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Abstract 

Recognition of terrestrial dust in geological records is essential for reconstructing 

paleoenvironments and quantifying dust fluxes in the past. However, in contrast to eolian 

sands, silt-sized dust is difficult to recognize in pre-Quaternary records due to a lack of 

macroscopic features indicating eolian transport and mixing with alluvial sediments. 

Windblown dust deposits are commonly identified by comparing their sedimentological and 

petrological features with Quaternary examples of dust known as loess. Here, we review the 

characteristics of terrestrial dust deposits and conclude that most of these features are not 

exclusively windblown and may be formed by alluvial deposits as well. We therefore 

synthesize a set of criteria which enable a reliable identification and quantification of dust 
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while acknowledging potential contributions of alluvial components. These methods include 

quartz-grain surface morphology analysis to distinguish eolian and alluvial transport modes, 

provenance studies to identify local and extrabasinal sources, grain-size-shape end-member 

modelling to quantify the various sedimentary contributions to the record, and a basin-scale 

stratigraphic approach to derive regional patterns and avoid interpretation of local 

phenomena. We reassess the Eocene to Pliocene records of the Chinese Loess Plateau 

and conclude that these strata represent both alluvial and eolian sediments deposited in 

extensive mudflat systems. Quaternary loess, by contrast, is almost exclusively composed of 

windblown dust. The early Pleistocene shift from mudflat to loess deposits is associated with 

a significant increase in accumulation rates, likely due to increased dust production upwind, 

overwhelming and blanketing the local mudflat systems in central China.  

 

Keywords: Mineral dust, loess, loessite 

 

1. Introduction 

 

Mineral dust is a fundamental component of the Earth system by driving various physical, 

chemical and biological processes including radiation scattering, cloud nucleation and ocean 

fertilization (e.g. An et al., 2014; Jickells et al., 2005; Knippertz and Stuut, 2014; Pye, 1987). 

Geological records of mineral dust enable the reconstruction of dust fluxes in the past and 

are therefore key to assess its impact on the Earth system. Furthermore, dust deposits 

provide valuable clues on paleoenvironmental settings such as continental aridity, glacial 

conditions and dominant wind directions (e.g. An et al., 2014; Soreghan et al., 2002; 2014; 

Soreghan et al., 2008) and may provide analogues for desertification due to the ongoing 

global warming (e.g. D‘Odorico et al., 2013). However, these studies are all limited by the 

reliability of recognizing and quantifying windblown dust in the geological record. As a result, 

the role of dust forcing remains poorly understood and constitutes one of the largest 
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uncertainties in climate model simulations (Heavens et al., 2012; Lee et al., 2016; Schwartz 

and Andrea, 1996). 

 

Dust is atmospherically transported in suspension and generally contains particles not bigger 

than ~100 µm (Pye, 1987; Újvári et al., 2016). After settling, these particles form 

structureless deposits with no sedimentary features diagnostic of eolian transport. This is in 

contrast to coarser-grained eolian sediments that may form dune cross-bedding and wind 

ripple laminations after deposition by wind or ventifacts indicating eolian transport (e.g. 

Hunter, 1977; Durand and Bourquin, 2013). The lack of diagnostic eolian features in silt 

complicates recognizing dust deposits, especially in pre-Quaternary records where 

paleowind directions are unknown and geographic relationships between the source and 

dust bodies are difficult to assess. Yet pre-Quaternary dust has been identified in various 

records (Fig. 1) including Precambrian siltstones in northern Norway and Svalbard 

(Edwards, 1979), Triassic mudrocks in England and the North Sea (Jefferson et al., 2002; 

Wilkins et al., 2018; Wilson et al., 2020), Cenozoic siltstones in Argentina (Bellosi, 2010; 

Selkin et al., 2015), both Paleozoic and Cenozoic siltstones in western North America 

(Johnson, 1989; Soreghan et al., 2008; Fan et al., 2020), as well as Permian, Cretaceous 

and Cenozoic deposits in Central Asia (Carrapa et al., 2015; Chen et al., 2019; Obrist-Farner 

and Yang, 2016; Sun and Windley, 2015; Wasiljeff et al., 2020).  

 

To overcome the lack of diagnostic eolian features, these studies use a variety of 

petrological, geochemical and grain-size characteristics and compare them with well-known 

dust deposits from the Quaternary period, termed loess, to infer an eolian origin. However, in 

recent years, these methods have been challenged. Several studies have shown that 

deposits previously considered to be formed almost entirely by windblown dust derived from 

deserts, are instead predominantly water-laid (alluvial) and derived from local mountain 

ranges (Alonso-Zarza et al., 2009; Cheng et al., 2018; Liu et al., 2019). Here, we aim to 

solve these controversies by first reviewing the depositional environments of dust and 
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critically assessing the traditional methods used to identify an eolian origin. Then, we present 

a clear set of methods which, when combined, will improve the recognition of dust in the 

geological record. Finally, we use the insights of our review to reinterpret the pre-Quaternary 

records of the Chinese Loess Plateau, which are considered as the longest and most 

continuous dust records in the world spanning the Neogene and arguably the Paleogene 

periods (e.g. An et al., 2014). Our review is limited to mineral dust in terrestrial records and 

excludes the marine realm. For a more detailed review on identifying dust from the 

Quaternary period, we refer to Muhs (2013), which includes lakes, marine records and ice 

cores.  

 

2. Depositional environments of dust 

 

In the following, we review the characteristics of loess, loessites and dust deposits in 

general.  

 

2.1 Dust production, transport and deposition 

 

The silt particles that constitute dust are generated by a wide variety of mechanisms 

including: abrasion of larger particles (by wind, in streams or by glaciers), chemical 

weathering, frost weathering in cold environments, salt weathering and aggregation of clay 

minerals in arid settings, biological production (e.g. diatoms, radiolaria, phytoliths and pollen) 

or inheritance from fine-grained parent rocks such as older mudrocks or metamorphic 

schists and phyllites (Potter et al., 2005; Pye, 1987; Muhs and Bettis, 2003; Wright, 2007). 

Glacial grinding has been proposed as an efficient silt producer during glacial periods 

(Smalley, 1966a; Smalley and Vita-Finzi, 1968), whereas desert processes such as salt 

weathering and abrasion by ephemeral streams or wind may dominate in arid environments 

(Crouvi et al., 2010; Pye, 1987; Tsoar and Pye, 1987; Whalley et al., 1982; Wright, 2001b). 

However, the efficiency of these desert processes is debated due to the lack of extensive 
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dust deposits near vast deserts such as the Sahara and the Australian interior (Fig. 1; 

Smalley and Krinsley, 1978; Smalley, 1995). In addition, orogenies may play a major role in 

generating silt by: 1) fracturing minerals during exhumation, 2) the steep gradients resulting 

in high energy transport and abrasion, and 3) the high altitude climate promoting frost and 

salt weathering (Assallay et al., 1998; Pye, 1995; Smalley and Krinsley, 1978; Smalley, 

1995; Sun, 2002, Wright, 2001a). The relative importance of these processes in producing 

large quantities of silt over various timescales remains unclear (Potter et al., 2005). 

 

After production, the dust particles are entrained in the lower atmosphere by turbulent 

surface winds during storms and may remain suspended until the wind speed and 

turbulence decrease and the dust settles (Fig. 2; Pye, 1987; Roe, 2009; Újvari et al., 2016). 

In general, grains finer than ~20 µm can remain suspended for longer and may travel 

thousands of kilometers when lifted up to the jet stream in the upper atmosphere (Fig. 2; Pye 

and Zhou, 1989; Sun, 2002; Sun et al., 2004; Vandenberghe et al., 2006). In addition, ‗giant‘ 

mineral dust particles of >75 µm in diameter have been found to be transported over long 

distances as well, though the physical mechanisms underlying this transport remain unclear 

(van der Does et al., 2018). Dust transport via long-term suspension plays an important role 

in fertilizing the oceans with iron and thereby affecting the carbon cycle (Jickells et al., 2005; 

Martin, 1990). 

 

Atmospherically transported dust particles may settle in a wide variety of both marine and 

terrestrial depositional environments, but need to be trapped to prevent subsequent deflation 

and to accumulate in the geological record. Efficient trapping mechanisms include surface 

obstacles such as vegetation and topography as well as wet surfaces such as lakes, oceans, 

ice caps, swamps and salt pans (Pye, 1995). After deposition, the dust particles may be 

reworked by water or significantly altered by pedogenesis, which obscures their eolian origin 

(e.g. Smalley, 1972; Smalley et al. 2009; Vandenberghe, 2013; Vandenberghe et al., 2018). 

Furthermore, the silt particles may have experienced a complex sedimentological history 
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involving multiple steps of transport, deposition and reworking before being transported by 

dust storms (Li et al., 2020; Licht et al., 2016a; Muhs and Bettis, 2003; Pye, 1995; Smalley, 

1966a; Wright, 2001a; Zheng, 2016).  

 

This is exemplified by the dust deposits of the Chinese Loess Plateau where provenance 

studies have revealed a complex network of transport pathways ultimately resulting in the 

deposition of dust on the Plateau (Fig. 3). This dust was traditionally thought to originate 

from the interior deserts, but recent provenance studies show that the silt is mainly derived 

from the northern Tibetan Plateau with some additional contributions from the Central Asian 

orogeny (including the Tian Shan and the Gobi-Altay; see review in Sun et al., 2020). In this 

view, the deserts draining these mountain ranges are acting as a transient storage for the 

alluvial mountain silt to be reworked as loess, rather than a significant source of silt (Assallay 

et al., 1998; Li et al., 2020; Smalley, 1995; Sun, 2002). Accordingly, Derbyshire et al. (1998) 

noted that the alluvial fans north of the Tibetan Plateau provide an important source of silt for 

modern-day dust storms in central China. The Yellow River is also shown to be of major 

importance in transporting material from the Tibetan Plateau to floodplains in the north, 

where the silt can subsequently be reworked by dust storms (Fig. 3; Bird et al., 2015; 

Stevens et al., 2013; Licht et al., 2016a; Nie et al., 2015). Some of these studies recognized 

an additional input of deflated material from the Qaidam Basin during colder glacial periods 

due to a stronger influence of the low-level westerlies (Fig. 3; Kapp et al., 2011; Licht et al., 

2016a; Pullen et al., 2011). These studies demonstrate that the deposition of dust may only 

be the latest step in a complex history of sediment transport, which has important 

implications for the petrological and geochemical characteristics of the dust particles. 

 

2.2 Loess and loessites 

 

Dust particles bigger than ~20 µm start to settle as the turbulence in the lower atmosphere 

decreases, forming blankets of dust which are fining and thinning away from the source due 
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to selective transport (Fig. 2; Pye, 1987; Pye and Zhou, 1989). These bodies composed 

entirely of terrestrial dust are termed loess (Pye, 1995) and are well known from the 

Quaternary period covering substantial portions of the Earth‘s surface (Fig. 1; Li et al., 2020). 

Loess can be recognized as buff coloured deposits of loosely-packed silt-sized grains 

forming steep vertical outcrops (Fig. 4 A). The sedimentary structure is massive, but may 

contain burrows and fractures. Primary structures such as vague horizontal or cross-

laminations are observed only in rare cases (e.g. Muhs, 2013). Other characteristic features 

of the Quaternary loess are the interbedded fossil soils (paleosols), which can be readily 

identified in the field as laterally extensive, reddish-brown layers (Fig. 4 B). These paleosols 

are enriched in fine-grained phyllosilicates occurring as clay coatings due to chemical 

weathering (e.g. Maher, 2016; Muhs and Bettis, 2003).  

 

The lack of primary sedimentary structures in loess resulted in controversies dating back to 

the nineteenth century regarding the origin of these deposits (Pye, 1987; Smalley et al., 

2001; Richthofen, 1882). Massive silt beds are common in various depositional 

environments including alluvial, lacustrine, eolian and marine settings. Additionally, it has 

been proposed that loess may have formed by in-situ weathering of the underlying material 

(e.g. Pecsi, 1990). Richthofen was one of the early proponents arguing for an eolian origin 

and listed numerous observations from the Chinese Loess Plateau to support his case 

(Smalley et al., 2001; Richthofen, 1882). These include the common occurrence of rootlets, 

land snails and mammal fossils indicating a terrestrial environment. Furthermore, the 

distinctly different composition of loess compared to the underlying bedrock suggests 

transport from elsewhere, rather than in-situ weathering. The most convincing evidence for 

an eolian nature of this transport is the sheet-like draping of loess bodies covering the 

underlying topography and resulting in undulating surfaces found over a wide altitudinal 

range (Muhs, 2013; Pye, 1987; Richthofen, 1882). Pye (1987) adds that the loose packing 

and associated high porosity of loess is an additional characteristic for eolian silt. 

Furthermore, the geographic relationship between the pathways of modern-day storm tracks 
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and the fining and thinning of loess bodies further corroborates their eolian origin (Pye, 

1987). However, these observations are of limited use when studying older geologic records, 

because burial diagenesis affects porosity, the paleotopography is rarely preserved and 

ancient atmospheric pathways are unknown. 

 

Nevertheless, lithified pre-Quaternary deposits sharing the characteristics of modern loess 

have been observed and interpreted as dust-blown deposits. These strata are termed 

loessites (Pye, 1995) and have been identified using the following criteria: 1) massive 

sedimentary structure showing no evidence of alluvial or lacustrine deposition (e.g. Ding et 

al., 1998a; Guo et al., 2002; Johnson, 1989; Wilkins et al., 2018), 2) homogeneous silt-sized 

grain-size distributions due to selective transport (e.g. Carappa et al., 2015; Fan et al., 2020; 

Guo et al., 2001; 2002; Li et al., 2018; Licht et al., 2014; Lu et al., 2001; Sun et al., 2010; 

Wasiljeff et al., 2020; Yang and Ding, 2004; Zheng et al., 2015), 3) angular shapes of the 

quartz grains, as well as other surface morphology features indicating eolian transport (e.g. 

Carappa et al., 2015; Edwards, 1979; Fan et al., 2020; Guo et al., 2001; 2002; Li et al., 

2018; Liu et al., 2006; Licht et al., 2014; Wang et al., 2016a), 4) provenance signals similar 

to the Quaternary loess including major, minor and rare earth elemental compositions, as 

well as Nd isotopes and detrital zircon U-Pb (e.g. Garzione et al., 2005; Guo et al., 2002; Li 

et al., 2018; Licht et al., 2016b; Jiang and Ding, 2010; Sun et al., 2010; Sun and Windley, 

2015; Wang et al., 2014; Wang et al., 2016a), 5) magnetic fabric similar to Quaternary loess 

(Liu et al., 1988), 6) geographic relations between the supposed source of the dust and the 

dust bodies as observed in grain-size and thickness of the deposits (Miao et al., 2004; Yang 

and Ding, 2004), 7) low accumulation rates (Ding et al., 1998b; Garzione et al., 2005; Sun et 

al., 1998a) and 8) the occurrence of land snail fossils (Li et al., 2006a). 

 

Another commonly used argument in identifying loessites is the absence of alternative 

depositional models to explain the occurrence of massive silt-sized deposits in the terrestrial 

realm (e.g. Johnson, 1989). However, several studies have proposed a distal 
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mudflat/floodplain involving predominantly alluvial deposition as an alternative to exclusively 

windblown deposits (Alonso-Zarza, 2009; 2010; Flynn et al., 2011; Li et al., 2006b; Liu et al., 

2019; Zhang et al., 2013). In the following, we will present this mudflat depositional model. 

 

2.3 Mudflat depositional model 

 

Deposition on terrestrial mudflats involves predominantly alluvial transport in a low-relief 

basin, which would enable extensive suspension settling of fine-grained material in a fluvio-

lacustrine environment (Fig. 5; Donselaar et al., 2013; Smoot and Lowenstein, 1991; Talbot 

et al., 1994; Van Toorenenburg et al., 2018). This is especially common in arid to semi-arid 

settings and endorheic basins where downstream evapotranspiration and percolation may 

result in the subaerial termination of rivers on the floodplain rather than in lacustrine delta‘s 

(Donselaar et al., 2013). Modern analogues for these sedimentary systems include the 

Altiplano Basin in Bolivia (Donselaar et al., 2013; Van Toorenenburg et al., 2018) and the 

continental interior of Australia (Talbot et al., 1994).  

 

Most of the sediments in this setting are derived from the local mountain ranges forming 

proximal alluvial fans and scree deposits containing breccias, conglomerates and 

sandstones. Fluvial channels, either ephemeral or perennial, transport the sediment to the 

more distal regions of the basin where the finer material is deposited on extensive mudflats 

via terminal fans, crevasse splays and overbank suspension settling during episodic floods. 

These flooding events are able to inundate vast areas due to the low gradient of the basin 

and lakes or salt pans may be found at the distal ends of this sedimentary system. The 

transition from proximal to distal sediments may occur rapidly. For example, the proximal 

sands in the Australian interior are observed to extend only one kilometer from the valley 

mouth into the basin and subsequently grade to open plains consisting predominantly of 

mud (Talbot et al., 1994).  An additional input of windblown dust to the mudflat may occur as 

well, either from an extrabasinal source or by deflation and redeposition of local sediments. 
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The latter is especially prevalent because most mudflats occur in arid to semi-arid 

environments and provide ample loose silt for eolian reworking.  Fine-grained material 

entering mudflat systems can alternate multiple times between fluvial transport and eolian 

transport (Hardie et al., 1978), which makes the identification of ―true‖ dust deposits difficult.  

This mudflat model involves alluvial, fluvial, lacustrine and eolian deposits and thereby 

provides an explanation for the co-occurrence of lacustrine siltstones, fluvial sandstones, 

and loess-like siltstones in numerous locations (e.g. Alonso-Zarza, 2009; 2010; Flynn et al., 

2011; Guo et al., 2010; Liu et al., 2019).  Yet massive terrestrial siltstones are commonly 

interpreted as loessites which implies deposition almost exclusively by wind. In the following, 

we will show that the loess-like features listed in section 2.2 may also occur via other modes 

of deposition on a terrestrial mudflat and therefore cannot be unambiguously linked to dust 

deposition alone. 

 

2.4 Alluvial origin for massive terrestrial siltstones  

 

The massive sedimentary structure observed in siltstones is often cited as characteristic for 

eolian deposition and is indeed similar to the Quaternary loess. However, it can be formed 

by different mechanisms as well. Modern observations show that clay and silt may 

aggregate to form sand-sized particles that are transported as bedload in fluvial systems or 

by wind to form lunettes (Rust and Nanson, 1989; Smoot and Lowenstein, 1991; Talbot et 

al., 1994; Wright and Marriott, 2007). Subsequent burial disaggregates these particles 

resulting in a massive sedimentary structure. In addition, post-depositional processes such 

as bioturbation, mud-cracking or pedogenesis may occur on subaerially exposed mudflats 

and rework the original sedimentary structures resulting in massive mud- and siltstones with 

only vaguely recognizable laminations (Talbot et al., 1994; Smoot and Olsen, 1988). 

 

Another indicator for dust is the uniform loess-like grain-size distribution. However, even the 

Quaternary loess shows a wide variety of poorly-sorted grain-sizes depending on the source, 
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distance to the source and pedogenic overprint (Fig. 6 A; Pye, 1995; Újvári et al., 2016; 

Vandenberghe, 2013; Vandenberghe et al., 2018). A commonly accepted example of pre-

Quaternary loess deposits are the Red Clay strata of central China (e.g. An et al., 2001; 

2014). However, the grain-size distributions of the Red Clay are finer than Quaternary loess 

(Fig. 6 B, C) and more similar to those found on the alluvial mudflat of the Altiplano Basin 

(Fig. 6 D; Van Toorenenburg et al., 2018). This shows that the grain-size distributions alone 

are not a good indicator for eolian transport. Lu et al. (2001) used the empirical Y-value, 

which is based on various grain-size characteristics including the mean, sorting, kurtosis and 

skewness, to distinguish eolian deposits with a negative Y-value from alluvial deposits which 

have a positive Y-value. However, most of the alluvial mudflat grain-size distributions shown 

here have negative Y-values as well, which indicates that this is not a reliable tool for 

identifying eolian deposits (Fig. 6). 

 

The angular shape of the silt-sized quartz grains is proposed to be evidence of loess and is 

linked to eolian transport. Newly weathered quartz grains derived from granites tend to form 

sand-sized particles due to crystallographic constraints (Smalley, 1966b). To create silt-sized 

quartz, these grains need to be broken and the resulting angular shape is therefore due to 

abrasional processes rather than an indication of eolian transport (Pye, 1987). Furthermore, 

the conchoidal fractures observed on the surface of the quartz grains (e.g. Liu et al., 2006) 

may be found in a variety of depositional environments and alone are not diagnostic of 

eolian transport (Vos et al., 2014). 

 

Geochemical provenance signatures showing similarities with the overlying Quaternary loess 

have been used as evidence for windblown transport, but also to derive paleowind 

directions, especially when linked to extrabasinal sources. However, as shown in section 

2.2, dust deposits may experience a complex sedimentological history including both alluvial 

and eolian reworking (Fig. 3). The geochemical properties can thus be expected to be similar 

for both the eolian and alluvial sediments and are not necessarily diagnostic for either one. 
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Furthermore, the REE patterns which are often cited as evidence for eolian transport are 

merely an indication of a multi-recycled and well-mixed sediment (Gallet et al., 1998) rather 

than eolian dust. Interestingly, Wang et al. (2014) show a loess-like geochemistry for the 

siltstones interbedding the fluvial sandstones that underlie the Chinese Loess Plateau. They 

use this as evidence to propose that these silts should be regarded as dust as well, but 

alternatively it could indicate that both alluvial and eolian siltstones have a similar 

geochemistry, especially because both are ultimately derived from the Tibetan Plateau (Fig. 

3). Furthermore, it should be noted that most bulk geochemistry studies only compare with 

the Quaternary loess and imply long-range extrabasinal dust transport while failing to assess 

the influence of intrabasinal sources. More recent provenance studies using U-Pb signatures 

from detrital zircons and heavy mineral assemblages show significant contributions from 

local mountain ranges. The zircon age distributions of the Dongwan and Chaona Red Clay 

sections show strong similarities with the neighboring Liupan Shan (Nie et al., 2014; Shang 

et al., 2016), whereas the Lantian and various sections in Tianshui Basin indicate the 

neighboring Qinling Shan as the predominant source (Liu et al., 2019; Zhang et al., 2018;). 

This may indicate that local alluvial transport plays a major role rather than large-scale 

extrabasinal dust fluxes (Liu et al., 2019). 

 

Liu et al. (1988) used the magnetic fabric to distinguish eolian from alluvial strata. But this 

method is of limited use because the magnetic mineral assemblage and tectonic strain 

varies through time which alters the magnetic fabric (Borradaile and Henry, 1997). Other 

studies have used basin-scale correlations between records to identify trends in grain-size 

and thickness. However, whether these can be linked to proposed dust sources or alluvial 

material derived from local mountain ranges remains debated (Ding et al. 2000; Liu et al., 

2019; Miao et al., 2004; Yang and Ding, 2004). Furthermore, both the low accumulation 

rates and the occurrence of terrestrial snails are not diagnostic of eolian transport and can 

be observed on alluvial mudflats as well.  
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In conclusion, the evidence used to identify loess in pre-Quaternary records cannot exclude 

alternative interpretations involving alluvial deposition of silt on extensive low-gradient 

mudflats. This is supported by the co-occurrence of fluvial sandstones and lacustrine 

mudstones which would suggest various modes of deposition, in contrast to the exclusively 

windblown bodies of loess observed in the Quaternary period. Dust deposition may occur on 

these mudflats as well, but should be regarded among other alluvial sediment contributions 

(Fig. 5). 

 

3. Methods to identify dust in the geological record 

 

We synthesize here a set of existing methods which, when combined, enable a reliable 

identification of dust in the geological record while acknowledging additional alluvial 

components. First, quartz surface morphology analysis enables the identification of the 

transport modes for the various grains and distinguishes eolian from alluvial components. 

Second, detailed provenance analysis enables to distinguish local reworked sediments from 

extrabasinal components which, in the case of dust, may aid in reconstructing atmospheric 

pathways and dust fluxes. Third, end-member analysis of grain-size and -shape distributions 

enables to quantify the various sedimentary contributions in the records. And finally, 

additional paleoenvironmental and basin analyses may be used to strengthen the 

interpretations regarding an eolian origin. 

 

3.1 Quartz surface morphology 

 

Particle collisions during transport result in characteristic nm- to µm-scale features on the 

grain surfaces. These features are largely dependent on the fluid viscosity of the transporting 

medium and can therefore be used to distinguish sediment transport in wind and water. The 

analysis of these surface morphologies has been applied to quartz grains in particular, 

because of their high abundance (e.g. Krinsley and Takahashi, 1962; Vos et al., 2014). 
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Consequently, quartz surface morphologies have been extensively described using a 

scanning electron microscope (SEM) on grains from a variety of both modern and ancient 

sedimentary environments, as well as on artificially-produced quartz grains subjected to 

various transport conditions in the lab (e.g. Costa et al., 2013; Keiser et al., 2015; Krinsley 

and Takahashi, 1962; Nieter and Krinsley, 1976; Vos et al., 2014). For a more detailed 

review on the sample preparation, SEM handling and surface morphology descriptions we 

refer to Vos et al. (2014) and references therein.  

 

In general, the impacts by wind are of higher energy than subaqueous collisions which are 

cushioned by the surrounding water. The latter are therefore characterized by µm-scale, v-

shaped percussion marks, whereas eolian impacts result in larger conchoidal fractures 

separated by meandering ridges, crescentic percussion marks and dish-shaped depression 

(Fig. 7). Furthermore, higher energy eolian collisions result in the shattering of the quartz 

crystal lattice and create a highly reactive surface of amorphous silica with adhering nm-

scale particles and thin parallel upturned plates, both composed of silica (Fig. 7; e.g. Krinsley 

and Trusty, 1985; Vos et al., 2014). Identification of these features therefore enables us to 

distinguish between an alluvial and an eolian mode of transport and can be applied to 

identify dust in the geological record (e.g. Licht et al., 2014; Fan et al., 2020). Careful 

quantification of these surface morphological features may even indicate the relative 

importance of various transport mechanisms for grains that have experienced multiple 

modes of transport. In addition, the identification of overprinting relations between these 

morphological features may help to derive the sequential order of the various transport 

modes (Vos et al., 2014), which is especially useful for loess-like materials characterized by 

both alluvial and eolian deposition and reworking (Fig. 5).  

 

However, it should be noted that most of the eolian surface morphologies described above 

have been identified on sand-sized quartz grains which are transported by saltation and 

creep, whereas silt-sized dust of <50 µm is transported in suspension (e.g. Újvári et al., 
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2016). Furthermore, silt-sized grains may not have enough momentum for the high energy 

impacts needed to create the typical eolian surface morphologies. So far, only few studies 

have focused on the surface morphologies of silt-sized quartz grains. Krinsley and McCoy 

(1977) note that most silt-sized quartz grains are fragments of broken sand-sized grains. 

They suggest that even though the silt-sized material may not create characteristic surface 

morphologies, the silt may still record useful surface textures on the surfaces of the original 

sand-sized grain preserved on some of the silt particles after fragmentation. Other studies 

have noted significant differences between the quartz morphologies of loess and eolian 

sand. The shape of the latter is rounded and characterized by bulbous edges (e.g. Krinsley 

and Trusty, 1985; Vos et al., 2014), whereas silt-sized quartz from loess deposits is 

subangular to subrounded with sharp edges and flat cleavage surfaces (Krinsley and 

Smalley, 1973; Nieter and Krinsley, 1976; Pye, 1987). Other more delicate features such as 

polygonal cracks formed by salt weathering are more common on silt-sized particles and 

rarely observed on sand-sized grains because the cracks are easily abraded by the higher 

energy impacts of saltation compared to transport in suspension (Pye, 1987; Vos et al., 

2014). Adhering nm-scale particles are observed in loess as well (Pye, 1987) and may be a 

diagnostic feature, because wind tunnel experiments show that eolian-transported silt 

creates adhering silica particles due to abrasion (Nieter and Krinsley, 1976). However, Pye 

(1987) notes that the composition of the adhering particles in loess consist of illite, kaolinite 

and calcite of pedogenic origin as well as silica and therefore careful compositional analysis 

is required before interpreting the adhering particles as eolian features. 

 

Quartz surface morphology analysis provides a strong tool to derive transport modes and 

identify dust in the geological record. Diagenetic overprinting may hamper the analysis for 

deposits older than the Mesozoic, but can be easily recognized as crystal overgrowths (Vos 

et al., 2014). Furthermore, the method may be biased by the expertise of the user in 

recognizing characteristic surface features but recent image analysis tools may aid in 

automating this process (Říha et al., 2019). However, extensive data is required for training 
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these algorithms, but has been lacking for the silt-sized domain. Future work should 

therefore focus on describing quartz silt from a variety of sedimentary transport processes to 

bring the current surface morphology knowledge up to date with the sand-sized grains. 

 

3.2 Provenance 

 

Provenance studies play an important role in deriving the source regions of the dust and in 

assessing the intra- and extrabasinal contributions. In addition, these studies are widely 

used to derive atmospheric transport pathways (e.g. Soreghan et al., 2002; 2014). However, 

it should be emphasized that the provenance signal itself is no evidence for eolian deposition 

and should be used together with other data. Only when a clear extrabasinal source is 

identified in the absence of a fluvial connection to the deposits, can the provenance signal 

be used as proof for eolian transport. Still, it would remain unclear whether this mode of 

transport was the last step of sediment transport because the material could have been 

subsequently reworked. On the other hand, a local provenance is not exclusive to alluvial 

deposits and may result from wind erosion of nearby outcrops (e.g. Kapp et al., 2015). 

 

Sun et al. (2020) provide an extensive review of provenance tools which have been used on 

the Chinese Loess Plateau but are also applicable to other dust records and will be 

summarized in the following. These tools can be subdivided in tracers derived from a single 

type of mineral or from an assemblage of various minerals. Single-mineral tracers include 

the various characteristics of quartz minerals such as δ18O, Electron Spin Resonance (ESR) 

and Crystallinity Index (CI), which are controlled by the age and temperature at the formation 

of the minerals. Another widely used single-mineral tracer is the U-Pb age spectra of detrital 

zircon grains. Mineral-assemblage tracers include elemental ratios, isotopic signatures of Sr-

Nd-Pb-U, Hf-Th and Re-Os, magnetic properties and heavy mineral composition. Preferably, 

multiple tracers should be used to identify the provenance more accurately. 
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Elemental ratios and isotopic signatures are generally measured on bulk samples, which has 

the advantage of considering the entire range of minerals and grain-sizes in the material 

(Bird et al., 2020). On the other hand, these bulk signatures perform poorly in sediments with 

mixed sources because the provenance signatures average out. To overcome this limitation, 

the signatures should be characterized for grain-size fractions or individual grains 

representing the various sources and modes of sediment transport. One of these methods 

applied to individual grains is measuring the U-Pb age spectra of zircons, which accurately 

distinguishes mixtures of various sources if a large enough number of grains are measured 

(Licht et al., 2016a). In addition, robust minerals such as zircons and quartz are less affected 

by post-depositional weathering and are therefore preferred over other minerals or bulk 

analyses. In the future, the use of other minerals such as titanite and rutile may be explored 

for U-Pb age spectra as well.  

 

Provenance methods measuring the isotopic ratios of individual grains are limited to 

relatively large grains of often >40 µm due to the amount of material required via laser 

ablation. Neglecting the smaller grain-sizes introduces a size bias (e.g. Bird et al., 2015), but 

future technical developments may improve these limitations. This would enable 

characterizing the elemental and isotopic signatures of individual grains, rather than bulk 

measurements and would significantly improve the recognition of various source regions in 

mixed sediments. 

 

3.3 End-member analysis of grain-size distributions 

 

Uniform grain-size distributions in the silt domain are used to identify dust in geological 

records. However, these are of limited use due to the wide variety of overlapping grain-sizes 

occurring in both dust and other alluvial environments (Fig. 6). Furthermore, these 

distributions are rarely unimodal, but rather contain a multimodal mix representing grain-size 

fractions derived from various sources and sorted by distinct transport mechanisms. 
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Unmixing these grain-size distributions enables the quantification of these various 

components within the sedimentary record (Fig. 8). This is especially useful for studying 

sedimentary environments with multiple depositional modes such as on a low-relief mudflat 

(Fig. 5).  

 

Various methods can be used to unmix grain-size data including parametric curve-fitting and 

end-member modelling (Varga et al., 2019b). Parametric curve-fitting uses predefined 

functions of distributions and fits these with the measured grain-size distributions in the 

geological record to quantify their relative abundance (Paterson and Heslop, 2015; Sun et 

al., 2002; Wu et al., 2020). The accuracy of this analysis depends on the predefinition of the 

fitting functions and is especially useful for modern and recent geological records, in which 

the potential sources are well constrained. However, on longer geological timescales, 

knowledge of the grain-sizes in the various sources is usually limited. Therefore, non-

parametric end-member modelling is a more appropriate method (Weltje and Prins, 2007). 

End-member modelling uses an algorithm that considers the entire grain-size dataset of the 

record to construct multiple end-member distributions in which the dataset can be optimally 

decomposed (Fig. 8). In recent years, various end-member algorithms have been developed 

and shown to perform well using artificial and natural datasets (Dietze and Dietze, 2019; 

Paterson and Heslop, 2015; van Hateren et al., 2018; Varga et al., 2019b).  

 

End-member modelling has been successfully applied to distinguish eolian and alluvial 

contributions in marine cores (Weltje and Prins, 2003) and lacustrine records (Dietze et al., 

2014; Rits et al., 2016) as well as various dust components in Quaternary loess (Nottebaum 

et al., 2015; Prins et al., 2007) and Neogene Red Clay (Shang et al., 2016: Xu et al., 2018). 

However, it should be noted that the end-member grain-sizes themselves provide limited 

sedimentary information and should be combined with other data such as quartz surface 

morphology and provenance to interpret their sedimentary origin. After interpreting the origin 

of the end-members, their contributions can be quantified throughout the studied records. 
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Various techniques can be used to measure grain-size distributions, but laser diffraction is 

the most widely used for silt-sized sediments because of the high reproducibility and 

measurement speed (Goossens, 2008). This technique measures the grain-size distribution 

indirectly by converting the diffraction pattern of a laser beam passing through the 

suspended particles. The accuracy of the measurements depends on the optical parameters 

used for the conversion and may vary between different laser diffractors (Varga et al., 

2019a). A more direct but time consuming measurement of the grain-size distributions can 

be obtained by using dynamic image analysis, which simultaneously provides additional data 

on the grain-shapes (Shang et al., 2018; van Hateren et al., 2019; Varga et al., 2018). These 

combined size and shape characteristics may aid to better define the end-members (van 

Hateren et al., 2019). Furthermore, a Raman spectroscope can be coupled to the optical 

microscope to determine the mineral properties of the studied particles (Szalai et al., 2019). 

Since sediment transport is controlled by the size, shape and density (and therefore 

mineralogy) of the particles, constraining these three parameters in one single analysis will 

benefit the characterization of both dust and other components in the sedimentary record. 

 

3.4 Stratigraphic and basinal analysis 

 

For significant dust deposition to occur, an effective source, sink and transport mechanism 

are needed (Pye, 1995). The source should provide ample of loose, silt-sized material 

available for transport and the sink should contain a trap, such as vegetation, a wetted 

surface or topographic obstacle to contain the dust. Additional sedimentological, 

stratigraphic and biological data may therefore be used to assess the capacities of both the 

source and sink (e.g. Vandenberghe et al., 2018). In settings where the sink has a different 

bedrock lithology than the dust source, it is especially convenient to recognize allogenic dust 

components (e.g. Muhs, 2013). Quaternary examples include the identification of quartz 

grains in the basaltic soils on Hawaii (Béget et al., 1993) and in a volcanic maar in Japan 
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(Xiao et al., 1997). In settings involving chemically- or biologically-formed sediments it is 

similarly convenient to recognize and quantify siliciclastic dust components. For example, 

Permian dust accumulation rates have been derived from coal beds by measuring the 

titanium content assumed to be a proxy of dust (Large and Marshall, 2015; Marshall et al., 

2016). 

 

Furthermore, it should be noted that individual geological records reflect only the 

depositional environment of a specific location. This environment is partly constrained by the 

basin configuration and surrounding topography. Records located near the basin margin 

may contain abundant alluvial material derived from the neighboring mountain ranges, 

whereas windblown dust may accumulate in records located in a more distal setting. 

Individual records may be hindered by local autogenic variability related to splays, storms, 

events, and channels moving, eroding and/or redepositing sediments (e.g. Hajek and 

Straub, 2017). As such, a single record is limited for a robust evaluation of dust deposition 

and a basin-scale analysis is required instead. The use of multiple records to derive a 

regional or even global imprint of paleo-records is common practice in marine studies. Long-

term stable carbon and oxygen isotopes series have been stacked to reduce the local noise 

and disturbances since considerable time (e.g. Hays et al. 1976; Lisiecky and Raymo, 2005). 

Similar methods have been applied to Quaternary loess records (e.g. Liu and Ding, 1998), 

but should be used for pre-Quaternary dust records as well.   

 

4. The geological record of the Chinese Loess Plateau 

 

Using the considerations discussed above, we reassess the geological record of the 

Chinese Loess Plateau located in north-central China where dust has accumulated for 

millions of years (Fig. 9). The Loess Plateau has therefore provided an invaluable record for 

studying paleoenvironmental changes in the terrestrial realm, especially during the 

Quaternary period (see reviews in: An et al., 2014; Liu and Ding, 1998; Maher, 2016; Porter, 
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2001). In recent years, this dust record has been expanded to include the underlying 

siltstones of increasingly older ages (Fig. 9). These strata cover the Pliocene-Miocene 

epochs in the eastern Loess Plateau (An et al., 2001; Ao et al., 2016; Qiang et al., 2001; Sun 

et al. 1998a; b; Wang et al., 2014; Xu et al., 2009), the Miocene-Oligocene in the west (Guo 

et al., 2002; Qiang et al., 2011), and the Eocene in the westernmost part of the Loess 

Plateau (Licht et al., 2014; Meijer et al., in review). In the following, we will review the nature 

of these deposits and challenge the exclusively eolian origin of the pre-Quaternary strata. 

 

4.1 Quaternary loess 

 

The Chinese Loess Plateau covers a wide area of ~4.4 × 105 km2 with Quaternary dust 

ranging from several tens of meters to up to 450 meters in thickness (Fig. 1 and 8; see 

reviews in: An et al., 2014; Liu and Ding, 1998). This loess is composed of silt-sized grains 

containing predominantly quartz, but also significant amounts of feldspar, mica, a varying 

carbonate content and minor components of clay-sized phyllosilicates (mostly illite, but also 

smectite, chlorite, kaolinite and vermiculite) as well as iron oxides (Jeong et al., 2011). The 

loess is interbedded with reddish paleosols due to weathering and oxidation forming 

nanoscale hematite and other fine-grained phyllosilicates (Fig. 4 B; Bronger and Heinkele, 

1989; Chen et al., 2010; Jeong et al., 2011; Maher, 2016; Rutter et al., 1991; Rutter and 

Ding, 1993). Pedogenic magnetite is observed in the paleosols as well and is responsible for 

higher magnetic susceptibilities than in the primary loess and commonly used as a proxy for 

pedogenesis (Ahmed and Maher, 2018; Maher and Thompson, 1991; Zhou et al., 1990). 

The detrital carbonate grains in the paleosols are leached and precipitated as root casts or 

carbonate concretions (Bronger and Heinkele, 1989; Rutter et al., 1991; Rutter and Ding, 

1993). 

 

Dating of the Chinese loess records revealed a temporal correlation between the loess-

paleosol sequences and the glacial-interglacial cycles of the Quaternary period (Fig. 10; 
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Bloemendal et al., 1995; Ding et al., 1995; Ding et al., 2002; Heller and Liu, 1984; Kukla et 

al. 1988). The dustier glacial periods are characterized by higher loess accumulation rates 

and coarser grain-sizes whereas the interglacials correlate to lower accumulation rates, finer 

grain-sizes and pedogenesis. In terms of atmospheric circulation (Fig. 9), the glacial periods 

are thought to be dominated by dust storms linked to the low-level westerlies (Kapp et al., 

2011; Pullen et al., 2011) and the northwesterly East Asian winter monsoon transporting silt 

from the arid inlands of the Asian interior (An et al., 1990; Pye and Zhou, 1989; Roe, 2009; 

Sun et al., 2001; Sun, 2002). The interglacial periods reflect the predominance of the 

southeasterly East Asian summer monsoon bringing moisture and promoting soil formation 

(An et al., 1990). The interplay between these atmospheric configurations is observed on the 

Chinese Loess Plateau as a gradient of decreasing grain-size and loess thickness going 

from the dry winter monsoonal northwest to the wetter summer monsoonal southeast (Ding 

et al., 1999a; 2005; Porter, 2001). In addition, the deposits are increasingly weathered going 

from the northwest to the southeast (Jeong et al., 2011). 

 

4.2 Pre-Quaternary “loess” 

 

The Quaternary loess is underlain by Neogene strata that have been proposed to be formed 

predominantly by dust deposition as well. These strata are commonly referred to as Red 

Earth, Red Clay or sometimes Hipparion Red Clay after the eponymous fossils found in 

these deposits (Fig. 10; Mo and Derbyshire, 1991; Flynn et al., 2011; Kaakinen et al., 2013). 

However, other than the name suggests, most of these deposits consist of fine silt rather 

than clay (Ding et al., 1998a; Flynn et al., 2011; Guo et al., 2001; Han et al., 2002; Lu et al., 

2001; Shang et al., 2016; Yang and Ding, 2004). The beds have a pronounced reddish 

colour and the sedimentary structure is massive with occasional sub-horizontal laminations 

(Ding et al., 1998a; Mo and Derbyshire, 1991).  
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The Red Clay was originally suggested to be fluvio-lacustrine (Kukla, 1987), however Mo 

and Derbyshire (1991) noted that the microfabric is different than both alluvial and lacustrine 

sediments and proposed that the Red Clay is formed by weathering on hillslopes and 

transported over relatively short distances by creep, rainwash and possibly wind. 

Subsequent studies showed that the fabric of the Red Clay is characterized by pedogenic 

features including horizonated clay coatings and accumulations of carbonate nodules (Ding 

et al., 1998a; Guo et al., 2001; Han et al., 2002). These carbonate concretions form laterally 

extensive horizons that can be readily identified in the field and are comparable to the 

Quaternary loess-paleosol alternations (Fig. 11; Guo et al., 2001). Zheng et al. (1992) 

therefore suggested that these pedogenic variations might reflect a similar climatic origin as 

loess and subsequent studies interpreted the Red Clay as sequences of stacked paleosols 

(Ding et al., 1997; 1998a; Guo et al., 2001; Han et al., 2002). It should be noted that these 

pedogenic features indicate subaerial exposure but not a particular mode of sediment 

transport. 

 

Liu et al. (1988) observed that the magnetic fabric (anisotropy of magnetic susceptibility) is 

similar to the overlying Quaternary loess and different than loess reworked by water. 

Furthermore, the mineral content of the Red Clay consists predominantly of angular quartz 

grains, feldspars and mica‘s (Guo et al., 2001) as well as clay minerals including mostly illite 

and some kaolinite, chlorite and smectite (Han et al., 2002; Wang et al., 2019). The 

geochemical signature of the major and trace elements as well as rare earth element (REE) 

abundances are comparable with loess (Ding et al., 1998b; Guo et al., 2001; Han et al., 

2002). Because of the similarities in mineral content, geochemistry and the massive 

sedimentary structure, it has been proposed that the Red Clay is formed by the 

accumulation of eolian dust that subsequently underwent pedogenesis (Ding et al., 1997; 

1998a; 1999b; Guo et al., 2001; 2004; Liu et al., 1988; Zheng et al., 1992). However, as 

discussed in section 2.4, none these features are not diagnostic for eolian transport alone 

and may reflect alluvial mudflat deposition as well. 
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This is corroborated by the numerous fluvial sandstone and gravel beds that are observed to 

interbed the Red Clay especially in the Miocene strata and contain important localities for 

mammal fossils (Mo and Derbyshire, 1991; Flynn et al., 2011). In the central Chinese Loess 

Plateau, east of the Liupan Shan, these sandstone beds are increasing towards the base 

where they conformably or unconformably overlie Miocene fluvio-lacustrine sand- and 

siltstones (Fig. 10; Guo et al., 2001; Kaakinen and Lunkka, 2003; Qiang et al., 2001; Sun et 

al., 1997; 1998a; b; Wang et al., 2014; Zhu et al., 2008) or older sedimentary strata (An et 

al., 1999; Jiang and Ding, 2010; Song et al., 2001; Xu et al., 2009). Furthermore, there are 

notable differences between the Red Clay and the Quaternary loess. The accumulation rates 

in the Red Clay based on magnetostratigraphy are ~3 cm/kyr, which is lower compared to 

the ~6 cm/kyr in loess and ~4 cm/kyr in paleosols (Ding et al., 1998b; Sun et al., 1998a; b). 

In addition, the grain-size is finer with median grain-sizes of ~5-15 µm and the grain-size 

distributions are more symmetric compared to the loess which has a median grain-size of 

~20-50 µm and a distinct tail of finer grain-sizes (Ding et al., 1998a; Guo et al., 2001; Han et 

al., 2002; Lu et al., 2001; Shang et al., 2016; Yang and Ding, 2004).  

 

Several hypotheses have been proposed to explain these differences. One of these includes 

more intense pedogenesis because the grain-size distributions of the Red Clay strata are 

similar to the Quaternary paleosols (Ding et al., 1999; Guo et al., 2001; Han et al., 2002). 

Sun et al. (2006) attempted to remove this pedogenic overprint by chemically isolating the 

quartz grains, which are more stable and unaffected by pedogenesis. Grain-size analysis of 

this quartz fraction revealed that the grain-size distributions are identical to the primary loess 

with a coarser median grain-size at ~10-50 µm. They therefore suggested that the coarse 

component in the Red Clay is derived from winter monsoonal dust storms similar to the 

Quaternary but more strongly overprinted by pedogenesis due to the warmer and possibly 

wetter climate of the Miocene and Pliocene epochs (Ding et al., 1997; 1998a; Guo et al., 

2004; Han et al., 2002; Lu et al., 2001; Miao et al., 2004; Sun et al., 2006; Yang and Ding, 
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2004). Lower accumulation rates during the Mio-Pliocene would have promoted 

pedogenesis and thereby enhanced the fine-grained components (Han et al., 2002; Sun et 

al., 2006). Alternatively, it has been suggested that the fine-grained material in the Red Clay 

is derived from the upper-level westerly jet stream which could have been the dominant dust 

transporter during the Neogene (Ding et al., 2000; Vandenberghe et al., 2006; Li et al., 

2020). Based on the recent provenance studies indicating significant sediment contributions 

from local mountain-ranges (Liu et al., 2019; Nie et al., 2014; Shang et al., 2016; Zhang et 

al., 2018) and fluvial strata interbedding some of the Red Clay sections (Mo and Derbyshire, 

1991; Flynn et al., 2011), we propose that mixed alluvial/eolian deposition in mudflat 

systems should be considered as well and may explain the fine-grained components 

observed in the Red Clay thereby reflecting a terrestrial mudflat as described in section 2.3.  

 

Another distinctly different feature of the Red Clay is the magnetic susceptibility, which is 

less than half of the susceptibility measured in the overlying loess-paleosols (Ding et al., 

1997; Hao et al., 2008; Liu et al., 2003). This suggests a reduction in soil-formed magnetite, 

even though the pedogenic microfabrics in the Red Clay are more prominent (Ding et al., 

1999b; Liu et al., 2003). The reason for these lower magnetic susceptibilities remains 

debated but possibilities include different soil conditions resulting in the dissolution and 

oxidation of iron oxides in the Red Clay or a shift in provenance of the primary minerals 

(Ding et al., 1999b; Liu et al., 2003; Nie et al., 2016; Yang and Ding, 2010). Several 

provenance studies using a variety of tools such as isotopic signatures have indeed reported 

a change between the Red Clay and the overlying Quaternary Loess (Li et al., 2020; Nie et 

al., 2014; 2018; Sun, 2005: Sun and Zhu, 2010; Sun et al., 2020; Yan et al., 2017). However, 

other studies do not find such a provenance shift (Bird et al., 2015; Peng et al., 2016; Wang 

et al., 2007) and argue that the isotopic variation is due to the higher degree of chemical 

weathering in the Red Clay (Bird et al., 2020). An alternative explanation for these 

inconsistencies is that the provenance signal of the Red Clay may be spatially 

heterogeneous (Sun et al., 2020) possibly due to significant local contributions. 
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Older records have been identified as loess in the western part of the Chinese Loess 

Plateau, west of the Liupan Shan (Fig. 9). Guo et al. (2002) identified massive siltstones 

showing laterally extensive paleosols near Qinan spanning from 22 to 6.2 Ma based on 

magneto- and biostratigraphy. This record was subsequently extended with a drill-core to 

cover the late Oligocene with a basal age of 25 Ma (Qiang et al., 2011). Evidence used to 

argue for an eolian origin of these strata includes grain-size distributions and geochemical 

properties, which are similar to the loess (Guo et al., 2002; 2008; Hao and Guo, 2004; Liu et 

al., 2006; Qiang et al., 2011; Qiao et al., 2006). Furthermore, the quartz grains have an 

angular shape and show conchoidal fractures which may indicate eolian transport (Liu et al., 

2006) and terrestrial land snail fossils similar to those found in the Quaternary loess have 

been identified in the Miocene siltstones (Li et al., 2006a). However, as discussed above, 

none of these features are diagnostic of eolian transport and more recent sedimentological, 

stratigraphic and provenance studies argue for predominantly alluvial deposition instead 

(Alonso-Zarza et al., 2009; 2010; Liu et al., 2019). 

 

Subsequent studies have identified eolian dust, often along with other alluvial components, 

in even older Paleogene deposits spanning the western Chinese Loess Plateau (Fig. 9). 

Jiang and Ding (2010) use grain-size distributions and REE patterns to identify dust in the 

Sikouzi section spanning from ~0.1 to ~20 Ma based on magnetostratigraphy. However, the 

age of this section was subsequently reinterpreted to cover ~0.5 to ~29 Ma based on 

magneto- and biostratigraphy (Wang et al., 2011). The siltstones in the Linxia Basin with a 

basal age of ~26 Ma are interpreted as dust based on the provenance signals (Nd and REE) 

and the low accumulation rates in the basin, which are comparable to the Red Clay and 

Quaternary loess (Garzione et al., 2005). Zhang et al. (2014) identified a dominant dust 

component along with alluvial contributions in the grain-size record of the Lanzhou Basin 

after ~26 Ma, but a subsequent magnetostratigraphic study reinterpreted this age to ~40 Ma 

(Wang et al., 2016b). Similarly, an eolian dust component is identified in the mudflat deposits 
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of the Xining Basin after ~40 Ma based on quartz surface morphologies and the provenance 

signal in detrital zircons (Licht et al., 2014; 2016b; Meijer et al., in review).  

 

We suggest that the Red Clay and similar massive terrestrial siltstones are different than the 

Quaternary loess and more adequately reflect a terrestrial mudflat instead of being entirely 

composed of eolian dust. This is corroborated by the abundance of closed geomorphic 

basins throughout Central Asia (Carroll et al., 2010), which would have promoted the 

development of low-relief mudflats surrounded by active mountain ranges. Although not 

loess-like, these mudflat deposits provide invaluable terrestrial records of pedogenesis and 

other paleoclimate proxies for reconstructing the monsoonal evolution in the past. 

Furthermore, both extrabasinal and intrabasinal dust components may be tracked and used 

to reconstruct paleoenvironmental conditions. An increase in extrabasinal dust may reflect 

more dust production and aridification of distal source areas or an intensification of large-

scale atmospheric dust transport, whereas intrabasinal dust may indicate local aridity in the 

basin. 

 

The geological record of the Chinese Loess Plateau is unique because it records the 

transition between the Red Clay strata and the overlying Quaternary loess, and therefore 

from a mudflat environment to predominantly dust deposition. This transition is conformable 

in most locations showing a gradual shift to more loess-like beds (Ding et al., 1997; Kukla, 

1987; Yang and Ding, 2010) associated with a ~2- to 3-fold increase in accumulation rate 

(Ding et al., 1997; Lu et al., 2010). The mudflat-loess transition could therefore reflect a 

strengthening of the dust storms or an increase in dust production upwind which would have 

resulted in more dust accumulation and overwhelmed local mudflat deposition. Local 

environmental shifts on the Loess Plateau could have promoted the efficiency of dust 

trapping by creating wetted surfaces or increasing the vegetation cover. 

Magnetostratigraphic studies have dated the Red Clay to loess transition at ~2.8-2.6 Ma, 

coeval with the Plio-Pleistocene boundary and the onset of Northern Hemisphere glaciation 
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(Fig. 10; Ding et al., 1997; Han et al., 2002; Yang and Ding, 2010; Guo et al., 2020). This 

confirms the tight coupling between glacial climate and dust accumulation on the Loess 

Plateau (An et al. 1999; Ding et al., 1997; 2000). 

 

5. Conclusion  

 

Terrestrial dust deposits are well-known from the Quaternary period as bodies of loess 

draping the underlying topography, but increasingly difficult to recognize in older geological 

records due to a lack of diagnostic eolian features. Yet numerous siltstones have been 

interpreted as loessites being formed almost entirely by windblown dust. However, these 

interpretations are often based on ambiguous criteria, such as massive sedimentary 

structures, uniform grain-size distributions and angular-shaped quartz grains. Here, we show 

that such features are not exclusively windblown and may occur as well by alluvial 

deposition on low-gradient terrestrial mudflats. Such a depositional setting may better 

explain the provenance signatures of local mountain ranges and the fluvial sandstones 

observed to interbed supposed loessites. 

 

Eolian dust may settle and accumulate on these mudflats along with other alluvial 

components and can be reliably quantified in sedimentary records by: 1) quartz surface 

morphology analysis to identify the modes transport and distinguish eolian from fluvial 

components, 2) provenance analysis to derive an extrabasinal or local origin, 3) end-

member analysis of grain-size and -shape distributions to quantify the various sediment 

contributions throughout the record, 4) basin-scale analyses to remove local sedimentary 

features. Acknowledging and unmixing the various eolian and alluvial components in the 

record will enable a more reliable and robust estimation of dust in the geological record. This 

would have important implications for paleoclimate reconstructions and constraints on dust 

fluxes in the past. 
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The geological record of the Chinese Loess Plateau is continuous throughout the Neogene 

and reveals a marked shift from Red Clay strata, interpreted to have formed on a terrestrial 

mudflat by both alluvial and eolian deposition, to loess, composed almost entirely of 

windblown dust. The Red Clay-loess transition occurs at the boundary to the Quaternary 

period and is coeval with the onset of Northern Hemisphere glaciation which may have 

promoted dust production, mobilization and / or transport (e.g. Ding et al., 1997). This 

climatic shift would have overwhelmed local mudflat deposition on the Chinese Loess 

Plateau as evidenced by the abrupt increase in sedimentation rate (e.g. Ding et al., 1997; Lu 

et al., 2010). This suggests that loess deposits in the geological record may be found only 

during periods with extensive glaciation such as the Quaternary. Alternatively, exclusively 

windblown dust deposits may occur during the pre-Quaternary as well but are likely difficult 

to preserve due to the draping nature of loess bodies on the pre-existing landscape. Over 

longer geological timescales these loess bodies would be reworked as is occurring today on 

the Chinese Loess Plateau (Kapp et al., 2015; Licht et al., 2016) before being preserved in 

the low-lying basins thereby biasing the geological record towards alluvial mudflat deposits. 

This is exemplified by the Quaternary sediments of the Weihe Basin at the southern margin 

of the Chinese Loess Plateau which contain predominantly of fluvio-lacustrine deposition of 

reworked loess and only rare occurrences of primary loess deposition (Rits et al., 2016). 
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Fig. 1. Map of the global distribution of Quaternary loess deposits and thicknesses (modified 

from Li et al., 2020 and references therein). Stars indicate examples of extensive dust 

deposits from the pre-Quaternary: 1) Fan et al. (2020); 2) Johnson (1989); Soreghan et al. 

(2008); 3) Bellosi (2010); Selkin et al. (2015); 4) Jefferson et al. (2002); Wilkins et al. (2018); 

Wilson et al. (2020); 5) Edwards (1979); 6) An et al. (2014); Guo et al., (2002; 2008). 

 

Fig. 2. Schematic diagram showing atmospheric low- and high-level dust transport. Figure 

redrawn from Pye and Zhou (1989) by Knippertz and Stuut (2014). 

 

Fig. 3. Schematic overview of predominant transport pathways that result in the deposition 

and reworking of the Chinese Loess Plateau. Silt producing mechanisms are indicated in 

red, transport by water in blue and transport by wind in purple. Note that the transport of fine-

grained dust by the upper-level westerly jet stream is not included in this diagram. Inset map 

shows the main geographic features of the northeastern Tibetan Plateau region. 

 

Fig. 4. Pictures of Quaternary loess from: A) Ledu (Xining Basin) in the westernmost 

Chinese Loess Plateau, person at outcrop for scale. B) Xi‘an in the south-central Chinese 

Loess Plateau.  

 

Fig. 5. Alternative depositional model for loessites involving a low-relief basin resulting in 

alluvial deposition on an extensive mudflat. In addition, eolian deposition may occur by 

reworking local sediments or atmospheric transport of extrabasinal dust. Redrawn from 

Meijer et al. (in review) and Talbot et al. (1994). 

 

Fig. 6. Grain-size distributions and Y-values calculated using the mean, sorting, skewness 

and kurtosis derived using the logarithmic moment method as implemented in Gradistat 

(Blott and Pye, 2001) and the Y-value equation of Lu et al. (2001) of: A) Quaternary loess 
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from a variety of locations (measured using the same methods as in Meijer et al., in review); 

B) Mio-Pliocene Red Clay from the southern (Lantian), western (Dongwan) and northeastern 

(Baode) Chinese Loess Plateau (Shang et al., 2016); C) Crevasse splay deposits from the 

modern-day Altiplano Basin mudflat (van Toorenenburg et al., 2018). Note that the grain-size 

distributions shown here are derived from various studies using different pre-treatments, 

laser diffractors and optical parameters that may also incur slight variations (Varga et al., 

2019a). 

 

Fig. 7. SEM images of quartz grains from the late Eocene strata of the Xining Basin showing 

morphological features resulting from high impact collisions and indicating eolian transport. 

These features include dish-shaped depressions (DSD), smooth surfaces (SMS), adhering 

clay-sized particles (ACP). Figure is reproduced from Licht et al. (2014). 

 

Fig. 8. End-member analysis of grain-size distributions from Eocene mudflat deposits in the 

Xining Basin. Data and methods are reported in Meijer et al. (in review). EM4 is interpreted 

as dust based on quartz surface morphologies (Licht et al., 2014) and provenance (Licht et 

al., 2016b). 

 

Fig. 9. Map of the Chinese Loess Plateau (modified from Meijer et al., in review) showing the 

dominant atmospheric pathways and the various basal ages reported for the onset of loess: 

1) central Loess Plateau: Ding et al., 2001; Song et al., 2001; Sun et al., 1997; 1998a; b; 2) 

southern Loess Plateau: Zheng et al., 1992; Sun et al., 1997; Wang et al., 2014; 3) Baode: 

Zhu et al. (2008); 4) Jiaxian: Ding et al., 1998b; Qiang et al., 2001; 5) Shilou: Xu et al., 2009; 

age reinterpreted by Ao et al., 2016; 6) Sikouzi: Jiang and Ding, 2010; age reinterpreted by 

Wang et al., 2011, 7) Tianshui Basin: Guo et al., 2002; record extended by Qiang et al., 

2011; 8) Linxia Basin: Garzione et al., 2005; 9) Lanzhou Basin: Zhang et al., 2014; age 

reinterpreted by Wang et al., 2016b; 10) Xining Basin: Licht et al., 2014; Meijer et al., in 

review. Modern-day topographic map is from http://www.geomapapp.org.  
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Fig. 10. Stratigraphy at Baoji (central Chinese Loess Plateau) showing fluvio-lacustrine and 

Red Clay strata underlying the Quaternary loess-paleosol alternations (redrawn from Ding et 

al., 1994). Magnetostratigraphy is from Evans et al. (1991) with ages recalibrated to the 

GTS16 (Ogg et al., 2016). Benthic foraminifera δ18O are shown on the right (5-point moving 

average through the compilation of Zachos et al., 2008) to reflect the glacial-interglacial 

cycles. 

 

Fig. 11. Picture of the Mio-Pliocene Red Clay at the Shilou section in the eastern Chinese 

Loess Plateau (photograph courtesy of Hong Ao).  
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