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SOME REGRESSION PROBLEMS IN SOLAR-TERRESTRIAL 

SCIENCES: LEARNING FROM MISTAKES 
 

T. Dudok de Wit
1
 

 
 

Abstract. We address three timely regression analysis problems in solar-

terrestrial observations: the identification of trends in observations that exhibit 

a high level of internal variability, the choice of explanatory variables in the 

multilinear regression of climate data, and the identifi-cation of power laws in 

power spectral densities. In all three of them we focus on some common 

mistakes, and on how these may help facilitate critical reading of research in 

the field. 
 
 
1 What not to do in regression analysis 

 
In his seminal book on numerical methods, Acton, 1970 has a short interlude on what 

not to compute, which has inspired many scientists. As a small tribute to that unique 

interlude, we consider here some regression analysis problems as they are encountered 

in the context of solar-terrestrial physics, and highlight some common mistakes. These 

mistakes are of course generic, and are only a tiny subset of a large rensemble that 

includes issues such as the lack of awareness on the assumptions behind the regression 

methods, the prediction outside of a relevant range, the propagation of uncertainties of 

input variables to the regression model prediction, which may be even more uncertain, 

and neglecting the bias introduced by choosing an inadequate model (King 1986; Rong 

2000; Berk 2004; Good & Hardin 2012).  
Here, we concentrate on three timely issues that have been hotly debated in recent 

years. The first one is about identifying a drift in ionospheric observations, which is 

important for assessing the existence of long-term changes that may be related to global 

climate change. Technically, the problem is about the choice of the explanatory 

variables. The second issue is about the identification of a solar signature in climate 

records. Here the problem deals with the impact of collinearity on the regression 

analysis. The third and last example is about the identification of power laws in power 

spectral densities, with in addition the location of cutoff  
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Fig. 1. Raw critical frequency foF2, measured daily at noon at the Juliusruh station (54.6N, 

13.4E). The straight line has been computed without any prior reduction of data to solar or 

geomagnetic activity. 
 

 

frequencies. This is again a classical regression problem, with too many cases of 

erroneous conclusions. These simple illustrations are meant to facilitate critical reading 

of research in the field, and to help avoid being led astray by mistakes we all make. 
 

 

2 Trend determination: Is the sky falling down? 

 

The increasing concentration of greenhouse gases in the atmosphere causes enhanced 
cooling of the upper atmosphere, which should result in changes of atmospheric 

parameters. One of these is a trend in the ionosphere. This at-mospheric layer, however, 
is highly variable and driven by solar and geomagnetic activity, whose levels also 

changed throughout the 20
th

 century. If a trend exists at all, then it is most likely hidden 

in the natural variability. Disentangling these various signatures is an interesting but 

challenging regression problem (Laˇstoviˇcka et al. 2011). One the most representative 
ionospheric parameters is the critical frequency, called foF2, of the F2 layer. This layer 
has the densest electron concen-tration in the ionosphere, and extends from about 200 
km to 500 km.  

There has been a long quest for trends in foF2 (Laˇstoviˇcka et al. 2006). Ideas have 

progressively evolved as the pitfalls in the analyses have came to light. Figure 1 shows 

one of the longest records available, which is from the Julius-ruh station in Northern 

Germany. The trend in foF2 is heavily dominated by an 11-year solar cycle modulation, 

by an annual and semi-annual modulation that is related to the inclination of the Earth, 

and by more impulsive events that are due to geomagnetic activity. The earliest studies 

started by fitting a simple line to the 



 

  

    

     
 
 
 

 
Fig. 2. Same plot as Figure 1, showing in addition four trends (dashed lines) that were estimated 

by considering intervals running between different solar minima. 
 

 

time series, with the model 
 

foF2(t) = a + bt + (t) 

 

and then by interpreting the value of b; here, (t) stands for the residuals. However, it 

rapidly became evident that the slope b would heavily depend on the phasing with the 

solar cycle modulation. Both positive and negative trends were reported, depending on 
the endpoints of the time interval.  

A first improvement consisted in applying trend analyses only to full periods of the 

solar cycle, as illustrated in Figure 2. However, it then became evident that the results 

would be biased by the non stationary properties of the solar cycle. Later models thus 

included the sunspot number S(t) as a proxy for solar activity 

 

foF2(t) = a + b t + c S(t) + (t) 

 
with variants. For example, should the slope b be considered as the trend, or should we 
fit instead the simpler model 

 

foF2(t) = a + c S(t) + (t) 

 

and search for a trend in the residuals (t)? It took some time to realise that the last two 

models lead to different conclusions because missing influential variables bias the 

results. Successive improvements followed unabated, and several hun-dreds of models 

were tested, including more advanced ones, involving for example multiscale 

decompositions. 



 

 

 

Today, there is a global consensus for the trend in foF2 at Juliusruh to be relatively 

weak and negative, of the order of −0.02 to −0.015 MHz/year. However, these results 

are not conclusive yet, neither from a statistical, nor from a physical point of view. 

Some of the statistically important questions that remain to be addressed in order to 

move from a mere description of observations to actual statistical inference (with 

hypothesis tests), are: 
 

• Measurement errors, and their propagation to the model parameters, have been 

largely ignored so far. The errors (and the natural variability) in foF2 are 

heteroscedastic, reaching a maximum at the time when solar activity also peaks. 
 
 

• There is no single good proxy for solar activity, but rather an ensemble of them. 

The most frequently used proxies are the sunspot number and the solar radio flux 

at 10.7 cm, which have quite different statistical properties. One emanates from a 

counting process, with Poisson-like noise, whereas the other has normal noise. 

Not surprisingly, the two lead to different results. 
 

• The most critical issue probably is the proper choice of the influential vari-ables. 
Missing influential variables are known to inflate type II errors, which are the 
failure to reject a false null hypothesis. 

 

The first two questions suggest that Simpson’s paradox (Pearl 2009) may also play a 

role here. In this paradox, a trend may change quite substantially depending on how the 

data are aggregated. Since both the statistical and the physical properties of the 

observations change with their phasing with respect to the solar cycle, the search for a 

better model, including a rethinking of the way the data are sampled, is definitely 

needed. 

 

3 Multilinear regression: Desperately searching for solar signatures 

 

One of the key issues in climate research is to scientifically ascertain the mecha-nisms 

that are responsible for recent climate change. The Sun is in the spotlight because the 

level of its contribution to global warming has far reaching political implications. 

Although there is a clear consensus today on the prevalent effect of anthropogenic 

greenhouse gases in global warming, the quantification of the solar contribution remains 

a difficult and ongoing challenge (Stocker & Qin 2014). The reason for this is the 

extreme complexity of the dynamic response of the at-mosphere and the couplings of 

the mechanisms involved, which preclude simple sensitivity analyses. 

 

In this context, several simplified approaches have been developed for testing the 

sensitivity of the climate system to the solar forcing. A common one is a multilinear 

regression analysis wherein a climate signal, typically the global surface temperature 

anomaly, is modelled as a linear superposition of various contributions (Lean & Rind 

2008; Gray et al. 2010). Foremost among these is the concentration of greenhouse gases 

(GHG), volcanic cooling expressed in terms of tropospheric 



 

  

   

   
 
 
 

 

Fig. 3. The global surface temperature anomaly (the dependent variable) and its four re-gressors, 

from top to bottom: the concentration of GHG, the concentration of tropospheric aerosols, the 

strength of ENSO, and the level of solar activity. Monthly averages are used. All quantities are in 

arbitrary units, except for the temperature anomaly. 

 

aerosols, and the internal variability of the climate system, whose dominant mode is the 
El Ni˜no Southern Oscillation (ENSO). On top of these comes the solar forcing, which 
is represented by the sunspot number.  

This simple approach has received considerable attention in the literature. Many 

cases of misuse have been reported too (Benestad & Schmidt 2009). A typical case is 

illustrated in Figure 3, in which the monthly-averaged global sur-face temperature 

anomaly ∆T is expressed as a combination of four contributions 
 

∆T(t) = b0 + b1GHG(t) + b2AEROSOL(t) + b3ENSO(t) + b4S(t) + (t) 
 
which are GHG, aerosols, ENSO and the Sun; stands for the residual. For a com-plete 

description of the various observables, see for example (Lean & Rind 2008). 

Fortunately, all regressors are almost totally uncorrelated here, so that collineary is not 

an issue. However, examples abound wherein the number of regressors, or collinearity, 

become serious issues (Crooks & Gray 2005). Well-established ap-proaches, such as 

partial least squares then apply (Montgomery et al. 2012), but are often ignored in 

practice.  
There are three frequent problems which we wish to concentrate on. The first one 

deals with the identification of the solar signal through bandpass filtering. On the time 

scales of interest (months to decades), the solar contribution mostly consists of a 

monochromatic signal, in contrast to all other explanatory variables. 



 

 

The solar forcing indeed has a period of about 11 years, and a slowly varying 

amplitude. A simple strategy for emphasising its signature in the highly dynamic 

climate signal then consists in applying a 11-year bandpass filter, see for example 

(Gleisner & Thejll 2003).  
Let ∆T∗(t) then denote the bandpass filtered version of the dependent variable (in our 

case the global surface temperature anomaly) and S∗(t) ≈ S(t) that of the sunspot number. In 

that case, we should have approximately 
 

∆T∗(t) = b4S∗(t) + ∗(t). 
 
The major advantage of this filtering is the elimination of all other regressors, assuming 

that they have little spectral power content around 11 years. Unfortu-nately, such a 

filtering artificially enhances the correlation between ∆T∗(t) and the solar signal, thus 

giving the false impression that there truly is a solar signature hidden in the climate 

noise. Examples abound, wherein false correlations were reported because of such 

filtering (Coughlin & Tung 2006). One solution would be to consider the regression 

coefficient b4, which is less impacted.  
A second common problem arises from adding to the regressors all known 

contributions to the temperature anomaly, based on the widespread belief that this 

should eventually reduce the residual error, and consequently improve the description of 

the solar contribution. This is yet another example wherein model bias is reduced at the 

expense of a larger variance. Typical regressors, in addition to the four ones we just 

presented, are various internal modes of the climate system, such as the North Atlantic 

Oscillation (NAO). Unfortunately, these modes are not fully independent, and actually 

occasionally synchronise. Therefore, the model rapidly tends to become ill-conditioned. 

Orthogonalisation may cure here the numerical problem, but will not solve the physical 

one. What we need is a robust strategy for identifying the most significant regressors. 

This is once again a common problem in linear regression, but certainly not a trivial 

one.  
Various interesting solutions have been developed for that purpose. One of them is 

based on the error reduction ratio (ERR), which is a criterion for pruning the set of 

regressors (Korenberg et al. 1988). Using matrix notation, let y be the vector containing 

the dependent variable, X the matrix of regressors, b the model coefficients, and e the 

residuals: 
 

y = Xb + e. 
 
The matrix X = WA can be decomposed into the product of an upper triangular matrix A 
and a matrix with orthogonal columns W. Then 
 

y = Xb + e  

= (XA−1
)(Ab) + e  

= Wg + e 
 
which leads to  
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The three terms respectively describe the variance of the dependent variable, of the 

explanatory variables, and the unexplained variance. From this, we define the ERR as 
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The strategy then consists in determining the ERR for each regressor, and select-ing 

those that offer the highest ERRs until their sum reaches a predefined level. This 

criterion is widely used for trimming linear and nonlinear parametric models (Billings 

2013), but dissemination outside of that field has been slow.  
A third interesting problem is the frequent association between regression models 

and measures of correlation. On many occasions, when the influential variables are not 

properly known, or too numerous, then the correlation between one of them and the 

dependent variable is used as an alternative for their link, see for example (Sfˆıc˘a & 

Voiculescu 2014). The usual gauge of correlation is Pearson’s parametric correlation 

coefficient. Spearman’s non parametric rank correlation coefficient has received 

surprisingly little attention, although it is more appropriate for handling variables that 

have a monotonic but nonlinear relationship (Feigelson & Babu 2012). 

 

Unfortunately, correlation coefficients are frequently interpreted as a measure of the 

influence of the explanatory variables on the dependent variable, which is incorrect 

(King 1986). Indeed, nothing attributes causal or sensitivity assumptions to the 

correlation coefficient. (Cook & Weisberg 2009) express this idea in a more elaborate 

way when stating that regression analysis aims at understanding “as as far as possible 

with the available data how the conditional distribution of the response y varies across 

subpopulations determined by the possible values of the predictor or predictors”. 

 

There are few cases, however, in which the correlation coefficient does bring some 

value to other statistical tools. One of them is the comparison of two equa-tions with the 

same dependent variable but not the same set of explanatory vari-ables. Fortunately, this 

is precisely what many of us are after when seeking to identify the most influential 

variables. 

 

4 Power laws: Are there lines everywhere? 

 

Power laws are ubiquitous in nature, and are often considered as a signature of self-
similarity, possibly caused by critical processes (Sornette 2004; Aschwanden 2013). A 
quantity x follows a power law if it is drawn from a probability distribution 
 

p(x) ∝ x−α. 



 

 

In astrophysics, power laws often show up in distributions, for which the Poisson 

statistics apply (Maschberger & Kroupa 2009; Andreon & Hurn 2013). Here, we 

consider instead empirical data for which p(x) is not necessarily a distribution. The 

noise properties differ, and so do the solutions for estimating the slope, or scaling 

parameter α. Typical examples p(x) are power spectral densities, for which 

p(ω) ∝ ω−β.  
In most power law regression problems there are two objectives: one is to estimate 

the slope α, such as the −5/3 spectral index in Kolmogorov’s model of fully developed 

turbulence. A second, and often even more important objective is about locating the 

transition from this power law to another functional expression, which then tells us 

about the characteristic scale of the system. There should be a third objective, which is 

to determine whether the power law model is actually the best one, but this aspect is 

often left out.  
The quest for power laws is particularly frequent in solar wind turbulence. Here, the 

power spectral densities of the electric or magnetic fields are the key to the 

understanding of the underlying microphysical processes. Of particular inter-est are 

their extension down to small (so-called kinetic) scales, where dissipation processes set 

in (Sahraoui et al. 2009; Alexandrova et al. 2013).  
Figure 4 illustrates a typical power spectral density from the solar wind. Fol-lowing 

common practice, we identify power laws by the approximately straight line fit in a log-

log representation. The human eye is indeed remarkably good in detecting such straight 

lines. It can also be easily led astray by other types of distributions, such as log-normal 

or exponential. Examples abound, in which so-called evidence for power laws could be 

equally well, or even better explained by other distributions. As a rule of thumb, straight 

line fits should not be applied to ranges that cover less than a decade. Even a decade, 

however, may be too optimistic, not to mention the excessive number of digits used to 

express the value of the slopes. 

 

Let {xi}i=1,...,n be the observed values of a random variable, which is known to 

follow a power law in the interval xmax ≥ xi ≥ xmin. Under the condition where xmax 

xmin, the maximum likelihood estimator of the slope is 

αˆ = 1 + n n 
ln

 xmin
i
  −1 

 

i=1 .  
 

 

 x    

     
 

 
 

Unfortunately, this estimator is very sensitive to the initial guess of xmin, whose 

underestimation can severely impact the value of αˆ. Clauset et al. (2009) provide useful 

guidance for properly estimating both the interval and the slope by max-imum 

likelihood. But this is only part of the challenge. The second and more difficult 

challenge is their validation, which still remains a largely unsolved prob-lem when 

considering the bounds of the interval. Bootstrapping is one of the ap-proaches that may 

help us estimate confidence intervals (Feigelson & Babu 2012).  
This problem of estimating the power law is equally challenging when p(x) is not a 

distribution. However, a new and even more challenging problem arises: the error-in-
variable now cannot be neglected anymore. That is, the error in the 



 

  

   

    
 
 
 

 

Fig. 4. Power spectral density of a component of the electric field (Ey) and a component of the 

magnetic field (Bz) as measured in solar wind turbulence, respectively by the EFW and 

FGM/STAFF-SC instruments onboard the Cluster 4 spacecraft. The straight lines are power law 

fits of the spectra. Figure adapted from Sahraoui et al. (2009). 

 
 

 

independent variable x can substantially affect the conclusions, in addition to the error 
in the dependent variable p(x).  

Various solutions have been proposed for dealing with this error-in-variable case. 

For least squares regression, there is the natural generalisation to total least squares. Let 

us, however, take one step back. With standard maximum likelihood approaches, we are 

answering the question: “How do the data I observed match my model?”. Actually, we 

should rather ask “What do I know about the model parameters even before collecting 

the data?”. The difference is not just philosophical, because the two questions lead to 

substantially different approaches, a frequentist one in the first case, and a Bayesian one 

in the second case (Gelman et al. 2013). A discussion on their differences is definitely 

beyond the scope of this text. The main asset of the Bayesian approach lies in its ability 

to explicitly add prior information that may help further constrain the power law model. 

In cases where the statistics on the number of events is poor, such as with low photon 

counts, the Bayesian approach excels in extracting information from noisy data (van 

Dyk et al. 2001). In our case, the Bayesian setting enables the estimation of the best 

range [xmin,xmax] and slope α simultaneously, rather than sequentially. 



 

 
 

 

However, it would be fair to conclude that the numerical implementation of the solution 
can be challenging too. 

 

5 Conclusion 

 

Not surprisingly, regression analysis is key concept solar-terrestrial sciences, with 

implications that may sometimes have far-reaching societal consequences. In many 

applications, there is a widespread belief that issues such as collinearity, and lack of 

knowledge of what the influential variables should be, are some state of nature against 

which nothing can be done. The examples we have shown, however, suggest that there 

is much room left for improvement – provided we can learn from these mistakes and not 

repeat them. Therefore, in some sense, the mistakes that were risen in this short article, 

should be seen as a strong incentive for going back to basics and determining whether 

our model matches our true assumptions. There is no doubt here that the Bayesian 

framework will strongly help in a near future, as it has already in astrophysics. 
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