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Abstract - Most of the studies dealing with seabed mapping from 

hyperspectral images have been carried out using airborne data 

although hyperspectral satellite sensors have already been or are 

planned to be launched for the near future (HICO ENMAP or 

BIODIVERSITY). The objective of this study is to evaluate the 

benefit of a BIODIVERSITY-like sensor to determine the bio-

optical properties of the water column, namely the Chlorophyll-a 

concentration, the Suspended Particulate Matter concentration, 

the absorption coefficient of the Colored Dissolved Organic 

Matter, the bathymetry and the composition of the seabed, 

according to its spatial resolution and spectral resolution and its 

Signal to Noise Ratio (SNR). For this purpose, radiative transfer 

simulations are analyzed together with remote sensing 

hyperspectral airborne data (HYSPEX) acquired above the 

Porquerolles Island (France). The retrieval performance of all in-

water and seabed parameters derived from the inversion of 

BIODIVERSITY-like data is compared with the performance 

obtained using ENMAP and HICO spatial and radiometric 

specifications. It is shown that a BIODIVERSITY-like sensor 

significantly improves the estimation performance of the water 

column parameters. Furthermore, BIODIVERSITY-like sensor is 

highly appropriate for seabed mapping when bottom pixels are 

composed of pure material (e.g., Sand or Posidonia) in shallow 

waters when seabed depth is less than 10 m. Conversely, the 

performance of the inversion deteriorates when seabed pixels are 

composed of mixed materials (e.g., Sand mixed with Posidonia). It 

is also shown that the concentration of chlorophyll, SPM and 

CDOM absorption are less sensitive to noise level than depth and 

seabed abundance. 

Index Terms— Hyperspectral, radiative transfer, ocean color, 

bathymetry, seabed mapping. 

 

I. INTRODUCTION 

There is a growing interest in the use of hyperspectral 

imagery, in the field of ocean optics along with the deployment 

of new hyperspectral satellites [1]. Hyperspectral imagery 

offers numerous advantages including the  spectroscopic 

techniques for analyzing the remote signal which allows a better 

understanding of water optical properties even in turbid waters 

[2]. A hyperspectral resolution allows more accurate 

determinations of water bio-optical properties because it 

enables the individual spectral signatures of the hydrosols and 

seabed features to be detected through the measurements at 

narrow bands [1], [3], [4]. Furthermore , the recent interest in 

hyperspectral imagery is amplified by the fact that it allows 

estimations of geophysical products over different geographic 

sites, in open as in coastal waters, without needing to have 

previously chosen the location of bands [5]. This is in 

conjugation with the growing scientific interest in 

differentiating certain phytoplankton species/groups and 

characterizing seabed composition. Consequently, further 

studies in the field of hyperspectral imagery are  necessary [6].  

For research on coastal waters and inland freshwater benthic 

habitats, this technique has been extensively exploited. For 

shallow waters, the determination of bathymetry as well as the 

composition of the benthic vegetation can be carried out based 

on ocean color technology. A water body is called optically 

shallow when the above water reflectance can be determined by 

the optical properties of the water column, seafloor, and the 

depth [7]. Knowledge of the benthic vegetation is important for 

the characterization of marine habitats [8]. Habitats are distinct 

bio-physio-geo-chemical environment regions in contrast to 

neighboring areas [9]. Studies using remote sensing performed 

to date in the optically shallow waters have generally attempted 

to map the spatial distribution of single benthic habitats or 

habitats with a single dominant species or multiple 

heterogeneous habitats (seagrasses, macroalgae, or coral reefs). 

Studies  have also been conducted on the temporal dynamics of 

the benthic habitats which aid in the understanding of variations 

in environmental conditions [10]. Bathymetry estimation is one 
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of the research topics where remote sensing applications have 

been most frequently used. Thus, the remote sensing technique 

plays an important and expanding  role  in ocean applications 

[10].  

The vast majority of the signal received at the satellite level 

is caused by the atmospheric scattering [11], that contributes to 

about 80-90% [12] of the total signal in oceanic waters. 

Furthermore, part of the radiation reaching the sensor comes 

from the skylight and sunlight reflections onto the sea surface, 

which is often called the glint signal. Both the atmospheric and 

glint radiances need to be removed from the satellite data, 

which is the so-called atmospheric correction procedure. The 

part of incident light entering into the water column that is 

absorbed and scattered away does not reach the remote sensing 

detector. The radiation that interacts with water and constituents 

and scatters back to the atmosphere contains useful information 

about the water column but not from the seabed. Only the part 

of the radiation that reaches the seabed and reflects up to the 

sensor contains information about the bottom. 

For nearly two decades, there has been an increase in the use 

of hyperspectral airborne images combined with the use of 

exact radiative transfer models,  such as Hydrolight,[13] or 

semi-analytical models  such as Lee’s [14] to determine the 

water bio-optical properties, namely the Chlorophyll-a 

concentration (Chl), the Suspended Particulate Matter (SPM) 

concentration and the absorption coefficient of the Colored 

Dissolved Organic Matter (CDOM), and the seabed features, 

such as bathymetry and composition. The analysis of the 

propagation of light through the water column is carried out 

using radiative transfer models that link the remote sensing 

reflectance to the properties of the optically active water 

constituents. Different methods have been developed for the 

seabed characterization. Some methods use the correction of the 

water column attenuation [15] or LUT (Look-up Table) of 

seabed reflectance [16]. The inversion of a semi-analytical 

model  can also be used to estimate the water column 

parameters, the abundance of bottom classes, and the seabed 

depth [17].  

The abundance within each pixel using remote sensing in the 

optically shallow waters was rarely estimated for practical 

considerations due to the extensive field calibrations that are 

required by the estimation models [18]–[22]. More recently, the 

significance of benthic vegetation in the global carbon budget 

of the oceans has been getting wider recognition while it has 

been largely ignored in the past [23]. Therefore, more studies 

were undertaken  with the goal of quantifying the productivity 

of benthic habitats using remote sensing technology as well as  

the mapping and abundance estimation ([24], [25]).  

The potential of remote sensing techniques in obtaining 

information from the seabed for shallow waters is promising 

though it is more difficult as compared with terrestrial targets. 

The exploitation of the seabed spectral information is made 

more challenging because of the influence of the water column 

on the light propagation from the sea surface to the bottom. As 

a consequence, the radiation that reaches the remote sensor is 

attenuated by both the water column and the atmospheric 

layers.  

Various hyperspectral sensors are available but most of them 

are mounted on an airborne platform, such as CASI, AVIRIS, 

HYSPEX, which are characterized by a good spatial resolution 

and a good signal to noise ratio. Only a very small number of 

sensors are mounted on a satellite platform. As examples, HICO 

(90 m, 87 bands) was onboard the  International Space Station, 

operated by NASA , between 2009 and 2014, PRISMA (30 m, 

250 bands) [26] was launched in March 2019 by ASI, ENMAP 

(30 m, 88 bands) is planned to be launched in 2020 by DLR, 

and a BIODIVERSITY-like sensor (8 m, 53 bands) is planned 

to be launched in the future by CNES (French space agency)  

[27]. PACE-OCI (1 km, 118 bands) is a moderate spatial 

resolution hyperspectral sensor that is planned to be launched 

in 2022. Three parameters are decisive for the analysis of these 

data: the spatial and spectral resolutions, and the signal to noise 

ratio. Note that a BIODIVERSITY-like sensor is more 

sophisticated in terms of spatial resolutions (8 m) and SNR than 

the existing hyperspectral sensors. The objective of this paper 

is to evaluate the benefit of a BIODIVERSITY-like sensor for 

determining the water column parameters and for 

characterizing the seabed depth and composition in coastal 

zones. The results obtained are compared with ENMAP and 

HICO sensor performances. The paper is organized as follows: 

the study area in Porquerolles Island, the in situ and 

hyperspectral data and the methodology of simulation are 

described in Section 2. The results of inversion of 

BIODIVERSITY simulation are presented in Section 3 and 

discussed in Section 4 in comparison with other hyperspectral 

satellite sensors performances. 

II. DATA AND METHOD 

A. Study area 

The study area is the coastal water of Porquerolles Island, 

south-eastern France (Fig.1.). The island is a sanctuary and a 

part of the National Park of Port-Cros. The seafloor is 

characterized by seagrass, sand, and algae covers. The seagrass 

in the region belongs to the endemic species Posidonia oceania 

while the algal species is Caulerpa taxifolia, a tropical invasive 

algae carried to the Mediterranean Sea by the Atlantic Ocean 

currents. Note that the first appearance of Caulerpa taxifolia 

occurred 3 decades ago [28], [29]. The photophilic algae of the 

species Cystoseira Amentacea are also observed in the seafloor 

rocks [30].   

 
Fig.  1. Study area of Porquerolles Island (France) and in situ 

sampling stations measurements (red square). 
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B. Data 

The airborne data acquisition campaign was conducted on 13 

September 2017. The date was selected taking into account that 

summer is the best season to observe Caulerpa taxifolia due to 

its seasonal cycle. The airborne HYSPEX sensor, operated by 

Hytech Imaging, was used to obtain hyperspectral images (Fig. 

2). At an altitude of 2666 m, the spatial resolution of the sensor 

is 1 m [31]. It provides 160 spectral bands between 400 nm and 

1000 nm at 3.6 nm intervals. The atmospheric correction 

procedure was performed using the ATCOR algorithm [32]. 

Targets were fixed on the ground in the field of view of the 

sensor to adjust the atmospheric correction process. Ground 

targets consisted of black, grey, and cream fabric, each covering 

an area of 5 m2. The cream color was chosen to avoid saturation 

of the radiance in the image. Their hyperspectral reflectance 

was measured in the laboratory prior to their deployment in the 

field. The weather conditions during the field experiment were 

windy with wind speed values between 10 and 15 m s-1
. The 

resulting sea surface roughness caused the sunlight reflection 

on the sea surface (i.e., so-called sun glint) to affect the airborne 

data. A correction procedure for the sunglint radiance was thus 

performed using the signal measured in the near-infrared bands 

(one band between 800 nm and 900 nm) where the water 

reflectance is  considered to be null [33]. The Litto3D data [34], 

which were obtained from a LIDAR (light detection and 

ranging) campaign carried by the SHOM (hydrographic and 

oceanographic department of the marine office) and the IGN 

(national geographic institute) French institutes in 2015, 

provide a bathymetric model with a 1 m resolution and a 

precision of 95% (Fig. 3). These data were used for bathymetry 

validation in this study. 

 
Fig.  2. Hyperspectral image acquired by the HYSPEX sensor above 

the study area on Sept, 13, 2017. 

 
Fig.  3. Litto3D modelled bathymetry for the study area.  

A portable ASD Handheld2 sensor was used to collect the 

reflectance spectra for observing the abundance of the bottom 

classes. The spectral resolution of the sensor is 1 nm and the 

spectral range of measurements is from 350 nm to 1000 nm. 

The individual reflectance spectra of the seabed composition 

classes, namely Algae, Seagrass, and Sand, were measured on 

the boat using samples taken from the seabed by a diver. The 

resulting reflectance spectra showed that algae and seagrass 

spectra exhibit a reflectance increase around 700 nm, which is 

typical of vegetation targets (Fig. 4). The sand reflectance 

gradually increases with wavelength. Caulerpa taxifolia shows 

a pronounced peak at 550 nm because of its light green color. 

Posidonia has a seasonal cycle. On spring, new dark green 

leaves grow. During the summer, some leaves are colonized by 

epiphytes algae and the color can become lighter. 

 

 
 

Fig.  4. In-situ measurements of the hyperspectral reflectance of the 

various components of the seabed, namely the seagrass, sand and 

algae.  

Underwater Red-Green-Blue images were obtained by the 

Vortex Remotely Operated Vehicle (ROV) of IFREMER 

(French research institute for the exploitation of the sea) for a 

given transect between stations 1 and 4 over a distance of 1500 

m. The resolution of the Nikon D5200 camera is 6000x4000 

pixels, the spatial resolution of each pixel is 2.3 cm. All the 

images making up the mosaic were classified into 3 classes 

(Sand, Posidonia and Caulerpa taxifolia). The photophilic 

algae, located on the rocks are absent on this transect. The 

proportion of each class within 1-meter square along the 

transect was calculated. A profile can then be obtained with the 

proportion of each class on the transect from station 1 to 4 (Fig. 

5) and can be used to validate the seabed mapping obtained with 

the simulated images. 

 

 
Fig.  5. Proportion of each class composing the seabed, namely Sand, 

Posidonia and Caulerpa taxifolia within a 1-meter square resolution 

on the transect between the sampling stations 1 and 4.  

 

The water column inherent optical properties (IOP) and the 

concentration of water constituents were also measured for 6 

selected stations (Fig. 1). The backscattering coefficients at 3 
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wavelengths (440 nm, 532 nm, 650 nm) were measured using 

the ECO-BB3 instrument from WETLabs/SeaBird (USA). The 

absorption and attenuation coefficients were measured using 

the ac-s meter from WETLabs/SeaBird (USA), which measures 

the spectra at 4 nm intervals. The chl concentration was 

measured along the water column using the multiparameter data 

probe HYDROLAB DS5 equipped with a fluorometric probe. 

The values were averaged over the water column for each 

station. Suspended Particulate Matter (SPM) and Colored 

Dissolved Organic Matter (CDOM) were also measured by 

collecting field samples 1 m beneath the sea surface. For SPM 

measurements, water samples (2l) were filtered and weighed. 

For CDOM measurements, 60 ml water samples were collected 

and the absorbance was measured in the laboratory  using a 

spectrometer equipped with a double beam monochromator; the 

excitation wavelengths are between 220 nm and 600 nm with 

0.2 nm resolution (UV 1800 Shimadzu).Depth was measured 

with the sounder of the boat (CLIPPER NASA Marine) and 

corrected for the sea level [35]. Chlorophyll concentration, 

Suspended Particulate Matter, Colored Dissolved Organic 

Matter and depth for each station are given in Table 1. The in 

situ measurements are only used for validation purpose. 
 

Table 1.  In situ measurements of water column parameters 

Station Chl 

(mg/m3) 

SPM 

(g/m3) 

CDOM 

(m-1) 

Depth (m) 

1 0.265 0.46 0.01 2.73 

2 0.481 0.44 0.01 10.15 

3 0.485 0.21 0.01 11.83 

4 0.433 0.65 0.06 9.74 

5 0.447 0.69 0.01 24.04 

6 0.413 0.47 0.01 15.33 

 

C. Methodology 

The first part of the study is dedicated to the analysis of 

radiative transfer synthetic data to investigate the sensitivity of 

the various tested hyperspectral satellite sensors on the 

estimation of the water and seabed optical properties. The 

second part of study is dedicated to the simulation of a satellite 

image from aerial hyperspectral images.  

 

 

Simulations using synthetic data  

Lee’s model [14] is used to simulate remote sensing 

reflectance for three water types (clear, moderately turbid, and 

turbid), with a depth (Z) varying between 1 m and 20 m, and for 

45 configurations of the seabed composition that consist of 

various combinations of 1, 2 or 3 materials taken from among 

5 classes, namely sand, fresh Posidonia, colonized Posidonia, 

Taxifolia and photophilic algae. 𝑎𝑖  corresponds to the 

abundance of the bottom i. Clear waters correspond to Chl=0.3 

mg.m-3, SPM=1 g.m-3, CDOM=0.01 m-1, moderately turbid 

waters to Chl=1 mg.m-3, SPM=10 g.m-3, CDOM=0.07 m-1 and 

turbid waters to Chl=5 mg.m-3, SPM=30 g.m-3, CDOM=0.2 m-

1). The satellite sensor data are also simulated (spatial 

resolution, bands and noise) and an error due to the atmospheric 

correction is taken into account. Then, the inversion of the 

simulated satellite radiances is performed to determine the error 

of estimation of both water column parameters the seabed 

abundance (𝑎𝑖
′) and the seabed abundance (Chl’, SPM’, CDOM’ 

and Z’). The flowchart showing the method used for performing 

the simulations is presented in Fig.  6.  

 

 
Fig.  6. Flowchart of the method used for performing the theoretical 

simulations.  

Simulation with airborne hyperspectral imagery 

The second part of the study consists of simulating a 

BIODIVERSITY-like image to compare the retrieved 

estimations of the bio-optical parameters (e.g., SPM and Chl, 

depth) and of the seabed abundance with various types of data 

such as the in situ measurements, the airborne HYSPEX data 

and the data that will be retrieved from satellite hyperspectral 

sensors such as ENMAP and HICO (Fig. 7). 

The input dataset is the hyperspectral aerial image with 1m 

and 160 spectral bands between 400 and 1000 nm acquired with 

the HYSPEX sensor. This image was corrected for the 

atmospheric effect to obtain water reflectance. The atmospheric 

contribution was added to simulate the atmospheric effect from 

the surface level to the satellite level to obtain a top of 

atmosphere radiance. The spatial resolution and the spectral 

configuration of the airborne hyperspectral image are degraded 

to match with the satellite sensors specifications 

(BIODIVERSITY, ENMAP and HICO); the sensor noise is 

also added. The simulated satellite image is then corrected for 

the atmospheric effects to derive the water reflectance, taking 

into account uncertainties due to the atmospheric corrections. 

The result of the inversion of the satellite radiance can then be 

compared to in situ measurements at the sea surface level as 

shown in Fig. 7. The details of the different steps are given in 

the following paragraphs. 

 

Fig.  7. Flowchart scheme of the method used for determining the 

water and seabed properties from airborne data. 
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Lee’s Model 

The semi-analytic model used in this study is the model 

developed by Lee et al. [14] . This model provides the remote 

sensing reflectance (denoted Rrs) as a function of the water 

composition (chlorophyll concentration, SPM concentration, 

CDOM absorption coefficient at 440 nm, the depth and the 

abundance of the material composing the seabed). Inherent 

optical properties are calculated as the non-water absorption 

coefficient (𝑎𝑛𝑤 , 𝑒𝑞. 1) and the backscattering coefficient 

𝑏𝑏(𝑒𝑞. 2). 𝑎Φ
∗ , 𝑎𝑁𝐴𝑃

∗ , 𝑏𝑏Φ
∗ , 𝑏𝑏𝑁𝐴𝑃

∗ , are the constituent specific 

absorption or backscattering coefficients, and 𝑠𝐶𝐷𝑂𝑀 , 𝑠𝑁𝐴𝑃, 𝑦Φ 

and 𝑦𝑁𝐴𝑃 are the spectral slopes of the optical properties of 

these constituents respectively. Φ stands for phytoplankton 

pigments and NAP stands for non-algal particle. The standard 

values of specific inherent optical properties given in [36] were 

used in this study because this study site consists of clear water 

type. The measurement of backscattering coefficients, 

absorption and attenuation coefficients were used to check that 

the backscattering and absorption coefficients calculated by the 

model were consistent with the standard constant values used. 

The reflectance of the water column and seabed are 𝑟𝑟𝑠𝐶 and 

𝑟𝑟𝑠𝐵  respectively (eq. 4). The seabed reflectance (𝜌𝑏), as given 

in equation (3), is a linear relationship between abundance and 

reflectance of each seabed class within the pixel. 𝑎𝑠, 𝑎𝑝, 𝑎𝑐𝑝 , 

𝑎𝑡 , 𝑎𝑎 are respectively the abundance of sand, Posidonia, 

colonized Posidonia, Caulerpa taxifolia, photophilic algae and 

𝜌𝑠, 𝜌𝑝, 𝜌𝑡, and 𝜌𝑎 are respectively the reflectance of each class 

which are  considered  known. The sum of abundance is 

considered to be 1.  

 

𝑎𝑛𝑤(λ) = 𝐶ℎ𝑙 ∗ 𝑎Φ
∗ (λ) + 𝐶𝐷𝑂𝑀 ∗ 𝑒−𝑆𝐶𝐷𝑂𝑀(λ−440)(λ) +

𝑆𝑃𝑀 ∗ 𝑎𝑁𝐴𝑃
∗ (440)𝑒−𝑆𝑁𝐴𝑃(λ−440) (1) 

𝑏𝑏(λ) = 𝑏𝑏𝑤(λ) + 𝐶ℎ𝑙 ∗ 𝑏𝑏Φ
∗ (542) (

542

λ
)

𝑌Φ

+ 𝑆𝑃𝑀 ∗

𝑏𝑏𝑁𝐴𝑃
∗ (542) (

542

λ
)

𝑌𝑁𝐴𝑃

 (2) 

𝜌𝑏(𝜆) = 𝑎𝑠 𝜌𝑠(𝜆) + 𝑎𝑝𝜌𝑝(𝜆) + 𝑎𝑐𝑝𝜌𝑐𝑝(𝜆) + 𝑎𝑡𝜌𝑡(𝜆) +

𝑎𝑎𝜌𝑎(𝜆)       (3) 

 

rrs(λ) = rrsC + rrsB                         (4) 

 𝑅𝑟𝑠(λ) =
0.52 𝑟𝑟𝑠(λ)

1−1.56 𝑟𝑟𝑠(λ) 
                          (5) 

 

The rrsC and rrsB depends on the depth parameter (Z). The 

higher the depth, the greater rrsC and the lower rrsB and vice-

versa. The reader is referred to Lee et al. (1999) [14] for more 

details about the model and the equations. 

 

 

Simulation of the atmosphere 

The atmospheric radiative transfer model MODTRAN is 

used to simulate the radiance at the top of the atmosphere. The 

Mid-latitude (45°N) summer model is selected as the 

atmospheric model and the marine aerosol is selected as the 

aerosol model with a visibility of 40 km. For the geometric 

configuration, the solar zenithal angle (𝜃𝑠) was set to 40°, the 

viewing zenithal angle (𝜃𝑣)  at 0° and the difference of 

azimuthal angles Δ𝜙 at 167°, which is the relative azimuth 

value of the airborne measurements acquired in this study. The 

outputs of the MODTRAN simulation are the atmospheric 

reflectance, the spherical reflectance, and the direct and diffuse 

transmittance. The TOA reflectance (𝜌
𝑇𝑂𝐴

) and the TOA 

radiance (𝐿𝑇𝑂𝐴) can then be calculated using eq. (5) and (6): 

 

𝜌
𝑇𝑂𝐴

= 𝜌
𝑎𝑡𝑚

+
𝑡↓

1−𝜌𝑠𝑝ℎ⋅𝜌𝑒

(𝑡𝑑𝑖𝑟
↑ ⋅ 𝜌

𝑤
+ 𝑡𝑑𝑖𝑓

↑ ⋅ 𝜌
𝑒
)    (6) 

where 𝜌
𝑎𝑡𝑚

 is the atmospherical reflectance, 𝜌
𝑠𝑝ℎ

 is the 

spherical atmospheric reflectance, 𝑡↓ is the downwelling 

transmittance, 𝑡𝑑𝑖𝑟
↑ ,  𝑡𝑑𝑖𝑓

↑  are the upwelling direct and diffuse 

transmittance and 𝜌
𝑒
 is the environmental reflectance. 

 

𝐿𝑇𝑂𝐴 =
1

𝜋
⋅ cos 𝜃𝑠 ⋅ 𝐹0 ⋅ 𝜌

𝑇𝑂𝐴
         (7) 

where 𝜃𝑠 is the solar zenithal angle (40°), 𝐹0 the is the solar 

irradiance given by MODTRAN [38]. 

 

 

Consideration of the sensor radiometric and spectral 

specifications 

The monochromatic simulated reflectances are averaged 

over the spectral bands of the satellite sensor (table 2). The 

Signal-to-Noise Ratio (SNR) simulation is operated by adding 

to the top of atmosphere radiance a Gaussian noise with a null 

mean value and a standard deviation provided for the sensor at 

the given band (Eq. (7)).  

The BIODIVERSITY-like noise was calculated based on Eq. 

8. The values of 𝛼() and 𝛽() were provided by the CNES for 

all the 88 spectral bands (CNES, personal communication).  

 

𝜎𝑠𝑒𝑛𝑠𝑜𝑟(𝜆) = √𝛼(𝜆)2 + 𝛽(𝜆) ⋅ 𝐿𝑇𝑂𝐴     (8) 

The SNR of the BIODIVERSITY-like sensor, ENMAP and 

HICO are shown in Fig. 8. The SNR of ENMAP and HICO 

sensors were obtained from the literature [39], [40] for a given 

spatial resolution of the sensor. Note that the BIODIVERSITY 

SNR values are consistent with the recent recommendation of 

the scientific community requirement for future hyperspectral 

sensors through the CEOS report [41]. They cannot be 

compared to each other without taking into account the 

resolution information. The standard deviation of the noise is 

obtained by dividing the radiance LTOA by the SNR. For the 

simulation with airborne hyperspectral imagery, the spatial 

resolution is obtained by spatially averaging and down 

sampling the image to obtain the required spatial resolution. 
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Table 2. Spectral and spatial resolutions of the hyperspectral sensors 

examined in this study. FWHM is the Full Width Half Maximum. 

Sensor Total number 

of 

bands/number 

of bands in 

the range 

[400-700 nm] 

FWHM 

(nm) 
Domain 

(nm) 
Spatial 

resolution 

(m) 

HYSPEX 160/79 4,5 404-990 1 m 

Biodiversity 53/26 10 413-990 8 m 

ENMAP 88/43 8.2 415-
1000 

30 m 

HICO 87/50 10 410-

1000 

90 m 

  

  

Fig.  8.  Signal-to-Noise Ratio (SNR) values used for the 3 sensors  

Atmospheric correction simulation 

To take into account an error due to the atmospheric correction, 

two other noises are added to the simulated reflectance. One is 

due to the error made on the surface reflectance retrieval and 

one is due to the error made on the aerosol model. The details 

of simulation are given in [42].   

 

Estimation of seabed and water optical properties  

The inversion of the water reflectance is achieved by 

minimizing the Euclidian distance between the model and the 

measured reflectance of each pixel of the image through 

optimization. The minimization is operated by a nonlinear 

curve-fitting in least-squares sense using the “lsqcurvefit” 

Matlab function with bounds for each parameter. The outputs 

of the inversion are the optimized values of Chl, SPM, CDOM, 

depth, and the seabed abundances of sand, Posidonia, colonized 

Posidonia, Caulerpa taxifolia, and photophilic algae for each 

pixel. At the end of the inversion process, the spatial 

distribution of Chl, SPM, CDOM, depth, and seabed 

abundances of sand, Posidonia, Taxifolia, and photophilic algae 

are then obtained. 

 

D. Validation 

All the estimated seabed and water parameters are compared 

with validation data. The metrics of the Root Mean Square 

Error (RMSE) and the Relative Error (RE) (Eq. 9) are used to 

quantify the performance of the retrieval.  

𝑅𝐸( %) =
𝑎𝑏𝑠(𝑃̂−𝑃𝑟𝑒𝑓)

𝑃𝑟𝑒𝑓)
∗ 100             (3) 

where 𝑃̂ is the estimated parameters and 𝑃𝑟𝑒𝑓 the desired 

values. 

III. RESULTS 

A. Theoretical simulations  

Firstly, the influence of the seabed depth on the retrieval 

performance of each parameter is analyzed. About 100 

simulation runs were carried out for each case to provide 

relevant statistics. Fig. 9 shows the relative error on the retrieval 

of SPM concentration when using a BIODIVERSITY-like 

sensor configuration for three water turbidities, namely clear, 

moderately turbid, and turbid waters. The relative error 

decreases with the seabed depth because of the stronger 

influence of the water column relative to the influence of the 

seabed, which leads to an improvement in the performance of 

the SPM retrieval. The relative error also decreases with 

turbidity. This is because the influence of the SPM on the sub-

surface reflectance is greater. The relative error on SPM could 

reach 100% in very shallow waters. It is lower than 40% for 

moderately turbid waters and lower than 20% for turbid waters. 

 

Fig.  9.  Variation of the relative errors of the estimated SPM 

concentration with the seabed depth and water turbidity when a 

BIODIVERSITY-like sensor configuration is used. 

The variations of the relative error on the chlorophyll and 

CDOM retrieval performances with bathymetry and water 

turbidity (not shown here) are similar to those observed for 

SPM. Typically, the relative error on the chlorophyll estimation 

is greater than 70% in clear waters, around 30% in moderately 

turbid waters, and less than 10% in turbid waters. The relative 

error on CDOM absorption coefficient at 443 nm is higher than 

50% in clear waters, lower than 30% for moderately turbid 

water and around 10% in turbid waters.  

 

The relative error that is obtained for the retrieval of the seabed 

depth regularly increases with bathymetry from 10% to 30% 

and from 10% to 60% for clear and moderately turbid waters 

respectively for depths ranging between 1m and 20 m. (Fig. 10). 

Interestingly, the relative error remains lower than 30% for 

clear waters including for a seabed depth of 20 m for which the 

retrieval is often considered as challenging. For moderately 
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turbid waters, higher values of the relative error than the clear 

water case are expected because the hydrosols mostly 

contribute to the sea surface reflectance for deeper waters. The 

relative errors found for the turbid water case sharply increase 

from 10% to 80% up to 6 m depth as a result of the increase of 

the influence of the hydrosols on the light scattering reaching 

the sea surface. Beyond 6 m depth, the seabed reflectance no 

longer influences the surface reflectance and the absolute error 

reaches an asymptotic value. Note that since the relative error 

is obtained by dividing the absolute error by the actual depth, 

the relative error shows a decrease beyond 6 m depth.  

 
Fig.  10. Variation of the relative errors of the estimated seabed 

depth with bathymetry and water turbidity when a BIODIVERSITY-

like sensor configuration. 

The relative error is also analyzed with respect to the seabed 

composition (Fig. 11) in the clear water case. The seabed depth 

is much better retrieved for bright targets such as sand and 

colonized Posidonia than for dark targets such as the fresh 

Posidonia. 

 
Fig.  11. Variation of the relative errors of the estimated seabed 

depth with bathymetry for various seabed compositions and for clear 

water, when a BIODIVERSITY-like sensor configuration is used. 

The relative errors obtained for the retrieval of the seabed 

material abundance are shown in Fig. 12 for the case of a seabed 

composed of a pure material and Fig. 13 for the case of a seabed 

composed of mixed materials. The error increases with depth as 

a result of the increasing influence of light scattering by 

hydrosols of the water column (Fig. 12). The material 

abundance is also better estimated on bright targets (Sand) than 

on dark target (Posidonia).   

 
Fig.  12.  Variation of the relative errors of the estimated seabed 

material abundance (in %) with bathymetry for seabed composed of 

pure materials in clear water, when a BIODIVERSITY-like sensor 

configuration is used. 

A pixel composed of mixed material (e.g. 1/3 Sand, 1/3 fresh 

Posidonia and 1/3, also demonstrates that the seabed material 

abundance is better estimated on bright target (sand and 

Caulerpa taxifolia) than on dark target (fresh Posidonia) (Fig. 

13). In particular, in clear water the errors are lower than 5% 

when the bathymetry is lower than 10 m. Note that the 

performance of the retrieval significantly deteriorates for Fresh 

Posidonia where the error rapidly increases up to 100% when 

the bathymetry is higher than 6 m. Thus, a dark target is not 

well determined for deep waters. 

 
Fig.  13. Variation of the relative errors of the estimated seabed 

material abundance (in %) with bathymetry for seabed composed of 

mixed materials, namely 1/3 of Sand, 1/3 of fresh Posidonia, 1/3 of 

Caulerpa taxifolia species for BIODIVERSITY-like sensor 

configuration. 

Table 3 presents the RMSE on the estimation of water column 

parameters and seabed material abundances in clear waters for 

a BIODIVERSITY-like sensor and other sensors including 

ENMAP, and HICO. If the noise level (SNR) is given for a 

resolution noted R, the noise level at a coarser resolution (noted 

R’) is given by SNR’=SNR/(R’/R). Then R’>R and SNR’>SNR. 

The band features of the sensors are simulated by integration 

between 400 and 700 nm.  
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Table 3. Comparison of RMSE calculated for the estimated water 

column parameters and seabed material abundances in clear waters 

using various hyperspectral satellite sensors. 

Sensor Biodiversity  Biodiversity  ENMAP  Biodiveristy ENMAP  HICO 

Spat. Res. 8m 30m 30m 90m  90m  90m 

Spect. Res. 26 bands 26 bands 43 bands 26 bands 43 bands 50 bands 

Chl (mg.m-3) 0.5687 0.2782 0.4361 0.1018 0.2159 0.4584 

SPM(g.m-3) 0.5863 0.2796 0.3525 0.1477 0.1920 0.5925 

CDOM (m-1) 0.0223 0.0056 0.0124 0.0023 0.0048 0.0106 

Z (m) 4.1775 1.7717 2.6241 0.9158 1.3277 2.9958 

Sand 0.2278 0.1269 0.1626 0.0913 0.1125 0.1536 

Fr. Posidonia 0.5037 0.4132 0.4537 0.3248 0.3699 0.4799 

Col. Posidonia 0.3812 0.2815 0.3374 0.2043 0.2525 0.3322 

Caulerpa taxifolia 0.3194 0.1970 0.2314 0.1251 0.1415 0.2427 

Phot. Algae 0.7732 0.4453 0.5505 0.2744 0.3386 0.5145 

 

It is observed that the RMSE decreases with the spatial 

resolution of the sensor (see first 2 columns of Table 3, which 

is likely to be due to the averaging effect on the noise. For the 

given spatial resolution of 30 m, lower values of RMSE are 

obtained for the BIODIVERSITY-like sensor relative to the 

ENMAP sensor because of its SNR. The RMSE obtained for 

ENMAP is lower than HICO for a spatial resolution of 90 m 

while the BIODIVERSITY like sensor performs better than 

both ENMAP and HICO for all the parameters for the same 

spatial resolution. Finally, when the resolution and the SNR are 

fixed, the RMSE increases when the number of bands 

decreases. When the number of bands and the SNR are fixed, 

the RMSE decreases when the spatial resolution decreases. 

When the spatial and the spectral resolution are fixed, the 

RMSE increases when the SNR decreases. But as the SNR of 

the BIODIVERSITY-like sensor is better than ENMAP’s and 

HICO’s at the same spatial resolution, the RMSE is lower with 

BIODIVERSITY’s 26 bands than with ENMAP’43 bands or 

HICO’s 50 bands. This means that a high SNR can balance with 

a low number of bands and inversely. 

 

B. Satellite simulation with airborne data 

The BIODIVERSITY-like simulated image is shown in Fig 14 

without and with noise. Even low, noise is visible because the 

land has been removed from the images and a linear histogram 

stretch has been applied on the water area.   

 

 
Fig.  14. Color composite of the simulated BIODIVERSITY-like 

image without and with noise (bands 440, 552, 680 nm) 

The retrieved maps of water quality parameters derived from 

the airborne data acquired using the HYSPEX sensor for which 

the radiance has been propagated to the satellite level by 

considering both the atmospheric radiance and the 

BIODIVERSITY-like sensor noise are shown in Fig. 15.  

 
Fig.  15. Retrieved maps of water column parameters and bathymetry 

derived from the inversion of the airborne data once they have been 

propagated to the satellite level: (top) for noise-free data, (bottom) 

for noisy data. 

When the noise is ignored in the satellite data, the concentration 

of Chl is low (<0.2 mg.m-3) except near the beach (>0.2 mg.m-

3). The SPM is quite high (>1 g.m-3) at intermediate seabed 

depths, typically between 5 m and 10 m.  CDOM absorption 

coefficient is weak (<0.05 m-1) over the whole area. Bathymetry 

logically increases with the distance from the beach.  

The retrieved parameters can be compared with in-situ 

measurements. For that purpose, the error and the relative error  

obtained for each parameter and each station are reported in 

Table 4.   
Table 4. Absolute error (AE) and relative error (RE) of the retrieved 

water column and bathymetry parameters calculated using the in-situ 

measurements collected over the 6 sampling stations for the cases 

where the noise is accounted for in the data. 

Station 
Chl (mg.m-3) SPM (g.m-3) CDOM (m-1) Depth (m) 

AE RE (%) AE RE (%) AE RE (%) AE RE 

1 0.392 148% -0.310 -67% 0.077 771% -0.790 -29% 

2 0.389 81% -0.333 -76% 0.088 879% 2.899 29% 

3 0.417 86% -0.108 -52% 0.075 745% 3.808 32% 

4 -0.413 -95% 0.451 69% 0.034 56% 3.015 31% 

5 -0.427 -96% 0.412 60% 0.075 752% -5.490 -23% 

6 -0.403 -98% 0.777 165% 0.064 636% -3.554 -23% 

Total 0.407 101% 0.446 81% 0.071 640% 3.545 28% 

 

Note that the absolute error is low for Chl, SPM and CDOM 

while the relative error is high because their concentrations are 

weak thus not significantly influencing the reflectance; the 

retrieval performance of these variables with a high degree of 

accuracy remains challenging using semi-analytical model 

inversion. Considering the bathymetry, the relative error is 

lower than the other parameters while the absolute error is high 

because of the considerable depth of the stations: four of them 

are depths of over 10 m (Table 1). 

Maps of the retrieved seabed material (or classes) are shown in 

Fig. 16. The materials that are derived from the data are Sand, 
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Posidonia, Taxifolia and Photophilic algae. The Sand 

component is identified close to the beach. Posidonia covers the 

largest area while the occurrence of Taxifolia is restricted to a 

small area. Photophilic algae are located on the rocks which is 

consistent with in situ observations. 

 

 
Fig.  16. Retrieved abundance of seabed materials, namely Sand, 

Posidonia, Caulerpa taxifolia and photophilic algae, from the 

inversion of satellite data simulated for the BIODIVERSITY-like 

sensor configuration. 

The retrieval of the seabed material abundance using the 

BIODIVERSITY-like simulated image can be compared with 

the in situ profile (Fig. 5) acquired using the IFREMER ROV 

along a transect between the sampling station 1 and 4 (station 

1, 2 3 and 4) in Fig. 1. The four stations (1 to 4) are area of clear 

water. Fig. 17 shows the measured material abundance (top), 

the measured bathymetric profile and the retrieved material 

abundance from the inversion of the simulated satellite data for 

the cases where the noise is ignored and taken into account.  

 
Fig.  17. (top) in-situ measurements of the seabed material 

abundances acquired by the ROV (IFREMER) along the transect 

going from station 1 to station 4,(middle) bathymetry along the 

transect, (bottom) retrieved seabed composition for the cases where 

the noise is ignored and taken into account and for satellite data 

simulated for the BIODIVERSITY-like sensor configuration. 

The left side of Fig. 17 corresponds to shallow waters (~ 6 m) 

and the right side corresponds to deep waters (12 m). For the 

case where the noise is ignored, the sand component is correctly 

mapped in shallow waters (<10 m depth), but not in deep waters 

(>10 m). This is because the sand is mixed with Posidonia and 

Taxifolia in deeper waters. Posidonia is appropriately classified 

for all depths because even though Posidonia is a dark seabed, 

pixels are composed of 100% of Posidonia, making its 

detection easier (Fig. 12). Taxifolia is detected even at 10 m 

depth but its abundance is underestimated. When the noise is 

taken into account, the seabed components retrieval is not 

significantly different from the noise-free case.  

 

To compare the BIODIVERSITY-like sensor performances for 

the estimation of water column parameters with those of other 

hyperspectral sensors (e.g. ENMAP, HICO), its resolution was 

downgraded from 8 m to 30 m and 90 m. The RMSE values 

obtained for different spatial and spectral resolutions are 

calculated (Table 5).  
Table 5. Comparison of the RMSE for the retrieval of water column 

parameters (Chl, SPM, CDOM, seabed depth) between the simulated 

datasets and the in-situ measurements collected in the sampling 

stations. 

  Biodiversity ENMAP  Biodiversity  ENMAP  HICO 

RMSE 
degraded to 

30m 30m 
degraded to 

90m  
degraded to 

90m  90m 

  26 bands 
43 

bands 26 bands  43 bands  
50 

bands 

Chl 
(mg.m-3) 

0.3900 0.4880 0.4000 0.3200 0.4200 

SPM (g.m-

3) 
0.3800 0.4100 0.3600 0.4900 0.5600 

CDOM  
(m-1) 

0.0700 0.0500 0.0900 0.0800 0.0900 

Z (m) 4.1900 6.8100 0.9800 4.5500 5.4300 

 

At 30 m resolution, all the parameters are better estimated using 

the BIODIVERSITY-like sensor configuration than for the 

ENMAP sensor. Similar conclusions are observed at 90 m 

resolution when compared with both HICO and ENMAP. 

 

IV. DISCUSSION 

Despite multiple limitations, the hyperspectral remote 

sensing has developed as a potentially promising technology to 

study marine and freshwater benthic maps as well as 

bathymetry [10]. The detectable information is restricted within 

a maximum depth depending on the sensor characteristics and 

environmental factors.  

The results of the synthetic data simulations performed in this 

study, for which the noise affecting the top of atmosphere data 

was rigorously taken into account, provide an insight into the 

maximum possible accuracy and associated errors with the 

given configuration of the seabed and the sensor characteristics. 

The simulations with in situ data provide a realistic 

understanding of the accuracy and associated errors for the 

same configuration of the seabed and the sensor characteristics. 

An important factor that affects the accuracy of the estimated 

water column or seabed parameters is the amount of 

information that the signal contains from the seabed or water 

column. The stronger the signal from the water column, the 

more accurate the estimation of the water column parameters; a 

similar tendency is observed for the seabed abundances. The 

radiation from the seabed is higher for clearer waters while a 

higher proportion of the signal from the water column is 

observed for turbid waters, which explains the RMSE trends in 

the estimations from the theoretical simulations. Moreover, the 

amount of individual spectral information contained in the 

signal also influences the accuracy of estimation. Depth 

estimation from remote sensing data depends on the physical 
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changes in the spectral radiance that is reflected from the seabed 

which is correlated with the water depth variation. However, 

beyond a threshold depth, the increase in depth affecting the 

benthic reflectance is too small to be resolved by the sensor and 

inversion models [10], [43].  

Nevertheless, the focus of this work was on the simulation of 

the BIODIVERSITY-like sensor which provided an 

understanding of its suitability for the estimation of the water 

column and seabed parameters with the given characteristics 

such as the position and number of the measurement bands in 

the spectrum, the spatial resolution and the SNR of the sensor. 

The goal of this work to evaluate the potential of a 

BIODIVERSITY-like sensor in comparison with ENMAP and 

HICO sensors was accomplished as demonstrated in the results. 

Remarkably, the error in the estimation of the parameters with 

the BIODIVERSITY-like sensor is generally lower despite 

having a fewer number of bands as compared to the HICO and 

ENMAP sensors in the same spectral resolution as can be 

observed from the results of the theoretical simulations and the 

satellite simulation using airborne data (Table 3 and Table 5). 

In this study the information provided by each sensor (spatial 

and spectral resolutions and SNR) was analyzed and it has been 

shown that a high SNR can balance with a low number of bands 

and vice-versa. Note that these results could be degraded if a 

lower SNR value concerning? BIODIVERSITY sensor was 

used. 

The difficulty observed in the estimation of the proportion of 

bottom classes in seabed mapping when the seabed is composed 

of multiple classes is associated with the difficulty in separating 

individual spectral signatures from an already weak signal 

modulated by the water column attenuation. As the depth 

increases, the attenuation increases, and the signal is further 

weakened and thereby larger errors occur in the estimations, 

which explain the difficulty in estimating the bathymetry for 

depths higher than 10 m.  

The results in this work are remarkable particularly when 

compared with a recent study that estimated the detectability 

limits for seabed estimation for the CASI hyperspectral sensor 

in the complex waters of the Baltic sea [10]. Vahtmäe et al. 

observed that the detectability threshold for the brightest seabed 

composed of sand was 7.5 m, 5 m for brighter benthic flora of 

green macroalgae, and 3 m for darker benthic flora composed 

of higher plants and brown macroalgae. Moreover, they 

observed that the bathymetric mapping was possible in the 

coastal waters of the Baltic Sea up to a maximum of 4 m depth 

whereas the BIODIVERSITY sensor can estimate the depth up 

to10 m with an error lower than 40% even in moderately turbid 

waters (fig. 10). This can be due to the lower sensitivity of CASI 

to the bottom reflectance. Despite the fact that the 

BIODIVERSITY-like sensor is a satellite sensor that could 

observe through a thicker layer of atmosphere and that is 

designed with more spectral bands than the airborne CASI 

sensors, the BIODIVERSITY-like configuration is likely to 

perform better than the CASI sensor in a similar environment.”. 

Louchard et al. [44] and Mobley et al, [16] used spectral 

classification and a lookup-table based approach to map the 

benthic habitats and to estimate bathymetry from portable 

hyperspectral imager (PHILLS) airborne sensors for clear and 

shallow coastal waters.  The current study focused on the 

viability of a potential satellite attached BIODIVERSITY-like 

sensor for different water types (by simulation). Louchard et al., 

[44] were able to estimate depth with a mean accuracy of 83% 

with the airborne sensor while Mobley et al. [16] demonstrated 

an accuracy of 95.3% on average for constrained inversion and 

up to 87.4% for unconstrained inversion. Villa et al., [45] 

implemented a rule-based approach for mapping functional 

types of macrophytes in the seabed and obtained 90.1% 

accuracy with up to 20% misclassified mixed sands. Kotta et 

al., [46] investigated the measured reflectance spectra of major 

macrophyte species in the Baltic sea by using hyperspectral 

datasets and adopted a methodology to allow statistically 

significant discrimination of spectral signatures of various 

macrophyte species.  

Most studies on seabed mapping to date were performed for 

shallow waters with a depth of often less than 5 m while the 

present study is performed for waters up to 20 m depth. The 

relatively low errors in depth estimation (<20%, except for 

Posidonia in shallow waters) for depths up to 20 m using the 

sensor characteristics in this study in conjugation with the 

inversion model can be a promising approach for bathymetry 

estimation which is critically important in the fields of 

navigation safety, planning of marine farming, delimitation of 

protected areas, engineering of nearshore infrastructures (e.g. 

Ports and wind energy structures). A synoptic and rapid method 

such as using hyperspectral remote sensing sensors for the 

bathymetry chart preparation can aid in situations where the 

hydrographic survey is difficult. Moreover, it can also help in 

cost reduction and time efficiency as compared to a shipborne 

bathymetric survey even when the latter is feasible [47].  

Additionally, the ability of the BIODIVERSITY sensor in 

the benthic habitats mapping as revealed in this study can be 

expected to have substantial impacts in the ecological studies 

after a potential setting up of the studied sensor in a satellite 

platform. The results and the conclusions in this study can be 

used as advisory with the implications for the new launch of 

satellite missions taking into consideration the sensor 

characteristics studied.  

  

V. CONCLUSION 

The present study was conducted using both synthetic data 

and data from aerial hyperspectral images of the coastal zone of 

Porquerolles Island (France). The results showed that the 

BIODIVERSITY-like sensor configuration characterized by 28 

spectral bands on the range 400-700 nm (53 bands on the range 

400-1000 nm), 8 m resolution and a SNR of 200 at 400 nm will 

be able to better estimate the water column parameters 

including the chlorophyll concentration, the SPM, the CDOM 

and the seabed depth than the retrieval obtained for the ENMAP 

and HICO spectral and radiometric configurations.  

The BIODIVERSITY-like sensor was able to provide estimates 

of the Chl, SPM, CDOM and depth with low RMSE of 0.41 

mg.m-3, 0.43 g.m-3, 0.06 m-1 and 3.09 m corresponding 

respectively to relative errors of 101%, 81%, 640% and 28%. 

The absolute error is low for Chl, SPM and CDOM while the 

relative error is high because their concentrations are weak thus 

not significantly influencing the reflectance. Considering the 

bathymetry, the relative error is lower than the other parameters 

while the absolute error is high because of the considerable 
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depth of the stations: four of them are located at a depth of over 

10 m.  

The BIODIVERSITY-like sensor will allow the seabed to be 

mapped for the pixels composed of only one material (e.g., sand 

or Posidonia). The false detections can be reduced, especially 

for depths of less than 10 m, and remarkably for Posidonia 

cover. Moreover, the abundance estimations are also fairly 

accurate where less than 25, 35, and 45 % errors respectively 

for sand, fresh Posidonia, and Caulerpa taxifolia were observed 

(Fig. 12). On the other hand, there were difficulties in retrieving 

the pixels composed by several materials (e.g., Sand and 

Posidonia). Further work could consist in taking into account 

the environmental effect of surrounding seabed in the inversion.  
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