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a b s t r a c t 

We use Approximate Bayesian Computation and the Kullback–Leibler divergence measure to quantify to what 

extent horizontal and vertical equivalent electrical conductivity time-series observed during tracer tests constrain 

the 2-D geostatistical parameters of multivariate Gaussian log-hydraulic conductivity fields. Considering a perfect 

and known relationship between salinity and electrical conductivity at the point scale, we find that the horizontal 

equivalent electrical conductivity time-series best constrain the geostatistical properties. The variance, control- 

ling the spreading rate of the solute, is the best constrained geostatistical parameter, followed by the integral 

scales in the vertical direction. We find that horizontally layered models with moderate to high variance have the 

best resolved parameters. Since the salinity field at the averaging scale (e.g., the model resolution in tomograms) 

is typically non-ergodic, our results serve as a starting point for quantifying uncertainty due to small-scale het- 

erogeneity in laboratory-experiments, tomographic results and hydrogeophysical inversions involving DC data. 
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. Introduction 

Time-lapse electrical geophysical methods are popular in hydro- 

eology (e.g., Binley et al., 2015; Singha et al., 2015 ) as they pro-

ide non-intrusive means for remote and dense spatio-temporal sam- 

ling related to flow and transport processes. Among these, the direct- 

urrent (DC) method is cost-effective, easy to employ and probably the 

ost commonly used ( Binley et al., 2015 ). It has been thoroughly as-

essed through numerical investigations (e.g., Vanderborght et al., 2005; 

ingha and Gorelick, 2005; Fowler and Moysey, 2011 ), laboratory and 

ontrolled tank experiments ( Slater et al., 2000; Koestel et al., 2008; 

ougnot et al., 2018 ), and field investigations (e.g., Daily et al., 1992;

inley et al., 2002; Singha and Gorelick, 2005 ). 

DC measurements are generally based on two pairs of electrodes: 

ne pair for establishing a known electrical current between two points, 

nd the other for measuring the resultant electrical voltage between 

wo other points (e.g., Keller and Frischknecht, 1966 ). In the context 

f time-lapse DC tomographic experiments, the measurement process 

s repeated using multiple current and voltage electrode pairs at dif- 

erent positions, and the measurement protocol is repeated over time. 

uch a measurement process is often referred to as time-lapse Electri- 

al Resistivity Tomography (ERT), and it outputs time-series of elec- 

rical resistances (voltage over injected current) that in saturated me- 

ia carry information about the time-evolution of the salinity distribu- 
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ion (e.g., Lesmes and Friedman, 2005 ). The time-lapse ERT method 

as been applied during conservative saline tracer tests to extract both 

ow and transport information. Retrieval of hydraulic conductivity 

rom such data is discussed, for example, in Kemna et al. (2002) and 

anderborght et al. (2005) and the range of applications span from 

he calibration of mean hydraulic conductivity values ( Binley et al., 

002 ) to retrieval of the full distribution of hydraulic conductivity 

 Pollock and Cirpka, 2012 ). Extraction of solute transport parameters 

as been studied in detail and ( Kemna et al., 2002 ), for instance, pro-

ided a field demonstration of retrieving equivalent 1-D stream-tube 

dvective-dispersive transport parameters in the context of 3-D con- 

ervative saline transport, results later corroborated numerically by 

anderborght et al. (2005) . Also ( Koestel et al., 2008 ) inferred the 3-D

istribution of solute velocities and dispersivities in a soil column using 

ime-lapse ERT data. 

Over time, the use of geoelectrical-monitored tracer tests has evolved 

rom qualitative analyses such as saline plume motion detection and 

eometry delineation (e.g., Slater et al., 2000 ) to obtain quantita- 

ive and spatially-resolved hydrological constraints. Nevertheless, us- 

ng time-lapse DC data for quantitative hydrogeological purposes re- 

ains a persistent challenge ( Singha et al., 2015 ). This challenge is inti-

ately related to the use of time-lapse inversion methodologies that 

rovide resolution-limited time-evolving images of electrical resistiv- 

ty or conductivity through time ( Singha et al., 2015 ). The most com-

on approach to translate resulting geophysical time-lapse tomograms 
ptember 2020 
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nto salinity distributions rests on two strong assumptions. The first is 

hat there exists a petrophysical relationship, (e.g., Archie, 1942 ), with 

nown spatially-invariant parameters defined at the discretization scale 

f the tomogram, implying that it corresponds to the Representative El- 

mentary Volume (REV) scale ( Hill, 1963 ) of bulk electrical conductiv- 

ty and, consequently, that the impact of salinity heterogeneity is neg- 

igible below this scale. The second assumption is that the resolution 

f the geophysical tomogram is the same as the model discretization, 

hich is hardly true for any electrical survey. In reality, the tomogram 

epresents spatially-varying weighted averages over a much larger vol- 

me (e.g., Friedel, 2003 ). With these two assumptions, temporal differ- 

nces in time-lapse tomograms can readily be translated into estimates 

f salinity differences. Unfortunately, this approach typically leads to 

n underestimation of actual tracer mass with errors often approaching 

ne order of magnitude (e.g., Binley et al., 2002; Singha and Gorelick, 

005; Laloy et al., 2012 ). Research has addressed the second assump- 

ion by upscaling the petrophysical relationship to the tomographic res- 

lution using either linearized inverse theory ( Day-Lewis et al., 2005; 

ussbaumer et al., 2019 ) or Monte Carlo-based simulation approaches 

e.g., Moysey et al., 2005 ). 

In this work, we are primarily concerned with the first assumption, 

amely that the impact of salinity variations is negligible below a given 

cale. To avoid complications inherent to tomographic imaging, we fo- 

us here on the case of a time-evolving equivalent electrical conductivity 

ensor of a 2-D square sample of unit length that is invaded by a saline

i.e., electrically conductive) tracer. In a tomographic setting, this scale 

an be thought of as the model resolution at a given location of interest.

or this case, the equivalent electrical conductivity in a given direction 

s readily obtained, basically by dividing the electric current with the im- 

osed voltage. The total current is the macroscopic flux of the internal 

urrent density field (i.e., the distribution of small-scale currents within 

he sample) that, for a given internal distribution of local conductivities, 

s established such that its associated energy loss due to Joule’s dissipa- 

ion, integrated over the domain, is minimized (e.g., Feynman et al., 

011; Bernabé and Revil, 1995 ). This governing principle leads to pat- 

erns of current channelling and deflection through and from high and 

ow electrical conductivity zones, respectively, and it governs the time 

ariations of the current density field as the saline tracer invades the 

ample (e.g., Li and Oldenburg, 1991 ). Accurate prediction of the time- 

volution of the equivalent electrical conductivity of the medium, thus, 

equires accounting for interactions occurring throughout the domain 

nd, given an arbitrarily-shaped time-evolving electrical conductivity 

eld, this remains an open upscaling problem belonging to the family of 

onductivity upscaling in spatially non-stationary fields (e.g., Sanchez- 

ila et al., 2006 and references therein). The current lack of physically 

ccurate upscaling procedures impedes reliable quantitative analyses 

f a saline plume’s fate from geoelectrical monitoring. For instance, in 

he most common case where Archie’s petrophysical law ( Archie, 1942 ) 

s used to infer the mean saline concentration within the sample from 

ts equivalent electrical conductivity, the underlying assumption is that 

he internal electrical conductivity field behaves as an additive prop- 

rty that can be upscaled by taking its arithmetic average. This is only 

rue if the electrical conductivity field is constant or if its distribution 

s layered and the equivalent electrical conductivity is measured par- 

llel to this layering, corresponding to the upper Wiener bound (e.g., 

ilton and Sawicki, 2003 ). In general, since portions of the concentra- 

ion field are by-passed by the established current patterns, the upper 

ienner bound does not apply and this leads to the above-mentioned 

pparent mass loss as demonstrated, for example, in a recent laboratory 

tudy ( Jougnot et al., 2018 ). These issues also impact the performance of

any fully-coupled hydrogeophysical inversion approaches and model- 

ng studies that interpret equivalent electrical conductivity time-series 

sing equivalent transport parameters within an advective-dispersive 

escription (e.g., Kemna et al., 2002; Vanderborght et al., 2005; Koestel 

t al., 2008 ). On a more positive note, the discussion above also suggests
𝜃  

2 
hat electrical conductivity time-series at a given scale carry statistical 

nformation on the concentration field and its temporal evolution. 

Here we investigate to what extent tracer tests associated with time- 

eries of equivalent electrical properties a pre-defined scale can be used 

o infer geostatistical properties of hydraulic conductivity fields below 

his scale. This is achieved by considering inference within a Bayesian 

nference framework (e.g., Gelman et al., 2013; Tarantola, 2005 ), more 

pecifically through an Approximate Bayesian Computational approach 

e.g., Beaumont et al., 2002; Sisson et al., 2018 ). For comparison pur- 

oses, the mass breakthrough curve is also evaluated and its information 

ontent is compared to its electrical peers. Using a Bayesian approach al- 

ows assessing the information gained on the properties of interest with 

espect to their assumed prior statistics. We perform our study using a 

atabase consisting of 10 5 synthetically-generated equivalent electrical 

onductivity tensor and mass breakthrough time-series collected dur- 

ng saline tracer tests within a 2-D domain with hydraulic heterogene- 

ty prescribed by multivariate Gaussian fields. We consider advectively- 

ominated solute transport (i.e., high Péclet numbers), where the con- 

entration field evolution is predominantly determined by the under- 

ying flow field, which in turn depends on the underlying hydraulic 

onductivity field under the constant applied pressure gradient. In this 

tudy, we consider idealized scenarios as it is assumed that there is no 

patial variations in petrophysical properties and that the petrophysical 

elationship is known. 

In Section 2 we review the basic governing equations describing 

roundwater flow, solute transport and electrical conduction together 

ith their numerical implementations. In Section 3 we introduce the in- 

erence problem of interest along with the Bayesian inference tools. The 

ain results are presented and discussed in Sections 4 and 5 , respec- 

ively. Section 6 concludes the paper. 

. Governing equations and problem setup 

.1. Groundwater flow 

For steady-state flow and in the absence of sources or sinks, mass 

onservation of an incompressible fluid is expressed by the continuity 

quation for the specific discharge q(x) : 

 . q ( x ) = 0 , (1) 

here x = ( 𝑥, 𝑦 ) 𝑇 denotes the 2-D position vector and x and y the hor-

zontal and vertical coordinates, respectively. Darcy’s law relates q ( x ) 
ith the hydraulic conductivity field 𝐾( x ) and the hydraulic head ℎ ( x )
ia 

(x) = − 𝐾( x )∇ ℎ ( x ) . (2) 

Adopting Darcy’s law, the groundwater flow equation reads: 

 𝐾( x )∇ ℎ ( x ) + 𝐾( x )∇ 

2 ℎ ( x ) = 0 . (3)

It is customary to treat the log-hydraulic conductivity field 𝑌 ( x ) 
 ≡ ln ( 𝐾( x )) within a geostatistical framework with 𝑌 ( x ) modelled as a

econd-order spatially-stationary ergodic random function. In this study, 

e consider multivariate-Gaussian random fields with an exponential 

ovariance structure (e.g., Rubin, 2003 ) with a mean 𝜇Y and a variance 
2 
Y 
. The integral scales of the field are expressed by the integral scale 

 y in the vertical direction and an anisotropy factor 𝜆 (= 𝐼 x ∕ 𝐼 y ) . After

pecifying 𝐾( x ) , the flow field q ( x ) is obtained by solving Eq. (3) with

rescribed boundary conditions ( Section 2.4.2 ). 

.2. Solute transport 

The evolution of the concentration field 𝑐( x , 𝑡 ) of a passive tracer be-

ng transported within the steady-state flow-field q ( x ) can be described 

ithin an Eulerian framework using the advection-dispersion equation 

𝜕𝑐( x , 𝑡 ) + ∇ . [( q ( x ) 𝑐( x , 𝑡 ) − 𝜃D ∇ 𝑐( x , 𝑡 )] = 0 , (4)

𝜕𝑡 
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Fig. 1. Generated sample of size 𝑃 = 10 5 of geostatistical parameters m = 
( 𝜎2 

𝑌 
, 𝐼 y , 𝜆) drawn from a joint pdf 𝜋( m ) . Each realization is used together with 

an associated R -realization to create a log-hydraulic conductivity field on which 

flow and transport simulations are performed. 
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here 𝜃 is the porosity and D is the dispersion tensor. In this study we 

ssume a spatially-constant porosity and dispersion tensor, and further- 

ore we assume zero dispersivity. In this case and considering Eq. (1) , 

q. (4) simplifies to the advection-diffusion equation with constant co- 

fficients: 

𝜕𝑐 

𝜕𝑡 
+ q ( x ) . ∇ 𝑐 − 𝜃𝐷 𝑚 ∇ 

2 𝑐 = 0 , (5)

here D m 

denotes the molecular diffusion coefficient. After solving for 

( x , 𝑡 ) , the flux-weighted tracer mass-breakthrough time-series M ( t ) are

efined by 

( 𝑡 ) = 

∫Γ𝑜𝑢𝑡 
𝑞 𝑥 ( x ) 𝑐( x , 𝑡 ) 𝑑 x 

∫Γ𝑜𝑢𝑡 
𝑞 𝑥 ( x ) 𝑑 x 

, (6) 

ith 𝑞 𝑥 ( x ) being the flow-component in the x -direction and Γout the out-

ow boundary of the model domain. 

.3. DC conduction 

Electric charge conservation is in the DC problem expressed by the 

ontinuity equation of the current density field J(x,t) at time-lapse ac- 

uisition time t . In the absence of current sources and net accumulation 

f electric charge, it takes the following form: 

 . J ( x , 𝑡 ) = 0 . (7) 

Ohm’s law relates J ( x , 𝑡 ) with the electrical conductivity 𝜎( x , 𝑡 ) and

he electric field E ( x , 𝑡 ) via the linear relationship J ( x , 𝑡 ) = 𝜎( x , 𝑡 ) E ( x , 𝑡 ) .
dopting the quasistatic approximation, ∇ × E ( x , 𝑡 ) = 0 , allows to ex-

ress E ( x , 𝑡 ) = −∇ 𝜙( x , 𝑡 ) , where 𝜙( x , 𝑡 ) is the electrical potential. Writing

 ( x , 𝑡 ) in terms of 𝜙( x , 𝑡 ) as J ( x , 𝑡 ) = − 𝜎( x , 𝑡 )∇ 𝜙( x , 𝑡 ) and replacing this ex-

ression into Eq. (7) results in the governing Laplace equation for the 

lectrical potentials: 

 𝜎( x , 𝑡 )∇ 𝜙( x , 𝑡 ) + 𝜎( x , 𝑡 )∇ 

2 𝜙( x , 𝑡 ) = 0 . (8)

We consider the horizontal and vertical components of the equiv- 

lent electrical conductivity tensor time-series of a 2-D square sam- 

le of unit length. This implies solving Eq. (8) with alternative mixed 

irichlet–Neumann boundary conditions or “excitation modes ”. For 
H ( t ) ( 𝜎V ( t )), a constant electrical potential difference Δ𝜙H ( Δ𝜙V ) along

he horizontal (vertical) direction is imposed, with zero electrical po- 

ential gradient along the top and bottom (left and right) bound- 

ries. The resulting electrical potential fields are, respectively, 𝜙𝐻 ( x , 𝑡 ) 
nd 𝜙𝑉 ( x , 𝑡 ) . The corresponding equivalent electrical conductivity time- 

eries are computed as 

𝐻 ( 𝑡 ) = 

1 
Δ𝜙𝐻 

∫Γ𝑦 

− 𝜎( x , 𝑡 )∇ 𝑥 𝜙
𝐻 ( x , 𝑡 ) 𝑑 x , (9) 

nd 

𝑉 ( 𝑡 ) = 

1 
Δ𝜙𝑉 

∫Γ𝑥 

− 𝜎( x , 𝑡 )∇ 𝑦 𝜙
𝑉 ( x , 𝑡 ) 𝑑 x , (10) 

here the integration paths Γy and Γx are any two given contours sepa- 

ating the left and right boundaries and the top and bottom boundaries, 

espectively, and the integrands in each equation is the horizontal or 

ertical component of the current density field resulting from each ex- 

itation mode. 

.4. Numerical implementations and problem setup 

We create a database of 10 5 time-series of 𝜎H ( t ), 𝜎V ( t ) and M ( t ) that

re collected during tracer tests simulated within multivariate Gaussian 

og-hydraulic conductivity realizations in a square-shaped domain of 

ide length 𝐿 = 1 m discretized into 250 × 250 elements. 
3 
.4.1. Generation of hydraulic conductivity fields 

The log-hydraulic conductivity field realizations 𝑌 ( x ) are gener- 

ted using the fast circulant embedding technique (see Dietrich and 

ewsam, 1997 for details). A given realization depends on the speci- 

ed geostatistical model parameters and R ; a 250 × 250 a random draw 

rom a standard normal distribution. The geostatistical model parame- 

ers determine the spatial regularity (smoothness class), while R deter- 

ines the locations of high and low log-hydraulic conductivity values 

elative to the mean value 𝜇Y of the geostatistical model. Here 𝜇Y is 

xed at -6 while remaining parameters are treated as random variables 

 = ( 𝜎2 
Y 
, 𝐼 y , 𝜆) described by a joint probability density function (PDF)

( m ) . The variance 𝜎2 
𝑌 

is randomly drawn from a uniform PDF with sup-

ort [0, 5.5], the integral scale 𝐼 y is drawn from a log-uniform PDF with

upport [ L /25, L /2] m, and the anisotropy factor 𝜆 ( = 𝐼 𝑥 ∕ 𝐼 y ) is drawn

rom a uniform PDF with support [1 , 𝐿 ∕ 𝐼 y ] (i.e., conditionally on 𝐼 y ).

he discretization implies that heterogeneities obtained with the small- 

st integral scales are resolved with at least 10 cells in each direction. 

he log-uniform distribution of 𝐼 y is here chosen to favor realizations 

ith finely structured fields. The generated sample of the geostatistical 

odel parameters of size 𝑃 = 10 5 is represented in Fig. 1 . Note that each

raw is associated with a unique R , which together form a log-hydraulic 

onductivity field realization. 

.4.2. Flow simulations 

The groundwater flow equation ( Eq. (3) ) is solved numeri- 

ally using the open-source finite-difference solver MODFLOW-2005 

 Harbaugh, 2005 ). The prescribed boundary conditions are a horizontal 

ead gradient of 0.05 inducing flow from left to right and no-flow con- 

itions for the top and bottom boundaries. The head gradient value was 

hosen such that for a homogeneous field equal to exp ( 𝜇Y ) the tracer ar-

ival time occurs approximately at half of the simulated time-duration 

f the tracer experiment. In the simulations, the hydraulic conductivity 

etween two adjacent cells is taken as their harmonic mean. The chosen 
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Algorithm 1: Data generation procedure. 

for 𝑗 = 1 to 10 5 do 

Draw geostatistical model realization m = ( 𝜎2 
𝑌 
, 𝐼 y , 𝜆) 

and R 

Generate hydraulic conductivity field 𝐾( x ) 
Simulate steady-state Eulerian flow field q ( x ) 

for 𝑖 = 1 to 400 do 
Specify sampling time 𝑡 as 𝑡 = ( 𝑖 − 1)Δ𝑡 

Simulate concentration field 𝑐 𝑖 ( x ) 
Compute 𝑀 𝑖 , 𝜎

𝐻 

𝑖 
and 𝜎𝑉 

𝑖 

end 

Save 𝐾( x ) 
Save concentration field time-series 

C = [ 𝑐 1 ( x ) , …, 𝑐 400 ( x )] 
Save time-series of mass breakthrough 

𝑀 = [ 𝑀 1 , …, 𝑀 400 ] and electrical conductivity 
𝜎𝐻 = [ 𝜎𝐻 

1 , …, 𝜎𝐻 

400 ] and 𝜎𝑉 = [ 𝜎𝑉 
1 , …, 𝜎𝑉 

400 ] 
end 
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umerical scheme used to solve the system of linear equations is the 

reconditioned conjugate gradient method ( Hill, 1990 ). 

.4.3. Transport simulations 

The advection-diffusion equation ( Eq. (5) ) is solved using 

he groundwater solute transport simulator package MT3D-USGS 

 Bedekar et al., 2016 ). The initial condition is a homogeneous con- 

entration field of 0.01 g l −1 and the boundary conditions are: (i) 

onstant concentration of 1 g l −1 along the left boundary (ii) no-flux 

long the top and bottom boundaries and (iii) free-flux along the right 

oundary. The porosity is assumed constant and equal to 0.3. For the 

dvection term in Eq. (5) , the third-order Total Variation Diminishing 

TVD) approach ( Cox and Nishikawa, 1991 ) is used. The TVD solver 

as found to be very robust and showed minimal numerical dispersion 

hen benchmarked against planar fronts. Nevertheless, in order to 

ask the small numerical dispersion, the diffusion coefficient was 

lightly increased from 𝐷 𝑚 = 1 . 6 × 10 −9 m 

2 s −1 (the standard value

or the diffusion coefficient of salt in water) to 𝐷 𝑚 = 2 × 10 −8 m 

2 s −1 .
he latter (larger) value is obtained by fitting the analytical solution 

or a concentration profile for a step injection in 1-D (e.g., Ogata and 

anks, 1961 ) to a TVD-calculated concentration profile obtained for a 

omogeneous hydraulic conductivity field equal to 𝜇Y when the diffu- 

ion coefficient is imposed to be the one of salt in water. Each simulated

racer experiment lasts for 4 × 10 3 s and during this time period, 400 

quidistant samples 𝑐 𝑖 ( x ) ( 𝑖 = 1 , … , 400 ) of the simulated concentration

elds are recorded at times 𝑡 = ( 𝑖 − 1)Δ𝑡, with Δ𝑡 = 4 × 10 3 s∕400 = 10 s .
he injected tracer typically does not fully replace the initial back- 

round tracer at the end of the simulation period. This is a consequence 

f the short simulation time imposed by computational constraints and 

arge low-velocity regions. The mean Péclet number is ~ 6 × 10 3 , 

efined as 𝑃 𝑒 = 

𝑢̄ 

𝐷 𝑚 
, where 𝑢̄ is the tracer velocity for the constant

ydraulic conductivity field. 

.4.4. Electrical simulations 

For each sampled concentration field 𝑐 𝑖 ( x ) , the 2-D square domain 

s alternatively excited by imposing an electrical potential difference of 

 V with a pair of line electrodes along either the vertical or horizon-

al boundaries of the sample. The remaining boundaries are prescribed 

ero electrical potential gradient normal to the boundaries. The result- 

ng electrical potential fields 𝜙𝐻 

𝑖 
( x ) and 𝜙𝑉 

𝑖 
( x ) associated to the horizon- 

al and vertical modes, respectively, are computed by numerically solv- 

ng the Laplace equation ( Eq. (8) ) with the finite-element solver mod- 

le of the Python library pyGIMLi ( Rücker et al., 2017 ). For simplicity,

he input electrical conductivity distribution 𝜎𝑖 ( x ) , used for solving the 

oundary-value problems at each time step is assumed to be perfectly 

nd linearly related to the transport simulation output 𝑐 𝑖 ( x ) . The result-

ng normalized dimensionless time-series denoted as 𝜎H , 𝜎V and M vary 

ithin [0.01, 1]. The data generation is summarized by the pseudo-code 

n Algorithm 1 . 

. Inference problem 

We are interested in assessing to what extent the time-series 𝜎H , 𝜎V 

nd M may constrain the geostatistical parameters m = ( 𝜎2 
Y 
, 𝐼 y , 𝜆) . We

onsider the following five combinations of time-series: 

 𝐻 

∶= { 𝜎𝐻 } , 

 𝑉 ∶= { 𝜎𝑉 } , 

 𝑀 

∶= { 𝑀} , 

 𝐻𝑉 ∶= { 𝜎𝐻 , 𝜎𝑉 } , 

 𝐻𝑉 𝑀 

∶= { 𝜎𝐻 , 𝜎𝑉 , 𝑀} . 

The data vectors d 𝐻 

, d 𝑉 and d 𝑀 

are used to assess the individual 

erformance of each type of time-series; d is used to evaluate the 
𝐻𝑉 

4 
erformance of electrical data alone and d 𝐻𝑉 𝑀 

is used to evaluate the 

alue of using all the data at the same time. We cast the problem as a

ayesian inference framework as outlined below. 

.1. Bayesian inference framework 

In a finite-dimensional Bayesian inference framework, a model 

s described in terms of M random variables with realizations m = 

 𝑚 1 , … , 𝑚 𝑀 

) that can be used as input to a physical forward simula-

or producing N simulated data d 

𝑠𝑖𝑚 =  ( m ) (e.g., Gelman et al., 2013; 

arantola, 2005 ). The prior probability density function 𝜋( m ) is up- 

ated using Bayes’ theorem to a posterior probability density func- 

ion 𝜋( m |d 

𝑜𝑏𝑠 ) after considering the observed data d 

𝑜𝑏𝑠 = ( 𝑑 1 , … , 𝑑 𝑁 

)
sing a likelihood function 𝜋( d 

𝑜𝑏𝑠 |m ) . This function evaluates the like- 

ihood of any model realization given and the residual error vector 

 = d 

𝑜𝑏𝑠 − d 

𝑠𝑖𝑚 and an assumed underlying observational noise model 

e.g., Tarantola, 2005 ). Bayes’ theorem in its unnormalized form reads: 

( m |d 

𝑜𝑏𝑠 ) ∝ 𝜋( d 

𝑜𝑏𝑠 |m ) 𝜋( m ) . (11) 

In our context, the prior is given by the PDF described in 

ection 2.4.1 and d 

𝑜𝑏𝑠 is the noise-contaminated output of the forward 

imulator,  ( m 𝑡 ) , when evaluated using one of the test cases m 𝑡 de- 

cribed in Section 4.2 . For the electrical time-series,  ( m ) is formed by

he sequential application of the following forward mappings: (i) the re- 

lization of the hydraulic conductivity field K ( x ) , (ii) solving the ground- 

ater flow Eq. (3) , (iii) the advection-diffusion Eq. (5) , (iv) the Laplace

q. (8) and (v) evaluating the equations defining 𝜎H (9) and 𝜎V (10) . 

.2. Posterior density approximation 

In Bayesian inference, Monte Carlo (MC) sampling can be used to 

pproximate 𝜋( m |d 

𝑜𝑏𝑠 ) by a MC integration over a finite sample of the 

ought distribution (e.g., Mosegaard and Tarantola, 1995; Gelman et al., 

013 ). The simplest approach is Acceptance-Rejection Sampling (ARS), 

hich consists of drawing samples m proportionally to the prior density 

nd accepting them as samples of the posterior density proportionally 

o their likelihood 𝜋( d 

𝑜𝑏𝑠 |m ) . This is an exact sampling method (e.g., 

osegaard and Tarantola, 1995 ) and it can be used off-line using a 

arge ensemble of prior model realizations given that, unlike in a Markov 

hain MC (MCMC) sampling method, there is no dependence between 

he model proposals. Its main disadvantage is that, since the parame- 

er search is unguided (unlike MCMC), the probability of acceptance 
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Algorithm 2: Approximate Acceptance-Rejection Sampling 

(AARS) algorithm. 

for 𝑘 = 1 , …, 𝑃 do 

Draw m ( 𝑘 ) from 𝜋( m ) and R ( 𝑘 ) from 𝜋( R ) 

Generate a data instance d = d 

𝑠𝑖𝑚 from the 
underlying unobserved likelihood 𝜋( d 

𝑜𝑏𝑠 |d , m ( 𝑘 ) , R ( 𝑘 ) ) 

Accept m ( 𝑘 ) with an acceptance probability 
𝐴𝑃 = K ℎ ( 𝜌) 

end 
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ℎ

ecreases exponentially with the dimensionality M of the model param- 

ter space. As more dimensions are added to the problem, the ratio of 

he (hyper)volume of high likelihood values (regions of large accep- 

ance probability), to the total volume of the model space, decreases 

xponentially to zero (e.g., Scales, 1996; Curtis and Lomax, 2001 ). This 

o-called curse of dimensionality may result in unrealistically-large prior 

odel samples, even when addressing only a handful of parameters. In 

he context of this study, we are interested in only three geostatistical 

arameters ( Section 2.1 ) possibly suggesting that ARS could be a good 

hoice. 

However, when the scale of the modelling domain is insufficiently 

arge compared to the integral scales of the field Y ( x ) under consider- 

tion, ergodic conditions are not fulfilled implying a potentially high 

ependence on R ( Section 2.4.1 ). This high-dimensional variable is dif- 

erent for each realization of Y ( x ) and it ultimately controls the loca- 

ions of high- and low hydraulic conductivity regions. Even if we are 

ninterested in R as such, it forms part of our data generation process 

nd, thus, it enters the inference problem as a nuisance variable (e.g., 

elman et al., 2013 ) that needs to be accounted for. Consequently, our 

efinition of the forward simulator given above has to be expanded to 

( m , R ) . Assuming independence of m and R examples, the actual in- 

erence problem to solve reads 

( m , R |d 

𝑜𝑏𝑠 ) ∝ 𝜋( d 

𝑜𝑏𝑠 |m , R ) 𝜋( m ) 𝜋( R ) . (12) 

To obtain the sought density, we need to marginalize 𝜋( m , R |d ) with

espect to R : 

( m |d ) = ∫ 𝜋( m , R |d ) 𝑑 R . (13) 

Due to its higher dimensionality (more than 62,500 variables in our 

xamples), the problem expressed by Eq. (12) is practically impossible 

o handle with the formal Bayesian ARS algorithm. For this reason, we 

esort to an approximate version of the ARS that is outlined in the fol-

owing subsection. 

.2.1. ABC acceptance-rejection sampling algorithm 

The ARS algorithm implemented within an Approximate Bayesian 

omputational (ABC) framework, labelled Approximate Acceptance- 

ejection Sampling (AARS) algorithm from now on, is an approximate 

ampling method that produces a smooth approximation of 𝜋( m |d ) . The 

eader is referred to ( Sisson et al., 2018 ) for an overview on ABC meth-

ds. The AARS algorithm requires two additional inputs: (i) a distance 

etric 𝜌( d 

𝑠𝑖𝑚 
, d 

𝑜𝑏𝑠 ) for comparing the calculated data with the observed 

ata and (ii) a kernel density function K ℎ ( 𝜌) for weighting the distance 

etric and defining an acceptance probability. Together, they replace 

he likelihood function. 

In our work, the distance metric 𝜌( d 

𝑠𝑖𝑚 
, d 

𝑜𝑏𝑠 ) is taken as the L 1 -norm:

( d 

𝑠𝑖𝑚 
, d 

𝑜𝑏𝑠 ) = 

1 
𝑁 

𝑁 ∑
1 

|d 

𝑠𝑖𝑚 − d 

𝑜𝑏𝑠 | (14) 

nd the Kernel density is chosen to be a uniform function: 

 ℎ ( 𝜌) = 

{ 

1 0 ≤ 𝜌∕ ℎ ≤ 1 
0 1 < 𝜌∕ ℎ, (15) 

here the acceptance bandwidth h is chosen such that the 0 . 5 th per-

entile of the distribution of 𝜌 ordered from the lowest to the highest 

istance are accepted. In our case, this means that K ℎ ( 𝜌) accepts the 

odels producing the S = 500 lowest distances out of the K = 10 5 sam- 

led prior samples. 

The AARS algorithm, described in pseudo-code in Algorithm 2 , pro- 

eeds similarly to the formal ARS algorithm. 

Considering Algorithm 2 , it can be noticed that the AARS algorithm 

raws samples from the joint distribution 

𝐴𝐴𝑅𝑆 ( m , R , d |d 

𝑜𝑏𝑠 ) = K ( 𝜌) 𝜋( d 

𝑜𝑏𝑠 |d , m , R ) 𝜋( m ) 𝜋( R ) , (16)
ℎ 

5 
hich, when integrated over all generated data instances gives the AARS 

pproximation of the ( R -marginalized) posterior density: 

𝐴𝐴𝑅𝑆 ( m |d 

𝑜𝑏𝑠 ) = ∫ 𝜋𝐴𝐴𝑅𝑆 ( m , R , d |d 

𝑜𝑏𝑠 ) 𝑑 d ; (17) 

r, 

𝐴𝐴𝑅𝑆 ( m |d 

𝑜𝑏𝑠 ) = 𝜋( m ) ∫ K ℎ ( 𝜌) 𝜋( d 

𝑜𝑏𝑠 |d , m , R ) 𝑑 d . (18)

As pointed out by Sisson et al. (2018) , from Eq. (18) the AARS can be

nterpreted as a formal Bayesian ARS algorithm using an approximated 

ikelihood function that is a Kernel Density Estimation (KDE) of the true 

ikelihood: 

𝐴𝐴𝑅𝑆 ( d 

𝑜𝑏𝑠 |m , R ) = ∫ K ℎ ( 𝜌) 𝜋( d 

𝑜𝑏𝑠 |d , m , R ) 𝑑 d . (19) 

For building the empirical posterior probability densities, we per- 

orm KDE over the samples obtained from 𝜋𝐴𝐴𝑅𝑆 ( m |d 

𝑜𝑏𝑠 ) . For consis- 

ency, the prior PDF ( Section 2.4.1 ) is computed by performing KDE 

ver the generated sample of size 𝑃 = 10 5 . The KDE approach is de-

cribed in the following subsection. 

.2.2. Multivariate kernel density estimation (KDE) 

Given a sample X = { x 1 , … , x S } of size S of M -variate random vectors

elonging to a common distribution described by the density g , the KDE 

stimator 𝑔̂ of g is given by (e.g., Wand and Jones, 1994 ) 

̂ H ( x ) = 

1 
S 

S ∑
𝑖 =1 

K H ( x − x 𝑖 ) , (20) 

ith the estimator function K H defined as: 

 𝐇 ( 𝐱) = |𝐇 |− 𝟏 𝟐 𝐾( 𝐇 

− 𝟏 𝟐 𝐱) , (21) 

here the kernel function K is a symmetric multivariate density. Fur- 

hermore, |H | is the determinant of the M × M bandwidth matrix H , 

hich is symmetric and positive definite in general and, if the M vari- 

bles are assumed independent, it is diagonal with entries H 𝑖 given as 

H 𝑖 = ℎ𝜎𝑖 , where h is the bandwidth parameter and 𝜎i the standard 

eviation of the i th component of the random variable. 

The estimator of Eq. (20) is an average of kernel densities that are 

entered at the sample points and whose decay is controlled by H . The 

articular choice of K does not substantially influence the performance 

f the KDE approach, but the choice of the bandwidth h , defining H

i.e., the tails of K ), is a most crucial aspect, given that under- or over-

moothed estimators will be produced if it is taken too small or large, 

espectively (e.g., Wand and Jones, 1994 ). In the present work, K is 

hosen as the standard multivariate normal function 

 H ( x ) = (2 𝜋) − 
𝑁 

2 |H |− 1 2 𝑒𝑥𝑝 { 

− 

1 
2 

x T H 

−1 x 

} 

. (22) 

For h , a common choice when dealing with unimodal distributions, 

s the ones expected in this study, is based on Silverman’s rule of thumb

e.g., Silverman, 1986 ): 

 𝑠 = 

4 
1 

𝑀+4 
𝑑 
− 1 

𝑀+4 . (23) 

𝑀 + 2 
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Fig. 2. (Color online) (a) Weakly heterogeneous hydraulic conductivity field with geostatistical parameters ( 𝜎2 
𝑌 
, 𝐼 y , 𝜆) = (0 . 005 , 0 . 130 m , 3 . 179) . (b) Corresponding 

steady-state flow field and (c) normalized concentration field at time 10 3 s. (d) Time-series of the horizontal and vertical equivalent electrical conductivity, mass- 

flux, and mean tracer concentration, denoted 𝜎H , 𝜎V , M and 𝜇c , respectively. The light-blue vertical line, also present in (e), marks the time 10 3 s of the concentration 

field shown in (c). (e) Time-derivatives of 𝜎H , 𝜎V , M and 𝜇c . 
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The reliability of the used information measure ( Subsection 3.3 ) 

argely depends on the quality of the input density estimations provided 

y the KDE approach (e.g., Budka et al., 2011 ). Considering the trade- 

ffs pertaining to the choice of h , a manual tuning process was neces-

ary, which resulted in the choice of ℎ = 0 . 75 ℎ 𝑠 for the results presented

erein. 

.3. Information measure: Kullback–Leibler divergence 

The degree of knowledge brought by the observed data d 

𝑜𝑏𝑠 pertain- 

ng to the geostatistical model parameters is evaluated by comparing our 

pproximation of 𝜋( m |d 

𝑜𝑏𝑠 ) with 𝜋( m ) . The Kullback–Leibler divergence 

KLD) ( Kullback and Leibler, 1951 ), also termed Relative Information 

ontent ( Tarantola, 2005 ), is probably the most widely used quantita- 

ive measure for comparing PDFs: 

𝐿𝐷( 𝜋( m |d 

𝑜𝑏𝑠 ); 𝜋( m )) = ∫ 𝜋( m |d 

𝑜𝑏𝑠 ) 𝑙𝑛 
( 

𝜋( m |d 

𝑜𝑏𝑠 ) 
𝜋( m ) 

) 

𝑑 m , (24) 

here the base of the logarithm is taken as e , giving the information

n units of nats (e.g., Cover and Thomas, 2012 ). The integration of 

q. (10) is performed over the support of the densities and the KLD 

s finite as the support of 𝜋( m |d 

𝑜𝑏𝑠 ) is contained in the support of 𝜋( m )
e.g., Cover and Thomas, 2012 ). The KLD is zero when 𝜋( m |d 

𝑜𝑏𝑠 ) ≡ 𝜋( m )
i.e., the data carry no information about the model parameters) and it 

ncreases as the posterior becomes more compact with respect to the 

rior as a consequence of conditioning to the data. Note that when the 

rior and posterior densities are Gaussian with the same mean, but the 

tandard deviation of the posterior is half the standard deviation of the 

rior, then the KLD is 0.27 nats. 

Since our samples are drawn from approximate posterior densities 
𝐴𝐴𝑅𝑆 ( m |d 

𝑜𝑏𝑠 ) that are KDE (i.e., smoothed) versions of the target den- 

ities 𝜋( m |d 

𝑜𝑏𝑠 ) ( Eq. (18) ), the chosen AARS approach provides a con-

ervative framework for assessing the information content in terms of 
6 
he KLD measure, since it is always true that 

𝐿𝐷( 𝜋𝐴𝐴𝑅𝑆 ( m |d 

𝑜𝑏𝑠 ); 𝜋( m )) < 𝐾𝐿𝐷( 𝜋( m |d 

𝑜𝑏𝑠 ); 𝜋( m )) , (25) 

hich implies that the information content in the considered time-series 

s at least as large as the estimates obtained by our analysis. 

. Results 

We first show two examples of generated data for end-member cases 

f weak and strong hydraulic heterogeneity. Then, we describe the re- 

ults obtained for different geostatistical parameter value combinations 

n terms of the KLD and bias measures. In doing so, we discuss results

btained for one R -realization, as well as ensemble statistics deduced 

rom 50 R -realizations. 

.1. Two examples of generated data 

Fig. 2 shows an example of data obtained for a weakly heterogeneous 

ydraulic conductivity field with ( 𝜎2 
𝑌 
, 𝐼 y , 𝜆) = (0 . 005 , 0 . 130 m , 3 . 179)

 Fig. 2 a), resulting in an approximately constant flow field ( Fig. 2 b). The

orresponding concentration field, shown at the sampling time 10 3 s, 

hen the tracer occupies approximately 50% of the model domain, dis- 

lays an overall planar front ( Fig. 2 c). 

The time-series of 𝜎H and 𝜎V ( Fig. 2 d) evolve according to the lower 

nd upper Wiener bounds. These upscaling formulas for laminated ma- 

erials (e.g., Milton and Sawicki, 2003 ) correspond to the harmonic and 

rithmetic means of the local electrical conductivities, respectively. The 

rithmetic averaging governing 𝜎V is manifested by linear scaling with 

ime. In this case, 𝜎V forms an almost perfect predictor of the mean salin- 

ty ( 𝜇c ) within the sample. 𝜎H , on the contrary, strongly underestimates 

c . For this case, the mean velocity of the tracer front is given by the

ime-derivative of 𝜎V ( Fig. 2 e), information that is available before the 

ass-flux ( M ) time-series shows any response. 
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Fig. 3. (Color online) (a) Strongly heterogeneous hydraulic conductivity field, defined with geostatistical parameters ( 𝜎2 
𝑌 
, 𝐼 y , 𝜆) = (5 . 111 , 0 . 085 m , 1 . 028) . (b) Corre- 

sponding steady-state flow field and (c) normalized concentration field at time 10 3 s. (d) Time-series of the horizontal and vertical equivalent electrical conductivity, 

mass-flux, and mean tracer concentration, denoted 𝜎H , 𝜎V , M and 𝜇c , respectively. The light-blue vertical line, also present in (e), marks the time 10 3 s, of the 

concentration field in (c). (e) Time-derivatives of 𝜎H , 𝜎V , M and 𝜇c . The large peaks exhibited by 𝑑𝜎𝐻 

𝑑𝑡 
and 𝑑𝑀 

𝑑𝑡 
approximately coincide with the first arrival of the 

tracer at the outlet. 
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These easily interpretable results are now contrasted with those ob- 

ained for a strongly heterogeneous hydraulic conductivity field, defined 

ith ( 𝜎2 
𝑌 
, 𝐼 y , 𝜆) = (5 . 111 , 0 . 085 m , 1 . 028) . The resulting field has small-

cale structures and is close to isotropic ( Fig. 3 a). Yet its associated

ow field exhibits pronounced channeling ( Fig. 3 b) resulting in a highly 

eterogeneous concentration field ( Fig. 3 c). Neither 𝜎H nor 𝜎V follow 

ny known upscaling law. They both start to vary much earlier than M 

 Fig. 2 d), which only reacts when the tracer arrives at the outlet. These

arly variations are clearly seen in the time-derivatives of the electri- 

al responses ( Fig. 2 e), which are non-zero from the moment the tracer

njection starts and exhibit small peaks that are related to internal con- 

ection events of the solute that are invisible to M . Both 𝜎H and M show

 steep increase around 10 3 s, and a large peak in their time-derivatives, 

orresponding to early breakthrough arrival. For this case, 𝜇c is at early 

imes much larger than all data and is asymptotically approximated by 

 , followed in order of magnitude by 𝜎H and 𝜎V . 

.2. Test cases 

We now apply the Bayesian inference approach using three different 

ombinations of the geostatistical model parameter values: 

(i) m 1 ∶= (4 . 70 , 0 . 06 m , 1 . 50) . This leads to a strongly heterogeneous

hydraulic conductivity field that is approximately isotropic and 

exhibits small structures ( Fig. 4 a). 

(ii) 𝐦 2 ∶= (0 . 80 , 0 . 06 m , 10 . 00) . This leads to a mildly-to-moderately

heterogeneous field that exhibits a high degree of layering 

( Fig. 4 d). 

(iii) 𝐦 3 ∶= (4 . 70 , 0 . 38 m , 1 . 50) . This leads to a highly heterogeneous

field exhibiting large-scale structures ( Fig. 4 g). 

In Fig. 4 , example realizations of generated log-hydraulic conductiv- 

ty fields for the three test cases are shown together with their corre- 

ponding flow and concentration fields. 
7 
.3. Information assessment of data types 

For each test case of the model vector m , 50 datasets d 

𝑜𝑏𝑠 
𝑗 

( Section 3 )

re simulated using hydraulic conductivity fields created with differ- 

nt R -realizations. The forward responses are contaminated with noise 

aving zero mean and a mean deviation of 0.005 representing 50% of 

he baseline electrical conductivity. The evaluation of the different data 

ypes and geostatistical parameter values is considered both in terms 

f the ensemble of realizations (ensemble performance) and in terms of 

andomly-picked single realizations (i.e., the fields shown in Fig. 4 ). In 

ddition to the estimated joint posterior PDF, we also consider the cor- 

esponding marginal distributions to evaluate the ability of the data to 

onstrain individual geostatistical parameters. For the marginal analy- 

is, we also consider a relative bias measure, computed as the ratio of 

he mean bias of the marginal posteriors, with respect to the true values 

f m , to the mean bias of the marginal priors with respect to the true

alues. From now on, we drop the superscript “obs ” when referring to 

he observed conditioning data. 

.3.1. Test case m 1 

Table 1 summarizes the results obtained for test case m 1 . 

When considering the joint KLDs obtained for the ensemble of real- 

zations, we find that d 𝐻𝑉 has the largest mean KLD, closely followed 

y d 𝐻𝑉 𝑀 

. The least informative data type d 𝑀 

has a mean KLD that is 

75% of the one for d 𝐻𝑉 , while d 𝐻 

and d 𝑉 have values in-between. 

he KLD standard deviations have similar values among all the data 

ypes and represent ~ 20% of the mean values. 

We now turn to the results obtained for the fields in Fig. 4 a–c and the

orresponding time-series highlighted in Fig. 5 a–c. For this specific real- 

zation, the KLDs span a small range of only ~ 13%. Also, the ordering 

s different and the most and least informative data sets for this case are

 and d , respectively. This illustrates (together with the standard de- 
𝐻 𝑉 
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Fig. 4. (a, d, f) Realizations of log-hydraulic 

conductivity fields and (b, e, h) associated flow 

and (c, f, i) concentration fields at time 10 3 s 

for the three evaluated test cases (a–c) m 1 , (d–

f) m 2 and (g–i) m 3 . Note that the locations of 

high- and low hydraulic conductivity regions 

are governed by random R -realizations. 

Table 1 

KLDs and mean relative biases of m 1 for the different conditioning data types. Columns 1 and 2 show 

the mean 𝜇KLD and standard deviation 𝜎KLD of the KLDs using the ensemble of hydraulic conductivity 

realizations. Column 3 shows the KLD values for the joint posterior PDFs using one realization of 

the conditioning data obtained from Fig. 4 a–c and highlighted in Fig. 5 a–c. The subsequent pairs of 

columns show the marginal KLD values and relative mean biases for the marginal posteriors of each 

component of m 1 using this specific realization. 

Ensemble m 𝜎2 
Y 

𝐼 y ( m ) 𝜆

𝜇KLD 𝜎KLD KLD KLD Bias KLD Bias KLD Bias 

d 𝐻 0.8171 0.1445 0.7351 0.3754 0.5018 0.1418 0.7560 0.0904 0.8525 

d 𝑉 0.8016 0.1131 0.6418 0.2617 0.6703 0.1021 0.6760 0.0675 1.2163 

d 𝑀 0.6625 0.1580 0.6973 0.2153 0.8223 0.1771 0.5325 0.0980 1.1271 

d 𝐻𝑉 0.8830 0.1352 0.6937 0.2501 0.6716 0.1536 0.7058 0.0899 0.7971 

d 𝐻𝑉 𝑀 0.8712 0.1318 0.6985 0.2386 0.7232 0.1537 0.7189 0.1050 0.7672 
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iations of the KLDs discussed above) the stochastic variations that are 

nherent under non-ergodic conditions. The variability in the generated 

ata due to variations in the R -realizations, for a given geostatistical 

odel, is indicated by the insets in Fig. 5 a–c. 

The posterior model samples obtained by the AARS algorithm and 

sed for building the empirical posterior PDFs for each type of data are 

hown in Fig. 5 . The density distribution of these 3-D clouds of points

onvey a qualitative view of the ability of the different data types to 

onstrain the geostatistical parameters. No eye-catching differences dis- 

inguish the different point clouds, reflecting the rather similar values 

f the associated KLDs. 

The KLDs computed for the marginal posterior PDFs, labelled 

arginal KLDs from now on, are the largest for 𝜎2 , followed by I y and 𝜆,

Y 

8 
hat on average, represent ~ 50% and ~ 25% of the KLDs of 𝜎2 
Y 
, respec- 

ively. We find that 𝜎2 
Y 

is best constrained by d 𝐻 

, producing the largest 

arginal KLD and the smallest bias. For this parameter, the poorest per- 

ormance is achieved by d 𝑀 

that has both the smallest marginal KLD 

nd the largest bias. This can be seen in the estimated marginal poste- 

ior probability density ( Fig. 6 a) displaying a mass distribution which is 

he furthest away from the true value 𝜎2 
Y 
= 4 . 70 . For I y , on the contrary,

 𝑀 

features the highest marginal KLD and the smallest bias ( Fig. 6 b). 

he ability of the data to constrain 𝜆 is low ( Fig. 6 c) with d 𝐻𝑉 𝑀 

featur-

ng the highest marginal KLD. The relative mean biases are negatively 

orrelated with the associated KLD measure, showing consistency be- 

ween the two measures. 
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Fig. 5. Posterior model parameter vector samples of size S = 500 obtained by the AARS algorithm for test case m 1 = (4 . 7 , 0 . 06 m , 1 . 5) using different datasets as 

conditioning data. The colored clouds of points represent the samples for datasets (a) d 𝐻 ; (b) d 𝑉 ; (c) d 𝑀 

; (d) d 𝐻𝑉 ; (e) d 𝑉 𝑀 

; (f) d 𝐻𝑉 𝑀 

. The colormap encodes the 

L 1 distance 𝜌 between simulated and observed data, normalized by the minimum and maximum values of 𝜌 of the test case. The inset plots of (a), (b) and (c) show, 

respectively, the 50 realizations of time-series 𝜎H , 𝜎V and M generated for m 1 using different R -realizations. The data considered here for inference are shown by 

thick-colored curves. The resulting KLD values are given for each dataset. 

Fig. 6. (Color online) Marginal posterior PDFs associated to each type of conditioning data d 𝐻 , d 𝑉 , d 𝑀 

, d 𝐻𝑉 , d 𝑉 𝑀 

and d 𝐻𝑉 𝑀 

for test case m 1 = (4 . 7 , 0 . 06 m , 1 . 5) . 
Marginal prior and posterior PDFs corresponding to (a) 𝜎2 

Y 
(b) I 𝑦 and (c) 𝜆. 
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.3.2. Test case m 2 

Table 2 summarizes the results obtained for test case m 2 . 

When considering the joint posterior KLDs for the ensemble, we find 

hat d HVM 

is the most informative dataset followed by d H and d HV . Far

ehind, featuring mean KLDs that are ~ 60% of d HVM 

, are d V and d M 

.

f the individual data sets, we find that d H is much more informative 

han d V and d M 

. The standard deviations have similar magnitudes and 

epresent ∼ 20 − 35% of the mean values. 

We now consider the results obtained using the time-series ( Fig. 7 a–

) obtained from the fields in Fig. 4 d–f. The ranking for the joint KLDs

re similar to the ensemble mean KLDs, except that d H performs the 
9 
est. The point clouds of the posterior samples ( Fig. 7 ) clearly shows 

hat d H ( Fig. 7 a) constrain the geostatistical model parameters much 

etter than d V ( Fig. 7 b) and d M 

( Fig. 7 c). 

The marginal KLDs are again the largest for 𝜎2 
Y 
, followed by those 

f 𝐼 y and 𝜆. We find that 𝜎2 
Y 

is the most constrained by d H and the

east constrained by d M 

as reflected by their marginal KLDs and the 

ompactness of their posterior PDFs ( Fig. 8 a). All the marginal PDFs 

or 𝜎2 
Y 

exhibit a small bias towards larger variances, with the smallest 

nd largest biases exhibited for d HVM 

and d M 

, respectively. For 𝐼 y , the 

arginal KLD associated with d H is well-above the others ( Fig. 8 b). The

econdmost and thirdmost best performing data set for this parameter 

re d and d , while d performs the poorest. The marginal KLDs 
HV HVM M 
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Table 2 

KLDs and mean relative biases of m ⨙ for the different conditioning data types. Columns 1 and 2 show 

the mean 𝜇KLD and standard deviation 𝜎KLD of the KLDs using the ensemble of hydraulic conductivity 

realizations. Column 3 shows the KLD values for the joint posterior PDFs using one realization of 

the conditioning data obtained from Fig. 4 d–f and highlighted in Fig. 7 a–c. The subsequent pairs of 

columns show the marginal KLD values and relative mean biases for the marginal posteriors of each 

component of m 2 using this specific realization. 

Ensemble m 𝜎2 
Y 

𝐼 y ( m ) 𝜆

𝜇KLD 𝜎KLD KLD KLD Bias KLD Bias KLD Bias 

d H 2.1341 0.5027 2.3829 1.3179 0.3687 0.8065 0.0573 0.5979 0.0971 

d V 1.4448 0.4425 1.1625 0.7427 0.4359 0.1115 0.6425 0.1003 0.7639 

d M 1.3897 0.4768 1.0892 0.4866 0.4889 0.0875 0.6883 0.0952 0.8219 

d HV 2.1114 0.4465 2.0030 0.9984 0.3019 0.6399 0.1306 0.5412 0.1657 

d HVM 2.2256 0.4648 2.0741 1.0955 0.2452 0.6158 0.1417 0.4410 0.2640 

Fig. 7. Posterior model parameter vector samples of size S = 500 obtained by the AARS algorithm for test case 𝐦 2 = (0 . 80 , 0 . 06 m , 10 . 00) using different datasets as 

conditioning data. The colored clouds of points represent the samples for datasets (a) d H ; (b) d V ; (c) d M ; (d) d HV ; (e) d VM ; (f) d HVM . The colormap encodes the L 1 
distance 𝜌 between simulated and observed data, normalized by the minimum and maximum values of 𝜌 of the test case. The inset plots of (a), (b) and (c) show, 

respectively, the 50 realizations of time-series 𝜎H , 𝜎V and M generated for m 1 using different R -realizations. The data considered here for inference are shown by 

thick-colored curves. The resulting KLD values are given for each dataset. 
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m V 
nd biases for 𝜆 ( Fig. 8 b) follow the ranking of 𝐼 y . For this test case m 2 ,

he data better constrain the geostatistical parameters than for test case 

 1 as reflected by generally much larger KLD values. 

.3.3. Test case m 3 

Table 3 summarizes the performance of the different datasets for test 

ase m 3 . 

Considering the ensemble statistics of the joint posterior KLDs, we 

nd that d HV has the largest mean KLD, closely followed by d HVM 

and 

 H . Again, d M 

features the smallest mean KLD with a values that is

63% of that for d HV . The standard deviations are varying within 

15% and represent ~ 25% of the mean values. 

We now consider the results from the data time-series ( Fig. 9 a–c) 

btained from the fields in Figs. 4 g–i. The joint KLD for d H is the largest

losely followed by d HV and d HVM 

. Their KLDs are ~ 30% higher than 

he others. The point clouds of posterior model realizations ( Fig. 9 ) are
10 
ather similar, but the results obtained from d H ( Fig. 9 a) are more com-

act compared to d V and d M 

. For instance there is minimal scatter in

he 𝜆-direction (c.f., Fig. 9 b) and the high 𝜎2 
Y 

is better constrained (c.f. 

ig. 9 c). 

The marginal KLDs are again the highest for 𝜎2 
Y 

followed by I y and 

. The relative mean biases show a similar trend, being smallest for 𝜎2 
Y 
. 

he marginal probability densities for 𝜎2 
Y 

( Fig. 10 a) show that d H best 

onstrain this parameter, followed by d HV and d HVM 

. The marginal KLD 

or d H are only ~ 10% larger than for d HV and d HVM 

, but its bias is

0% lower. Note also that d M 

is strongly biased towards too low 𝜎2 
Y 
. For

 y and 𝜆, both KLDs and biases indicate that d H , d HV and d HVM 

are the

ost informative, while d has the poorest performance. 
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Fig. 8. (Color online) Marginal posterior PDFs associated to each type of conditioning data d H , d V , d M , d HV , d VM and d HVM for test case 𝐦 2 = (0 . 80 , 0 . 06 m , 10 . 00) . 
Marginal prior and posterior PDFs corresponding to (a) 𝜎2 

Y 
(b) I 𝑦 and (c) 𝜆. 

Table 3 

KLDs and mean relative biases of 𝐦 ⨚ for the different conditioning data types. Columns 1 and 2 show 

the mean 𝜇KLD and standard deviation 𝜎KLD of the KLDs using the ensemble of hydraulic conductivity 

realizations. Column 3 shows the KLD values for the joint posterior PDFs using one realization of 

the conditioning data obtained from Figs. 4 g–i and highlighted in Fig. 9 a–c. The subsequent pairs of 

columns show the marginal KLD values and relative mean biases for the marginal posteriors of each 

component of m 3 using this specific realization. 

Ensemble m 𝜎2 
Y 

𝐼 y ( m ) 𝜆

𝜇KLD 𝜎KLD KLD KLD Bias KLD Bias KLD Bias 

d H 1.1845 0.3195 1.0166 0.4818 0.3098 0.2681 0.6388 0.2031 0.3962 

d V 1.0565 0.3313 0.7459 0.3046 0.6171 0.0488 0.9635 0.0356 1.0166 

d M 0.8413 0.2798 0.6205 0.2019 0.7347 0.1949 0.6983 0.1296 0.5169 

d HV 1.3462 0.3491 1.0123 0.4491 0.4202 0.2680 0.6577 0.2054 0.4002 

d HVM 1.2932 0.3100 1.0068 0.4200 0.4429 0.2915 0.6164 0.2245 0.3647 

Fig. 9. Posterior model parameter vector samples of size S = 500 obtained by the AARS algorithm for test case 𝐦 3 = (4 . 70 , 0 . 38 m , 1 . 50) using different datasets as 

conditioning data. The colored clouds of points represent the samples for datasets (a) d H ; (b) d V ; (c) d M ; (d) d HV ; (e) d VM ; (f) d HVM . The colormap encodes the L 1 
distance 𝜌 between simulated and observed data, normalized by the minimum and maximum values of 𝜌 of the test case. The inset plots of (a), (b) and (c) show, 

respectively, the 50 realizations of time-series 𝜎H , 𝜎V and M generated for m 1 using different R -realizations. The data considered here for inference are shown by 

thick-colored curves. The resulting KLD values are given for each dataset. 
11 
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Fig. 10. (Color online) Marginal posterior PDFs associated to each type of conditioning data d H , d V , d M , d HV , d VM and d HVM for test case 𝐦 3 = (4 . 7 , 0 . 38 m , 1 . 5) . 
Marginal prior and posterior PDFs corresponding to (a) 𝜎2 

Y 
(b) I 𝑦 and (c) 𝜆. 
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. Discussion 

.1. General findings 

The absolute values of the computed KLDs and biases are dependent 

n the choices made when approximating the posterior probability den- 

ities ( Section 2.2 ), such as the width of the acceptance kernel of the

ARS algorithm ( Algorithm 2 ) and the bandwidth of the kernel den- 

ity function used to represent the probability densities. For this reason, 

e focus our discussion below on relative differences between datasets 

nd test cases. We first summarize the main results that apply to all test

ases before discussing the test cases one-by-one. After this, we discuss 

roader implications of this research. 

Considering the ensemble statistics of 50 hydraulic conductivity re- 

lizations for each test case, we find that the information content of d H 

easured by the KLD is higher than d V , which in turn is higher than

 M 

for the three test cases considered: m 1 ( Table 1 ), m 2 ( Table 2 ) and

 3 ( Table 3 ). The added value of combining different data types ( d HV 

nd d HVM 

) is generally found to be comparatively low. When consider- 

ng individual hydraulic conductivity realizations and associated fields 

 Fig. 4 ), we generally obtain relative rankings of the different data types

hat are consistent with those of the ensemble means. Given that we 

onsider non-ergodic model domains, the actual locations of high- and 

ow hydraulic conductivities governed by the nuisance variable R plays 

n important role in the data-generating process. Its impact is mani- 

ested by the comparatively high standard deviations of the KLD esti- 

ates ( Tables 1 –3 ) and (in the variability of the generated time-series

 Figs. 5 a–c, 7 a–c and 9 a–c). Despite this inherent stochastic variability,

e consistently find that the best constrained parameter is 𝜎2 
Y 
, followed 

y I y and 𝜆. The individual test cases are discussed in detail below. 

.2. Lessons learned from the three test cases 

Test case m 1 features a highly heterogeneous field 𝐾( x ) with rela- 

ively small structures ( Fig. 4 a), for which one could possibly assume 

hat ergodic conditions are fullfilled and consequently that the geosta- 

istical parameters are well-represented within the modelling domain, 

et it corresponds to the least-constrained test case. Indeed, the R - 

ealization plays here a very important role, implying a rather weak 

apping from the time-series to the geostatistical parameters of inter- 

st. To understand this, note first that { 𝜎H } and { 𝜎V } are only sensitive

o the underlying geostatistical parameters through the solute spreading 

atterns that these parameters induce. Indeed, the electrical responses 

esult from optimal current patterns established throughout the highly 
12 
on-ergodic and time-evolving distribution of local concentrations (i.e., 

onductivities) that are, in turn, driven by the flow field 𝐪 ( x ) . As in

he example in Fig. 2 , the hydraulic conductivity field 𝐾( x ) has small-

cale structures and is close to isotropic ( Fig. 4 a) but its associated flow

eld 𝐪 ( x ) exhibits pronounced channeling ( Fig. 4 b). This tendency of

he flow field to concentrate in preferential flow channels for high 𝜎2 
𝑌 

s well-known (e.g. Cvetkovic et al., 1996 ). Hence, an ergodic 𝐾( x ) is
o guarantee of well-sensed geostatistical parameters when using geo- 

lectrically monitored saline tracer tests. Nevertheless, compared to the 

rior, the estimated marginal posterior densities suggest that the geo- 

tatistical model that needs a comparatively high 𝜎2 
Y 

( Fig. 6 a) and very 

mall or high I y ( Fig. 6 b) are unlikely. 

Test case m 2 corresponds to a layered distribution of hydraulic con- 

uctivity with a moderate 𝜎2 
Y 
. The KLDs ( Table 2 ), and consequently 

he constraining nature of the time-series, are much higher than for test 

ases m 1 ( Table 1 ) and m 3 ( Table 3 ). For m 2 , the smallest variations

etween the R -realizations are observed ( Fig. 7 a–c) since the actual 

ocation of the flow channels is of secondary importance in the data- 

enerating process. The hydraulic conductivity field ( Fig. 4 d) and its as- 

ociated flow field ( Fig. 4 e) are visually more similar to each other than

or m 1 . This is a consequence of the large anisotropy factor imposing 

orizontally continuous structures within which the flow-field channels 

re naturally developed. Both { 𝜎H } and { M } are highly sensitive to the

rrival of horizontal connections that are established by the solute when 

t arrives to the outlet. Considering the marginal KLDs, we find that high 

nd low 𝜎2 
Y 
-values are incompatible with the data ( Fig. 8 a), as is large

 y . For this test case m 2 , 𝜆 is particularly interesting as its true value is

igh and, therefore, of low prior probability ( Fig. 8 c). We see a strong

bility of all time-series including { 𝜎H } to constrain this parameter. 

Test case m 3 is a highly heterogeneous test case that distinguishes 

tself from m 1 by its larger I y . A consequence of the resulting larger

tructures is that the generated data vary widely between the different 

ydraulic conductivity realizations (see insets in Fig. 9 a–c). Yet the KLDs 

 Table 3 ) are higher than for test case m 1 . Considering the marginal

osterior PDFs, all datasets indicate that the underlying geostatistical 

odel has a high 𝜎2 
Y 

( Fig. 10 a), at least a moderately high I y ( Fig. 10 b)

nd (that the field is close to isotropic ( Fig. 10 c). 

.3. Physical insights and open questions 

In our idealized numerical investigation, we found consistently that 

eoelectrical data performed better than mass breakthrough data in con- 

training the geostatistical parameters. This is a consequence of the fact 

hat, for a given geostatistical model, the actual positioning of high- and 
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Fig. 11. Natural logarithm of the absolute value of the current density fields (and their streamlines) resulting from exciting the sample both in the (a–c) horizontal 

and (d–f) vertical modes. The electrical conductivity distribution is given by the saline concentration fields shown in Fig. 4 , that is, at time 10 3 s for the three 

evaluated test cases (a, d) m 1 (column 1), (b, e) m 2 and (c, f) m 3 . 
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b

ow hydraulic conductivity fields, governed by the nuisance variable R , 

as a larger impact on the mass breakthrough data than on the geoelec- 

rical data (e.g., compare the insets in Fig. 9 a–c). We understand this 

s a consequence of the local flux-averaged nature of the tracer break- 

hrough, compared to the more integrative non-linear volume-averaging 

f the electrical responses over the concentration field. Additionally, 

ince { M } is only sensitive to the time-evolution of the solute concen-

ration field at the outlet, it cannot determine the causality of the arrival 

imes, that is, if they originate from large horizontal correlation scales 

r from high variance, for instance. 

We also found that { 𝜎H } always has a higher constraining power 

han { 𝜎V }. This can be understood by noting that { 𝜎H } is sensitive to

lectrical conduction paths created by the concentration field in the flow 

irection, leading to a very strong sensitivity to tracer arrivals at the 

utlet (e.g., Fig. 2 e, or the generally steep slopes in the generated time-

eries in the insets of Figs. 5 a, 7 a and 9 a). In Fig. 11 we plot the

enerated current density distributions determining { 𝜎H } and { 𝜎V } for 

he concentration fields shown in Figs. 4 c, f and j. We see that for { 𝜎H }

 Figs. 11 a–c) the support of the current density field (i.e. the regions

f high current flow) is almost coincident with the area occupied by 

he invading tracer driven by the flow-field. This does not occur for 

 𝜎V } ( Figs. 11 d-f), indicating why { 𝜎H } is more informative than { 𝜎V }.

learly, { 𝜎V } results from current patterns that are mainly constrained 

y vertical connection bottlenecks that become more common further 

way from the inlet region. This can be appreciated by the high density 

f current field streamlines observed at the inlet regions in Figs. 11 d, 

1 11 e and 11 f. This suggests that the main ability of { 𝜎V } to sense the

eostatistical parameters is through its sensitivity to the trailing end of 

he tracer front. Again, it is the connectivity-aspect of the electrical data 

hat is at play. 

Our results also suggest a strong dependence on the injection type. 

or a pulse injection, we expect { 𝜎H } to be much less informative, com-

ared to the present continuous injection case, as there will be no hor- 

zontal connections of salinity to sense. That is, the connectivity cre- 
13 
ted by establishing a continuous concentration field across the domain 

s very helpful for electrical-based inference of geostatistical properties 

rom tracer tests. 

For all test cases, we find that 𝜎2 
Y 

is the best constrained parameter. 

his is explained by the fact that 𝜎2 
Y 

controls the spreading rate of the 

olute (e.g., Gelhar and Axness, 1983 ) and is, thus, a first-order feature of

he time-series. It will determine the time-spacing or pace of occurrence 

f the horizontal connection events as sensed particularly well by { 𝜎H }. 

owever, also the trailing part of the tracer field as sensed by { 𝜎V } is

ffected by 𝜎2 
Y 
. 

One open question is to what extent the electrical data can constrain 

ixing and spreading. Intuitively, there should be a strong sensitivity 

o the spreading width as 𝜎H is highly sensitive to the front of the tracer

lume and 𝜎V to its end. Since solute spreading ultimately controls so- 

ute mixing (e.g., Villermaux, 2019 ), the high sensitivity of the electrical 

ata to the former indicates that these data are able to at least quantify

he mixing potential of the solute (e.g., de Dreuzy et al., 2012 ). This

ill be the topic of future research. Furthermore, the equivalent electri- 

al conductivity tensor time-series is determined by the time-evolution 

f the concentration field, which in turn is driven by the flow-field. This 

uggests that that the electrical data might be more strongly related with 

he flow-field than the geostatistical model of log-hydraulic conductiv- 

ty. In the future, we plan to study the geoelectrical sensitivity to flow- 

eld descriptors (e.g., Koponen et al., 1996; Englert et al., 2006 ). Sim- 

larly, we would like to relate the electrical data to concentration field 

escriptors. However, as the concentration field is time-variant, this is 

ore challenging to summarize than the steady-state flow field. One 

ossibility is to relate it to the spatial distribution of localized temporal 

oments of the solute concentration field ( Cirpka and Kitanidis, 2000 ). 

.4. Implications for field-based studies 

Our work has several implications for field-based and laboratory- 

ased electrical time-lapse monitoring of tracer tests. The first is that 
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gnoring significant tracer-concentration heterogeneity below a given 

cale will tend to underestimate mass when interpreting tomograms 

 Fig. 3 d) and bias inferred transport parameters when performing a 

ully-coupled hydrogeophysical inversion. This can be circumvented 

hrough appropriate geostatistics-based time-lapse hydrogeophysical 

nversions (e.g., Kowalsky et al., 2005 ) provided that overly simple 

odel parameterizations are avoided ( Hinnell et al., 2010 ). Further- 

ore, we demonstrate for non-ergodic situations, common to many 

ydrogeophysically-monitored tracer tests, that both the locations of 

igh- and low hydraulic conductivities (in our case controlled by R ) 

nd the geostatistical model have a strong impact on the measured data, 

uggesting that inversion approaches should attempt to constrain both 

f these aspects ( Laloy et al., 2015 ). Our results suggest that for a well-

esigned time-lapse experiment, it might be possible to infer geostatisti- 

al parameters with relatively few measurement configurations, that is, 

ithout the need to actually resolve the tracer plume. Indeed, all the in- 

erences performed in this study are based on upscaled equivalent values 

t the scale of the experiment. Another implication is that strong geo- 

lectrical responses are mainly linked to preferential current pathways 

hat in clay free formations are dependent on a near-continuous high- 

alinity region between the current electrodes. This suggests that contin- 

ous (compared to pulse) injections are preferable and that it could be 

eneficial to favor measurement configurations with one of the current 

lectrodes located in the tracer source region (i.e., in the pit in which in-

ection is performed or in a packed-off injection interval in a borehole). 

t also suggests that using push-pull technology for electrode installa- 

ions, thereby allowing for more of a 3-D localization of electrodes with- 

ut associated borehole effects ( Doetsch et al., 2010 ) and costly bore- 

oles, could enable improved imaging by allowing the tracer to arrive 

o the electrodes ( Pidlisecky et al., 2006 ). Furthermore, unaccounted 

aline tracer heterogeneity should lead to anisotropic behavior at larger 

cales. For instance, when interpreting crosshole time-lapse data with 

wo boreholes using so-called AB-MN configurations (current and poten- 

ial electrodes in different boreholes) leading to mainly vertical current 

atterns or AM-BN configurations (one current and potential eletrode in 

ach borehole) leading to mainly horizontal current patterns ( Bing and 

reenhalgh, 2001 ), then it might be essential to account for anisotropy 

n the inversion to avoid inversion artifacts ( Herwanger et al., 2004 ).

urthermore, we expect that any inferred upscaled anisotropy measures 

uch as anisotropy factors could guide the interpretation about the spa- 

ial organization of the concentration field below the resolution scale of 

he resulting tomograms (e.g., different behaviors of { 𝜎H } and { 𝜎V } in 

ig. 3 d). 

. Conclusions 

We use Approximate Bayesian Computation to assess to what extent 

quivalent electrical conductivity time-series associated with tracer tests 

onstrain geostatistical parameters governing small-scale structure. We 

onsider an idealized set-up in which local concentration and electrical 

onductivity is linearly and perfectly correlated, implying that the re- 

ults correspond to a best-case scenario. By considering three different 

eostatistical test models and ensemble statistics of 50 corresponding 

ydraulic conductivity field realizations, we find that { 𝜎H } is the most 

nformative data type, followed by { 𝜎V } and { M }. The added value of

ombining different time-series is comparatively low. We further find 

hat 𝜎2 
Y 

is the best-constrained geostatistical parameter followed by 𝐼 y 
nd 𝜆. The geostatistical parameters are the best constrained when con- 

idering data generated with a large 𝜆. Ignoring concentration hetero- 

eneity (i.e., assuming well-mixed conditions below a given scale) leads 

o underestimated solute mass when interpreting electrical data. This is 

 consequence of non-linear averaging and suggests that hydrogeophys- 

cal data interpretations and coupled hydrogeophysical inversions need 

o consider highly resolved hydraulic conductivity, fluid flow, concen- 

ration and electrical simulations in order to avoid biased results. Cast- 

ng the inference problem within a geostatistical framework decreases 
14 
he number of electrical configurations needed to constrain the geosta- 

istical parameters. Since the electrical data are primarily sensitive to 

he presence (or not) of a connected high-concentration field between 

urrent electrodes, we recommend experimental setups favoring contin- 

ous tracer injections including measurement configurations with one 

lectrode located within the tracer injection area. 
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