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Abstract. To advance our understanding of the stratosphere, high quality observational datasets of the upper atmosphere are

needed. It is commonplace that reanalysis is used to conduct stratospheric studies. However the accuracy of the standard re-

analysis at these heights is hard to infer due to a lack of in-situ measurements. Satellite measurements provide one source of

temperature information. As some satellite information is already assimilated into reanalyses, the direct comparison of satel-

lite temperatures to the reanalysis is not truly independent. Stratospheric lidars use Rayleigh scattering to measure density5

in the upper atmosphere, allowing temperature profiles to be derived for altitudes from 30km (where Mie scattering due to

stratospheric aerosols becomes negligible) to 80-90km (where the signal-to-noise begins to drop rapidly). The Network for

the Detection of Atmospheric Composition Change (NDACC) contains several lidars at different latitudes that have measured

atmospheric temperatures since the 1970s, resulting in a long running upper-stratospheric temperature dataset. These temper-

ature datasets are useful for validating reanalysis datasets in the stratosphere, as they are not assimilated into reanalyses. Here10

we take stratospheric temperature data from lidars in the northern hemisphere for winter months between 1990-2017 and com-

pare them with the European Centre for ECMWF’s ERA-interim and ERA-5 reanalyses. To give confidence in any bias found,

temperature data from NASA’s EOS Microwave Limb Sounder is also compared to ERA-interim and ERA-5 at points over the

lidar sites. In ERA-interim a cold bias of -3 to -4 K between 10 hPa and 1 hPa is found when compared to both measurement

systems. Comparisons with ERA-5 found a small bias of magnitude 1 K which varies between cold and warm bias with height15

between 10 hPa and 3 hPa, indicating a good thermal representation of the upper atmosphere to 3 hPa. At heights above this,

comparisons with EOS MLS yield a slight warm bias and the temperature lidar yield a cold bias. A further comparison is un-

dertaken to see the effects of the assimilation of the Advanced Microwave Sounding Unit-A satellite data and the Constellation

Observing System for Meteorology, Ionosphere, and Climate GPS Radio Occulation (COSMIC GPSRO) data on stratospheric

temperatures. By comparing periods before and after the introduction of each data source it is clear that COSMIC GPSRO20

improves the cold bias in the 3 hPa to 0.5 hPa altitude range
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1 Introduction

The middle atmosphere influences the weather and climate in the troposphere e.g Domeisen (2019); Domeisen et al. (2019).

Sudden Stratospheric Warmings (SSWs) can cause changes in the tropospheric flow for many weeks e.g. Charlton and Polvani

(2007) and the Quasi Biennial Oscillation (QBO), a 28 month switching in equatorial stratospheric winds, also affects the large5

scale processes in the troposphere e.g. Baldwin et al. (2001). Critical to our understanding of how these processes work are

good observational datasets of the upper atmosphere. Often reanalysis datasets such as the European Centre for Medium range

Weather Forecasts’ (ECMWF) ReAnalaysis (ERA) datasets (Dee et al., 2011) or the US National Centre for Atmospheric

Research (NCAR) reanalysis (Kalnay et al., 1996) amongst many others are used for stratospheric studies on a global scale as

shown for example in Fujiwara et al. (2017); Seviour et al. (2012); Lee et al. (2019); Skerlak et al. (2014); Butler et al. (2015).10

To create reanalysis datasets, a large amount of temperature data is assimilated from satellite and in-situ measurements. In

the middle and upper stratosphere the number of temperature observations is somewhat limited. This makes diagnosing bias in

a reanalysis dataset more difficult. Radiosondes, small balloon borne instrument packages, which provide in-situ temperature

profiles up to heights of about 30 km are launched from thousands of locations daily, giving a wealth of information that

is assimilated in the lower and middle atmosphere. Simmons et al. (2020) undertook a study examining the performance of15

ERA-5, the ECMWF’s most recent reanalysis dataset using radiosonde data. However there were height limitations due to the

maximum height of available radiosonde data, The technique also had the potential to be biased due to the assimilation of

radiosonde observations within the reanalysis. Rocketsondes (Schmidlin, 1981) can reach heights of 100 km providing high

resolution temperature information in the middle and upper atmosphere. Rocketsondes are not operationally assimilated due to

the significant installations and costs to launch, which leads to sparse temporal and spatial sampling.20

There are numerous satellite techniques to retrieve temperature profiles of the upper atmosphere. Stratospheric sounding

units (SSU) (Miller et al., 1980) derive temperature from radiances in CO2 emissions. Similarly the Sounding of the Atmo-

sphere using Broadband Emission Radiometry (SABER) instrument uses limb emissions from CO2 to provide temperature

observations in the mesosphere and thermosphere (Russell et al., 1999). The Aqua satellite combines data from Atmospheric

Infra-red Sounders (AIRS) with data from the Advanced Microwave Sounding Units (AMSU) to provide temperature profiles25

in the troposphere and stratosphere with 1 km vertical resolution (Susskind et al., 2006). The Microwave Limb Sounder (MLS)

provides temperature data by observing the limb emission of several atmospheric gases and aerosols (Waters et al., 2006).

Low Earth orbiters such as those in the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC)

can derive atmospheric properties such as temperature, pressure and water vapour using GPS Radio Occulation (GPSRO) up

to 40 km (Kuo et al., 2001). As COSMIC is a constellation of satellites it retrieves thousands of randomly sampled tempera-30

ture profiles daily across the globe. Many such techniques are assimilated into reanalysis making it hard to make an unbiased

comparison.
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Another source of middle atmosphere temperature measurements is from Rayleigh temperature lidars. These temperature

lidars use Rayleigh scattering properties of the atmosphere above the stratospheric aerosol layer (>30 km) to infer density and,

by assuming hydrostatic equilibrium, temperature (Hauchecorne and Chanin, 1980). There are several Rayleigh lidars across

the globe based at participating sites in the Network for the Detection of Atmospheric Composition Change (NDACC). A small

handful have been making temperature profile measurements between 30 km and 90 km for at least three decades. Furthermore

the lidar temperature profiles are not assimilated into reanalysis making them independent for numerical dataset comparisons.5

Le Pichon et al. (2015) compared 6 months of Rayleigh temperature lidar data with ECMWF reanalysis data and found good

agreement.

In this paper, we use temperature data from four lidars and compare it to temperature data from the ECMWF’s ERA-interim

and ERA5 reanalysis packages over three decades to identify temperature bias for stratospheric studies. To add confidence

to the identified bias the same comparison will also be undertaken with temperature data from the National Aeronautics and10

Space Administrations (NASA) Earth Observing System Microwave Limb Sounder (EOS MLS). EOS MLS is one of the few

satellite temperature datasets which is not assimilated into ECMWF reanalysis.

The reanalysis packages cover long time periods over which the quantity and types of data assimilated has increased. Poli

et al. (2010) showed that inclusion of GPSRO data improved temperature bias in the upper stratosphere and lower troposphere.

Hence, further analysis will be undertaken comparing ERA-interim and ERA5 before and after the inclusion of GPSRO data15

from the COSMIC constellation at the end of 2006. Simmons et al. (2020) also found that the inclusion of AMSU-A data in

2000 caused a increase in cold bias in ERA-5, which we examine here also.

2 Dataset description

2.1 Stratospheric Temperature Lidar

Atmospheric lidar remote sensing uses light scattering of the molecules and particles. A laser pulse is emitted into the at-20

mosphere where it is scattered and absorbed by the molecules and particles. The fraction of light backscattered towards the

instrument on the ground is collected by a telescope and sampled as a function of time, which, knowing the speed of light,

translates into altitude. In the absence of particulate matter (typically above 30-35 km), and after several corrections (e.g.,

non-linearity and range corrections, background noise extraction, molecular extinction and absorption corrections), the lidar

signal is proportional to the air density. With the assumption that the atmosphere is an ideal gas in hydrostatic balance, the at-25

mospheric temperature profile is then retrieved by integrating the measured relative density downward from the highest usable

data point (Hauchecorne and Chanin, 1980) . At the top of the profile (typically, in the mesosphere), an a priori temperature

and density or pressure is needed to initialize the downward integration.

At mesospheric altitudes, empirical models such as the Committee on Space Research’s International Reference atmosphere

(CIRA)-86 (Fleming et al., 1988) or the Naval Research Laboratory’s Mass Spectrometer and Incoherent Scattering Radar30

model (NRL MSISE-00) (Picone et al., 2002) are typically used for the a priori. Because of tides and gravity waves, meso-

spheric temperatures can be highly-variable at small spatio-temporal scales (Jenkins et al., 1987), and these models often do not
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represent well the state of the atmosphere measured by lidar at a given time and location, resulting in a temperature uncertainty

of up to 10-20 K at the altitude of initialization. This uncertainty decreases exponentially as the profile is integrated downward,

resulting in a typical temperature uncertainty of 1-2 K 15 km below the top of the profile due to the a priori (Leblanc et al.,

2016). In order to avoid misinterpretation of the lidar profile and its influence by the a priori, the top 10 km of the profiles are

often excluded from published datasets (Wing et al., 2018).

Another important source of temperature uncertainty is signal detection noise which is negligible at the bottom of the5

profile where the signal-to-noise ratio is high, but can increase to 10 K at the top of the profile where signal-to-noise ratio

lowers. Because of its random nature, vertical and temporal averaging can reduce detection noise significantly. Background

noise correction and signal non-linearity correction are two other sources of uncertainty. Just like a priori and detection noise

uncertainty, the background noise correction uncertainty is negligible at the bottom of the profile and increases as we approach

the top of the profile. On the other hand, uncertainty owed to non-linearity correction maximizes at the bottom of the profile10

(typically less than 2 K), and becomes negligible a few km above.

It should be stressed that each lidar instrument is different and the various contributions to total uncertainty can vary widely

depending on the instrument considered (Leblanc et al., 2016). For the comparisons undertaken here, we selected the four

longest datasets of the dozen backscatter temperature lidar datasets available at NDACC. These datasets span at least 10 years

and have frequent temperature profiles during that period (see table 1). The instruments are located at the German Weather15

Service observatory of Hohenpeissenberg (HOH) (Steinbrecht et al., 2009), Germany, the Observatoire de Haute Provence

(OHP) (Hauchecorne, 1995), France, the JPL-Table Mountain Facility (TMF) (Ferrare et al., 1995), California, and Mauna Loa

Observatory (MLO) (Li et al., 2008), Hawaii. All four instruments have very similar power and performance specifications,

and follow a similar mode of operation (a few hours per night, 1 to 4 times per week, weather permitting), making it easier

to include into a consistent ground-based reference combined dataset. For these instruments, the temperature total uncertainty20

ranges from 2-3 K at 30 km to less than 1-2 K between 35 and 55 km, and then back up to 2-5 K in the mid-mesosphere, and

up to 20 K near the initialization altitude (80-95 km).

Validating Rayleigh temperature lidar measurements in the upper stratosphere and mesosphere can be difficult due to a

lack of reference temperature observations at these altitudes. Occasional comparisons with rocketsonde measurements showed

temperature differences of 2-5 K in the lower mesosphere (e.g., Schmidlin (1981); Ferrare et al. (1995)). Over the past two25

decades, the performance of Rayleigh temperature lidars has been evaluated mainly by comparison with satellite measurements

during which they served as the ground-based reference. These inter-comparisons typically yield lidar-satellite differences not

exceeding 2-4 K between 30 and 60 km ( e.g. Wang et al. (1992); Ferrare et al. (1995); Wu et al. (2003); Sica et al. (2008);

García-Comas et al. (2014); Stiller et al. (2012)). At the bottom end of the profiles (below 30-35 km), the lidars have been

compared to radiosonde measurements (e.g. Ferrare et al. (1995)). In the presence of aerosols, Rayleigh backscatter lidars30

yield a significant cold bias (the thicker the aerosols, the colder the bias). The TMF and MLO instruments include an additional

vibrational Raman backscatter channel, i.e., unimpacted by aerosol backscatter, which allows temperature retrieval down to

10 km (Gross et al., 1997; Leblanc et al., 2016), but with a remaining slight cold bias (1-4 K) due to aerosol extinction. For
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these two lidars the reanalysis packages described in section 2.3 will be compared for greater altitude ranges than the HOH

and OHP lidars.

To fill the need for additional validation, one method frequently used within NDACC is to deploy a mobile lidar from site to

site to blind-test the lidar instruments permanently deployed at these locations. One of such “traveling standards” is operated

by the NASA Goddard Space Flight Centre (GSFC) (McGee et al., 1995) and has been used to validate the lidar instruments5

at HOH, OHP, TMF, and MLO (Ferrare et al., 1995; Leblanc et al., 1998; Keckhut et al., 2004). During these campaigns,

temperature differences between the lidars did not exceed 4 K in the 25-60 km altitude range, with typical differences of

+/-2 K.

2.2 Microwave Limb Sounder

The NASA EOS MLS was launched on the 14th July 2004 and became operational on the 14th August 2004. It works by10

observing millimetre and sub-millimetre thermal emission along the limb of the atmosphere. It is in a low polar orbit allowing

it to orbit the earth 15 times a day, crossing the equator near to local noon and midnight. It is designed to measure several

atmospheric gases and aerosols in the upper troposphere, stratosphere and mesosphere (Waters et al., 2006). It uses the emission

from oxygen to provide temperature and pressure measurements; the precision of the measurement is given in Waters et al.

(2006) to be 0.5-1 K between 300 and 0.001 hPa, where it has a vertical resolution between 4-8 km. Initial comparisons by15

Froidevaux et al. (2006) with other satellite retrievals of temperature found that EOS MLS had a 1-2 K warm bias. A more

thorough comparison made by Schwartz et al. (2008) compared EOS MLS temperature retrievals to those from radiosondes,

several satellites, and from GPSRO. It was found that from 0.0001 hPa to 0.3 hPa that temperature bias could range from -9

to 0K with temperature precision ranging from ±1 to ±2.5 K. A further study by Wing et al. (2018) found that the bias in

wintertime MLS was ±10 K and ±4 K in the summertime. At 1 hPa warm biases from 0 to 5K were found. From 3.16 hPa20

down to 316 hPa precision was found to be less than ±1 K and biases were between -2 and 1.5 K. Thus, at pressure heights of

3 hPa and below the EOS MLS satellite has a similar bias to that of the temperature lidar at the same observing height.

2.3 European Centre for Medium Range Forecasting data

A reanalysis dataset is generated by combining many different historical measurements using data assimilation to create an

accurate numerical representation of the Earth’s atmosphere at a given time. ERA interim spans from 1979 to present and at25

the time of writing runs 2-3 months behind real time. It is described in Dee et al. (2011) and has 60 model levels with an

approximate 79 km horizontal grid resolution and 6 hour analysis windows and is based on the Integrated Forecasting System

(IFS) cycle 31R2. Due to the temporal range of the ERA-interim reanalysis we are able to compare the entire temperature lidar

datasets shown in table 1.

The ERA-5 is the 5th generation reanalysis created by the ECMWF and replaces ERA-interim. The new ERA-5 reanalysis,

based on IFS cycle 41r2 (ECMWF, 2016) has 137 model levels from the surface to 0.01 hPa and a global horizontal resolution

of 31 km, compared to ERA Interim’s 60 model levels and 79 km horizontal resolution. Other improved features are the inclu-

sion of more measurements and improved bias correction techniques to assimilate them and better climate forcings (Hersbach

5
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and Dee, 2016). Dee et al. (2011) state that during December 2006 GPSRO data from the COSMIC constellation was included5

in reanalysis datasets and that the variability in these datasets was much improved after this time (Poli et al., 2010). For the

second part of the analysis, comparisons with both ERA-interim and ERA-5 before and after the inclusion of COSMIC GPSRO

data will be undertaken. In a previous study by Poli et al. (2010) the comparison was made between 200 hPa and 100 hPa. Here

the comparison will be made at 100 hPa and above.

3 ERA-interim comparisons10

In this section MLS and lidar profiles will be compared with temperature profiles from ERA-interim. For all of our comparisons

we will only focus on the Northern Hemisphere winter months between October and March. Stratospheric variability increases

during these months and we examine whether this variability is present within the reanalyses. The lidar temperature profiles

were interpolated onto ERA-interim’s model levels using geopotential height Z, for time steps that were closest to the mid-

point of the lidar’s profile acquisition period. Due to differences of 0.4 km to 1 km between geometric height, the height15

co-ordinate used by the lidars, and Z at the altitude range in this study the lidar’s geometric height was converted to Z prior

to the interpolation. The height resolution for ERA-interim at these heights is approximately 1.5 km at 10 hPa and 3 km at

1 hPa. For this comparison we use lidar and reanalysis profiles for the full temporal lidar temperature profile range shown in

table 1. Figure 1 panels (a-d) shows matched mean temperature profiles from both lidar (red) and ERA-interim (blue) for the

lidar sites at Hohenpeissenburg, Mauna-Loa, OHP and Table Mountain Observatory respectively. Panels e-h show the mean of20

the matched differences for the corresponding lidars a-d. ERA-interim at the points studied here has a cold bias in the region

of -3 to -4 K. Red dots show where the mean difference is significantly different from zero at the 95% significance level. For

Hohenpeissenburg, OHP and Table Mountain Observatory, the peak cold bias is centred between 10hPa and 1hPa. For Mauna

Loa the cold bias extends down to the 100 hPa pressure surface. Reasons for this could be due to Hohenpeissenburg and Table

Mountain Observatory being at higher latitudes than the tropically positioned Mauna-Loa station where the structure of the25

middle atmosphere differs slightly. In all cases above 1 hPa ERA-interim is much warmer as it approaches 0.1 hPa.

A similar analysis was performed using the EOS MLS data. The EOS MLS temperature data was first sorted so that only

night time passes within 2.5o of each temperature lidar were retained. The remaining EOS MLS temperature profiles were

interpolated on to ERA-interim’s model levels using Z from the reanalysis package for time steps that were closest and less

than 3 hours apart. Due to EOS MLS only being launched in 2004 the results of the ERA-interim and MLS comparison30

shown in figure 2 are for the years 2004 to 2017. Figure 2 shows matched mean temperature profiles from both MLS (red)

and ERA-interim (blue) for lidar sites at Hohenpeissenburg, Mauna-Loa, OHP and Table Mountain Observatory respectively.

Panels (e-g) show the mean of the matched differences for MLS over the 4 lidar sites. The cold bias seen in figure 1 between

1 hPa and 10 hPa is still present. However the size of the bias is smaller with a cold bias of -1 to -2 K. For comparisons over

Hohenpeissenburg and OHP (panels e and g) the cold bias detected by the MLS is reduced when compared to that of the lidar.

Between 10 hPa and 100 hPa MLS observes a warm bias of 1 K in ERA-interim which cannot be verified by the temperature

lidar at these two locations. For comparisons with Table mountain observatory and Mauna-Loa a cold bias is also observed

6
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from 1 hPa down to 100 hPa similar to the bias found by the lidar at these two sites. The only difference is that the magnitude

of the bias is reduced by 1-2 K. This may be due to the warm bias of EOS MLS at these heights as shown in Schwartz et al.5

(2008). This demonstrates evidence of a systematic bias between the lidar and MLS measurement technologies. Simmons et al.

(2020) compared the global mean temperature from ERA-interim with global mean radiosonde data between 15 hPa and 7 hPa

and 7 hPa and above. Here our results agree with a cold bias seen in Simmons et al. (2020)’s results at 7 hPa and above. For

the 15 hPa to 7 hPa range, Simmons et al. (2020) found that there was a slight warm bias of 0.5 K. Figure 1 panels (e) and (h)

and figure 2 panels (e,g and h) show evidence towards this.10

In brief conclusion two independent observation methods have shown that a cold bias exists between 1 and 10 hPa in ERA-

interim over Hohenpeissenburg and OHP lidar and between 1 and 100 hPa for the Table Mountain observatory and Manua-Loa

sites. The reason for the difference in the magnitude of the bias is likely down to the differences in measurement technology.

As discussed in section 2, the MLS has been found to exhibit a warm bias between 1 and 3 hPa (Schwartz et al., 2008), which

may be the reason for a smaller cold bias than detected with the lidar.15

4 ERA-5 Comparisons

To compare the temperature biases in ERA-5 with those in ERA-Interim we repeat the comparison in a similar manner. The

temperature lidar data was interpolated, accounting for geometric height, onto ERA-5 model levels using Z for the nearest

analysis window to the mid point of the lidar acquisition window. Figure 3 panels (a-d) show the mean temperature profiles of

the lidar in red and ERA-5 in blue up to a height of 0.5 hPa for the winter months, October-March for the period 1990-2017.20

At first inspection ERA5 profiles track the lidar profiles more than those of ERA-interim (figure 1). Figure 3 panels (e-h)

show the mean of matched differences with height; red dots show when the mean difference is different from zero at the 95%

significance level inferred by a single sample t-test. The temperature biases are significantly smaller than in ERA-interim. For

the Mauna-Loa and Table mountain sites the temperature bias is very close to zero up to the 3 hPa pressure surface. Above this

height a cold bias, which increased to -5 K is observed at all four sites. Hohenpeissenburg shows smaller temperature biases25

which vary by 1 K about zero. OHP shows a smaller varying cool bias about -2 K up to 3 hPa. When we consider that the

measurement accuracy of the lidar is ± 2 K, ERA5 gives a good thermal representation of the atmosphere up to 3 hPa.

Figure 4 shows the temperature comparisons against MLS for the period 2004 to 2017; the data was interpolated on to the

ERA5 model data using the same method as discussed in section 3. MLS and ERA-5 show good agreement at all sites at all

heights. Figure 4 panels (e-h) show that at the Hohenpeissenburg and OHP site there is a slight warm bias, which peaks at30

1 K at 3 hPa. The temperature bias at Table Mountain Observatory (g) varies about zero but peaks at 3 hPa similar to the OHP

and Hohenpeissenburg sites. The temperature bias at the Mauna Loa observatory in (f) varies about zero by approximately

0.5 K over the height range studied. The uncertainties in the bias are larger for MLS at higher altitudes which is shown by the

increased breadth in the shading in figure 4 panels (e-h). This is likely due to the accuracies of MLS previously discussed. In

addition, MLS was found to have a warm bias (Schwartz et al., 2008) between 0.3 hPa and 3 hPa which is seen here. Further to

this MLS shows an oscillation with heights that is not seen in the lidar data. Simmons et al. (2020) compared the global mean

7
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temperature from ERA-5 with global mean radiosonde data from 15 hPa upwards and found that performance was similar to

ERA-interim pre 2000. A cold bias of -2 K was found above 7 hPa and a slight warm bias of less than 0.5 K between 7-15 hPa5

for ERA-5. Between 2000 and 2007 there was an increase in the cold bias making the bias -3 K and -0.5 K for the layers 7 hPa

and above and 7-15 hPa respectively. Simmons et al. (2020) believed that this may be due to the introduction of the AMSU-A

satellite (Aumann et al., 2003) data stream at the beginning of the period. Post 2007, after the introduction of GPSRO data,

Simmons et al. (2020) shows the temperature bias above 7 hPa to be -1.5 K and less than -0.5 K between 7-15 hPa. As our

comparisons using the lidar span 1990 to 2017 we do see some aspects of Simmons et al. (2020)’s results in that a cold bias is10

observed above 7 hPa and the temperature bias is small in the 7-15 hPa range. However, due to our methodology of averaging

over 30 years for the lidar data it is hard to see if the increase in bias during 2000-2007 is present. Due to the time period of

the MLS such a comparison is not possible

MLS and ERA-5 temperatures agree well over the height ranges studied. The temperature lidar agrees up to 3 hPa with a cold

bias observed above this. One reason MLS may not detect this cold bias is due to the fact it exhibits a warm bias, counteracting15

the cold bias at heights above 3 hPa (Schwartz et al., 2008). Aside from the two differing measurement techniques, the main

difference in this study is that the lidar dataset is almost double the length of the EOS MLS dataset- temperature lidars have been

used since the 1990s and EOS MLS only became operational in 2004. During this time period other measurement technologies

have been added to those already assimilated by reanalysis datasets. It could be that the cold bias observed by the lidar above

3 hPa in ERA-5 is from an earlier time period in the dataset where observations were more sparse. We check this in the next20

section by examining temperature bias inferred by the lidar over three different time periods.

5 ERA performance due to Assimilation of Satellite data

In December 2006 the COSMIC constellation was launched and later that month GPSRO data was made available to assimilate

into the ECMWF IFS models (Dee et al., 2011; Poli et al., 2010). Initial comparisons by Poli et al. (2010) showed that the

inclusion of COSMIC GPSRO data improved model performance in the upper troposphere and lower stratosphere. However25

this comparison was only undertaken between 200 hPa and 100 hPa. Its effect at 100 hPa was described in Cardinali and Healy

(2014) who found that the introduction of COSMIC GPSRO showed signs of improvement at higher levels. Also Simmons

et al. (2020) showed a change in ERA-5 temperature bias at the inclusion of the AMSU-A satellite data. Here, an analysis is

undertaken which will compare ERA-interim and ERA5 data to the lidar data both pre 1st January 2000, 1st January 2000 to

1st January 2007 and post 1st January 2007 to see how the introduction of AMSU-A and COSMIC GPSRO data effects upper30

stratosphere temperatures in ERA 5 and ERA-interim.

Figure 5 shows temperature difference between ERA-interim and the temperature lidar in this study for pre 2000 (green),

2000 to 2007 (purple) and post 2007 (cyan) data. The cold temperature bias at Hohenheissenburg (a) and OHP (c) in ERA-

interim does not seem to affected significantly by either of AMSU-A or COSMIC GPSRO data. At Mauna-Loa between

5-10 hPa there is an increase in the cold bias from -1 to -2 K post 2000 which maybe due to the introduction of AMSU-A
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satellite. TMO in panel (d) of figure 5 is the only site which shows significant improvement due to the inclusion of AMSU-A

and COSMIC GPSRO with a pre 2000 cold bias of -6 K and a post 2007 bias of -3 K.5

Figure 6 shows the temperature difference between ERA-5 and the temperature lidar data in this study for pre 2000 (green),

2000 to 2007 (purple) and post 2007 (cyan) data. For Hohenpeissenburg, Mauna-loa and OHP the introduction of AMSU-A

data appears to have little effect on the temperature bias at these heights. The only significant improvement is a reduction in

warm bias at 5 hPa at Mauna-Loa. Table mountain in panel (d) shows significant differences- the cold bias above 3 hPa is

reduced to under -5 K and the cold bias between 5 hPa and 10 hPa has switched to a warm bias of 1 K, an overall improvement.10

The temperature bias at TMO is further improved post 2007 with temperature biases of ± 1.5 K between 1 and 100 hPa.

For the Hohenpeissenburg site, although the cold bias has been reduced above 3 hPa for the post 2007 periods, the cold bias

in the 3-10 hPa range has increased. There are no significant changes between the 2000 and 2007 and post 2007 values for

Mauna-Loa and for OHP the cold bias increases to -2 K post 2007.

In summary, the cold temperature bias in ERA5 above 3 hPa is reduced from 5 K to 1-3 K at 3 out of 4 of the sites post 200715

due to the inclusion of GPSRO and AMSU-A data. This demonstrates how a lengthy time set such as the temperature lidar

can be used to assess the effect of the addition of different observation streams in reanalysis data sets in the upper atmosphere.

When comparing these findings to that of Simmons et al. (2020) who showed an intensifying of the cold bias between 2000

and 2007 we see that in these comparisons this is not the case. The reasons for this may potentially be that the metric used in

Simmons et al. (2020) was the global mean radiosonde temperature with a bias correction applied. However, the radiosonde20

data had been assimilated into ERA-5 already and this combined with the bias correction may lead to the cold bias shown.

Alternatively and more likely is that as a global average was used, this may not represent temperature bias at individual sites,

as is shown here. It is well known that temperature bias across the globe at the heights considered here is not homogeneous.

6 Conclusions

In this work we have utilised both temperature lidar from the NDACC network and EOS MLS data, that are not assimilated25

into models, to identify temperature bias in the upper atmosphere of ECMWF reanalysis datasets. For comparisons with

ERA-interim and the lidar, a cold bias of -3 to -4 K between 10 hPa and 1 hPa and a large warm bias above 1 hPa was found.

Comparisons with MLS also yielded cold biases between 10 hPa and 1 hPa but size of the cold bias was smaller at 2-3 K. Given

the warm bias from MLS and that both measurement technologies have an approximate accuracy of ± 2 K a fair assessment

of the cold bias in ERA-interim is between -4 to -2 K. Temperature bias between the lidar and ERA-5 were within ±1 K to30

a height of 3 hPa and MLS showed similar agreement over the whole study height. Comparisons between ERA5 and MLS do

hint at a slight warm bias at 3 hPa, although this is likely due to EOS MLS’s bias at these height ranges. By splitting the lidar

dataset into to three time periods, 1990-2000,2000-2007 and 2007 to 2017, it was found that the cold bias detected by the lidar

above 3 hPa was reduced from 5 K to 2-3 K with the introduction of GPSRO in 2007.

From the comparisons here it can be stated that ERA-5 is much improved compared to ERA-interim and has a good ther-

modynamic representation of the upper stratosphere, when we consider the uncertainties in the lidar and MLS at these heights
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are ± 2 K, making it an excellent choice for further stratospheric studies or using it as reference with which to compare other5

models. However, a cold bias detected in ERA-5 by the lidar before the inclusion of GPSRO data should be accounted for.

Using both temperature lidar and a non-assimilated satellite such as EOS MLS, both have their advantages. EOS MLS has

global coverage albeit coarser vertical resolution, and observations over a shorter time period. The temperature lidars on the

other hand, whilst limited to a few locations globally, have high vertical resolution measurements that have been made for

nearly 30 years, making them an important and useful tool for inferring temperature bias in reanalysis datasets. A future test10

could see the lidar networks used to explore modifications to reanalysis datasets such as testing the experimental ERA5.1

shown in Simmons et al. (2020)
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Figure 1. Mean profiles of matched temperatures from ERA-interim (blue) and Rayleigh temperature lidar (red) positioned at a) Hohen-

peissenburg, b) Mauna Loa, c) Observatoire de Haute-Provence and d) Table Mountain Observatory for winter months (ONDJFM) between

1990 and 2017. Shading depicts 1 standard deviation in the mean temperature. The vertical profiles of the mean of the differences between

ERA-interim and each lidar shown in a-d is shown in e-h respectively; shading shows 1 standard deviation of mean difference. Red dots

show model levels where the mean of the differences were different from zero at the 95% significance level.
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Figure 2. Mean profiles of matched temperatures from ERA-interim (blue) and EOS MLS passes (red)at a) Hohenpeissenburg, b) Mauna

Loa, c) Observatoire de Haute-Provence and d) Table Mountain Observatory for winter months (ONDJFM) between 2000 and 2017. Shading

depicts 1 standard deviation in the mean temperature. The vertical profiles of the mean of the differences between ERA-interim and EOS

MLS shown in a-d is shown in e-h respectively; shading shows 1 standard deviation of mean difference. Red dots show model levels where

the mean of the differences was different from zero at the 95% significance level.
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Figure 3. Mean profiles of matched temperatures from ERA-5 (blue) and Rayleigh temperature lidar (red) positioned at a) Hohenpeissenburg,

b) Mauna Loa, c) Observatoire de Haute-Provence and d) Table Mountain Observatory for winter months (ONDJFM) between 1990 and

2017. Shading depicts 1 standard deviation in the mean temperature. The vertical profiles of the mean of the differences between ERA-5 and

each lidar shown in a-d is shown in e-h respectively; shading shows 1 standard deviation of mean difference. Red dots show model levels

where the mean of the differences were different from zero at the 95% significance level.
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Figure 4. Mean profiles of matched temperatures from ERA-interim (blue) and EOS MLS passes (red)at a) Hohenpeissenburg, b) Mauna

Loa, c) Observatoire de Haute-Provence and d) Table Mountain Observatory for winter months (ONDJFM) between 1990 and 2017. Shading

depicts 1 standard deviation in the mean temperature. The vertical profiles of the mean of the differences between ERA-5 and EOS MLS are

shown in a-d is shown in e-h respectively; shading shows 1 standard deviation of mean difference. Red dots show model levels where the

mean of the differences was different from zero at the 95% significance level.
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Figure 5. Temperature bias between ERA-interim and temperature lidars at (a) Hohenpeissenburg, (b) Mauna Loa, (c) Observatoire de

Haute-Provence and (d) the table mountain observatory for the winter months ONDJFM. Green is ERA-interim comparisons from 1990 to

2000, purple is ERA-interim comparisons from 2000 to 2007 and blue is ERA-interim comparisons from 2007-2017. The solid lines are the

mean and the shading is one standard deviation of the means.
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Figure 6. Temperature bias between ERA-5 and temperature lidars at (a) Hohenpeissenburg, (b) Mauna Loa, (c) Observatoire de Haute-

Provence and (d) the table mountain observatory for the winter months ONDJFM. Green is ERA-5 comparisons from 1990 to 2000, purple

is ERA-5 comparisons from 2000 to 2007 and blue is ERA-5 comparisons from 2007-2017. The solid lines are the mean and the shading is

one standard deviation of the means.
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Table 1. Table summarising the geo-spatial and technical information of the 6 NDACC lidars used in this study

Lidar Lat.o Lon.o Period studied1 Wavelength (nm) Range gate ∆z (m)

Hohenpeissenburg, Germany 47.8 N 11.0 E 1987-2017 353 300

Mauna Loa, Haiwaii 19.8 N 155.7 W 1993 - 2017 355 300

Observatoire de Haute-Provence (OHP), France 43.9 N 5.7 E 1990-2016 532 1000

Table Mountain Observatory, US 34.5 N 117.7 W 1988-2014 355 300

1 based on data availability
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