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Highlights	

• We	developed	an	automated	recognition	software	for	pollen	data	acquisition	

• Our	software	uses	multiple	convolutional	neural	network	with	decision	tree	(multi-CNNs)	

• Augmentation	of	stacked	optical	images	increases	classification	accuracy	

• Our	software	successfully	recognizes	pollen	at	the	genus	or	species	rank	

• It	achieves	robust	identification	of	intact,	damaged,	modern,	and	fossil	pollen	

	

Abstract	

Pollen	 grains	 are	 valuable	 paleoclimate	 and	 paleovegetation	 proxies	 which	 require	
extensive	 knowledge	 of	 morphotypes	 and	 long	 acquisition	 time	 under	 the	 microscope.	 The	
abundance	of	damaged,	folded,	and	broken	pollen	grains	in	the	fossil	register	and	sometimes	also	
in	modern	soil	and	sediment	samples,	has	so	far	prevented	automation	of	pollen	identification.	
Recent	improvements	in	machine	learning,	however,	have	allowed	reconsidering	this	approach.	
Here	we	present	an	automated	approach	which	is	capable	of	assisting	palynologists	with	poorly	
preserved	pollen	samples.	Called	multi-CNNs,	this	approach	is	based	on	multiple	convolutional	
neural	networks	(CNNs)	integrated	in	a	decision	tree	system.	To	test	it,	we	built	a	system	designed	
for	three	botanical	families	very	common	in	the	modern	and	fossil	pollen	assemblages	of	Eastern	
Africa,	 namely	 Amaranthaceae,	 Poaceae,	 and	 Cyperaceae.	 Our	 system	 was	 tested	 on	 stacked	
optical	 images	of	 8	pollen	 types	(6	Amaranthaceae,	 1	Poaceae,	 1	Cyperaceae)	using	a	 training	
dataset	of	1102	intact	pollen	grains	and	three	validation	datasets	of	intact	(276	grains),	damaged	
(223	grains),	and	fossil	pollen	(97	grains).	We	show	that	our	system	successfully	recognizes	intact,	
damaged,	and	fossil	pollen	grains	with	very	low	misclassification	rates	of	0%,	2.8%,	and	3.7%,	
respectively.	The	use	of	augmentation	on	stacked	optical	 images	during	 the	 training	 increases	
classification	 accuracy.	 Following	 a	palynologist's	approach,	 our	 system	allows	grains	without	
obvious	characters	to	be	classified	into	a	class	of	high	taxonomic	level	or	as	indeterminable	pollen.	
This	is	the	first	software	able	to	process	grains	with	a	wide	range	of	taphonomical	stages,	which	
makes	it	the	first	truly	applicable	to	automated	pollen	identification	of	fossil	material.	
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1.	Introduction		

Since	 the	 late	 1960s,	 the	 palynologist	
community	 has	 been	 interested	 in	 the	
automation	 of	 pollen	 grain	 recognition	
(Flenley,	 1968).	 This	 desire	 comes	 from	 a	
real	 need	 to	 reduce	 the	 long	 and	 tedious	
process	 of	 pollen	 grain	 identification	 and	
counting,	 which	 requires	 an	 extended	
knowledge	of	palynofloras	in	order	to	obtain	
accurate	 and	 statistically	 valid	
paleovegetation	 inferences.	 Pollen	 counting	
and	 recognition	 process	 is	 an	 important	
limiting	factor	that	makes	it	difficult	to	build	
large	databases.	To	date,	with	the	advances	
of	 large	 datasets	 for	 paleoenvironmental	
studies	 to	 resolve	 high	 spatial	 and/or	
temporal	resolution,	 there	 is	a	crucial	need	
to	 reduce	 the	 time	 involved	 in	 pollen	 data	
acquisition.	Palynology	is	also	a	discipline	at	
risk	 today	 because	 acquiring	 sufficient	
knowledge	of	palynofloras	requires	years	of	
experience,	 particularly	 in	 tropical	 regions	
where	plant	diversity	is	highest.	Despite	the	
fact	 that	 pollen	 grains	 are	 still	 the	 only	
paleovegetation	 proxies	 allowing	 plant	
identifications	 up	 to	 the	 genus	 and	 species	
levels,	their	study	is	easily	supplemented	by	
other	 indicators	 such	 as	 δ13C.	They	 require	
less	 physical	 presence	 of	 scientists	 in	 the	
acquisition	although	they	do	not	allow	such	
fine	environmental	reconstitutions.	

In	 the	 East	 African	 Rift,	 many	
paleontological	 areas	 have	 preserved	
abundant	fauna,	including	hominin	remains	
of	Pliocene	and	Pleistocene	age,	but	few	have	
preserved	 paleobotanical	 remains.	 Yet,	
pioneering	 pollen	 studies	 in	 the	 early	 70s	
have	 proved	 to	 be	 a	 powerful	 tool	 for	
inferring	 paleoenvironments	 associated	
with	 early	 hominins	 in	 Africa	 (Bonnefille,	
1979).	 Among	 these,	 the	 Australopithecus	
afarensis-bearing	 Hadar	 formation	 in	 the	
North	Ethiopian	Rift	was	extensively	studied,	
and	several	levels	proved	to	be	rich	in	pollen	
grains	 (Bonnefille	 et	 al.,	 1987,	 2004;	
Bonnefille,	 2010).	 Those	 levels	 were	
analyzed	 by	 palynologists	 of	 Bonnefille's	

team,	usually	over	several	weeks,	in	order	to	
obtain	 adequate	 pollen	 counts	 (generally	
between	300	and	1000	grains	depending	on	
the	 pollen	diversity	 of	 each	 sample)	 as	 the	
depositional	and	arid	climate	contexts	were	
not	 favorable	 to	 pollen	 preservation	 (R.	
Bonnefille,	 pers.	 com.).	 Recently,	 the	
Hominin	 Sites	 and	 Paleolakes	 Drilling	
Project	(HSPDP)	drilled	in	this	area	to	obtain	
paleoenvironmental	 records	 with	 high	
temporal	resolution	of	 the	variations	of	the	
local	hominin	environment	between	2.9	and	
3.6	 million	 years	 (Ma)	 ago	 (Cohen	 et	 al.,	
2016).	We	have	been	studying	two	of	those	
HSPDP	 cores,	 collected	 from	 near	 the	
lacustrine	 depocenter	 of	 Hadar	 Basin,	 the	
Northern	 Awash	Osi-Isi	 (NAO,	 11.31518°N,	
40.73689°E)	and	from	a	location	3	km	east	of	
NAO,	 the	 Northern	 Awash	Woranso	 (NAW,	
11.32535°N,	 40.76491°E).	 NAO	 and	 NAW	
were	 cored	 respectively	 to	 a	 depth	 of	 187	
and	245	meters	below	surface	(Mohan	et	al.,	
2016).	Analysis	of	8	samples	out	of	175	from	
these	two	cores	took	one	of	the	authors	(B.B.)	
several	 months	 to	 complete,	 because	 both	
the	preservation	and	concentration	of	pollen	
grains	 were	 low.	 A	 high-resolution	 pollen	
record	 at	 this	 site	 would	 give	 a	 fantastic	
record	 of	 paleovegetation	 changes	 during	
the	 time	 when	 Australopithecus	 afarensis	
thrived	and	when	the	first	representatives	of	
the	 Homo	 genus	 emerged	 (Maslin	 et	 al.,	
2015;	 Villmoare	 et	 al.,	 2015),	 but	 such	 a	
study	would	require	more	than	one	scientist	
working	full	time	over	several	months.	It	is	a	
classic	 case	 of	 "arid"	 sedimentary	 archives	
with	 very	 important	 environmental	 pollen	
data	that	cannot	be	correctly	studied	due	to	
human	limitations.	Testing	and	exploring	the	
potential	of	automated	recognition	to	pollen	
taxa	is,	therefore,	crucial.		

In	 the	 1960s,	 computer	 performance,	
image	 processing,	 and	 machine	 learning	
techniques	 were	 not	 sufficiently	 developed	
to	 realize	 Flenley	 (1968)'s	 visionary	
concepts	 of	 pollen	 recognition.	 During	 the	
last	 decade,	 however,	 dramatic	
improvements	opened	the	way	to	automated	
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recognition	 of	 pollen,	 through	 different	
approaches	 such	 as	 (1)	 feature	 extraction,	
(2)	texture	analysis,	and	(3)	the	combination	
of	both.	(1)	Regarding	feature	extraction,	the	
first	 breakthrough	 study	 by	 García	 et	 al.	
(2012)	 combined	 morphological	 methods	
based	on	contour	feature	extraction	of	light	
microscopy	 (LM)	 images	 with	 a	 hidden	
Markov	 model	 (HMM)	 classifier.	 This	
approach	 allowed	 classifying	 17	 different	
pollen	 types	 from	 11	 different	 botanical	
families	 of	 honey	 bee's	 plants	 with	 98.8%	
accuracy.	 Kaya	 et	 al.	 (2013)	 used	
morphological	 measurements	 (polar	 axis	
length,	equatorial	axis	length,	colpus	weight,	
exine	 thickness,	 etc.)	 with	 a	 data	 mining	
classifier	 to	 predict	 group	membership	 for	
data	 instances.	 This	 approach	 allowed	 20	
very	 similar	 species	 of	 pollen	 grains	 in	 the	
genus	 Onopordum	 to	 be	 classified	 with	 an	
accuracy	of	 90.6%.	The	work	 is	 impressive	
but	 requires	 an	 initial	 manual/subjective	
definition	 of	 the	 recognition	 characteristic	
features	 and	 is	 only	 applicable	 to	 intact	
pollen	 grains.	 In	 addition,	 the	 accuracy	 of	
Kaya	 et	 al.	 (2013)'s	model	 is	 dependent	 of	
the	choice	of	characteristic	features	(Treloar	
et	al.,	2004).		

(2)	 Another	 set	 of	 studies	 focused	 on	
texture	 analysis,	 with	 texture	 features	
derived	from	gray	level	patterns	of	the	grain	
surface	 (Fernandez-Delgado	 et	 al.,	 2003).	
Using	 a	 combination	 of	 local	 linear	
transformation	(LLT)	 feature	 vectors	 and	a	
support	 vector	 machine	 (SVM)	 classifier,	
Fernandez-Delgado	et	al.	(2003)	were	able	to	
classify	 LM	 images	 of	 fresh	 pollen	 of	 five	
pollen	types	(in	four	different	families)	with	
an	accuracy	of	76%.	Later,	a	more	complex	
approach	 was	 developed	 by	 Marcos	 et	 al.	
(2015)	 using	 a	 texture	 feature	 vector	
composed	 of	 gray-level	 co-occurrence	
matrices	 (GLCM),	 log-Gabor	 filters	 (LGF),	
local	 binary	 patterns	 (LBP)	 and	 discrete	
Tchebichef	 moments	 (DTM),	 and	 Fisher’s	
discriminant	 analysis	 (FDA)	 and	 k-nearest	
neighbor	(KNN)	to	reach	a	final	classification	
at	 the	 family	 level.	 This	 study	 achieved	 an	
accuracy	 of	 94.8%	 for	 LM	 images	 of	 fresh	
pollen	grains	of	15	pollen	types	in	12	families	
(Marcos	 et	 al.,2015),	 but	 the	 texture	
approach	has	been	shown	to	be	sensitive	to	
grain	rotation,	lighting,	image	noise	and	the	

quality	 of	 texture	 preservation	 (Han	&	 Xie,	
2018).	 To	 circumvent	 these	 problems,	 Han	
and	Xie	(2018)	proposed	to	use	local	decimal	
patterns	(LDP)	instead	of	LBP,	an	approach	
robust	 to	 the	 noise	 and	 rotation	 of	 pollen	
images	 but	 which	 nevertheless	 could	 not	
tackle	the	challenge	of	recognizing	damaged	
pollen.			

(3)	A	combination	of	texture	features	and	
morphological	 analyses	 represents	 the	 last	
development.	 Rodriguez-Damian	 et	 al.	
(2006)	 developed	 a	 classification	 system	
using	both	shape	and	texture	analysis	of	LM	
images	 of	 pollen	 grains	 directly	 extracted	
from	 plants.	 Using	 a	 minimum	 distance	
classifier	 (MDC),	 multilayer	 perceptron	
(MLP)	 and	 SVM,	 three	 morphologically	
similar	 pollen	 types	 of	 Urticaceae	 were	
classified	 with	 an	 accuracy	 of	 89%.	 Later,	
Chudyk	et	al.	(2015)	used	a	combination	of	
15	morphological	features	and	five	textures	
features	on	a	set	of	LM	images	including	one	
pollen	 type	 of	 Poaceae,	 one	 of	 Asteroideae	
and	 three	of	Betulaceae.	By	using	 SVM	and	
Random	 Forest	 classifiers,	 they	 reached	 a	
success	rate	of	89%	for	intact	pollen	grains.	
However,	 this	 approach	 still	 performed	
poorly	on	damaged	pollen.		

Recently,	 the	 development	 of	
convolutional	 neural	 networks	 (CNNs)	 has	
opened	a	new	era	in	image	recognition.	CNNs	
automatically	extract	the	features	of	interest	
in	 an	 image	 that	 are	 relevant	 to	 the	
classification	task	(Daood,	2018).	For	pollen,	
CNNs	with	different	topology	were	tested	to	
classify	 23	 pollen	 types	 with	 large	
morphological	 differences	 (Sevillano	 &	
Aznarte,	2018).	They	achieved	an	accuracy	of	
97.2%	with	a	LM	images	dataset	(Gonçalves	
et	al.,	2016)	of	intact	pollen	grains.	Daood	et	
al.	(2018)	recognized	z-stacked	LM	images	of	
intact	 pollen	 by	 combining	 CNN	 feature	
vectors	 with	 recurrent	 neural	 networks	
(RNN).	They	achieved	an	accuracy	of	100%	
for	 the	 classification	 of	 10	 pollen	 types	 of	
different	 families.	 Comparisons	 of	 these	
methods	and	their	success	rates	on	the	same	
data	 set	 of	 images	 showed	 that	 the	
approaches	 based	 on	 CNNs	 are	 always	 the	
most	 accurate,	 and	 point	 toward	 the	
efficiency	 of	 CNNs	 in	 classifying	 natural	
objects	such	as	pollen.	
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All	 these	 approaches	 proved	 to	 be	
efficient	 only	 on	 fresh	 or	 generally	 intact	
pollen	 grains,	 far	 from	 the	 reality	 faced	 by		
palynologists	who	must	deal	with	damaged	
pollen	due	to	taphonomic	processes.	Holt	et	
al.	 (2011),	 Holt	 and	 Bennett	 (2014)	 and	
recently	Khanzhina	et	al.	(2018)	noticed	the	
absence	 of	 a	 system	 adapted	 to	 "broken,	
deformed	 and	 clumped	 pollen"	 and	
explained	it	by	technological	limitations.	Han	
and	 Xie	 (2018)	 pioneered	 the	 analysis	 on	
damaged	 pollen	 grains,	 unfortunately	 their	
approach	did	not	 succeed.	Punyasena	et	 al.	
(2012),	 however,	 successfully	 classified	
fossil	grains	of	two	Picea	species	(P.	mariana	
and	 P.	 glauca)	 with	 an	 accuracy	 of	 93.8%.	
They	 used	 a	 KNN	 with	 layered	 learning	
systems	based	on	kernel	density,	applied	to	
extracted	 shape	 and	 texture	 features	 from	
3D	 fluorescence	 microscope	 (FM)	 images.	
Using	 the	 same	 set	 of	 pollen	 grains	 as	
Punyasena	et	al.	(2012),	Kong	et	al.	 (2016)	
also	 obtained	 a	 high	 accuracy	 of	 86.1%	 in	
classifying	fossil	grains	of	three	Picea	species	
(P.	 mariana,	 P.	 glauca	 and	 P.	 critchfieldii)	
using	 dictionary	 learning	 sparse	 coding	
(DLSC)	 on	 shape	 and	 texture	 features	
extracted	 from	 confocal	 FM	 images.	
However,	 the	 performances	 were	 largely	
dependent	 on	 the	 selection	 and	 quality	 of	
sample	blocks	(Kong	et	al.,	2016;	Han	&	Xie,	
2018).	 These	 results	 are	 nonetheless	 very	
promising,	but	we	note	that	the	deterioration	
of	 the	Picea	pollen	considered	 in	 those	 two	
studies	 is	 very	 subtle	 (as	 is	 generally	
observed	 in	 peat	 sediments,	 e.g.	 Curry,	
2007),	and	far	from	resembling	the	Pliocene	
pollen	records	of	Eastern	Africa.		

The	aim	of	this	study	is	to	develop	a	new	
system	of	automated	identification	of	pollen	
that	 could	 be	 applied	 to	 down	 core	 fossil	
pollen	grains.	This	system	should	be	able	to	
handle	 damaged	 and	 broken	 pollen	 grains,	
and	 should	 be	 easily	 applicable	 to	 images	
obtained	 with	 light	microscopy	 (LM),	 as	 is	
commonly	 done	 in	 palynological	
laboratories.	 It	 should	 also	 allow	
identifications	 at	 higher	 taxonomical	 levels	
when	identification	at	the	species	level	is	not	
reached.		

Following	 recent	 developments	 in	
machine	 learning	we	 chose	 to	 develop	 our	

system	using	sequential	multiple	CNNs.	As	a	
proof	of	concept	for	this	study	we	chose	eight	
pollen	types:	six	among	the	Amaranthaceae,	
as	 they	 have	 very	 similar	 overall	 shape	
(spherical,	 periporate),	 one	 Poaceae	
(undifferentiated	taxa),	and	one	Cyperaceae	
(undifferentiated	 taxa),	 that	 is	 two	
Monocotyledonae	 with	 heterogeneous	 and	
varying	 surface	 patterns	 (psilate	 to	 finely	
verrucate).	We	 focused	 on	 Amaranthaceae,	
Poaceae,	 and	 Cyperaceae	 because	 these	
three	families		represent	50%	to	90%	of	the	
total	 pollen	 assemblage	 in	 both	 terrestrial	
and	 marine	 archives	 from	 Eastern	 Africa	
(Bonnefille	 et	 al.,	 1987,	 Bonnefille,	 2010).	
Pollen-based	biome	reconstruction	for	Africa	
also	largely	rely	on	the	presence	and	relative	
abundance	of	Amaranthaceae	pollen	(Sobol	
&	 Finkelstein,	 2018).	 Amaranthaceae	
species,	 despite	 exhibiting	 very	 similar	
pollen	 morphologies	 are	 important	
ecological	markers	(‘African	Plant	Database’,	
2019).	 Being	 able	 to	 identify	 and	 count	
separately	 different	 Amaranthaceae	 could	
definitely	 improve	 paleoenvironment	
inferences.	As	a	first	step,	this	study		makes	
no	 attempts	 to	 separate	 types	 among	
Poaceae	and	Cyperaceae,	also	because	such	
discriminations	have	only	been	achieved	so	
far	using		with	Scanning	Electron	Microscopy	
(Mander	et	al.,	2014).		

	

2.	Material	and	Methods	

2.1.	Datasets	and	image	acquisition	

We	 prepared	 one	 training	 and	 three	
validation	 datasets	 by	 taking	 pictures	 of	
pollen	 grains	 under	 light	 microscopy	 (LM)	
(Supporting	 Information,	 Table	 S1).	 The	
training	 dataset	 consists	 of	 1102	 globally	
intact	pollen	grains	(hereafter	referred	to	as	
the	 training	 dataset).	 The	 three	 validation	
datasets	 consist	 of	 1)	 276	 grains	 of	 intact	
pollen	 (hereafter	 referred	 to	 as	 the	 intact	
dataset),	 2)	 223	 deformed,	 folded,	
fragmented	and/or	broken	grains	(hereafter	
referred	to	as	the	damaged	dataset),	and	3)	
97	pollen	grains	from	Holocene	and	Pliocene	
age	 (hereafter	 referred	 to	 as	 the	 fossil	
dataset)	(Fig.	1).	In	the	fossil	dataset,	pollen	
grains	also	have	an	altered	exine	and	mineral	
inclusions	 (Fig.	 1).	 Eight	pollen	 types	were	
imaged	 with	 specimens	 taken	 from	 the	
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reference	 collection	 of	 East	 African	 pollen	
species	hosted	at	CEREGE,	Aix-en-Provence,	
France	 (Supporting	 Information,	 Table	 S1)	
to	constitute	the	training	dataset,	the	intact	
dataset,	 and	 the	 damaged	 datasets:	
Achyranthes-type	 aspera,	 Aerva-type	
javanica,	 Aerva-type	 lanata,	 Celosia-type	
argentea,	Cyathula-type	orthacantha,	Digera-
type	 muricata,	 Poaceae,	 and	 Cyperaceae).	
The	fossil	pollen	dataset	includes	only	five	of	
the	 eight	 pollen	 types	 available	 in	 the	
reference	 collection	 due	 to	 the	 limited	
availability	 of	 fossil	 material:	 Achyranthes-
type	aspera,	Aerva-type	javanica,	Digera-type	
muricata,	 Cyperaceae,	 and	 Poaceae	 (for	
sampling	 locations,	 depth,	 and	 ages	 see	
Supporting	 Information,	 Table	 S1).	 The	
damaged	and	fossil	datasets	were	built	using	
samples	which	were	not	considered	 for	the	
training	and	 intact	pollen	datasets	 to	avoid	
biases	in	the	estimation	of	the	effectiveness	
of	our	approach.	

Each	 pollen	 grain	 was	 imaged	 under	
natural	light	by	taking	a	stack	of	pictures	at	1	
µm	 steps	 between	 the	 top	 and	 bottom	
surfaces	 of	 the	 grain,	 using	 an	 automated	
custom	Leica	DMRBE	microscope	controlled	
with	a	software.	This	step	is	semi-automated,	
whereby	the	image	stack	movement	(z-axis)	
is	automatic	but	setting	the	position	(x	and	y	
axes)	 is	 performed	 manually.	 Since	 the	
stacking	step	is	fixed	to	1µm,	the	number	of	
fused	images	is	proportional	to	the	size	of	the	
pollen.	 The	 number	 of	 images	 in	 the	 stack	
ranged	 from	20	 to	40	depending	on	pollen	
type.	 Each	 stack	 was	 split	 into	 two	 halves,	
and	 only	 the	 half	 corresponding	 to	 the	 top	
hemisphere	 of	 each	 pollen	 grain	 was	 kept.	
The	image	stack	was	fused	to	create	a	single	
in-focus	 image	 (z-stacked	 imaging	process)	
with	the	Helicon	Focus	6	software,	using	the	
"depth	map"	method	with	 radius	 set	 to	 50	
pixels	 and	 smoothing	 set	 to	 10	 pixels.	 We	
chose	1	µm	steps	empirically,	as	above	 this	
threshold	 the	 morphological	 information	
was	 less	 visible	 in	 the	 fused	 images	 and	
below	this	value,	aberrations	appeared	into	
fused	 images.	 Each	 fused	 image	 was	
analyzed	 using	 a	 custom	 script	written	 for	
the	 Fiji	 image	 analysis	 software,	 to	 center	
and	 crop	 the	 pollen	 into	 a	 square	 image	
(Schindelin	et	al.,	2012).	Finally,	all	reframed	

fused	 images	 were	 resized	 to	 128x128	
pixels.		

2.2.	Image	classification	

Our	 system	 of	 automatic	 recognition	 is	
developed	in	the	Python	language	(Pérez	et	
al.,2011)	and	principally	uses	the	Keras	and	
TensorFlow	 open-source	 software	 libraries	
(Abadi	 et	 al.,	 2016;	 Chollet,	 2015).	 It	 uses	
convolutional	neural	networks	(CNNs)	with	
a	 linear	 architecture	 similar	 to	 VGGNet	
(Simonyan	 &	 Zisserman,	 2014).	 The	 CNN	
training	 was	 done	 with	 the	 training	 pollen	
dataset	and	the	validation	dataset	with	intact	
pollen.	 CNNs	 training	 was	 carried	 out	 on	
batches	of	101	pictures	(out	of	a	grand	total	
of	 1102	 pictures)	 over	 500	 epochs	 (the	
learning	algorithm	is	an	iterative	process;	an	
epoch	 is	 one	 training	 iteration	 on	 all	
pictures).	 To	 optimize	 the	 convergent	
behavior	 in	 loss	 function,	 which	 ensures	 a	
more	 precise	 adjustment	 of	 the	 weights	 of	
our	 network,	 we	 used	 regressive	 learning	
rate	as	a	function	of	the	epoch	such	as	epoch	
[0;	 200]=0.001,	 epoch	 [201;	 300]=0.0006,	
epoch	[301;	400]=0.00036,	and	epoch	[401;	
500]=0.000216.		

We	added	an	augmentation	procedure	to	
most	of	our	trainings	to	generate	new	images	
at	each	epoch.	This	procedure	generates	new	
images	 by	 modifying	 the	 originals	 through	
random	 rotations	 (0°to	 90°),	 random	
horizontal	 and	 vertical	 flips,	 and	 random	
width	 and	 height	 shifts	 (0%	 to	 25%).	 But	
learning	often	did	not	progress	when	using	
augmentation	because	the	generation	of	new	
images	at	each	epoch	made	it	difficult	for	the	
CNN	 to	 extract	 features.	 To	 solve	 this	
problem,	 we	 pre-trained	 the	 CNN	 without	
augmentation	to	extract	features	in	its	initial	
layers,	 then	 continued	 training	 using	
augmented	images.	By	using	this	pretrained	
network	for	the	training	with	augmentation,	
the	CNN	learns	to	combine	these	features	at	
the	end	of	 the	 initial	 layers.	This	process	 is	
commonly	 called	 transfer	 learning	 (Daood,	
2018)	(Supporting	Information,	Fig.	S1).		

The	CNNs	trained	with	augmentation	are	
integrated	 in	 a	 decision	 tree	 to	 form	 a	
multiple	 convolutional	 neural	 network	
(multi-CNNs)	 (Fig.	 2).	 The	 multi-CNNs	 is	
composed	of	five	main	steps.	Step	1	aims	at	
isolating	 Amaranthaceae	 from	
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Monocotyledoneae.	 Step	 2	 is	 made	 to	
evaluate	 if	 pollen	 identified	 as	
Monocotyledonae	in	step	1	could	be	altered	
Amaranthaceae.	 Indeed,	 altered	 pollen	 of	
Dicotyledoneae	 which	 have	 lost	 their	
ornamentations	 and	 part	 or	 all	 their	 outer	
layer	(ectexine)	may	show	similarities	with	
Monocotyledonae	that	only	have	one	layer	of	
exine.	To	do	 this	 in	 step	2,	we	used	 a	 finer	
mapping	with	 a	 separation	 of	 Poaceae	 and	
Cyperaceae	 which	 exhibit	 different	
morphologies	when	intact	or	slightly	altered.	
Altered	 Monocotyledonae	 such	 as	 Poaceae	
and	Cyperaceae	may	easily	lose	parts	of	their	
exine	 and	 be	 deformed	 or	 broken,	 because	
they	 are	 made	 of	 a	 single	 thin	 layer.	 To	
optimize	 the	 chances	 of	 recognition	 of	
altered	pollen,	two	networks	with	the	same	
mapping	 were	 used	 but	 with	 different	
augmentation,	 one	 focused	 on	 shape	 (CNN	
2.1),	and	the	other	on	texture	(CNN	2.2).	In	
step	3A,	several	CNNs	were	used;	each	one	
being	 specialized	 in	 the	 recognition	 of	 one	
pollen	 type	 of	 Amaranthaceae	 to	 maintain	
CNN	high	 accuracy.	The	 results	 of	 all	 these	
specialized	 CNNs	 are	 then	 compiled,	 the	
pollen	 is	classified	 into	one	Amaranthaceae	
pollen	type	or	as	Amaranthaceae	uncertain.	
In	step	3B,	the	same	logic	is	used	as	for	step	
2:	two	networks	with	the	same	mapping	are	
used	 with	 different	 augmentation	 to	
separate	 Poaceae	 and	 Cyperaceae.	 If	 the	
results	of	the	two	CNNs	are	incongruous,	the	
pollen	 is	 classified	 as	 an	 uncertain	
Monocotyledoneae.	Finally,	in	step	4,	we	use	
the	results	of	the	CNNs	2.1	and	2.2	to	classify	
Monocotyledoneae	 uncertain	 and	
Amaranthaceae	 uncertain	 in	
Monocotyledoneae	 indeterminable,	
Amaranthaceae	 indeterminable,	 or	
indeterminable	pollen.	

To	 evaluate	 the	 efficiency	 of	
augmentation	 and	 multi-CNNs,	 we	 tested	
three	other	approaches:	(i)	one	using	multi-
CNNs	 without	 augmentation	 in	 step	 1	 and	
3A,	 (ii)	 one	 simple-CNN	 without	
augmentation,	and	(iii)	another	simple-CNN	
with	full	augmentation	of	random	rotation	of	
0-90°,	 random	 horizontal	 and	 vertical	 flip,	
and	random	width	and	height	shift	of	0-25%.	
The	 number	 of	 palynomorphs	 analyzed	 for	
each	pollen	type	in	the	intact,	damaged,	and	
fossil	 sets	 is	 unbalanced.	 The	 number	 of	

fossil	 grains	 for	 each	 type,	 in	 particular,	 is	
low.	As	such,	we	used	the	average	per-class	
accuracy	 (APC%)	 as	 it	 is	more	 appropriate	
for	 the	 evaluation	 of	 the	 algorithm	
performance	in	this	case	(Zheng,	2015).	

	

3.	Results	

3.1.	 Global	 comparison	 of	 used/unused	
augmentation	 and	 single-CNNs/multi-
CNNs		

The	 four	 different	 classification	 setups	
yield	misclassification	 rates	 of	 0%	 to	 5.9%	
for	intact	pollen,	2.8%	to	22.5%	for	damaged	
pollen,	 and	 3.7%	 to	 45.3%	 for	 the	 fossil	
pollen.	 The	 multi-CNNs	 including	
augmentation	 always	 gives	 the	best	 results	
(Fig.	 3).	 Compared	 with	 the	 three	 other	
setups,	 the	 one	 using	 augmentation	 and	
multi-CNNs	 increases	 the	 success	 rate	 for	
classification	in	the	lowest	taxonomic	levels	
(Achyranthes-type	 aspera,	 Aerva-type	
javanica,	 Aerva-type	 lanata,	 Celosia-type	
argentea,	Cyathula-type	orthacantha,	Digera-
type	muricata,	Poaceae,	and	Cyperaceae)	and	
keeps	classification	rates	at	99.3%	for	intact	
pollen,	 85.7%	 for	 damaged	 pollen,	 and	
80.8%	for	fossils	pollen	(Fig.	3).	

In	 detail,	 augmentation	 increases	 the	
success	rate	for	classification	in	lowest	levels	
for	 simple-CNN	 and	 multi-CNNs	 by	 +3.1%	
and	 +2.7%	 for	 intact	 pollen,	 +3.1%	 and	
+16.3%	for	damaged	pollen,	and	+10.5%	and	
+43.8%	for	fossil	pollen,	respectively.	Image	
augmentation	also	reduces	misclassification	
rates	 for	 simple-CNN	 and	 multi-CNNs	 by	 -
3.1%	and	-0.8%	for	intact	pollen,	-3.1%	and	-
7.3%	for	damaged,	 and	 -10.5%	and	 -12.6%	
for	 fossil	 pollen,	 respectively	 (Fig.	 3).	
Similarly,	 the	 use	 of	 multi-CNNs	 reduces	
misclassification	 rates,	 for	 the	 scripts	
without	 augmentation	 (-5.1%	 for	 intact	
pollen,	 -12.4%	 for	 damaged,	 and	 -29%	 for	
fossil	 pollen),	 and	 for	 those	 with	
augmentation	 (-2.8%	 for	 intact	 pollen,	 -
16.6%	 for	 damaged,	 and	 -31.1%	 for	 fossil	
pollen)	(Fig.	3).	

Multi-CNNs	 with	 augmentation	 also	
increase	the	detection	of	Amaranthaceae	and	
Monocotyledonae	misclassification	in	step	1	
and	 2.	 For	 the	 damaged	 dataset,	 five	
misclassified	 pollen	 grains	 of	
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Monocotyledonae	were	directed	into	step	3A	
normally	 reserved	 to	 Amaranthaceae	
(Supporting	 Information,	 Fig.	 S2a).	 All	 of	
these	 five	 misclassified	 pollen	 grains	 of	
Monocotyledonae	 were	 identified	 as	
Amaranthaceae	 uncertain	 in	 step	 3A	
(Supporting	 Information,	 Fig.	 S2a)	 then	
classified	 as	 pollen	 indeterminate	 in	 final	
step	4	(Fig.	2).	This	is	also	observed	for	fossil	
data	 in	 Step	 3A	 and	 Step	 3B	 (Supporting	
Information,	Fig.	S2c,d).	

3.2	 Details	 of	 efficiency	 of	 Multi-CNNs	
with	augmentation	

Our	 Multi-CNNs	 with	 augmentation	
classified	 the	 intact	 pollen	 grains	 with	
misclassification	 rates	 of	 0%.	 All	 intact	
pollen	 are	 correctly	 classified	 (Fig.	 3).	 We	
show	that	within	the	Amaranthaceae	family,	
six	 types	with	 similar	morphologies	 can	be	
distinguished.	 Over	 208	 images	 of	 intact	
Amaranthaceae	 pollen,	 99.3%	 were	
successfully	 classified	 within	 different	
Amaranthaceae	 types	 and	 only	 0.7%	 (two	
Cyathula-type	 orthacantha)	 could	 not	 be	
clearly	identified	but	could	still	be	defined	as	
Amaranthaceae	 indeterminable	 (Fig.	 3	 and	
4a).	 For	 Poaceae	 and	 Cyperaceae,	 all	were	
correctly	 classified	 as	 Poaceae	 and	
Cyperaceae	 despite	 the	 heterogeneity	 of	
textures	and	features,	and	the	complex	shape	
of	Cyperaceae	grains.	

The	 damaged	 pollen	 grains,	 however,	
show	 a	 higher	 misclassification	 rate	 than	
intact	 pollen	 with	 2.8%	 misclassification	
(Fig.	 3).	 Like	 for	 intact	 pollen,	 the	
misclassifications	 are	 evenly	 distributed	 to	
different	 classes	 (Fig.	 4b).	 85.7%	 of	 the	
damaged	 pollen	 have	 been	 successfully	
classified	 to	 the	 lowest	 taxonomic	 levels	
(Achyranthes-type	 aspera,	 Aerva-type	
javanica,	 Aerva-type	 lanata,	 Celosia-type	
argentea,	 Cyathula-type	 orthacantha	 and	
Digera-type	 muricata,	 and	 Poaceae	 and	
Cyperaceae)	 and	 6.6%	 have	 been	
successfully	 classified	 to	 higher	 taxonomic	
ranks	 (5.6%	 in	 Amaranthaceae	
indeterminate,	and	1%	in	Monocotyledonae	
indeterminate),	 that	 is	 -13.6%	 and	 +5.9%	
than	 intact	 pollen,	 respectively.	 Of	 the	 167	
pollen	 classified	 as	 Amaranthaceae,	 only	
6.6%	 were	 classified	 as	 Amaranthaceae	
indeterminate,	 6.6%	 were	 classified	 as	

pollen	 indeterminate,	 and	 none	 were	
misclassified	 as	 Monocotyledonae	
indeterminate	(Fig.	3	and	4b).	

The	 fossil	 grains	 were	 classified	 with	
3.7%	 misclassification,	 a	 +0.9%	 increase	
compared	to	damaged	pollen	(Fig.	3).	In	this	
case,	 misclassifications	 are	 also	 evenly	
distributed	 into	 different	 classes	 (Fig.	 4c).	
80.8%	 of	 total	 pollen	 are	 successfully	
classified	 to	 the	 lowest	 taxonomic	 levels,	
compared	to	-4.9%	for	damaged	pollen.	We	
have	 one	 increase	 of	 pollen	 classified	 to	
higher	 taxonomic	 ranks	 (+4.8%)	 compared	
with	damaged	pollen.	We	also	show	a	slight	
decline	 of	 pollen	 classified	 as	 pollen	
indeterminate	with	a	rate	of	4%	(Fig.	3).	The	
presence	 of	 mineral	 inclusions	 does	 not	
seem	to	interfere	with	identification	(Fig.	1).	
Finally,	 out	 of	 the	 30	 pollen	 classified	 as	
Amaranthaceae,	 17%	 were	 classified	 as	
Amaranthaceae	indeterminate.	

	

4.	Discussion	

Our	 model	 has	 been	 tested	 on	 several	
datasets	with	success.	The	overall	computing	
time	required	to	setup	automatic	recognition	
(time	required	to	do	all	trainings)	was	about	
11	hours	using	the	Nvidia	Titan	X	GPU	for	the	
computing.	 After	 the	 training,	 each	 test	
(inference)	 takes	 less	 than	a	minute	on	 the	
same	 machine,	 and	 reproducibility	 tests	
show	 slight	 variations	 of	 <2	 APC%	 (not	
shown).	 Our	 study	 uses	 image	 datasets	 for	
the	 "training	 dataset",	 "intact	 dataset",	 and	
"damaged	 dataset"	 which	 sizes	 are	 in	 the	
range	 of	 the	 automatic	 recognition	 studies	
mentioned	above,	but	some	may	argue	that	
our	 "fossil	 dataset"	 is	 relatively	 small.	 It	 is,	
however,	a	good	test	for	our	model	because	
the	 proportions	 of	 Amaranthaceae,	
Cyperaceae,	and	Poaceae	pollen	in	the	fossil	
image	dataset	are	close	 to	proportions	 that	
are	 usually	 observed	 in	 modern	 and	 fossil	
pollen	assemblages	of	about	300-400	grains	
from	arid	areas	of	 northeastern	Africa.	The	
results	 on	 the	 fossil	 data	 give	 a	 good	
overview	 of	 what	 can	 be	 obtained	 on	 real	
fossil	samples.	One	caveat,	not	addressed	in	
our	study,	is	that	usually,	not	all	pollen	types	
in	the	fossil/modern	sediment	or	aerial	trap	
are	 known.	 As	 such,	 the	 future	 automatic	
recognition	 systems	will	 have	 to	 include	 in	
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the	training	dataset	pollen	types	that	are	not	
related	to	any	of	the	analyzed/tested	types.	
We	are	confident,	however,	that	our	system	
should	 perform	 well	 because	 in	 our	
experiment	 on	 the	 fossil	 pollen	 dataset,	
which	had	none	Aerva-type	 lanata,	Celosia-
type	 argentea,	 and	 Cyathula-type	
orthacantha,	 we	 reached	 significant	 levels,	
suggesting	 that	 including	 unknown	 pollen	
types	 should	 not	 be	 a	 major	 problem	 in	
future	applications.	

Our	study	shows	that	a	single	CNN	is	not	
able	 to	manage	 the	 recognition	 of	 8	 pollen	
types	when	the	dataset	includes	damaged	or	
fossil	 pollen.	 With	 a	 single	 CNN,	
misclassification	 considerably	 increases	
with	 increased	 grain	 deterioration.	 The	
origin	of	this	problem	is	linked	to	the	attempt	
to	 classify	 into	 low	 taxonomic	 ranks	highly	
degraded	 pollen	 which	 have	 lost	 most	 of	
their	 surface	 features	 and	 ornamentation.	
This	 loss	 of	 information	 complicates	 the	
recognition	 by	 the	 CNN	when	 the	 CNN	 has	
been	trained	to	recognize	eight	pollen	types.	
The	 new	 approach	we	designed	and	which	
combines	the	use	of	augmentation	and	multi-
CNNs,	increases	the	accuracy	of	classification	
for	 the	 damaged	 and	 fossil	 pollen.	 This	 is	
principally	 related	 to	 the	 reclassification	of	
highly	 degraded	 pollen	 into	 higher	
taxonomic	ranks,	and	the	use	of	CNNs	with	
augmentation	 and	 specialized	 in	 the	
recognition	of	only	one	pollen	type	at	a	time	
for	 the	 lower	 taxonomic	 ranks.	 The	 multi-
CNNs	 system	 is	 also	 useful	 for	 identifying	
and	self-correcting	a	significant	part	of	these	
misclassifications	at	the	high	taxonomic	level	
in	 steps	 1	 and	 2,	 with	 the	 support	 for	 the	
systems	set	up	in	steps	3A	and	3B.	The	need	
for	this	self-correction	is	negligible	for	intact	
pollen	due	to	the	absence	of	misclassification	
at	the	high	taxonomic	level,	but	is	important	
for	 the	damaged	and	 fossil	pollen	which	do	
have	misclassification	at	the	high	level	due	to	
their	deteriorated	features.	Consequently,	it	
is	 very	 relevant	 to	use	 augmentation	and	a	
multi-CNNs	 system	 for	 the	 recognition	 of	
fossil	or	damaged	pollen	grains.	

Our	approach	based	on	multi-CNNs	with	
augmentation	 classifies	 each	 class	 of	 intact	
pollen	with	0	APC%	error.	This	is	as	good	as	
in	 recent	 studies	 on	 intact	 pollen	 with	 a	

similar	number	of	pollen	types	(Khanzhina	et	
al.,	2018;	Sevillano	&	Aznarte,	2018;	Daood,	
2018;	Daood	et	al.,	2018).	For	the	damaged	
pollen,	we	achieved	misclassification	rate	of	
2.7	ACP%,	which	is	slightly	higher	than	that	
of	 intact	pollen	(Fig.	1).	 To	our	knowledge,	
this	is	the	first	time	that	such	good	accuracy	
on	 highly	 damaged	 pollen	 grains	 has	 been	
reached	 (Holt	 &	 Bennett,	 2014;	 Han	&	 Xie,	
2018;	Khanzhina	et	 al.,	 2018).	Based	on	all	
human-made	pollen	counts	of	actual	soil	and	
mud	samples	in	the	African	Pollen	Database	
available	for	Ethiopia	(115	samples),	we	find	
that	 indeterminable	 (i.e.	 damaged)	 pollen	
represent	 on	 average	 about	 8%	 of	 total	
pollen	 count,	 and	 that	 indeterminable	
Amaranthaceae	 are	 most	 common:	 they	
represent	 about	 35%	 out	 of	 total	
Amaranthaceae	 (‘African	 Pollen	 Database’,	
2019).	Our	percent	of	indeterminable	pollen	
out	 of	 the	 total	 pollen	 (2.7	 APC%)	 and	 of	
indeterminable	 Amaranthaceae	 out	 of	 the	
total	 Amaranthaceae	 (5.6	 APC%)	 are	 thus	
better	 than	 the	 human	 counts,	 for	modern	
damaged	 pollen	 in	 the	 Ethiopian	 dataset	
(Bonnefille,	 1972;	 Buchet,	 1982;	 ‘African	
Pollen	Database’,	2019).		

As	 mentioned	 before,	 Punyasena	 et	 al.	
(2012)	and	Kong	et	al.	(2016)	obtained	good	
results	 for	 fossil	 pollen	 of	 Picea,	 but	 the	
grains	 in	 their	 study	 came	 from	 a	 peat;	
altered	 pollen	 in	 peat	 cores	 are	 far	 from	
resembling	altered	fossil	pollen	grains	from	
lacustrine	Pliocene	samples.	Our	approach	is	
the	 first	 to	 present	 successful	 results	 (only	
4.1%	misclassification)	for	fossil	pollen	with	
important	 deterioration,	 typical	 for	 arid	
areas.	 In	 the	 human-made	 Pliocene	 pollen	
dataset	of	about	25	samples	obtained	for	the	
Hadar	 formation	 by	 Bonnefille’s	 team	
(Bonnefille	 et	 al.,	 1987)	 indeterminable	
pollen	may	account	 for	up	to	about	30%	of	
total	 pollen	 counts	 (10%	 in	 average).	 Of	
these	25	samples,	19	have	Amaranthaceae	of	
which	about	80%	on	average	were	classified	
as	 "Amaranthaceae	 indeterminable"	
(Bonnefille	 et	 al.,	 1987).	 The	 percentage	 of	
fossil	pollen	indeterminate	that	we	obtained	
with	our	automated	system	is	of	4%,	i.e.	well	
within	the	average	of	Bonnefille	et	al.	(1987),	
and	the	taxonomic	precision	is	better	as	only	
17%	 of	 Amaranthaceae	 were	 classified	 as	
indeterminable.	Our	method,	 therefore,	 has	
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the	potential	to	be	applied	to	both	damaged,	
fossil,	 and	modern	 pollen	 grains	 from	 arid	
areas,	 and	 may	 even	 improve	 pollen	 taxa	
identifications	within	the	Amaranthaceae.		

Using	 our	 multi-CNNs	 with	
augmentation,	we	were	able	to	classify	both	
morphologically	similar	pollen	(pollen	types	
of	 Amaranthaceae)	 at	 the	 species	 or	 genus	
level,	 and	 morphologically	 different	 pollen	
(Amaranthaceae	 versus	 Poaceae	 versus	
Cyperaceae),	 without	 having	 significant	
misclassification	 for	 intact,	 damaged,	 and	
fossil	 pollen	 (Fig.	 4).	 For	 the	
Monocotyledonae,	 we	 can	 observe	 an	
increase	 in	 fossil	 pollen	 classified	 as	
indeterminable	 Monocotyledonae	 (+6.8%)	
in	comparison	to	the	damaged	pollen,	but	we	
do	 not	 have	 significant	 increases	 for	
Amaranthaceae	(Fig.	3).	The	fossil	grains	of	
Monocotyledonae	 have	 more	 mineral	
inclusions	 than	 Amaranthaceae,	 but	 we	
discard	 the	 hypothesis	 that	 mineral	
inclusions	 in	 pollen	 is	 the	 origin	 of	 these	
increases	 because	 fossil	 pollen	 of	
Monocotyledonae	 bearing	 mineral	
inclusions	 are	 correctly	 identified	 (Fig.	 1).	
We	 see	 on	 the	 images	 that	 fossil	 pollen	 of	
Monocotyledonae	is	often	“stuck”	in	residual	
sediments	 (Fig.	 1).	 This	 is	 very	 similar	 to	
images	of	“contaminated	grains”	of	Han	and	
Xie	(2018),	who	suggested	that	this	hinders	
identification.	 Our	 study	 shows	 that	 our	
system	 overcomes	 the	 sediment	
contamination	 and	 is	 able	 to	 correctly	
identify	fossil	pollen	of	Amaranthaceae	even	
when	sediment	is	attached	to	the	grains.	The	
deformation	 of	 pollen	 grains	 is	 another	
hindrance	to	identification	(Holt	et	al.,	2011;	
Han	&	Xie,	2018;	Khanzhina	et	al.,	2018)	but	
our	fossil	grains	of	Monocotyledonae	are	no	
more	 deformed	 than	 damaged	 grains	 of	
Monocotyledonae	 or	 fossil	 grains	 of	
Amaranthaceae	 (Fig.	 1).	 We	 posit	 that,	
within	 the	 biodiversity	 range	 we	
investigated,	 this	 issue	 stems	 from	 the	
structural	weakness	of	Monocotyledonae	(in	
the	 pollen	 studied)	 as	 this	 family	 shows	 a	
thinner	 and	 weaker	 exine	 than	
Amaranthaceae.	 As	 for	 human	 eyes,	
automated	 pollen	 recognition	 requires	 that	
the	 exine	 texture	 must	 be	 relatively	 well	
preserved.	This	agrees	with	the	idea	of	Li	et	
al.	 (2004)	 that	 the	 "surface	 texture	 is	

frequently	 characteristic,	 even	when	grains	
are	damaged	or	fragmented"	for	the	pollen.	

Our	 multi-CNNs	 with	 augmentation	 is	
operational.	 At	 CEREGE,	 it	 is	 used	
occasionally	 to	 assist	 with	 identification	 of	
fossil	Amaranthaceae	when	identification	to	
type	 is	 not	 straightforward.	 The	 main	
bottleneck	 to	 an	 extended	 use	 of	 our	
recognition	 system	 is	 the	 acquisition	 time,	
which	 is	 manual	 and	 therefore,	 time-
consuming,	 preventing	 an	 easy	 addition	 of	
new	 pollen	 types.	 Adding	 an	 automated	
acquisition	 step	would	 therefore	 provide	 a	
complete	automatic	pollen	counting	system,	
saving	a	lot	of	time	for	palynologists	of	arid	
areas	 and	 possibly	 elsewhere.	With	 such	 a	
system,	it	would	probably	be	easy	to	acquire	
images	of	 large	pollen	reference	collections	
within	 in	 a	 few	months.	 The	 prospect	 of	 a	
fully	 automated	pollen	 counting	 system	 for	
paleoclimatic	 and	 paleoenvironmental	
reconstructions,	 similar	 to	 the	 operating	
systems	 developed	 for	 other	 microfossils	
like	 coccoliths	 or	 foraminifera	 (Beaufort	 &	
Dollfus,	 2004;	 Marchant	 et	 al.,	 in	
preparation),	 can	 be	 foreseen	 in	 the	 very	
near	 future.	 These	 automated	 systems	will	
pave	the	way	to	high-throughput	palynology	
studies,	including	morphometric	studies.	

	

Conclusions		

In	 this	 study,	 we	 proposed	 a	 robust	
system	 for	 classification	 of	 very	 damaged	
and	badly	preserved	 fossil	 grains.	We	have	
developed	a	classification	topology	that	has	
flexibility	 in	 the	 choice	 of	 taxonomic	 levels	
used	 for	 classification.	 It	 can,	 like	 a	
palynologist,	assign	higher	taxonomic	ranks	
if	 the	 characteristics	 of	 the	 image	 are	 not	
sufficient	for	robust	identification	at	a	lower	
taxonomic	level.	Moreover,	if	images	cannot	
be	properly	classified,	it	can	declare	them	as	
indeterminable.	 Our	 system	 has	 the	
advantage	 of	 using	 simple	 LM	 images	 and	
does	 not	 require	 the	 implementation	 of	
complex	 and	 expensive	 systems	 such	 as	
confocal	fluorescence	microscopes.	With	the	
damaged	 pollen,	 we	 have	 obtained	 results	
similar	to	or	better	than	those	obtained	from	
human	 pollen	 counting	 performed	 by	
CEREGE	palynologists	 on	modern	 soils	 and	
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Pliocene	 sediments	 of	 the	 Awash	 Valley	 in	
Ethiopia.		

The	system	developed	here	does	not	yet	
allow	 a	 complete	 count	 of	 fossil	 pollen.	 It	
remains	 limited	 to	 a	 few	 families	 and	 to	 a	
very	limited	number	of	taxa	in	comparison	to	
overall	 pollen	 diversity.	 Evaluating	 and	
improving	how	 the	 system	 reacts	 to	pollen	
types	 or	 other	 grains	 not	 included	 in	 the	
training	set	is	also	important	because	usually	
not	all	pollen	types	in	the	sediment	core	are	
known.	To	handle	this,	one	solution	may	be	
the	addition	of	an	"unknown"	category.	Our	
results,	 based	 on	 a	 limited	 dataset	 but	
representing	a	wide	range	of	biases	affecting	
pollen	grains	from	their	production	to	their	
fossilization,	allow	the	possible	development	
of	 automatic	pollen	 recognition	 for	 routine	
palynological	 studies	 of	 samples	 coming	
from	 multiple	 depositional	 environments	
and	 with	 different	 degrees	 of	 pollen	
alteration.	It	would	also	be	interesting	to	see	
if	it	is	possible	to	increase	the	accuracy	of	our	
system	with	the	use	of	a	much	larger	number	
of	training	images.	

It	 is	 also	 important	 to	 specify	 that	 the	
system	 presented	 here	 cannot	 be	 directly	
extended	to	other	pollen	families	as	it	relies	
more	on	the	morphology	of	the	pollen	types	
than	on	the	taxonomic	relationship,	although	
the	 two	 are	 related.	 It	 is	 also	 important	 to	
have	 a	 good	 knowledge	 of	 how	 the	
morphology	of	 each	 type	of	pollen	 changes	
with	degradation	or	fossilization	in	order	to	
build	relevant	mappings	and	logical	steps	in	
the	classification	system	to	cover	all	stages	of	
pollen	 grain	 degradation.	 The	 expertise	 of	
paleo-palynology	 is	 therefore	critical	 to	 the	
extension	of	this	system.	

The	 next	 step	 of	 this	 work	 will	 be	 to	
extend	 the	 system	 to	 automatically	 take	
pictures	 of	 pollen	 grains	 from	 microscope	
slides.	 The	 automatic	 acquisition	 will	 be	
inspired	 by	 the	 processing	 software	
developed	 for	 coccoliths	 at	 CEREGE	
(Beaufort	&	Dollfus,	2004)	and	modified	by	
Martin	Tetard	and	Yves	Gally	 for	Radiolaria	
tests	 (Martin	 Tetard,	 personal	
communication).	It	can	be	summarized	in	6	
steps:	 (1)	 color	pollen	 grains	with	 Safranin	
for	 easier	 segmentation,	 (2)	 take	 grayscale	
images	of	microscope	 fields	of	view	(FOVs)	

by	incrementally	stepping	through	the	slide	
(1	µm	step),	(3)	segment	each	pollen	grains	
in	 each	 stacked	 FOV	 (saving	 their	 x	 and	 y	
coordinates	on	the	original	unstacked	FOV),	
(4)	generate	sub-stacks	 for	each	previously	
recorded	 pollen	 grain	 from	 each	 original	
unstacked	 FOV,	 (5)	 remove	 the	 unfocused	
pollen	 images	 from	 each	 pollen	 sub-stack	
using	 a	 grey	 level	 threshold,	 and	 (6)	 apply	
the	method	in	the	second	paragraph	of	part	
2.1	 for	 finalizing	 image	 processing	prior	 to	
automated	recognition.	With	 this	automatic	
acquisition,	 it	will	 be	 possible	 to	 fully	 scan	
reference	pollen	collections	and	thus	quickly	
build	 a	 large	 database	 of	 pollen	 images	 to	
develop	 an	 automatic	 pollen	 counting	
system	 (acquisition	 and	 recognition)	 for	
modern	and	fossil	pollen	from	eastern	Africa,	
for	example.		
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Computer	code	availability	

All	 files	 and	 folders	 presented	 here	 are	
downloadable	 at	
https://github.com/Beniofh/Multi-CNN.	We	
used	 the	 script	 Multi-CNN_test_V3.5.2.py	
(40.9	 Ko)	 to	 recognize	 pollen	 types	 using	
multi-CNNs	with	augmentation.	Multi-CNNs	
with	 augmentation	 is	 compared	 to	 single-
CNN	 with	 augmentation	 (script	
CNN_test_v2.1.0.py,	 16.5	 Ko),	 single-CNN	
without	 augmentation	 (CNN_test_v2.1.0	
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(wihout_augm).py,	16.5	Ko),	and	multi-CNNs	
without	 augmentation	 (Multi-
CNN_test_V3.5.2(wihout_augm).py,	40.9	Ko).	
In	the	CNN_solo	folder,	we	have	for	each	CNN	
model	parameters,	a	folder	with	file	of	CNN	
model	parameter	used	in	.ckpt,	histograms	of	
accuracy,	 loss	 and	 learning	 rate	during	 the	
training	 in	 .bmp	and	table	of	accuracy,	 loss	
and	learning	rate	during	the	training	in	.csv.	
The	 folder	 "intact",	 "damaged"	 and	 "fossil"	
contain	respectively	the	images	for	"training	
dataset"/"intact	 pollen	 dataset",	 "damaged	
dataset",	 and	 "fossil	 dataset".	 The	
User_manual.pdf	 explains	how	 to	use	 these	
scripts	to	reproduce	our	results.		

These	 scripts	 have	 been	 developed	 by	
Benjamin	 BOUREL	
(chebenjamin@laposte.net	;	+33	6	63	49	85	
24)	with	the	help	of	Ross	MARCHANT.	These	
scripts	were	first	available	the	13th	October	
2019.	They	were	created	in	the	open-source	
Anaconda	 3	 v.5.2.0	
(https://www.anaconda.com)	 with	 Spyder	
v.3.3.6	in	python	v.3.6	(Pérez	et	al.,2011).	We	
also	 used	 NumPy	 (Oliphant,	 2006),	 Scikit-
image	(van	der	Walt	et	al.,	2014),	Scikit-learn	
(Pedregosa	 et	 al.	 2011),	 and	 Matplotlib	
(Hunter,	2007)	packages.	The	details	of	the	
python	 libraries	 used	 (name	 and	 version)	
are	 indicated	 in	 User_manual.pdf.	 All	
software	and	python	libraries	used	here	are	
open	sources.	For	optimal	use,	please	use	the	
indicated	versions.	
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Captions	

Figure	 1:	 Pollen	 images	 with	 automatic	 z-
stack	of	128x128	pixels	for	all	pollen	types	of	
the	 intact,	 damaged,	 and	 fossil	 pollen	
datasets.	The	name	under	each	image	is	the	
final	 label	 assigned	 by	 the	 multiple	
convolutional	neural	networks	(multi-CNNs)	
with	augmentation.		

Figure	 2:	 Schematic	 of	 the	 classification	
system	 based	 on	 multiple	 convolutional	
neural	 networks	 (multi-CNNs)	 with	
augmentation.	 aa:	Achyranthes-type	aspera;	
aj:	Aerva-type	javanica;	al:	Aerva-type	lanata;	
amar:	 Amaranthaceae;	 c:	 Cyperaceae;	 ca:	
Celosia-type	 argentea;	 co:	 Cyathula-type	
orthacantha;	 dm:	 Digera-type	 muricata;	
mono:	Monocotyledonae;	p:	Poaceae;	uncert:	
uncertain;	indet:	indeterminable.	
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Figure	3:	Results	of	our	classification	system	
(multi-CNNs	 with	 augmentation)	 as	 a	
function	of	pollen	dataset	and	in	comparison	
with	other	setups.	Pollen	types	of	the	lowest	
taxonomic	 levels:	 Achyranthes-type	 aspera,	
Aerva-type	 javanica,	 Aerva-type	 lanata,	
Celosia-type	 argentea,	 Cyathula-type	
orthacantha	 and	Digera-type	muricata,	 and	
Poaceae	 and	 Cyperaceae.	 indet.:	
indeterminable.	 The	 APC%	 is	 the	
percentages	based	on	average	per-class.	

Figure	4:	Confusion	matrix	for	the	intact	(a),	
damaged	(b)	and	fossil	(c)	pollen	dataset	for	
final	classes.	aa:	Achyranthes-type	aspera;	aj:	
Aerva-type	 javanica;	 al:	 Aerva-type	 lanata;	
amar:	 Amaranthaceae;	 c:	 Cyperaceae;	 ca:	
Celosia	 argentea;	 co:	 Cyathula-type	
orthacantha;	 dm:	 Digera-type	 muricata;	
mono:	Monocotyledonae;	p:	Poaceae;	 indet:	
indeterminable.	

Supporting	Information	captions		

Figure	 S1:	 Effect	 of	 transfer	 learning	 (the	
use	of	pretrained	CNN)	on	the	training	with	
augmentation	 of	 CNN.	 Dataset:	 training	
pollen	 dataset;	 mapping:	 Achyranthes-type	
aspera,	 Aerva-type	 javanica,	 Aerva-type	
lanata,	Celosia-type	argentea,	Cyathula-type	
orthacantha,	 Digera-type	 muricata,	
Cyperaceae,	and	Monocotyledonae.	

Figure	 S2:	 Confusion	 matrix	 for	 the	
damaged	pollen	dataset	 (classes	of	 step	2A	
(a)	and	classes	of	step	2B	(b))	and	the	fossil	
pollen	 dataset	 (classes	 of	 step	 2A	 (c)	 and	
classes	of	step	2B	(d)).	aa:	Achyranthes-type	
aspera;	 aj:	 Aerva-type	 javanica;	 al:	 Aerva-
type	 lanata;	 amar:	 Amaranthaceae;	 c:	
Cyperaceae;	 ca:	 Celosia-type	 argentea;	 co:	
Cyathula-type	orthacantha;	dm:	Digera-type	
muricata;	 mono:	 Monocotyledonae;	 p:	
Poaceae;	indet:	indeterminable.	

Table	 S1:	 Origin	 of	 pollen	 grains	 and	
distribution	 in	 the	 datasets.	 ka:	 thousand	
years.	

Table	 S2:	 Excel	 file	 with	 detailed	
calculations	for	percentages	of	average	per-
class	accuracy	(APC%).		
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