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Abstract: Surface skin temperature (Tskin) derived from infrared remote sensors mounted on board
satellites provides a continuous observation of Earth’s surface and allows the monitoring of global
temperature change relevant to climate trends. In this study, we present a fast retrieval method
for retrieving Tskin based on an artificial neural network (ANN) from a set of spectral channels
selected from the Infrared Atmospheric Sounding Interferometer (IASI) using the information
theory/entropy reduction technique. Our IASI Tskin product (i.e., TANN) is evaluated against Tskin

from EUMETSAT Level 2 product, ECMWF Reanalysis (ERA5), SEVIRI observations, and ground
in situ measurements. Good correlations between IASI TANN and the Tskin from other datasets are
shown by their statistic data, such as a mean bias and standard deviation (i.e., [bias, STDE]) of
[0.55, 1.86 ◦C], [0.19, 2.10 ◦C], [−1.5, 3.56 ◦C], from EUMETSAT IASI L-2 product, ERA5, and SEVIRI.
When compared to ground station data, we found that all datasets did not achieve the needed accuracy
at several months of the year, and better results were achieved at nighttime. Therefore, comparison
with ground-based measurements should be done with care to achieve the ±2 ◦C accuracy needed,
by choosing, for example, a validation site near the station location. On average, this accuracy is
achieved, in particular at night, leading to the ability to construct a robust Tskin dataset suitable for
Tskin long-term spatio-temporal variability and trend analysis.

Keywords: skin temperature; IASI; neural networks; entropy reduction; ERA5; EUMETSAT; SURFRAD

Remote Sens. 2020, 12, 2777; doi:10.3390/rs12172777 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-8947-7950
https://orcid.org/0000-0003-0394-7200
https://orcid.org/0000-0002-9426-866X
https://orcid.org/0000-0002-8805-2141
https://orcid.org/0000-0003-3214-5266
https://orcid.org/0000-0001-5836-5430
https://orcid.org/0000-0002-0116-2496
https://orcid.org/0000-0003-0214-6786
https://orcid.org/0000-0003-1663-7009
http://dx.doi.org/10.3390/rs12172777
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/17/2777?type=check_update&version=2


Remote Sens. 2020, 12, 2777 2 of 22

1. Introduction

Land surface temperature, radiometric temperature, or as used hereafter, skin temperature, Tskin,
depends on the energy fluxes between the surface and the atmosphere. It is an important factor for
studying the Earth’s energy balance, convection at the surface, monitoring droughts, and in numerical
weather prediction [1–3]. Although in situ observations play a major role in measuring relevant
climate change indicators, local measurements are sparse and unevenly distributed. Global view
observations are now routinely available from remote sensors on satellites, providing data from
which climate variables such as Tskin can be derived using appropriate retrieval methods. The World
Meteorological Organization (WMO) Global Climate Observing System (GCOS) program aims at
identifying requirements for the global climate monitoring system. It recommends 54 key variables
(https://gcos.wmo.int/en/essential-climate-variables/), called Essential Climate Variables (ECVs), as the
atmospheric, land, and ocean components of this monitoring system. Near-surface temperature and
skin temperature are both ECVs. In the thermal infrared spectral range, satellites do not measure
the well-known thermodynamic near-surface air temperatures (T2m); instead, they measure the skin
temperature. It is called “skin” temperature since it corresponds to the radiation emitted from depths
less than or equal to the penetration depth at a given wavelength [4], which can be as small as
10–20 micrometers at the ocean surface [5]. The relationship between Tskin and T2m is complex:
differences between Tskin and T2m can reach several to ten or more degrees under cloud-free, low wind
speed conditions, and is usually smaller under cloudy conditions or when solar insolation is low [6–8].

Satellite retrievals of skin temperatures are available from a variety of polar-orbiting and
geostationary platforms carrying microwave and infrared sensors, such as the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation [9],
the Advanced Very High Resolution Radiometer (AVHRR) sensors onboard the different NOAA polar
orbiting platforms and more recently on the suite of Metop satellites [10], the Moderate Resolution
Imaging Spectroradiometer (MODIS) on board of the Terra and Aqua satellites [11], the Atmospheric
InfraRed Sounder (AIRS) [12] on board the Aqua satellite, and from the Infrared Atmospheric Sounding
Interferometer (IASI) on board the three Metop satellites since 2006, 2012, and 2018 [13–15].

With a polar orbit, IASI on Metop revisits all points on the Earth’s surface twice a day at around
9:30 am and 9:30 pm local time. IASI is designed for numerical weather prediction, climate research,
and atmospheric composition monitoring [15–17]. It measures radiances in the thermal infrared
spectral range between 645 and 2760 cm−1, corresponding to 8461 spectral channels, every 0.25 cm−1,
with an instrument response function of 0.5 cm−1 half-width after apodization. With more than
13 years of data that are now readily available, the instrument provides more than 1.2 million radiance
spectra per day, with a footprint on the ground of 12 km diameter pixel (at nadir). IASI scenes are
reduced by around one-third when clear sky filtering (<10% cloud coverage) is applied, a necessity
for accessing information at the surface. IASI has been used for atmospheric composition sounding,
allowing near-real-time mapping of chemical species and aerosols, contributing to air traffic safety,
and improving the understanding of atmospheric transport processes [18–20].

The interest in exploiting highly spectrally resolved IASI data to study climate variability has
been previously highlighted [21–24]; preliminary Tskin trends from Metop-A IASI measurements were
presented at the SPIE conference [25]. Although the spectral signature of climate variability and Tskin

anomalies have been studied for similar instruments [26,27], relatively little has been done to generate
systematic climate-data records for surface and atmospheric parameters with IASI measurements.
The instrument is relatively new (radiances are provided since July 2007) and the climate community
is still not fully aware of its potential. It is also computationally demanding to systematically process
the large amount of data generated by the instrument. However, since IASI is planned to fly for at
least 18 years, with the three instruments built at the same time and flying in constellation, continuity
and stability are insured, and the potential of constructing a long-term climate data record is becoming
evident. In addition, it is worth noting that the long-term continuation of the program is also guaranteed,
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as the new generation of Infrared Atmospheric Sounding Interferometers (IASI-NG) [28,29] will be
launched on three successive Metop—Second Generation satellites within the 2022–2040 timeframe.

IASI data are disseminated by EUMETSAT (EUropean organization for the exploitation of
METeorological SATellites) [30]. It processes a Tskin product from the series of the Metop satellites
for day-to-day meteorological applications. This Tskin product is derived from IASI upwelling
radiances but also relies on two microwave instruments (Microwave Humidity Sounder, MHS,
and The Advanced Microwave Sounding Unit-A, AMSU-A) on board Metop, particularly for cloudy
scenes. Changes occurred with evolving versions of the processing algorithm [31,32], with the algorithm
mostly stable after 2016. The Metop-A L1C (radiance spectra) record has been reprocessed back in
time at EUMETSAT for the period 2007–2017, and is used in this work, and has been available since
late 2019 [33]. L1C data after 2017 are not reprocessed because they are assumed to be up to date.
The Level 2 series (Tskin, H2O, cloud information, etc.) has not yet been reprocessed back in time,
which complicates the construction of a homogeneous Tskin data record from IASI.

More generally, high volumes of data resulting from IASI present many challenges in data
transmission, storage, and assimilation. One of the simplest methods for reducing the data volume is
channel selection. The goal of this study is to present a fast and reliable method developed to retrieve
Tskin from radiances using a limited set of radiances from the 2019 reprocessed IASI L1C data record
in the thermal infrared in order to have a consistent and homogeneous product covering the whole
IASI sounding period. The challenge is therefore to find the optimal set of channels from which skin
temperature can be retrieved. In the following Section 2, we present an approach based on entropy
reduction [34,35] from which we deduce a set of 100 channels, which are among the most sensitive
channels to Tskin. This new IASI L1C dataset is then used to retrieve skin temperature from IASI’s
cloud-free radiances using an artificial neural network (ANN). In Section 3 we validate the product
and we conclude this paper with a discussion in Section 4 of the current challenges in the validation
and comparison of different Tskin products.

2. Data and Methods

2.1. Choice of IASI Spectral Window for Tskin Retrieval

IASI uses three detectors to fully cover the spectral range that extends from 645 to 2760 cm−1

(15.5 to 3.62 µm) with no gaps. To understand the spectral window that must be used for Tskin retrieval,
we show in Figure 1, upper panel, a typical IASI cloud-free spectra, with the corresponding Jacobian
(the sensitivity of the IASI brightness temperature to the skin temperature), as well as signal-to-noise
ratio (SNR), and radiometric noise. The recorded spectrum, with an example shown in red in the
upper panel of Figure 1, in brightness temperature units (K), exhibits signatures associated with
spectroscopic absorption/emission lines of molecules present along the optical path between the Earth’s
surface and the satellite detectors. From these spectra, geophysical data such as temperature profiles
and atmospheric concentrations of trace gases can be retrieved from the selected spectral windows.
Channels that are candidates for Tskin retrieval are therefore located in spectral windows with little
interference from other absorbing/emitting molecules, and are also those where the Tskin Jacobians
(blue line in upper panel) are the highest. These are the spectral ranges before and after the ozone band,
i.e., 800–1040 cm−1 and 1080–1150 cm−1, the small spectral window after the water vapor continuum at
~2150 cm−1 and the spectral range >2400 cm−1.
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Figure 1. Upper panel: brightness temperatures for a random cloud-free spectrum (red). On the right 
axis, skin temperature (Tskin) Jacobians in K/K (dark blue), signal-to-noise ratio (SNR) obtained for a 
variation of Tskin of 0.1 K (orange), and Infrared Atmospheric Sounding Interferometer (IASI) 
radiometric noise spectrum (grey) calculated using RTTOV (The radiative transfer model for TOVS ) 
[36]. Lower panel: Average emissivity over land (black), and sea (blue), with the corresponding 
standard deviation in shaded colors around the lines. The yellow vertical lines show the spectral 
channels used for Tskin retrievals in this study. 

The window >2400 cm−1, as well as that around ~2150 cm−1 may be contaminated by solar 
radiation during the day. In terms of SNR, the very important values of the radiometric noise at >2400 
cm−1 induce a low value of the SNR. The spectral band at ~2150 cm−1 presents a slightly weaker 
performance than the spectral ranges around the ozone absorption band. These two spectral bands 
(~2150 and >2400 cm−1) were therefore not critical for the Tskin retrieval and were discarded. 

The lower panel of Figure 1 shows the average emissivity over land (in black) and sea (in blue). 
Emissivity is needed to calculate Tskin from the radiative transfer equation, and it changes as a function 
of wavenumber, as the figure shows. We can see that on the right of the ozone band, around 1100–
1200 cm−1, the variability of the emissivity, especially over land is much more important than the 
window between 750 and 970 cm−1, where the noise is also smaller, and the SNR higher. This makes 
this spectral window the best candidate for Tskin retrieval. The yellow thin vertical lines indicate the 
location of the channels that were used in this study to retrieve skin temperature (a zoomed version 
is provided in Figure 2) and the description of the retrieval is provided in the following section. 

2.2. Channel Selection based on Entropy Reduction 

We used an iterative method where channels are selected based on their ability to reduce the 
uncertainty of retrieving temperature. It was proposed by [34,37], evaluated for IASI by [38] and 
applied by [35] to Numerical Weather Prediction (NWP). The method has been rigorously studied 

Figure 1. Upper panel: brightness temperatures for a random cloud-free spectrum (red). On the
right axis, skin temperature (Tskin) Jacobians in K/K (dark blue), signal-to-noise ratio (SNR) obtained
for a variation of Tskin of 0.1 K (orange), and Infrared Atmospheric Sounding Interferometer (IASI)
radiometric noise spectrum (grey) calculated using RTTOV (The radiative transfer model for TOVS
) [36]. Lower panel: Average emissivity over land (black), and sea (blue), with the corresponding
standard deviation in shaded colors around the lines. The yellow vertical lines show the spectral
channels used for Tskin retrievals in this study.

The window >2400 cm−1, as well as that around ~2150 cm−1 may be contaminated by solar
radiation during the day. In terms of SNR, the very important values of the radiometric noise at
>2400 cm−1 induce a low value of the SNR. The spectral band at ~2150 cm−1 presents a slightly weaker
performance than the spectral ranges around the ozone absorption band. These two spectral bands
(~2150 and >2400 cm−1) were therefore not critical for the Tskin retrieval and were discarded.

The lower panel of Figure 1 shows the average emissivity over land (in black) and sea (in blue).
Emissivity is needed to calculate Tskin from the radiative transfer equation, and it changes as a function
of wavenumber, as the figure shows. We can see that on the right of the ozone band, around
1100–1200 cm−1, the variability of the emissivity, especially over land is much more important than the
window between 750 and 970 cm−1, where the noise is also smaller, and the SNR higher. This makes
this spectral window the best candidate for Tskin retrieval. The yellow thin vertical lines indicate the
location of the channels that were used in this study to retrieve skin temperature (a zoomed version is
provided in Figure 2) and the description of the retrieval is provided in the following section.
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At each step, the channel that has the largest information content (measured as a reduction of 
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the information content of the previously selected channel(s). The channel selection starts with no 
channel selected, and sequentially chooses the channel with the highest information content in 
complement to the information from all the previously selected channels. 

The spectra and Jacobians used in this study were simulated using the last version of the 
Optimum Spectral Sampling (OSS) radiative transfer model [43], using the Thermodynamic Initial 
Guess Retrieval (TIGR3) database [44], and more detailed descriptions on the atmospheric profiles, 
the radiative transfer code, and the Jacobians, can be found in [45]. Here, a channel selection was only 
performed over the spectral window of Tskin retrieval, as was discussed in Section 2.1, and is shown 
in Figure 2. The IASI spectral window was divided into 100 spectral subsets and a channel selection 
was applied to each. Using this method, we selected the best 100 channels in terms of information 
content and the resulting selection is listed in Table 1 and presented in Figure 2. The figure shows 
that most of the selected channels were between 760 and 980 cm−1. However, few channels were also 
selected for wavenumbers <760 cm−1 since in this part of the spectrum, the atmospheric vertical levels 
are very correlated to one another and therefore information on the surface exists in these channels. 

 
Figure 2. The location of the 100 selected channels using the Entropy Reduction (ER) method 
displayed on an IASI spectrum, and listed in Table 1. 

Table 1. The 100 channels used for Tskin retrieval selected using the Entropy Reduction (ER) method. 
Channels are sorted from the highest to the lowest information content (top to bottom and left to 
right). 

Channel Wavenumber (cm−1) Channel Wavenumber (cm−1) Channel Wavenumber (cm−1) Channel Wavenumber (cm−1) 
1300 969.75 1038 904.25 853 858.00 682 815.25 
1282 965.25 1100 919.75 984 890.75 582 790.25 
1249 957.00 1001 895.00 862 860.25 630 802.25 
1272 962.75 1321 975.00 771 837.50 625 801.00 
1254 958.25 1209 947.00 759 834.50 574 788.25 
1294 968.25 1069 912.00 752 832.75 584 790.75 
1230 952.25 997 894.00 797 844.00 547 781.50 
1164 935.75 1070 912.25 745 831.00 551 782.50 

Figure 2. The location of the 100 selected channels using the Entropy Reduction (ER) method displayed
on an IASI spectrum, and listed in Table 1.

Table 1. The 100 channels used for Tskin retrieval selected using the Entropy Reduction (ER) method.
Channels are sorted from the highest to the lowest information content (top to bottom and left to right).

Channel Wavenumber (cm−1) Channel Wavenumber (cm−1) Channel Wavenumber (cm−1) Channel Wavenumber (cm−1)

1300 969.75 1038 904.25 853 858.00 682 815.25
1282 965.25 1100 919.75 984 890.75 582 790.25
1249 957.00 1001 895.00 862 860.25 630 802.25
1272 962.75 1321 975.00 771 837.50 625 801.00
1254 958.25 1209 947.00 759 834.50 574 788.25
1294 968.25 1069 912.00 752 832.75 584 790.75
1230 952.25 997 894.00 797 844.00 547 781.50
1164 935.75 1070 912.25 745 831.00 551 782.50
1267 961.50 921 875.00 775 838.50 565 786.00
1194 943.25 962 885.25 801 845.00 516 773.75
1179 939.50 1051 907.50 714 823.25 510 772.25
1222 950.25 940 879.75 706 821.25 593 793.00
1311 972.50 916 873.75 698 819.25 534 778.25
1086 916.25 1114 923.25 844 855.75 484 765.75
1157 934.00 950 882.25 726 826.25 472 762.75
1172 937.75 869 862.00 810 847.25 488 766.75
1142 930.25 1237 954.00 736 828.75 494 768.25
1203 945.50 926 876.25 824 850.75 466 761.25
1018 899.25 961 885.00 691 817.50 619 799.50
1141 930.00 875 863.50 669 812.00 609 797.00
1009 897.00 979 889.50 661 810.00 521 775.00
1089 917.00 889 867.00 786 841.25 454 758.25
1115 923.50 899 869.50 827 851.50 447 756.50
1025 901.00 897 869.00 642 805.25 435 753.50
1126 926.25 1052 907.75 650 807.25 429 752.00

2.2. Channel Selection based on Entropy Reduction

We used an iterative method where channels are selected based on their ability to reduce the
uncertainty of retrieving temperature. It was proposed by [34,37], evaluated for IASI by [38] and
applied by [35] to Numerical Weather Prediction (NWP). The method has been rigorously studied and
relies on evaluating the impact of the addition of single channels on a theoretical retrieval based on
a figure of merit, such as the Entropy Reduction (ER), used in this study, and defined as follows:

ER =
1
2

log2

(
BA−1

)
(1)

ER measures the probabilities of the ensemble of possible states in the retrieval, and is maximal if
all the states have an equal probability. The lower the entropy of the ensemble, the better the retrieval.
The channel that reduces this entropy emphasizes a particular state of the retrieval. Entropy reduction
is a metric derived from information theory, specifically from relative entropy, where two densities are
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compared [39]. In Equation (1), A is the analysis-error covariance matrix, and B is the background/a
priori error covariance matrix, with:

A =
(
B−1 + HTR−1H

)−1
, (2)

where H is the Jacobian matrix of Tskin and R the covariance matrix of instrumental and radiative transfer
noises. External variables such as water vapor or ozone can contaminate a given candidate Tskin channel
by absorbing in the targeted spectral range. This might affect the selection, and introduces an error that
should be added to the A matrix [40,41]. If those errors were not included in the background B matrix,
the quality of the selected channels might be artificially over-estimated. When this contaminating
effect is defined explicitly, Equation (2) is updated to:

AV−1 = B−1
V + Ht

V ·
(
R + Hν· Bν · Ht

ν

)−1
· HV, (3)

where V is the variable to be retrieved (Tskin) and ν is the external variable (e.g., ozone or water vapor).
This equation is valid by making some assumptions, in particular that no correlation between V and
ν exists and that the impact of this external variable contamination on the channel is an error with
Gaussian distribution with covariance matrix Ht

ν· Bν·Hν .
In most channel selection analyses, the errors from external variables (such as that of relative

humidity or ozone) are not taken into account in the measurement of the information content of the
candidate channel. A study [35] attempted to take into account the effects of trace gases not included in
the radiative transfer simulation by inflating the observation errors for channels that showed sensitivity
to the missing species. A more complete approach was adopted by [42], who used climatological
variability of atmospheric constituent species to model their effect on the radiances during the channel
selection process.

In this work, we explicitly considered the contamination effect in the selection process of dedicated
Tskin related-channels. This refined methodology improves the representation of contamination effects
from atmospheric species and therefore the reliability of the background error covariance matrix B.
This matrix B characterizes the quality of the a priori information and varies in space and time in
order to account for its complex state-dependence. For this work, we derived a Gaussian B matrix as:
B = Cov(x, y) at the vertical level x and y. An uncertainty of σ = 2 K was chosen for Tskin, as done
by [35]. The covariance and correlation matrices of the background errors for relative humidity and
ozone were calculated based on the widely used assumption that humidity (or ozone) error correlation
between the vertical layers is close to the actual associated humidity (or ozone) correlation. We chose
to have the covariance matrices B for humidity and ozone based on the raw humidity and ozone
correlation matrices, and an error variance (σ2 ) of 20% for humidity, and 30% for ozone on each
vertical atmospheric layer. As humidity and ozone can impact Tskin channel selection, error along the
vertical is needed for Tskin retrieval.

An iterative method [34] was used to forwardly select the most informative channels. In order
to speed up the computations, an efficient algorithm was developed assuming that the observation
errors are uncorrelated between channels. However, as the IASI radiances are apodized, and thus have
highly-correlated errors between adjacent channels, a channel is not selected if its immediate neighbor
is already chosen [35].

The iterative procedure was initialized with A0 = B, and the Jacobian H (which is constant
during the iteration) was normalized with the instrumental noise covariance matrix R, as follows:
H′ = R−1/2H.

According to [34], the updated analysis error covariance matrix at each iteration step i can be
calculated from the previous step i− 1 as follows:

Ai = Ai−1 −
(Ai−1h′)(Ai−1h′)T

1 + (Ai−1h′)Th′
(4)
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where h′ is the column vector equal to the row of H′ for the candidate channel.
The ER change between two iterations can now be written as:

∆ER =
1
2

log2

(
1 + h′TAi−1h′

)
(5)

At each step, the channel that has the largest information content (measured as a reduction of the
entropy of the corresponding Tskin retrieval when the candidate channel is used) is selected, given the
information content of the previously selected channel(s). The channel selection starts with no channel
selected, and sequentially chooses the channel with the highest information content in complement to
the information from all the previously selected channels.

The spectra and Jacobians used in this study were simulated using the last version of the Optimum
Spectral Sampling (OSS) radiative transfer model [43], using the Thermodynamic Initial Guess Retrieval
(TIGR3) database [44], and more detailed descriptions on the atmospheric profiles, the radiative transfer
code, and the Jacobians, can be found in [45]. Here, a channel selection was only performed over the
spectral window of Tskin retrieval, as was discussed in Section 2.1, and is shown in Figure 2. The IASI
spectral window was divided into 100 spectral subsets and a channel selection was applied to each.
Using this method, we selected the best 100 channels in terms of information content and the resulting
selection is listed in Table 1 and presented in Figure 2. The figure shows that most of the selected
channels were between 760 and 980 cm−1. However, few channels were also selected for wavenumbers
<760 cm−1 since in this part of the spectrum, the atmospheric vertical levels are very correlated to one
another and therefore information on the surface exists in these channels.

2.3. Artificial Neural Network for Tskin Retrievals

The artificial neural networks (ANN) method was used to approximate the complex radiative
transfer function that maps the radiances to skin temperature. The feasibility of using ANN to
Tskin retrieval has been shown, for instance, by [46] for IASI, and has also been performed to tackle
various problems in atmospheric remote sensing [47–50]. The retrieval, even if trained with the
reanalysis, does not reproduce the reanalysis; the time and spatial variations are driven by the
satellite observations [51–53]. For AIRS and AMSU, projected principal components for coefficient
compression and a neural network trained using a global training set derived from European Center
for Medium-Range Weather Forecasting (ECMWF) fields are used for retrievals of atmospheric
temperatures and water vapor [54,55].

The training dataset was constructed out of clear-sky IASI scenes (cloud cover <10%). ERA5 hourly
Tskin reanalysis product [56] of the Copernicus Climate Change Service [57] was used as the
output/target.

Clear-sky IASI observations were selected using AVHRR measurements, collocated with those of
IASI, both instruments being on Metop [58]. Level 1C (L1C) clear-sky IASI radiances were extracted for
the 100 channels Selected in Section 2.2. For the training datasets, one day (the 15th of each month) was
chosen from 2008 to 2017. From each file, 10,000 points were randomly selected (for a total of 1.2 million
scenes), and then separated between land and sea scenes. Two distinct ANN trainings were performed:
one over sea, and one over land. Both ANN trainings were done using mini-batches with a maximum
of 10,000 epochs to train. The ANN had two hidden layers with four nodes, and a network training
function that updates weight and bias values according to the Levenberg-Marquardt optimization.
For both ANNs, ERA5 skin temperature product was used as the target for the training. We provide
more information on the ERA5 reanalysis in Section 2.4. In the following, “TANN” refers to the product
developed in this study using artificial neural networks from IASI radiances.

2.3.1. Tskin Retrievals over Sea

Over sea, the input to the ANN was simply the 100 radiance channels provided in Table 1. For each
set of 100 radiances, Tskin from the ERA5 reanalysis was used as the target, co-localized in space and
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time with IASI’s observation. 3D gridded data interpolation was used. The interpolant was created
from ERA5 data (0.25◦ longitude/latitude grid and 1-h time resolution), using the “griddedInterpolant”
function of Matlab. The interpolant was then applied to time, longitude, and latitudes of IASI.
Figure 3 shows the training results when TANN was compared with TERA5 used for the training.
As expected, a good agreement was achieved, with a standard deviation of the TERA5 – TANN equal to
0.99, and a correlation coefficient ~1. The largest differences were for points located near the poles.
This was probably due to either an incorrect cloud cover detection or to partially ice-covered pixels
detected as “sea”. It was also shown that ERA5 data might underestimate winds, and overestimate
surface air temperature slightly over the poles [59]. A sea-ice mask is recommended, therefore,
when performing temperature comparison studies at high latitudes. Further validation is provided in
the following section.Remote Sens. 2020, 12, 2777 8 of 22 
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2.3.2. Skin Temperature Retrievals over Land

To retrieve skin temperature over land, we apply a similar approach to that done over sea, but we
include information on land surface emissivity. This was done to improve the ANN training in
regions where land cover variability/surface properties play an important role in determining skin
temperature. We use monthly climatological emissivities from IASI based on the work by [60,61].
The dataset is updated and includes monthly emissivities at a 0.25◦ × 0.25◦ grid globally from Metop-A,
over the period from 1st June 2007 to 31th May 2017 (10 years). Our tests (not shown here), show
that the standard deviation of emissivity reaches 0.002 (0.13 ◦C) with a global mean of ~5 × 10−4 at
926.25 cm−1 (0.03 ◦C).

For each of the scenes selected for the ANN training, we add to the 100 radiance channels the
corresponding 100 emissivities at the scene’s longitude and latitude. We train our datasets with the
spatio-temporal collocated ERA5 Tskin. Figure 4 shows the results when TANN is compared with TERA5

used for the training. Since surface properties are more various, the standard deviation over land
(TERA5–TANN = 3.26) is higher than that over sea. Correlation coefficient is close to 1. The largest
differences are for points located near the poles’ coast potentially due to pixels that are part land/part
sea, and to missed clouds.
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2.4. Datasets Used for Validation

We compared sea and land TANN datasets to the EUMETSAT L2 product, the ECMWF ERA5
reanalysis, the SEVIRI satellite retrieval, and ground observations. We describe each dataset used
briefly hereafter.

2.4.1. EUMETSAT Tskin Product

IASI temperatures (L2 data) from EUMETSAT [62] are provided for nearly all IASI observations by
deriving Tskin primarily from IASI for cloud-free scenes and using the Advanced Microwave Sounding
Unit (AMSU), and the Microwave Humidity Sounder (MHS) for cloudy scenes [31,32]. AMSU and MHS
are multi-channel microwave radiometers, which measure radiances in 15 and 5 discreet frequency
channels, respectively, and provide information on various aspects of the Earth’s atmosphere and
surface. They both can be used for cloud-contaminated scenes, since they are synchronized with IASI’s
scanning. The algorithm is based on the optimal estimation method. Since the algorithm uses data
from instruments on board of Metop, the IASI ANN cloud-free radiances used in this study were
also co-localized in space and time. For EUMETSAT data, comparison between IASI derived skin
temperature and in-situ observations at Gobabeb leads to an agreement within 3.1 K. Metop-A IASI
sea surface temperature have a cool bias of −0.35 K (standard deviation 0.35 K) when compared to
drifting buoys [63].

2.4.2. ERA5 Tskin Product

In the framework of the ECMWF’s latest reanalysis (ERA5) [56], skin temperature is defined as the
temperature of the surface at radiative equilibrium. It is derived from the surface energy balance within
the land model in ERA5 and no assimilation of surface skin temperature observations takes place.
Radiances, on the other hand, are assimilated. The surface energy balance is satisfied independently
for each tile by calculating its skin temperature. The skin layer represents the vegetation layer, the top
layer of the bare soil, or the top layer of the snow pack. In order to calculate the skin temperature,
the surface energy-balance equation is linearized for each tile, leading to an expression for the skin
temperature [64]. Over the ocean, the sea surface temperature (SST) is specified from an analysis
provided by the Operational Sea Surface Temperature and Ice Analysis (OSTIA) [65] from September
2007 and prior to that date from the Met Office Hadley Centre HadISST2 product [66]. The SST analysis
is a blend of satellite retrievals and in situ observations from ships, and ensures a detailed horizontal
distribution from satellite data anchored to the sparse ship observations. The resulting SST fields
are therefore calibrated as if they are ship observations, and therefore, they represent bulk SST fields
(i.e., measured a few meters deep). Since the ocean skin temperature (<1 mm thickness) might be
cooler than the SST because of the turbulent and long wave radiative heat loss to the atmosphere,
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parameterizations of different near surface ocean effects are included in the code [64]. ERA5 data are at
0.25

◦

× 0.25
◦

resolution (native horizontal resolution of ERA5 is ~31km) and are interpolated in time
and space to the IASI observation. ERA5 assimilates different datasets, and the dataset is relatively
new, and used as a basis for comparison with other datasets. Global accuracies were not found in the
literature, but are provided in this work. Its validation in the Southern Antarctic suggests a warm
bias of 0.14 ◦C, with a significant improvement compared to the ERA5 predecessor, ERA-Interim,
in particular at high altitudes [59].

2.4.3. SEVIRI Tskin Product

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat
Second Generation (MSG) satellite scans the Earth surface every 15 min and provides observations in
12 spectral channels with a sampling distance of 3 km at nadir. MSG’s nominal position at 0◦ longitude
and SEVIRI’s large field of view (up to 80◦ zenith angle) allows for frequent observations of a wide
area encompassing Africa, most of Europe, and part of South America [67]. The skin temperature
(or also called land surface temperature, LST) product (LSA-001) used for validation here [68,69] was
retrieved by the EUMETSAT Land Surface Analysis Satellite Application Facility (LSA SAF) with the
generalized split-window method, which requires land surface emissivity as input data. IASI and
SEVIRI data are spatially co-located when observations from each instrument are less than 5 min apart,
and within 0.25 degrees in longitude and latitude. Validation of the SEVIRI LST product shows that
the difference with in situ LST usually lies well within ±2.0 ◦C accuracy [70], however the study also
found that the results for daytime and night-time accuracies differ considerably from station to station,
depending on such factors as orography, land cover, and surface homogeneity.

2.4.4. Ground Observations

Two sets of ground observations were used for validation. The first was from the Gobabeb wind
tower, Namibia (23.551◦ S 15.051◦ E) [71]. Gobabeb station is located on the large and homogenous
Namib gravel plains [72]. Tskin measurements are obtained once per minute and it is part of the
Karlsruhe Institute of Technology (KIT) stations, designed for continuous validation of LST products
over several years. The core instruments of KIT’s validation stations are Heitronics KT15.85 IIP infrared
radiometers, that measure radiances between 9.6 and 11.5 µm. The temperature resolution is 0.03 K
with an uncertainty of ±0.3 K over the relevant range, and high stability with a drift of less than 0.01%
per month [73]. Based on in-situ measurements, the surface emissivity of the gravel plains is estimated
as 0.944 ± 0.015 for MSG/SEVIRI 10.8 µm channel [72]. During an international inter-comparison
campaign, in-situ emissivity spectra were obtained at 49 sample locations distributed across the gravel
plains: the results confirm the previously obtained results [74].

The infrared radiance measurements from KIT stations have been successfully used to validate
several satellite LST products derived from MODIS [69,75,76], SEVIRI [69,73,76], and a range of
sensors [70]. The monitoring capability of KIT’s validation stations was demonstrated by [71] for LST
derived from MSG/SEVIRI. Reference [73] showed that the Gobabeb station Tskin is representative
for an area of several 100 km2, making it suitable for validation with satellite measurements, and in
particular IASI.

The second set of Tskin validation stations was derived from radiative fluxes measured at the
Surface Radiation Budget Network (SURFRAD) in the United States [77,78] (https://www.esrl.noaa.
gov/gmd/grad/surfrad/). Seven SURFRAD stations are operating in diverse land-type regions in the
US and are representative of various land cover types. Details on the stations are listed in Table 2.
To derive Tskin, the upwelling (F↑) and down-welling (F↓) thermal infrared radiances, which are
measured by two pyrgeometers (spectral range 3.5 to 50.0 µm) are used. These fluxes are related to
skin temperature as follows: F↑ = εσTskin

4 + (1 − ε) F↓, where ε is the surface emissivity, σ is the
Stefan-Boltzmann constant = 5.669 × 10−8 J m−2 s−1 K−4. Surface emissivities at each of the stations
are listed in Table 2, based on [77]. Heidinger et al. [79] showed that a 0.1 error in emissivity equates

https://www.esrl.noaa.gov/gmd/grad/surfrad/
https://www.esrl.noaa.gov/gmd/grad/surfrad/
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to an error in the SURFRAD skin temperature not exceeding 0.25 K. Our tests (not shown here), also
suggested a similar result.

Table 2. List of Surface Radiation Budget Network (SURFRAD) validation sites used in this study.

Site Location Latitude Longitude Surface Emissivity

Table Mountain, CO 40.126◦ N 105.238◦ W 0.973
Bondville, IL 40.051◦ N 88.373◦ W 0.976

Goodwin Creek, MS 34.255◦ N 89.873◦ W 0.975
Fort Peck, MT 48.308◦ N 105.102◦ W 0.979

Desert Rock, NV 36.623◦ N 116.020◦ W 0.966
Penn State U., PA 40.720◦ N 77.931◦ W 0.972

Sioux Falls, SD 43.734◦ N 96.623◦ W 0.978

Instrumental error leads to an uncertainty in retrieved skin temperature of less than 1 K [80].
Measurements from SURFRAD have been used for evaluating land surface temperature from a variety
of instruments, such as ASTER, MODIS, among others [80–83].

3. Results

To validate our TANN product, the year of 2016 was chosen. TANN was calculated from the two
ANNs over land and sea obtained in Section 2 by applying it to each set of 100 radiances over sea and
into 100 radiances and 100 emissivities over land. All scenes used were IASI cloud-free observations.

3.1. Validation of TANN with ERA5, EUMETSAT and SEVIRI Tskin Products

We started by performing the validation of our TANN product with the EUMETSAT, ERA5,
and SEVIRI Tskin datasets over the whole 2016 year. The upper panel of Figure 5 shows the correlation
plots, superimposed with the average difference by latitude in red. Over the sea, the comparison of our
dataset with the skin temperature from ERA5 and EUMETSAT showed excellent results. Over land,
positive bias was observed when our TANN product was compared with that from EUMETSAT.
This has been already seen when EUMETSAT data are validated with ground-based measurement [32],
and when they are compared to ERA5 [84]. TANN from IASI compared best with the EUMETSAT
Tskin product (standard deviation σ = 1.86 ◦C), which is logical since it was also obtained from IASI
radiances. Comparison with ERA5 also showed a correlation close to 1, and σ = 2.10 ◦C. Globally,
and over land, the two datasets agree very well, with the highest differences recorded over the Equator
(variable land cover). For the comparisons between TANN IASI and Tskin SEVIRI a standard deviation
of σ = 3.56 K was determined, with the largest differences over the Arabian Peninsula and the Equator.
For large viewing angles, in particular near the edge of the Meteosat disk (the Meteosat is shown here
for the comparison with SEVIRI), the uncertainty of SEVIRI Tskin was high [69]. A study [85] reported
similar to larger cool biases in the rest of the domain between the ECMWF model data and SEVIRI,
especially over semiarid regions, such as North Africa, Sahara, and Namibia. In the rest of the domain,
the two datasets agree well.

While this paper focuses on validating IASI TANN, inter-comparisons between the different
products (ERA5 with EUMETSAT L2 or EUMETSAT L2 with SEVIRI, etc.) are valuable for assessing
their differences. Figure 6 shows the box plot of these monthly inter-comparisons during 2016. It can
be seen that the TANN product developed in the framework of this study is within the range of biases
among the other products comparison. Figure 6, left panel, shows that the inter-comparisons of TANN,
TEUMETSAT, and TERA5 are similar on a monthly basis and the median close to zero. Seasonally, we see
that the EUMETSAT Tskin product records a systematic monthly positive bias to our TANN product,
and to ERA5. Comparison of the Metop-A EUMETSAT skin temperature to that of ERA5 at different
latitude bands shows similar results [84]. When we compare our TANN product to that of ERA5
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seasonally, we can see that the differences are slightly higher in summer, but globally the 25th and 75th
percentiles of differences are well below 2 degrees.

Remote Sens. 2020, 12, 2777 11 of 22 

 

3. Results 

To validate our TANN product, the year of 2016 was chosen. TANN was calculated from the two 
ANNs over land and sea obtained in Section 2 by applying it to each set of 100 radiances over sea and 
into 100 radiances and 100 emissivities over land. All scenes used were IASI cloud-free observations. 

3.1. Validation of TANN with ERA5, EUMETSAT and SEVIRI Tskin Products 

We started by performing the validation of our TANN product with the EUMETSAT, ERA5, and 
SEVIRI Tskin datasets over the whole 2016 year. The upper panel of Figure 5 shows the correlation 
plots, superimposed with the average difference by latitude in red. Over the sea, the comparison of 
our dataset with the skin temperature from ERA5 and EUMETSAT showed excellent results. Over 
land, positive bias was observed when our TANN product was compared with that from EUMETSAT. 
This has been already seen when EUMETSAT data are validated with ground-based measurement 
[32], and when they are compared to ERA5 [84]. TANN from IASI compared best with the EUMETSAT 
Tskin product (standard deviation σ = 1.86 °C), which is logical since it was also obtained from IASI 
radiances. Comparison with ERA5 also showed a correlation close to 1, and σ = 2.10 °C. Globally, and 
over land, the two datasets agree very well, with the highest differences recorded over the Equator 
(variable land cover). For the comparisons between TANN IASI and Tskin SEVIRI a standard deviation 
of σ = 3.56 K was determined, with the largest differences over the Arabian Peninsula and the Equator. 
For large viewing angles, in particular near the edge of the Meteosat disk (the Meteosat is shown here 
for the comparison with SEVIRI), the uncertainty of SEVIRI Tskin was high [69]. A study [85] reported 
similar to larger cool biases in the rest of the domain between the ECMWF model data and SEVIRI, 
especially over semiarid regions, such as North Africa, Sahara, and Namibia. In the rest of the domain, 
the two datasets agree well. 

 

Figure 5. Validation of the Tskin ANN product (TANN) from the neural net training of IASI radiances 
with ERA5, with products from EUMETSAT, ERA5, and SEVIRI, in 2016. Upper panel: correlation 
plots weighted with the number of co-localized observations during one year. Lower panel: gridded 
and averaged spatial difference (T – TANN), day + night data. For TEUMETSAT – TANN (σ = 1.86, mean bias 
= 0.5); for TERA5 – TANN (σ = 2.10, mean bias = 0.2); for TSEVIRI – TANN (σ = 3.56, mean bias = −1.56). 

While this paper focuses on validating IASI TANN, inter-comparisons between the different 
products (ERA5 with EUMETSAT L2 or EUMETSAT L2 with SEVIRI, etc.) are valuable for assessing 
their differences. Figure 6 shows the box plot of these monthly inter-comparisons during 2016. It can 
be seen that the TANN product developed in the framework of this study is within the range of biases 
among the other products comparison. Figure 6, left panel, shows that the inter-comparisons of TANN, 
TEUMETSAT, and TERA5 are similar on a monthly basis and the median close to zero. Seasonally, we see 
that the EUMETSAT Tskin product records a systematic monthly positive bias to our TANN product, 

Figure 5. Validation of the Tskin ANN product (TANN) from the neural net training of IASI radiances
with ERA5, with products from EUMETSAT, ERA5, and SEVIRI, in 2016. Upper panel: correlation plots
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they are shown on a separate panel on the right. The central black line indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles. The whiskers extend to the
most extreme data.

Comparison with SEVIRI shows a consistent negative bias when compared to TANN, TEUMETSAT,
and TERA5, and a seasonal behavior in the differences that are larger in summer. Several studies,
e.g., [86,87] already reported cold biases between SEVIRI and other Tskin products. For the ECMWF
model, the cold bias over land was identified for a previous version of the model by [88] and for a more
recent version by [85]. A misrepresentation of surface energy fluxes, either because of deficiencies in
the parameterization of aerodynamic resistances, or in the partitioning between latent and sensible
heat fluxes are frequent causes of these deviations [85].

3.2. Validation of the TANN with Ground-Based Measurements

For validation with ground measurements, we used the two station datasets mentioned in
Section 2.4.4 for 2016.
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3.2.1. Validation at the Gobabeb Site

First, we show the validation with the Gobabeb site in Namibia. This site was chosen in order
to minimize complications from spatial scale mismatch between ground-based and satellite sensors.
IASI (and co-localized EUMETSAT and ERA5 and SEVIRI Tskin products) cloud-free data were matched
in space and time (within 1 minute of the station data). The spatial matching was done around 0.25◦ of
a validation site [15.17◦ E, 23.18◦ S], the location of which is shown in Figure 7. This validation location
was chosen because it is close of the station site and is representative of the same gravel plain surface,
yet, away from the sand dunes limiting the station. The total number of coincident IASI data points
around this area is 446 during the day and 650 during the night. The validation of the TANN with in
situ Tskin are illustrated in Figures 7 and 8.Remote Sens. 2020, 12, 2777 13 of 22 
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Figure 8. Monthly median bias (Tskin from different products–Tskin at the station) over Gobabeb station
for the year 2016. The upper plot shows daytime and the lower nighttime data. The ranges shaded in
blue indicate the 2.0◦ accuracy range.

Day and night correlation coefficients between the different datasets are >0.9. Table 3 lists how
the different datasets used for validation compare to ground measurements. Accuracies are described
using the median accuracy (skin temperature from the different products–skin temperature at the
station), as described by [89]. Accuracies’ monthly evolutions are also shown in Figure 8 for daytime
(upper panel), and nighttime (lower panel) coincident IASI observations. During the day, the scatter
plots in Figure 7, and the monthly median accuracies shown in Figure 8 suggest higher variability.
The standard deviation of the differences between the different datasets (in Table 3) show higher values,
which is expected since meteorology and cloud cover play a more important role in the daytime
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variability. The in situ measurement site might be partly cloudy/clear, while the validation site might
not. At night, and for all products, comparison with ground measurements is better. It is worth noting
here that the numbers discussed in Figure 8 and Table 3 are based on the validation of the Tskin product
at the IASI’s crossing time around 9:30 AM and PM. SEVIRI and ERA5 provide Tskin at 15-minute and
one-hour resolution, respectively, and validation of these products has been detailed and provided
by [70,73] for SEVIRI at Gobabeb, and partly in [90] for ERA5. Martin et al. [70] have shown that the
median accuracy for SEVIRI is usually within 2 degrees when compared to Gobabeb station data. Here,
we achieved this accuracy only in autumn/winter (March to September) during the daytime, and all
year during the nighttime.

Table 3. 2016 standard deviation and accuracy (median bias) between ground-based station temperature
(Tstation) and skin temperature from the different datasets used in this study.

Day Night

Standard Deviation [◦] Accuracy [◦] Standard Deviation [◦] Accuracy [◦]

TANN–Tstation 2.87 −0.51 1.94 0.03
TEUMETSAT–Tstation 2.80 2.76 1.87 −0.07

TERA5–Tstation 2.65 1.16 1.36 0.40
TSEVIRI–Tstation 1.88 2.25 1.04 −0.56

During the daytime, the EUMETSAT product overestimated the skin temperature. This has been
already noted in a EUMETSAT validation report for both Metop A and Metop B [63]. SEVIRI data
also did not achieve the desired accuracy for seven months of the year during the day, which is
unusual, since validation of SEVIRI at Gobabeb shows that 2 ◦C accuracy is achieved [71]. In fact,
the full SEVIRI data record comparison with Gobabeb (not shown here) achieves the 2 ◦C accuracy.
The lack of accuracy here is due to the fact that the comparison was made at the crossing time of
IASI (around ~9:30 a.m. for the daytime measurements), and the combination of lower number of
points, morning fog on gravel plains, and issues with the cloud mask or shadowing effects might be
affecting the comparison. Our TANN product and that of ERA5 agreed the best with the ground station.
While IASI TANN was “derived” from the training with the ERA5 product, we can see that they do not
behave similarly when validated at the ground station, which is plausible and implies that indeed the
variability seen is proper to each of the products. At night, all investigated data sets were generally in
good agreement with the ground station data. The differences were all within the 2.0 ◦C range.

3.2.2. Validation at the SURFRAD Station

IASI cloud-free data were co-localized in space and time within 1 minute of each of the SURFRAD
station data. The spatial matching was done at ±0.25◦ around each of the station (Table 2 and Figure 9).
Figure 9 shows the comparison between the skin temperature retrieved from the SURFRAD stations
with that of EUMETSAT, ERA5, and our TANN product. The station locations are shown in the figure,
and they clearly cover different land types.

Figure 9 shows that the three datasets are reasonably correlated with the station data. ERA5 data
seem to have most of the outliers, particularly at Table Mountain (for both day and night). To investigate
the differences, we separated day and night observations. The median of the differences (the accuracy
as was done at Gobabeb station) between the three datasets and Tskin at the station is shown in
Figure 10, upper panel, for daytime observations and in the lower panel for nighttime observations.
The standard deviation of the differences (not shown here) varies between 1.5 ◦C (Bondville), and is
larger than 4 at the Table Mountain station. Four out of the seven stations shown here are located in
areas with heterogeneous land covers, these are Table Mountain, Goodwin Creek, Fort Peck, and Penn
State University. The mixture of land cover types found around these stations strongly influences the
validation. Moreover, the spatial representativeness of Tskin derived from SURFRAD station is only
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about 70 × 70 m2 [80]. IASI’s and ERA5’s respective resolutions are much coarser and one observation
of each contains various land cover types.
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For example, the Table Mountain station is located on a mountain slope, and its surroundings are
a highly heterogeneous mixture of agricultural fields. The incorrect simulation of surface properties
might be responsible for the high ERA5 bias [64] detected at this station. The Goodwin Creek station
is located on grass in a rural pasture land in Mississippi. Reference [70] showed with Google Earth
imagery that a mixture of forest and grassland is found around the station. This station had the highest
bias at night for the three datasets. The other stations agreed reasonably well with the different datasets,
and our TANN product was within the range of the other two datasets. One of the issues hindering
proper comparison might be due to local emissivity differences. We tested this by calculating the skin
temperature at each of the stations using our climatological monthly emissivities from IASI, and the
results changed by less than 1% annually, with a difference less than 0.25 ◦C.

The accuracy and standard deviation (accuracy; STDE) for TANN–TSURFRAD, TERA5–TSURFRAD,
and TEUMETSAT–TSURFRAD for all the stations combined are listed in Table 4. The standard deviation of
the differences was between 3.20 and 3.71 for all datasets. Our TANN product achieved a reasonable
accuracy of −2.16 ◦C during the day, and of 0.31 ◦C at night.

Table 4. 2016 standard deviation and accuracy (median bias) between SURFRAD derived Tskin for the
seven stations used in this study, and skin temperature from our ANN product, EUMETSAT, and ERA5.

Day Night

Standard Deviation (◦) Accuracy (◦) Standard Deviation (◦) Accuracy (◦)

TANN–TSURFRAD 3.32 −2.16 3.67 0.31
TEUMETSAT–TSURFRAD 3.20 0.15 3.20 0.59
TERA5–TSURFRAD 3.53 −1.36 3.71 −0.06

4. Discussion and Conclusions

Satellite data are able to provide systematic global temperature data, at least in cloud-free areas,
from pole to pole on a regular basis. EUMETSAT has been updating different versions of algorithms
to retrieve the skin temperature from IASI, and at the same time, relying on different instruments
(particularly for cloudy scenes) to derive a Tskin product. Consequently, no homogenous consistent
IASI Tskin record exists to date. However, in this study we took advantage of the fact that the Metop-A
L1C radiances, recently reprocessed at EUMETSAT and used in this work, are homogeneous.

In this study, we derived a Tskin product using Metop-A IASI L1C radiances. The first challenge
was to find the channels with access to surface information. To this end, we present a method based
on entropy reduction, to find the channels with the highest information content in skin temperature.
An efficient and fast IASI retrieval algorithm based on artificial neural networks was then used to
calculate Tskin from the upwelling IASI radiances. While empirical methods using ANN can deal with
hundreds to thousands of channels [46], we show in this study how ANN and channel selection can be
used to retrieve Tskin, making this method fast and reliable for near real-time application, as well as to
reprocess more than 13 years of IASI data. In this study, we performed two ANN trainings with IASI
radiances, one over land by adding land surface emissivity for each radiance channel, and another
training over the sea using only radiances as input. ERA5 hourly simulation was used as the output.
The resulting neural networks were then applied for the year 2016 and validated. Our results show the
potential of ANN in mapping radiances and emissivities globally and locally to skin temperature [91].
We achieved good correlation when we compared our datasets to other widely used skin temperature
datasets, as well as when we compared it to ground measurements. When we compared our Tskin

product with that of other datasets, a mean bias and STDE (i.e., [bias, STDE]) of [0.55, 1.86 ◦C],
[0.19, 2.10 ◦C], [−1.5, 3.56 ◦C], was found from EUMETSAT IASI L−2 product, ERA5, and SEVIRI.
We performed a more detailed statistical analysis when we compared with ground measurements.
First, when we compared with Gobabeb station data, the location of which is in the Namibian desert,
we found that we achieved at nighttime the required the 2 ◦C accuracy needed for climate trends
construction. At the SURFRAD’s network stations, which cover different locations in the United
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States, we found that the accuracy found largely depends on the location of the station. The bias
was the largest when the IASI or ERA5 coincident observation was over a heterogeneous land cover.
On average, we were able to achieve the 2 ◦C accuracy at four out of the seven stations. Our product’s
accuracy is within the accuracy and standard deviation of the other products.

More generally, retrieval of Tskin from space measurements faces many challenges. The solution
of the radiative transfer equation requires the simultaneous knowledge of two unknowns: Tskin and
the surface emissivity. In our study this was accounted for, since emissivity was used as the input to
the ANN over land. Second, infrared retrievals are only available under clear-sky conditions, reducing
the amount of global data by roughly one-third. This study has been performed with data from IASI
on Metop A, and it implies that with IASI on Metop B and Metop C, the global coverage can be
enhanced during their overlapping periods. Third, validation and inter-comparison between different
products are challenges that are not only bound to this study. The diversity in sensor characteristics
and sensor-specific skin temperature retrieval algorithms, as well as the different challenges facing
current NWP models, make it difficult to homogenize different skin temperature products for proper
comparison. Moreover, for polar-orbiting satellite products, inter-comparison between different
Tskin satellite products is challenging, since the crossing times of the satellites and the shape of the
field of view are different. For example, MODIS (with overpass time at 10:30 a.m./p.m. on TERRA)
and MODIS and AIRS, on the AQUA platform (with an overpass time of 1:30 a.m./p.m.), both offer
a good skin temperature product. IASI, on the other hand, has an overpass time of 9:30 a.m./p.m.
local-time. Since skin temperature, particularly over the land surfaces, vary strongly in space and
time [92], inter-comparison between IASI and MODIS or AIRS, with a time difference of one to
more than four hours can imply a difference of the order of 10 degrees or more in some regions.
This makes inter-comparison with other satellite products with different crossing times very difficult
to achieve. Moreover, considering IASI’s pixel area at nadir and at its outermost viewing angle of 48◦

(off-nadir), several surface types with varying skin temperature and emissivities will co-exist within
one pixel. The resulting skin temperature is therefore an “effective” measure of the average of the
surface-heterogeneity existing in the pixel. This alone complicates the physical understanding of the
Tskin values retrieved from space from different instruments with different pixel shapes (round/ellipse
vs. square/rectangle, etc.), and sizes. Moreover, the satellite viewing angle also plays a role in the
Tskin at the surface: the comparison is affected by the different Sun–surface–instrument geometries,
as a result of shadows due to orography or vegetation, for example [62].

Using channel selection and artificial neural network, this work showed a Tskin retrieval method
that can serve as a baseline for constructing the first homogeneous dataset of skin temperature
from IASI, and can be extended to other infrared remote measurements. Future work will look at
constructing a Tskin time series from IASI during 2007-present and using Metop A, B, and C for climate
trends application. Regional and seasonal variations can be studied using the atlas for the surface skin
temperature distributions. The daily/monthly/yearly variations will be studied in terms of the main
climate drivers (solar, volcanic eruptions, aerosols, and greenhouse gases) and modes of variability at
the inter-annual and decadal timescales.
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