiles for
each month. The global median is 17.5 sr, with 90 % of val-
ues falling in the 7–38 sr range. Although the spread is quite
large, these results are consistent with cloud lidar ratio values

found in the literature. For example O’Connor et al. (2004)
found that S∗ values ranged between 14.5 and 16.5 sr for low
water clouds; for ice or mixed-phase clouds, the range was
5–40 sr, which is very similar to IAOOS results.

The seasonal variation of S∗ is statistically significant:
the median S∗ for the summer months (JJA) was 23 sr ver-
sus 15.5 sr in the autumn (SON). The Mann–Whitney U is
4953.5, with n1 = 67, n2 = 98, yielding a p value of< 0.001
(Mann and Whitney, 1947). There are two possible causes for
the observed variability in S∗ = ηSc: changes in the multiple-
scattering coefficient η or Sc. η decreases with cloud temper-
ature (Garnier et al., 2015), while Sc depends on cloud mi-
crophysical properties, among which are cloud droplet effec-
tive radius and phase. In the absence of additional measure-
ments, it is difficult to determine which one has the largest
impact here, as well as the ultimate physical cause of varia-
tion. The monthly median values were then used to calculate
COD (Sect. 3.2.3).

The average single-layer COD during IAOOS excluding
high-IAB cases was 0.9, with values ranging from 0.3 to 2.1.
These values are small when compared to previous satellite-
and ground-based studies in the Arctic. But as noted in
Sect. 3.2.4, the retrieval method used for calculating COD
from the IAOOS lidar data when the signal is fully attenu-
ated is not suited to optically thick clouds: the rough upper
bound of COD which can be measured through this method
is 2. As almost 20 % of cloud layers observed during the cam-
paign were high-IAB layers, this likely has a non-negligible
impact on results. Furthermore, in contrast to satellite data,
IAOOS values are single-layer, not whole column, COD. The
contribution of the first layer to total column COD is dis-
cussed in Sect. 5.3. It is therefore understandable that pre-
vious studies gave larger COD values. For example, Curry
et al. (1996) cite a range of 2–24 with an average of 8 in sum-
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Figure 4. (a) Monthly variations of lidar ratio values over the IAOOS campaigns. The open circles represent the measurements. The filled
markers represent the monthly medians, with the whiskers indicating the 25th and 75th percentiles. (b) Monthly evolution of single-layer
COD for five IAOOS buoys. Open circles represent the Rayleigh-derived cloud optical depths. Crosses correspond to the low-IAB COD
values (Sect. 3.2.4). Filled markers represent the monthly medians, when high-IAB cases are excluded (circles) or included (squares). These
medians are calculated when more than 15 data points are available.

mer. Wang and Key (2004) also find that monthly mean COD
(from 1982–1999) varied from 4 to 6 in the AVHRR data over
the Arctic Ocean. From ground-based lidar measurements at
SHEBA, Turner (2005) shows that 63 % of clouds were sin-
gle layer with an optical depth < 6 and that optically thin
clouds tended to be predominantly composed of ice.

Single-layer COD appears to vary seasonally (Fig. 4b).
Excluding high-IAB cases, the monthly median COD ap-
pears to be almost constant from April to September and
largest in October–November (filled circles). However, this
is in part because of the low noise levels in these months
as compared to the summer. In October–December, i.e. the
months with no sunlight, more than 50 % of cloud layers
were transparent to the lidar. This proportion is less than
10 % in May to July. The COD can therefore be directly
calculated for optically thick clouds from late September–
December but not in other months. This is visible in Fig. 4b:
in late September/October, there is a sudden apparition of
directly calculated COD values (open circles) greater than 2.
The IAB method, which is an alternative to the direct method

of calculating COD when the signal is fully attenuated by
the cloud, is mainly suited to optically thin clouds (Fig. 4,
grey crosses). This creates a bias between summer months,
for which the COD calculation is limited by noise levels to
optically thin clouds, and October–December, during which
higher COD values can be calculated.

To overcome this problem, the COD of high-IAB cloud
layers was set to 2. This value was chosen as it is the 95th per-
centile of CODs calculated for low-IAB layers, and high-IAB
cloud layers are as a group expected to have higher COD than
low-IAB layers. The monthly median COD was then calcu-
lated including these high-IAB cases (Fig. 4, filled squares).
This correction is not quantitatively robust as the value of 2
is arbitrarily chosen, not calculated. However, it accounts for
the fact that high-IAB cloud layers exist, and are expected to
have higher COD than low-IAB cloud layers, in the calcula-
tion of the median. This is helpful for examining the seasonal
trend, which otherwise is biased by the presence of noise.

It creates a significant difference in June and July, the
months in which the percentage of high-IAB cloud layers is
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the highest. With this correction, the median monthly COD
exhibits two peaks (June and October) and a minimum in
April. The October peak is, however, still the annual maxi-
mum and does not appear to be strongly impacted by the in-
clusion of high-IAB cloud layers. Previous satellite measure-
ments have exhibited a pattern of higher COD in spring and
autumn, for instance May and October for the AVHRR data
(Wang and Key, 2004) over the Arctic Ocean. The IAOOS
dataset exhibits this October peak in single-layer COD. An-
other peak in June appears possible, although the IAOOS
measurements are very uncertain in this month.

5 Cloud impact on surface temperatures and radiative
balance

5.1 Impact of clouds on surface temperatures during
IAOOS

IAOOS lidar profiles can be split into two groups: “cloudy”
profiles containing at least one low cloud with a base< 2 km
and “cloudless” profiles which contain either no cloud or
higher-level clouds. Note that less than 2 % of all clouds had
a base higher than 2 km (Sect. 4.2). The temperatures mea-
sured by the buoy meteorological station during each lidar
profile acquisition can be compared to estimate the effect of
the presence of low clouds on surface temperatures.

The 2 m temperature distributions of cloudy and cloudless
profiles differ significantly in October–November and April
(Table 3). The Mann–Whitney test p value is less than 0.05
(< 0.001 for November), and the common language effect
size is more than 70 % (> 80 % for October and November).
For all of these months, the 2 m temperature is much lower
for cloudless than for cloudy profiles. Indeed, the difference
between the medians is of 8 ◦C for the autumn months and
around 4–7 ◦C in the spring (Table 3). This difference is
probably not due solely to radiative processes, as cloudy sit-
uations in the Arctic winter are also associated with the pas-
sage of storms, which bring warm, moist air with them. How-
ever, as seen in Sect. 4.3, IAOOS-measured CODs are larger
in October/November than April. Since emissivity increases
with optical depth, this supports a larger surface warming in
autumn than in spring. The months with the lowest median
temperature difference between cloudy and cloudless profiles
are June, July and August. In fact, the temperature distribu-
tions are statistically indistinguishable in these months from
the relatively few measurements we have access to here. In
particular, there is no month in which cloudless profiles are
warmer than cloudy profiles, even though clouds are known
to exert negative radiative forcing from late June to early July.

As noted before, clouds are naturally not the only fac-
tor impacting surface temperatures or even the downwards
longwave radiative flux. Large-scale circulation is also im-
portant: for example, high geopotential at 200 hPa is linked
to a warming of the troposphere through subsidence, which

increases the longwave radiative flux received at the surface
(Ding et al., 2017). It is therefore important to check that
cloudy and cloudless lidar profiles do not sample different
surface pressures. The IAOOS buoys were equipped with
barometers as well as temperature sensors. It appears that
surface pressures for cloudy and cloudless profiles are not
different at a statistically significant level, with the exception
of August and November. In both of these months, the lidar
profiles that contain clouds appear to coincide with markedly
higher surface pressures than those that do not contain clouds
(+12 hPa, Mann–Whitney test p values< 0.005). As surface
temperatures in the two groups differ strongly in November
but not in August, however, surface pressure does not appear
to be a confounding factor for surface temperature and cloud
occurrence.

In the following sections, we look at the summer surface
radiative balance in order to gain a better understanding of
the mechanisms behind this seasonal variation in tempera-
ture difference between cloudy and cloudless profiles. First,
the link between the net surface longwave flux and the pres-
ence of clouds is investigated (Sect. 5.2.1) from compared N-
ICE and IAOOS measurements. Then, the influence of other
factors such as solar zenith angle, temperature and COD on
downwards shortwave and longwave fluxes during the N-
ICE2015 April to June period is explored (Sect. 5.3). Lastly,
the discussion of the net cloud radiative forcing at the surface
is extended to the months of July and August using a simple
parameterisation (Sect. 5.4).

5.2 Influence of the presence of clouds on the surface
net longwave radiative flux

5.2.1 Identification of two summer longwave radiative
modes from IAOOS and N-ICE data

The 2 m temperature difference between cloudy and cloud-
less autumn/winter profiles exposed in Sect. 5.1 is consis-
tent with previous studies. Indeed, it is now well attested that
the Arctic climate exhibits two distinct states during the win-
ter, which are distinguished through the surface net longwave
flux (netLW) values. The bimodality of netLW was first ob-
served during the SHEBA measurement campaign over the
January–February 1998 period (Stramler et al., 2011) and
has since been confirmed Arctic-wide by satellite observa-
tions (Cesana et al., 2012). The “radiatively clear” mode
(netLW<−30 Wm−2) is associated with strong radiative
cooling, high pressures and low temperatures. Clouds may
be present but are optically thin and mainly composed of
ice. The “opaquely cloudy” mode is characterised by low
pressures and relatively higher temperatures, and it is often
associated with so-called “moisture and temperature intru-
sions” from the mid-latitudes (Woods et al., 2013). Clouds
are then liquid or mixed phase and optically thick. These in-
trusions are one of the main drivers of interannual variability
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of netLW, with a contribution of about 40 % (Woods et al.,
2013).

Here, we used radiative flux data from the N-ICE field
campaign (second period, April–June 2015) to complement
the IAOOS lidar observations (Hudson et al., 2016). Mea-
surements from the first period (January to March 2015) of
N-ICE have already been shown to confirm the wintertime
bimodality of the netLW distribution (Graham et al., 2017).
This result is replicated in Fig. 5b. A more striking point is
that the netLW distribution is also bimodal in spring to early
summer (Fig. 5c). During this period, netLW values range
from −90 to 0 Wm−2. The most predominant netLW mode,
containing around 80 % of data points, is centred around
−11 Wm−2, while the other is centred around −72 Wm−2.
As a IAOOS buoy drifted near the main ice camp during
April–June 2015, the IAOOS profiles were used to determine
whether the sky was cloudless or cloudy at a given moment.
The comparison with netLW measurements is represented in
Fig. 5a. Low netLW values (<−60 Wm−2) are associated
with IAOOS profiles that are cloudless at least up to ≈ 5 km,
which is the maximum range of the lidar. Meanwhile, pro-
files containing at least one low-level cloud (grey lines) cor-
responded to netLW values larger than −20 Wm−2.

This shows that the observed low netLW mode corre-
sponds to a cloudless state and the high netLW mode to
a cloudy state. By analogy with the previously established
winter radiative states, we name the spring/summer low-
netLW mode “radiatively clear” and the high-netLW mode
“opaquely cloudy”. However, these two modes differ from
their winter analogues in several ways. Firstly, the netLW
mode values are lower than in the winter. Indeed, both the
downwards and upwards components of the longwave flux
(LWd and LWu) increase from winter to summer. However,
LWu increases more than LWd in both modes, causing a
shift to lower netLW values. Secondly, the opaquely cloudy
mode is much more frequent in spring/summer than in the
winter, representing a large majority of cases. This is co-
herent with the fact that cloud frequency is much higher
in spring/summer than in winter, with a transition in April
(Sect. 4.1). Thirdly, the difference between the two states is
≈ 60 Wm−2, which is much larger than in the winter. This
implies that clouds have a larger longwave warming effect
in the spring/summer than in the winter, probably linked to
larger liquid contents and higher cloud temperatures in this
season.

5.2.2 Representation of the two modes in the ERA5
reanalyses

The two atmospheric winter states (radiatively clear and
opaquely cloudy) are not well reproduced by models (Ce-
sana et al., 2012; Pithan and Mauritsen, 2014; Graham et al.,
2017). In fact, it has been suggested that representing the bi-
modality of the netLW, pressure and temperature distribu-
tions in the wintertime is a key quality criterion for models.

ERA-Interim and its successor, ERA5, are among those that
partially achieve this (Graham et al., 2017). This is visible
in Fig. 5d. The opaquely cloudy state lies on the 1 : 1 line
and is therefore well represented. However, the radiatively
clear netLW values are underestimated by about 15 Wm−2.
This is mainly due to an error in the upwards component
of the longwave flux. Indeed, ERA5 overestimates the clear
mode 2 m temperature by about 5 K; its measured value is
Tmeas =−32 ◦C (Graham et al., 2017), while the ERA5 clear
mode temperature is TERA5 =−27 ◦C. This leads to an error
on the longwave upwards flux at the surface (LWu) of

1(LWu)= 4εσ · (TERA5− Tmeas) · (Tmeas+ 273.15)3

≈ 15.6Wm−2, (5)

with ε the surface emissivity, which is assumed to be 0.99
(Walden et al., 2017). The result of Eq. (5) is in line with
the observed netLW error. It should be noted that this overes-
timation of near-surface temperatures in clear, stable winter
conditions, leading to an underestimation of netLW, is a fea-
ture shared by the six reanalyses evaluated by Graham et al.
(2019) using the N-ICE campaign data.

In the spring/summer period, Graham et al. (2019) further
note that ERA5 is the least biased of the six evaluated re-
analyses with regards to netLW but has the worst correlation
coefficient (R = 0.15). Indeed, we find that ERA5 fails to
represent the two spring/summer netLW modes. The ERA5
netLW distribution is not bimodal (Fig. 5c) and does not align
with the measurements (Fig. 5e). Three zones have been out-
lined on Fig. 5e to aid with the following discussion of the
ERA5 spring/summer netLW error. Zone OC corresponds to
measured opaquely cloudy values over all spring/summer.
The opaquely cloudy mode is somewhat reproduced by
ERA5 (yellow dots denoting a peak in the calculated Gaus-
sian kernel density), although its values are underestimated
by 11 Wm−2 on average. The two other boxes correspond
to measured radiatively clear values from April/May (RC1)
and June (RC2) respectively. June values are well reproduced
by ERA5. However, ERA5 vastly overestimates radiatively
clear netLW in April and May: there is a 40 Wm−2 differ-
ence with measurements in these months (Fig. 5e, RC1).

The difference in ERA5 netLW values between radiatively
clear April/May (RC1) and June (RC2) points is due to the
downwards component of the longwave flux (LWd). ERA5
LWd is fairly close to measured values in RC2 but is over-
estimated by ≈ 53 Wm−2 in RC1. This is partly compen-
sated for by a 14 Wm−2 error on LWu in April/May, similar
to what is observed during the winter. Ultimately, the over-
estimation of LWd in RC1 is due to a faulty representation
of cloud fraction in April/May. The ERA5 mean low cloud
cover in RC1 is 0.96, even though measurements indicate a
radiatively clear, and therefore cloudless, situation. On the
other hand, mean low cloud cover in RC2 is 0.06: ERA5 has
correctly identified that the sky was cloudless.
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Figure 5. (a) Time series of surface net longwave measurements during the N-ICE field experiment (second period, April–June 2015). The
vertical lines indicate the time of IAOOS lidar profiles, with red lines corresponding to cloudless profiles. (b, c) Histogram of the measured
(filled line) and ERA5 (dashed line) net longwave flux during the N-ICE winter (b) and spring/summer (c) campaign periods. (d, e) Hourly
ERA5 vs. measured net longwave during the N-ICE winter (d) and spring/summer (e) campaign periods, with the red dashed line indicating
the 1 : 1 line. The colour corresponds to point density as calculated by a Gaussian kernel. For panel (e), three zones have been outlined. Zone
“OC” contains points belonging to the opaquely cloudy mode of the measured netLW distribution. Zones “RC1” and “RC2” contain points
belonging the radiatively clear mode of the distribution in April and May (RC1) and June (RC2).

In conclusion ERA5 overestimated low cloud cover in
April and May but not June, leading to the observed errors
in netLW. More investigation is required as to the ultimate
source of this error.

5.3 Variability of cloud impacts on the downwards
radiative fluxes during N-ICE2015

In the Arctic summer, clouds impact the surface radiative
budget in two competing ways: they have a longwave warm-
ing effect and a shortwave cooling effect. In Sect. 5.2.1, the
N-ICE2015 April–June netLW distribution was shown to be
bimodal, with the first mode corresponding to the presence of
clouds in the IAOOS profiles and the second to their absence.
However, factors other than the absence or presence of clouds

may impact the surface radiative fluxes, both shortwave and
longwave. In this section, the influence of variables such as
the solar zenith angle, COD and surface temperature on the
downwards fluxes (both longwave and shortwave) from the
N-ICE2015 April–June period is explored, and parameteri-
sations of these fluxes are introduced.

The longwave effect depends on cloud temperature and
phase. Warm, liquid-containing clouds are optically thicker
and have much more radiative impact than cold, ice-
containing clouds (Shupe and Intrieri, 2003). This is most
likely the reason behind the greater difference between
netLW modes observed in the spring/summer (≈ 60 Wm−2)
N-ICE measurement period as compared to the winter
(≈ 40 Wm−2). The shortwave radiative forcing depends on
cloud characteristics as optically thick clouds have higher
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albedos. It also depends on the solar zenith angle θ and, to
a lesser extent, the surface albedo α, due to reflections be-
tween the bright surface and the clouds (Shupe and Intrieri,
2003).

As shown in Sect. 5.2.1, netLW values can be used to
discriminate between radiatively clear and opaquely cloudy
instants. The downwards longwave (LWd) and shortwave
(SWd) flux components in these two modes are then com-
pared in order to evaluate the impact of clouds on the surface.
We will use the following simple estimates of LWd and SWd
as a complement to the N-ICE flux measurements (Hudson
et al., 2016).

– Schematically, the atmosphere can be seen as a cloud
layer with emissivity εc overlying a cloudless atmo-
spheric layer with emissivity ε0. If both layers are emit-
ting at temperature T2 m, this yields the following ex-
pression for LWd:

LWd= [ε0+ εc(1− ε0)] · σ · T
4

2 m. (6)

The cloud emissivity can simply be expressed as εc =

1− e−τLW with τLW the longwave COD. Several sim-
ple parameterisations exist for ε0; here, we choose ε0 =

0.83− 0.18 · 10−0.067e0 , with e0 the near-surface water
vapour pressure, which was fitted from summer data at
Sodankylä, Finland (Niemelä et al., 2001). This shows
good correspondence to the N-ICE clear mode data
(Fig. 6a). In fact, Eq. (6) corresponds to a model in-
troduced by Schmetz et al. (1986) under two simplify-
ing assumptions: first that the cloud cover is equal to 1,
which is reasonable in the cloudy mode; and second that
the cloud base and 2 m temperatures are approximately
equal. This is justified by cross comparison of the N-
ICE (second period) radiosonde data with the IAOOS li-
dar profiles: the overwhelming majority of lowest layer
clouds have a base beneath 120 m, and the median dif-
ference between surface and 100 m temperature in the
radiosonde profiles is only 1.3 ◦C (with 90 % of values
falling in the range 0.6–2 ◦C).

– SWd can be calculated from the downwards shortwave
flux in the absence of clouds F0 and the cloud correction
or cloud broadband transmittance factor Tc:

SWd= F0(θ) · Tc(θ,τSW,α). (7)

F0 depends on atmospheric gas and aerosol content
and is usually parameterised to fit to local data (Reno
et al., 2012; Kambezidis et al., 2017). Here, the fit to
N-ICE clear mode data is shown on Fig. 6b (filled black
line). Tc has been modelled in numerous ways, the sim-
plest depending solely on cloud cover (Niemelä et al.,
2001), while more complicated expressions have been
derived from the output of radiative transfer models.
Here we used the parameterisation of Fitzpatrick (Fitz-
patrick et al., 2003), which assumes a cloud cover of

1 and depends on the solar zenith angle θ , the surface
albedo α, and the shortwave COD τSW. We chose to
use a fixed value of α = 0.8, as the measured albedo
over the N-ICE second period varied from 0.75–0.84,
and the model performs poorly for albedos above 0.83
(Fitzpatrick et al., 2003).

Downwards longwave radiative flux increased with near-
surface temperature T2 m, and downwards shortwave flux
decreased with θ in both radiatively clear and opaquely
cloudy modes during the N-ICE April–June measurement
period (Fig. 6). This evolution is well reproduced by Eqs. (6)
and (7). Furthermore, there is a marked difference in down-
wards flux between points identified as radiatively clear and
opaquely cloudy for both the longwave and shortwave com-
ponents. In accordance with a cloud longwave warming ef-
fect, radiatively clear LWd values are uniformly lower than
the opaquely cloudy values for each T2 m (Fig. 6a). As netLW
is the quantity used to discriminate between clear and cloudy
points, this is expected. On the other hand, radiatively clear
SWd values are higher than opaquely cloudy SWd values for
each θ (Fig. 6b). This corresponds to the shortwave albedo
effect, i.e. clouds reflect solar radiation back to space. The
magnitude of this shortwave cloud albedo effect is variable,
even for a fixed solar zenith angle. As a first-order approxi-
mation, this variation is due to the cloud optical properties as
the albedo varied little over the measurement period. Equa-
tion (7) reproduces the spread of observed values for τSW
between 1.7 and 28.2, a range which is coherent with to-
tal column COD values from previous studies (Sect. 4.3).
In contrast, the longwave warming effect (i.e. the difference
between the dashed/dotted and solid lines in Fig. 6a) varies
little either as a factor of T2 m or τLW and remains close to
60 Wm−2.

COD variations therefore have a non-negligible impact on
the surface radiative balance. For θ = 60◦, for example, there
is an approximately 200 Wm−2 difference in SWd between
the optically thinnest and thickest clouds. This translates into
a total shortwave cloud forcing that ranges between −20
and −60 Wm−2, assuming an albedo of 0.8 (typical of the
N-ICE campaign April–June period). This range is signifi-
cant when it is contrasted to the typical longwave forcing
of ≈ 60 Wm−2: even for θ = 60◦, only the optically thickest
clouds could contribute to cool the surface during the April–
June N-ICE2015 campaign period. Most clouds continued to
warm the surface. This is explored in more depth in Sect. 5.4.

5.4 Beyond N-ICE2015: estimating the summer cloud
net radiative forcing at the surface

The parameterisations introduced in Sect. 5.3 appear to work
well when confronted with N-ICE radiative flux data: for
CODs between 1.8 and 27.8, Eq. (7) reproduces the observed
spread of downwards shortwave flux values at each zenith an-
gle (Fig. 6). They can therefore be used to study the cloud net
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Figure 6. (a) Longwave downwards radiative flux with near-surface (2 m) temperature as measured during the spring/summer period of the
N-ICE field campaign. Dark grey points correspond to values for which netLW<−50 Wm−2 (radiatively clear mode), while for light grey
points netLW>−20 Wm−2 (opaquely cloudy mode). The filled line correspond to the results of a simple parameterisation of LWd (Eq. 6)
in the absence of clouds, while the dashed lines represent the results of the parameterisation for τLW = 1.5 and τLW = 4.1. (b) Same as
panel (a) but for shortwave downwards radiative flux vs. solar zenith angle. The dashed lines are the results of Eq. (7) for τSW = 1.7 and
τSW = 28.2. For both panels, points are 30 min averages of measurements.

radiative forcing at the surface (netCF) and its dependence on
solar zenith angle, albedo, and cloud optical depth. netCF is
calculated according to the following equations:

CFSW = (1−α) ·F0(θ) · (Tc(θ,τSW,α)− 1)

CFLW ' 60Wm−2

netCF= CFSW+CFLW, (8)

with CFSW the cloud shortwave radiative forcing and CFLW
the cloud longwave radiative forcing. These are counted as
positive if they contribute to warm the surface and negative
if they contribute to cool it. In practice, CFLW is positive and
CFSW is negative. Because CFLW appears to depend little on
surface temperature (Sect. 5.3), it will be considered con-
stant. Tc and F0 are the cloud broadband shortwave transmis-
sion and the clear-sky downwards shortwave radiative flux
respectively, which are calculated as in Sect. 5.3.

The output of Eq. (8) is shown in Fig. 7a–c for varying val-
ues of the surface albedo α and the cloud shortwave optical
depth τSW for zenith angle values θ = 60◦, 70◦ and 80◦. For
each angle, the evolution is the same: netCF increases with
α and decreases with τSW. Since CFLW is considered to be
constant, this is a shortwave effect. Optically thick clouds re-
flect more shortwave radiation than optically thin clouds, and
the magnitude of this shortwave radiative cooling is larger
over low-albedo surfaces. Indeed, since high-albedo sea ice
reflects most of the incoming radiation, clouds have a lower
absolute impact on the radiative balance over these surfaces.
The solar zenith angle affects netCF in a similar fashion.
For given values of α and τSW, netCF increases with θ . The
red line in Fig. 7a–c represents the 0 Wm−2 iso-contour and
therefore delimits the regions of the (τSW,α) plane in which
clouds have a total net radiative cooling or warming effect.
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The higher the solar zenith angle, the smaller the region of
net radiative cooling.

Equation (8) can also be used to estimate a summer cycle
of netCF beyond the end of the N-ICE campaign period. In
order to do that, values of θ and α must be chosen. While θ
is easily calculated for a given date and location (here 82◦ N,
14◦W, which is the approximate position of the N-ICE ice
camp), α must be parameterised. We chose the four-level pa-
rameterisation for multiyear sea ice used in the NCAR Cli-
mate System Model (Weatherly et al., 1998), which has been
shown to agree well with SHEBA data (Perovich, 2002). In
this model, cold snow is considered to have an albedo of
0.82, melting snow of 0.75, melting ice of 0.5 and cold ice of
0.65. The transition between different surface types is natu-
rally dependent on the specific location and year, but an ap-
proximate cycle can be constructed. Here the surface is set to
be melting snow up to 21 June, melting ice from 21 June to
15 August and cold ice from 15 August onwards. Indeed, the
measured albedo was 0.74 (corresponding to melting snow)
at the end of the N-ICE2015 campaign, i.e. on 19 June 2015.

The results of this calculation are shown in Fig. 7d. Up to
21 June 2015, only the optically thickest clouds (τSW = 26)
have a netCF which approaches zero, while optically thin
clouds still contribute to warm the surface. This is in ac-
cordance with the N-ICE2015 measurements (Sect. 5.3). As
the surface transitions from melting snow to melting ice on
21 June, the netCF increases abruptly. This shows the im-
portant impact of α on the net cloud radiative forcing. How-
ever, τSW is almost as large a source of variability. The
netCF for optically thin clouds (τSW = 2) remains positive;
i.e. they continue to warm the surface, while optically thick
clouds (τLW = 26) have a strong net surface cooling effect
of −80 Wm−2. The netCF increases with the θ , and netCF
values become positive for all τSW values with the surface
transition to cold ice on 15 August.

This approximate calculation of summer netCF exhibits
negative values from the end of June to early August. This
is coherent with the previous studies in the central Arctic
Ocean, which showed that clouds exerted a cooling effect
(i.e. negative radiative forcing) on the surface from the end of
June to July (Shupe et al., 2006). It is also coherent with the
observation that during IAOOS, surface temperatures were
lower in the absence of clouds for spring and autumn months
but not during the summer. However, netCF in these months
also appears to depend strongly both on the surface and cloud
type. Optically thin clouds may continue to warm the surface
throughout the summer while thick, liquid water clouds will
have a strong surface cooling effect. In considering the effect
of clouds on the surface radiative balance during the summer,
it is therefore important to have an accurate estimation of
COD and surface albedo. This strong variability in summer
netCF may also contribute to explain that the 2 m temperature
of cloudless profiles during IAOOS was not different at a sta-
tistically significant level from that of cloudy profiles in June,
July and August (Sect. 5.1). Indeed, if summer netCF values

over the central Arctic Ocean were uniformly negative, for
all clouds, the surface should be observed to be colder in the
presence than in the absence of clouds.

6 Conclusions

The IAOOS field campaign (2014–2019) consisted in the de-
ployment of instrumented buoys in the Arctic sea ice. In this
study, the whole IAOOS lidar dataset was treated and anal-
ysed. This included correcting for window frost as outlined
in Mariage (2015) and deconvoluting the signal to reduce the
effects of receiver saturation in bright conditions. An algo-
rithm was implemented to detect cloud layers and calculate
their optical depth, either directly when applicable or through
the IAB by assuming a constant lidar ratio. Surface radia-
tive flux data from the N-ICE campaign, during which four
IAOOS buoys were deployed, and from ERA5 reanalyses
were also exploited.

The low number of profiles in some months causes some
uncertainty on specific monthly cloud properties. However,
the results show statistically significant differences in cloud
cover and optical and geometrical properties of clouds be-
tween the summer and April, November and December.
Low cloud cover (i.e. with a base beneath 2 km) is found
to be 76 % averaged over all months of the campaign.
Monthly cloud frequency is minimum in April and Novem-
ber/December and over 85 % from May–October, with two
small maxima in June and October. First-layer clouds are ge-
ometrically thickest in October and thinnest in the summer.
This is likely linked to moisture intrusions from the Atlantic
in early autumn. Lastly, first-layer cloud bases are found to
be extremely low in all seasons: under 120 m in a vast major-
ity of cases.

The IAOOS lidar detects multiple cloud layers at much
lower rates than other instruments, because the first cloud
layer usually dampens the signal completely. Total cloud op-
tical and geometrical thicknesses from previous campaigns
and satellite data are much larger than those measured by
IAOOS, especially in the summer when multilayered clouds
are known to be most common. The single-layer COD as
measured by IAOOS is highest in October.

The surface impact of Arctic clouds is also seasonally vari-
able. In October and November, clouds warm the surface:
2 m temperatures associated with cloudless profiles are up to
8 K colder than those associated with profiles containing at
least one low cloud. However, there is no statistically signif-
icant difference in surface temperatures between cloudless
and cloudy profiles in the summer.

Data from the IAOOS lidar deployed during the N-ICE
campaign allowed us to identify two modes in the N-ICE
measured netLW distribution in late spring/summer. The ra-
diatively clear netLW mode, centred around −72 Wm−2, is
associated with cloudless IAOOS lidar profiles, while the
opaquely cloudy mode is centred around −11 Wm−2 and is
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Figure 7. (a–c) Iso-contours of net surface radiative forcing as a function of albedo and cloud shortwave optical depth for three different
solar zenith angles (Eq. 8). Dashed black lines correspond to negative iso-contours, solid black lines to positive iso-contours and red lines to
the 0 Wm−2 iso-contour. (d) Calculated evolution of the net surface cloud radiative forcing, for three different CODs (dotted line: τSW = 2;
dash-dotted line: τSW = 10; dashed line: τSW = 26), over the 2015 summer period. The summer variation of the albedo is constructed based
on values from the NCAR Climate System Model (Weatherly et al., 1998), and the solar zenith angle values are daily averages at 82◦ N,
14◦W (approximate position of the N-ICE ice camp).

linked to cloudy lidar profiles. These are analogous to the
well-known winter radiative modes, except that the opaquely
cloudy mode is much more prevalent (over 80 %) and that
the two modes have a 60 Wm−2 difference, compared to
40 Wm−2 in the winter. Clouds exert a larger longwave
warming in the summer than in the winter, probably linked to
the higher proportion of liquid water in clouds. Clouds in the
spring/summer also have a shortwave cooling effect. This is
shown to depend not only on solar zenith angle and albedo,
but also strongly on COD.

During the N-ICE2015 April to June period, clouds were
observed to exert a positive radiative forcing on the surface,
with the cloud shortwave albedo effect cancelling out its
longwave warming effect only for very large optical depths at
zenith angles > 60◦. Over the full central Arctic Ocean sum-
mer cycle, it is estimated that optically thick clouds cause a
negative radiative forcing of −80 Wm−2 but that optically
thin clouds continue to have a warming effect. It is therefore
important to have a good estimation of whole-column COD
in order to calculate the radiative effect of clouds on the sur-
face. The compensation of the cloud longwave warming ef-
fect by the shortwave cooling effect explains that there is no
clear difference in near-surface temperature between IAOOS
cloudless and cloudy profiles during the summer months.

The measured surface radiative fluxes were compared to
the output of the ERA5 reanalyses. ERA5 does not accurately
reproduce the observed bimodality of the spring/summer
netLW distribution. Indeed, it does not correctly identify
cloudless periods during April and May (but not June). This
issue should be investigated.

Over the period 2014–2019, the IAOOS buoys have de-
livered 1777 lidar profiles. Despite technical difficulties with
both the lidar and the data analysis, this campaign has of-
fered a medium-term three-season picture of the Arctic lower
troposphere above 82◦ N from ground-based measurement,
which is an important complement to satellite data. These
results help to broaden our understanding of the Arctic low
cloud cover and its impacts on the surface. However, more
measurements would be needed to further characterise Arctic
clouds. In particular, combined radiometer–radar–lidar mea-
surements would be crucial to allow the study of radiative
impacts to be generalised to late summer and especially au-
tumn, when clouds are optically thick and frequent.
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Appendix A: Determination of a 90 % confidence
interval for cloud occurrence frequency

Let us suppose that the event “presence of a cloud with base
< 2 km in a given IAOOS lidar profile” follows a Bernoulli
distribution of parameter p, with p the cloud frequency. This
seems plausible given that the profiles are at least 6 h apart,
and the events can therefore be considered to be independent.
We aim to determine a confidence interval for p based on

1. previous studies of clouds in the Arctic, which have
shown that p is generally around 0.7; and

2. the IAOOS measurements: for each month m, there are
nm profiles of which km contains at least one cloud with
base < 2 km.

From (1), an a priori probability distribution for p can be
conceived: for example N (0.7,0.15), normalised over the
[0,1] interval. Using the Bayes formula, the IAOOS mea-
surements can then be taken into account to calculate an up-
dated Pr(p|meas) for each month m:

Pr(p|meas)=
Pr(meas|p) ·Pr(p)

Pr(meas)
, (A1)

with

Pr(meas|p)= B(km;nm,p)

Pr(meas)=
∑
pi

Pr(meas|pi) ·Pr(pi)

=

∑
pi

B(km;nm,pi) ·Pr(pi), (A2)

where pi represents the possible values of the parameter p,
and B(k;n,p)=

(
n
k

)
pk(1−p)n−k is the binomial probabil-

ity mass function with parameters n and p. The results of this
calculation are shown in Fig. A1, which synthesises the re-
sults of Sect. 4.1: the probability distributions for the months
of May–October show significant overlap. However, they do
not overlap at all with the November, December, March and
April distributions, although these are much wider because
of the lower number of measurements.

The 5th and 95th percentiles of the distribution of p de-
termined through Eq. (A1) can then be calculated to yield a
90% confidence interval.

Figure A1. Pr(p|meas) as a function of the cloud occurrence fre-
quency p. The dashed black line corresponds to the a priori distribu-
tion. The updated distributions for each month (Eq. A1) are shown
in colour.
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Appendix B: Contribution of the lowest cloud layer to
the total column COD

Cloud optical depths measured by the IAOOS lidar corre-
spond only to the lowest cloud layer and not to the total col-
umn (Sect. 4.3). Here we attempt to evaluate the contribution
of this lowest layer to the total column COD. This would
allow better comparison of IAOOS CODs to existing satel-
lite statistics. Furthermore, as seen in Sect. 5.3, total column
shortwave COD is the quantity that most impacts the sur-
face radiative balance. Equations (6) and (7) were inverted
using a numerical equation solver to calculate the broadband
shortwave and longwave CODs τSW and τLW from the N-ICE
SWd, LWd and temperature values at the time of the IAOOS
profiles. Albedo was taken as fixed and equal to 0.8 in this
calculation. The measurement errors of SWd, LWd and tem-
perature (Sect. 2.2.1) as well as the choice of a fixed albedo
create an error on τSW and τLW which is estimated through
a Monte Carlo method. This error is no more than 19 % for
τSW and 23 % for τLW (Table B1).

Table B1. Statistical range (5th, 50th and 95th percentiles) of three
different estimations of optical depth: τLW (from the downwards
longwave flux), τSW (from the downwards shortwave flux) and τ808
(calculated from the IAOOS lidar profiles). For a robust compari-
son, τLW and τSW values considered here are interpolated on the
IAOOS profile times. The percentiles are therefore established over
54 data points which correspond to the 54 IAOOS profiles. Individ-
ual errors carried over from measurement errors on LWd, SWd and
T2 m are in the range 8 %–19 % (mean 11 %) for τSW and 8–23 %
(mean 13 %) for τLW.

Optical depth 5th percentile Median 95th percentile

τLW 1.4 2 2.5
τSW 1.2 7.8 20.2
τ808 0.5 0.9 1.9

In analysing the results, it must be taken into account
that the longwave optical depth of any single cloud layer
is smaller than its shortwave optical depth. The shortwave-
to-longwave optical depth ratio depends on the microphys-
ical properties of clouds (droplet phase, radius), and a pre-
cise determination would require the help of radiative trans-
fer models. In this manner, Garnier et al. (2015) calculate
τ532 nm/τ12 µm ≈ 1.8 for ice particles with an effective diame-
ter between 5 and 60 µm. We use this value as a rule of thumb
to enable comparison between τLW, τSW and the IAOOS op-
tical depths τ808.

A total of 90 % of τLW values obtained in this manner
fall in the 1.4–2.5 range (Table B1). It must be noted that
these τLW values do not capture the optical depth of the
whole column. Indeed, because cloud emissivity εc tends to
1 exponentially, high τLW values are likely to be underesti-
mated. Instead, this τLW must be seen as the part of the cloud
cover whose emitted radiation reaches the surface. Inverting
Eq. (7) yields shortwave optical depths between 1.2 and 20.2,
with a median of 7.8. This range shows much higher values
than that of τLW, even when accounting for the longwave-
to-shortwave ratio. This is because the shortwave radiative
flux is impacted by the whole cloud column and not only the
first few layers. IAOOS optical depths (τ808 in Table B1) are
much lower than both τLW and τSW, with 90 % of values be-
tween 0.5 and 1.9. In fact, the ratio τ808/(1.8 · τLW) has a
median value of 0.22 (range 0.15–0.43), while τ808/τSW has
a median value of 0.11 (range 0.03–0.68). This means that
first-layer clouds measured by IAOOS contribute around a
quarter of the optical depth of clouds which have a longwave
radiative impact on the surface and 11 % of the total cloud
column.

While this value is low, it is coherent with the observa-
tion that SHEBA-measured total cloud thicknesses are up to
7 times higher than the IAOOS-measured first layer thick-
ness (Sect. 4.2). Regardless of potential underestimations in
IAOOS measurements, it strongly suggests that further cloud
layers must be present at higher altitudes. Some of these, pos-
sibly cirrus clouds, would then have a shortwave but no long-
wave impact on the surface. Furthermore, visual inspection
of the relative humidity (RH) and temperature profiles ob-
tained through radiosonde measurements during N-ICE sup-
ports the idea that the IAOOS lidar correctly identifies the
first cloud layer and probably misses higher cloud layers. In-
deed, strong temperature inversion and diminution of RH are
most often present at the lidar-identified cloud top. Further
inversions and high RH values are often present, marking
higher-altitude cloud layers that are invisible to the lidar.
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