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ABSTRACT

Context. Solar images taken simultaneously at different wavelengths in the EUV are widely used for understanding structures such
as flares, coronal holes, loops, etc. The line-of-sight integration and the finite spectral resolution of EUV telescopes, however, hinders
interpretation of these individual images in terms of temperature bands. Traditional approaches involve simple visualisation or explicit
modelling. We take a more empirical approach, using statistical methods.
Aims. The morphology of solar structures changes with the wavelength of observation and, therefore, with temperature. We explore
the possibility of separating the different solar structures from a linear combination of images.
Methods. Using a blind source separation approach, we build a new set of statistically independent “source” images from the original
EUV images. Two techniques are compared: the singular value decomposition and independent component analysis.
Results. The source images show more contrast than the original ones, thereby easing the characterisation of morphological structures.
A comparison with the differential emission measure shows that each source image also isolates structures with specific emission
temperatures.
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1. Introduction

Since the early EUV images of the Sun, it has been known that
the morphology of the transition region and the corona varies
with the temperature of formation of the observed spectral lines.
Typically, structures in the corona seem to be more diffuse when
observed in hot lines and sharper in cool lines (Cheng et al. 1980;
Gallagher et al. 1998; Feldman et al. 1999). This is particularly
obvious when considering coronal loops, see Fig. 1.

The Extreme-ultraviolet Imaging Telescope (EIT)
(Delaboudinière et al. 1995) onboard the SOHO space-
craft routinely takes images of the Sun in four passbands that are
centred on intense lines of the EUV spectrum. These lines and
their characteristics are summarised in Table 1. The passbands
of EIT are typically 1 nm wide, making multiple lines contribute
to the total signal. As a consequence, the temperature response
of EIT is a linear combination of the responses of the contribut-
ing lines, weighted by the spectral efficiency of the instrument.
This mixing considerably complicates the interpretation of EIT
images in terms of temperatures.

Figure 2 shows the EIT temperature response for an ac-
tive region. The 17.1, 19.5, and 28.4 nm passbands are strongly
peaked around 1 MK, 1.5 MK, and 2 MK, respectively, but they
also have secondary maxima and low-level extensions. The high-
temperature wing of the 19.5 nm passband is due to an Fe XXIV
line at 19.2 nm. This line, which is generated at 15.8 MK, is re-
sponsible for the very high sensitivity of the EIT 19.5 nm pass-
band to flare plasmas. The low-temperature wing of the 28.4 nm
passband is due to a group of transition region lines of Si VII and

He I  (20⋅103 K) O V  (250⋅103 K) Ne VI  (400⋅103 K)

Ca X  (630⋅103 K) Mg IX  (1⋅106 K) Fe XVI  (2⋅106 K)

Fig. 1. The changing morphology of coronal loops depending on the
temperature of observation. Images taken simultaneously at different
wavelengths by the CDS spectrometer onboard SOHO near the solar
limb on March 23, 1998 at 18:43:55 UT.

VIII. The 30.4 nm passband exhibits two peaks due to the con-
tribution of two very different lines: the 30.38 nm line of He II
and the 30.32 nm line of Si XI. The latter is generated in the
corona at 1.1 MK and is responsible for the high-temperature
peak, while the former is generated around 80 kK in the lower
transition region.

The usual approach for deconvolving the temperature re-
sponse is based on a generalisation of the differential emission
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Table 1. EIT bandpasses.

Wavelength Main line Peak temperature Appropriate for studying
17.1 nm Fe IX, Fe X 1.3 MK corona/transition region
19.5 nm Fe XII 1.6 MK quiet corona
28.4 nm Fe XV 2.0 MK active regions
30.4 nm He II 0.08 MK chromospheric network & coronal holes

Fig. 2. Response of the EIT instrument to the plasma temperature, for an active region computed with an electron density of 109 cm−3 and using
the differential emission measure from the CHIANTI model (Delaboudinière et al. 1995).

measure (DEM) technique that was originally developed for nar-
row band spectra. This is done by replacing the contribution
functions of individual spectral lines by the effective contribu-
tion functions of the passbands. Similar DEM inversions have
already been successfully achieved with EIT images by Cook
et al. (1999), even though the lack of spectral coverage makes
the problem underdetermined.

Here, we consider the problem from a rather unconventional
and more empirical point of view. Since each EIT image re-
sults from a mixture of various lines at different temperatures,
we look for a linear combinations of images (called “source im-
ages”) that are less redundant than the original ones and, in this
sense, more contrasted. In doing so, we hope to disentangle the
contributions of some of the spectral lines. This is a blind source
separation (BSS) problem (Hyvärinen & Oja 2000), which has
generated considerable attention in astronomical image analysis
and in speech processing. Here, as in most BSS problems, the
source images are estimated using only the statistical properties
of the EIT images. Such a statistical approach may seem quite
empirical, yet it has several advantages:

– in stereoscopic image analysis, the identification of struc-
tures, such as filaments and bright points, requires highly
contrasted images. Multispectral analysis will be useful for
preprocessing images from the dual STEREO probes.

– for predicting space weather events, it is often more impor-
tant to have fast access to approximate and empirical quanti-
ties (or proxies) than to computationally more costly physi-
cal quantities.

– future missions, such as the Solar Dynamics Observatory,
will produce unprecedentedly large amounts of multispec-
tral images that will require fast automated analysis for data
mining.

– many multispectral analysis techniques often allow denois-
ing as a by-product.

We consider two well known BSS techniques: the singular value
decomposition (SVD), which is closely related to principal com-
ponent analysis, and independent component analysis (ICA).
Although the source images are extracted by using statistical cri-
teria only, they capture solar structures that differ in their mor-
phology and are emitted in specific temperature bands. We inter-
pret them visually, but also quantify them by comparing them to
DEM maps.

The method and the necessary preprocessing of the images
are described in Sects. 2 and 3. The methods are first illustrated
in Sect. 4 with synthetic images and then applied to solar im-
ages in Sect. 5. The results are discussed in Sect. 6, followed by
a comparison with DEM maps. Finally, an application to mul-
tispectral imaging is presented in Sect. 7, followed by conclu-
sions.
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2. Methodology

In its usual operation mode, EIT routinely takes one image in
each its four bandpasses several times per day. These four im-
ages are generally taken a few minutes apart, thus enabling
a multispectral study of structures that evolve on time scales
longer than 30 min. The complex physical interpretation of these
spectral lines has been discussed in detail by Delaboudinière
et al. (1995), Moses et al. (1997), Aschwanden (2004), and many
others. Each image is 1024×1024 pixels large, corresponding to
a resolution of 2.6 arcsec per pixel.

Our analysis is based on the premise that each EIT im-
age receives contributions stemming from physical processes
whose spectral signatures and spatial distribution differ. The
three working hypotheses are:

1. the contributions from the different processes are mixed lin-
early;

2. their mixture is instantaneous (or non convolutive);
3. these sources are spatially independent, i.e. they have differ-

ent spatial distributions.

The first hypothesis is not perfectly satisfied insofar as the EUV
spectrum is a blend of optically thin and thick lines. Only the
He II line, however, is optically thick. The radiation transfer of
that line in the corona is weak, so that linearity is still a rea-
sonable working hypothesis. The second hypothesis amounts to
saying that the Sun did not significantly evolve between the four
snapshots. The present cadence of EIT excludes the multispec-
tral observation of fast transients such as eruptions, but future
instruments will get much closer to this kind of an instanta-
neous picture. The last hypothesis is more difficult to evaluate.
Solar structures with different temperatures tend to have differ-
ent spatial distributions when they are observed at the limb (see
for example Fig. 1), but nothing prevents the same line of sight
from covering a broad range of temperatures, especially when it
crosses the disk. The performance of BSS methods in the pres-
ence of non-independent sources is a difficult problem, which
can be alleviated by using more elaborate techniques such as
multidimensional ICA (Hyvärinen & Oja 2000). There is em-
pirical evidence, however, for the separation of the sources to
remain valid even if the condition of independence is not fully
satisfied, provided that a significant fraction of the sample (of
the pixels, in our case) captures structures that are independent
enough to provide leverage to the method. Blind source separa-
tion methods are acceptable for the four-wavelength images of
EIT, but will be more relevant for future instruments with more
spectral channels.

Let
{
yn
}
n=1,2,3,4 denote four row vectors containing the image

intensities at each wavelength; images are thus stored in arrays.
We assume that each observable is a linear combination of four
source terms {sn}n=1,2,3,4

yn =

4∑
m=1

Am
n sm , n = 1, 2, 3, 4 , (1)

where A =
{
Am

n
}

is the mixing matrix. Neither the mixing matrix
nor the source terms are known a priori. The purpose of BSS
is to determine both using the least possible information. This
problem is strongly underdetermined, so the assumptions need
to be clearly stated. For computational reasons, the number of
source terms must be equal to or smaller than the number of
observables. Solutions can still be found in the other case, but
unicity is no longer guaranteed and the estimation becomes con-
siderably more demanding. As we shall see, however, a small

number of sources is partly justified by the strong redundancy of
the four EIT images.

The most widely used technique for BSS is the SVD (Golub
& Van Loan 1996), also known as the Karhunen-Loève trans-
form, which is closely related to principal component analysis
(Chatfield & Collins 1995). The SVD generates a new set of
source images that are totally uncorrelated, i.e.,

E(snsm) =

{
0 if n � m
σ2

n if n = m , (2)

where E(. . .) denotes expectation, and the energy σ2
n is the sum

of squared intensities of image n. The mixing matrix is unitary
(AT A = A AT = I, where I is the identity matrix) and can there-
fore be interpreted as a rotation matrix. This decomposition is
unique and the source terms are conventionally rank-ordered by
decreasing magnitude of energy. The sources with the highest
energy are often of prime interest, since they capture salient fea-
tures of the images. The SVD can be understood as the most effi-
cient way of removing redundancy from the observations, using
a decomposition into four uncorrelated images.

The ICA is a recent and powerful generalisation of the SVD,
which extracts source terms that are not only uncorrelated but
also independent (Comon et al. 1991; Hyvärinen & Oja 2000;
Hyvärinen et al. 2001)

p(sm, sn) = p(sm) p(sn),

where p(. . .) is the probability distribution function (PDF).
Independence is a stronger constraint than decorrelation, since
it amounts to decorrelating all high-order statistical dependen-
cies, in addition to the second-order one.

For images that have a Gaussian PDF, the ICA is equivalent
to the SVD. Gaussian images, however, tend to be the excep-
tion in astronomy; the departure from a Gaussian PDF is pre-
cisely exploited by the ICA to improve the separation of the
sources. This will be illustrated shortly in Sect. 4. It can be
shown that finding the independent components is equivalent to
finding the set of images whose mutual information is minimised
(Hyvärinen et al. 2001). This property partly explains the recent
popularity of ICA, which usually outperforms the SVD in BSS
problems.

Numerous successful applications of ICA to blind deconvo-
lution and to hyperspectral imaging have been reported. Several
variants have also been proposed to tailor the method to physical
constraints, see for example Hyvärinen et al. (2001). In astro-
physics, Nuzillard & Bijaoui (2000) applied ICA to galactic im-
age reconstruction, while Baccigalupi et al. (2000), Maino et al.
(2003), and Donzelli et al. (2006) successfully used ICA to ex-
tract the cosmic microwave background from COBE data and
Lu et al. (2006) to compress galaxy spectra. In solar physics,
Cadavid et al. (2005) used ICA to investigate global modes in
solar magnetic field fluctuations.

3. Preprocessing

The estimation of the SVD is computationally straightforward,
since it amounts to diagonalising the 4 × 4 covariance matrix
of the observations

{
yn
}
. The computation of the independent

components requires an iterative scheme for which we use the
FastICA algorithm (Hyvärinen & Oja 2000).

Noise affects BSS, so it is important to know its prop-
erties beforehand. For sufficiently high intensities, the signal
of the CCD camera tends to have a Poisson statistic for it is
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1 2 3 4

1 2 3 4

1 2 3 4

Fig. 3. From top to bottom: a random mixture of original images, their sources obtained by SVD, and by ICA. The original images are an image of
the Sun taken in the Hα line (ICA source nr. 1, courtesy of Big Bear Observatory), an image with white Gaussian noise (2), a coronagraph image
of the Sun (3, from LASCO-C2), and a picture of the SOHO spacecraft (4, courtesy of ESA).

strongly affected by photon noise. The variance can then be sta-
bilised by applying the generalised Anscombe transform (Starck
& Murtagh 2006): if ym is the number of photons counted in
pixel m, then the transform ym −→ √

ym provides a new set of
pixel values that behave as if they were affected by stationary
Gaussian noise. We systematically apply this transform here.

Another problem is the lack of scaling invariance for the
SVD and the ICA. The dynamic range of EIT images varies sig-
nificantly with wavelength, so a normalisation is needed. Our
default procedure consists in centering (i.e. subtract from each
image the average over all pixels) and reducing (i.e. normalise
vs. the standard deviation) each image.

4. Example with synthetic images

Let us first consider as a test case four 256 × 256 images, which
we mix randomly before applying the SVD and the ICA. The
noise properties are not known, so each original image is sim-
ply centred and reduced. We subsequently build a set of four
mixtures by combining the images linearly with random mixing
coefficients.

The four mixtures are shown in the top row of Fig. 3. The
application of the SVD to these data gives four source images
that are displayed in the row below. A weak visual improvement
is apparent but none of the images looks pure yet. The ICA (bot-
tom row) in contrast recovers the four original images almost
perfectly, owing to the additional leverage that is provided by
the non-Gaussian PDF. These source images are unique up to a
change in sign.

A metric is needed here to rank the images without having
to go through the subjective task of visualisation. There is no
such unique metric, but some helpful measures exist. One nat-
ural measure for the SVD is the variance σ2

n of the images (see
Eq. (2)), since both the images and the columns of the mixing
matrix are orthogonal by construction.

The information theoretical foundation of ICA suggests that
the entropy might be an appropriate measure. We consider the
relative entropy or Kullback-Leibler distance HKL (Cover &
Thomas 1991), which quantifies the amount of information we
gain from the image with PDF p(y) as compared to an image
with PDF q(y)

HKL =

∫
p(y) log2

p(y)
q(y)

dy. (3)

A natural choice for the reference PDF q(y) is a Gaussian with
the same mean and variance as the image of interest. The relative
entropy can then be interpreted as a measure of the deviation
from Gaussianity; HKL = 0 if and only if q(y) is a Gaussian.

Table 2 below lists the entropies obtained from the images
of Fig. 3. A discrete version of Eq. (3) was applied, using his-
tograms with 80 equispaced intervals. Note that the relative en-
tropy of a mixture is generally lower than that of its sources, by
virtue of the central limit theorem. The relative entropy of the
source images obtained by SVD is relatively low. The results are
much more contrasted with ICA, which by definition searches
for independent source images that extremalise the relative en-
tropy.
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Table 2. Relative entropy HKL associated with the images of Fig. 3.
Units are bits.

Image 1 2 3 4
mixture 0.020 0.018 0.002 0.257
SVD sources 0.002 0.151 0.092 0.078
ICA sources 1.025 0.001 0.384 0.249

5. Example from solar images: results

Let us now consider real data with four images taken by the EIT
telescope on August 1st, 2003, at 19:00:14 (17.1 nm), 19:06:01
(28.4 nm), 19:13:41 (19.5 nm), and 19:20:05 (30.4 nm) UT. The
Sun at that time exhibits some large but relatively stable active
regions. The data are preprocessed in the usual way: the dark-
current offset is subtracted, a flat-field correction is made, the
Anscombe transform is applied, and finally the images are cen-
tred and reduced.

The pre-processed EIT images are displayed in the top row
of Fig. 4. The 17.1 to 28.4 nm spectral lines mostly probe the
hot corona and active regions, whereas the 30.4 nm line reveals
the much cooler network. The result of the SVD and the ICA are
shown respectively in the second and the third rows of Fig. 4.
Note that these images should not be interpreted as intensities,
since pixel values can be negative. Also shown are DEM maps,
determined for the characteristic temperatures of the EIT pass-
bands given in Table 1. The DEM was estimated from the same
set of EIT images, for each pixel, using the procedure described
in Cook et al. (1999).

The images are sorted here by decreasing variance. The rela-
tive variance of the SVD sources is respectively 46%, 41%, 13%,
and 0.05%. The low value of the last suggests that most of the
salient features are only captured by SVD images 1 to 3. This
result is a direct consequence of the redundancy of information
in the four EIT images. The SVD can in this sense be considered
as a lossy compression tool.

An inspection of the PDFs confirms that the ICA source im-
ages strongly depart from a Gaussian and yet are independent.
This is summarised by the values of the relative entropy, see
Table 3. The larger the entropy, the more non-Gaussian the dis-
tribution.

6. Example from solar images: interpretation

The source images obtained by SVD and by ICA in Fig. 4 exhibit
several interesting features that are easier to understand when
we consider the mixing matrix. The rows of the inverse mixing
matrix A−1 indeed tell us which linear combination of the EIT
images is needed to build the source images.

The first SVD source image is obtained by averaging over
all EIT channels, see Fig. 5. Since each channel is dominated by
hot active regions, the last ones are enhanced by the averaging.
The second SVD source image mostly captures the emission at
30.4 nm minus that of the other lines. Not surprisingly, it em-
phasises the fine structure of the network. The fourth source,
which only weakly contributes to the EIT images, mostly cap-
tures small-scale features including the shadow of the instrument
mask and cosmic ray hits.

The ICA source images differ from the SVD ones. The first
source image, which is a combination of the images at 17.1 and
30.4 nm, minus the contribution at 19.5 and 28.4 nm, enhances
the cold network, similar to the second SVD source image. A
deeper inspection, however, reveals that the contribution from
the hot coronal lines is subtracted by the ICA better than by the

SVD. The second ICA source essentially captures the emission
at 28.4 nm minus that at 19.5 nm (see Fig. 5). This results in
an enhancement of the active regions and an attenuation of the
medium hot corona. Note that the source images are more con-
trasted than in the original EIT images. This is not surprising,
since the ICA proceeds by maximising the information content
of each image, while keeping all four images independent.

A visual inspection of ICA source image 3 suggests that it
captures the bright limb and structures seen in the medium hot
corona. According to Fig. 5, it indeed consists of the emission at
19.5 nm minus that of the two other hot lines. More quantitative
evidence for this will be given in the next section. The fourth
source image is the hardest to interpret, even though some of
its features are reminiscent of what one would expect from the
lower corona. As for the SVD, the contribution of that image is
very small, so we omit it. We indeed checked that a reconstruc-
tion from three sources gives almost the same EIT images as be-
fore, while the reconstruction with two sources clearly remains
incomplete.

The key result of the ICA (and to a lesser degree of the SVD)
is the decomposition of the EIT data into source images that re-
veal structures with quite different morphologies. ICA source
image 1 exhibits a fine structured network only on the disc,
whereas source image 2 shows diffuse regions; image 3 shows
fine structures both on the disc and in the corona. These images
are qualitatively similar to the DEM maps (displayed in the bot-
tom row of Fig. 4), thereby suggesting the existence of a link
between morphology and temperature.

The notion of morphology is vague, although widely used
in the literature; see for example Cheng et al. (1980). A wavelet
analysis of solar EUV images (Delouille et al. 2005) shows that
the broadband power spectral density follows a power law: if
P(a) is the power spectral density at scale a, then P(a) ∝ aβ.
The occurrence of such a power law precludes the existence of
a characteristic scale, except for the network in the cold lines.
Our visual perception of morphology is closely associated with
the value of the spectral index β. High values of β imply steep
power spectra and a predominance of large-scale structures. For
random noise, β equals zero.

Here we estimate the spectral index β by computing the two-
dimensional discrete wavelet transform over the solar disc, using
third-order Daubechies wavelets (Mallat 1998). The main advan-
tage of this estimator is its resilience to trends. It has also been
shown by Abry et al. (1995) that this estimator provides an unbi-
ased and more robust estimate of the spectral index. The results
are summarised in Fig. 6.

The spectral indices of the original images confirm our visual
perception of scale distribution. EIT images at 28.4 nm, which
exhibit hot and diffuse structures in the corona, also have the
highest spectral index. The lowest index arises at 30.4 nm, which
indeed shows the network. The same ordering holds for the SVD
(not shown) and the ICA source images. ICA mode 2, which
captures diffuse structures, also has the highest index. Mode 1,
which corresponds to the cold network, has the lowest index.
Interestingly, the source images have lower spectral indices than
the original ones, which corroborates the idea that source images
are more informative (in the sense of being more structured) than
their mixture.

7. Comparison with the differential emission
measure

To put our qualitative results on firmer ground, we now compare
the source images to DEM maps. The inversion procedure by
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17.1 nm 19.5 nm 28.4 nm 30.4 nm

SVD 1 SVD 2 SVD 3 SVD 4

ICA 1 ICA 2 ICA 3 ICA 4

log
10

(T)=4.9 log
10

(T)=6.5 log
10

(T)=6.2 log
10

(T)=6.3

Fig. 4. From top to bottom: original EIT images of the Sun (respectively at 17.1 nm, 19.5 nm, 28.4 nm, and 30.4 nm), the source images obtained
by SVD and by ICA, and the DEM at four temperatures. The intensity ranges from the 5% percentile (black) to the 98% percentile (white). The
data have been preprocessed as explained in the text. Each image is 1024 × 1024 pixels in size. The SVD and the ICA images are ranked by
decreasing variance.

Table 3. Relative entropy HKL (in bits) of the images shown in Fig. 4.

Image nr. 1 2 3 4
original images 0.61 0.77 0.76 1.01
SVD sources 0.42 0.13 0.13 0.12
ICA sources 0.68 0.22 0.15 0.15

Cook et al. (1999) was used to estimate the DEM pixel-wise, for
a set of 20 temperatures ranging logarithmically from 104.6 to
106.5 K.

To correlate DEM maps with the source images, one would
traditionally use Pearson’s correlation coefficient. We prefer
Spearman’s rank correlation coefficient (Press et al. 1992),
which has the major advantage of being non-parametric and thus
insensitive to any rescaling of the images by a nonlinear mono-
tonic function. Indeed, Spearman’s correlation coefficient com-
pares the ranks of the image pixels and not their values. Both
correlation coefficients have the same interpretation: 1 implies
full correlation, –1 full anticorrelation, and 0 no correlation.

Here, we estimate Spearman’s correlation coefficient be-
tween each DEM map and a) the four EIT images, b) the four
source images obtained by SVD, and c) the four source images
obtained by ICA. The correlations are plotted in Fig. 7 versus
the characteristic emission temperature. The mixture of lines that
contribute to each EIT image is clearly attested by the flat and
multimodal distribution of Spearman’s rank correlation coeffi-
cient; see the top row of Fig. 7. The highest peak generally coin-
cides with the characteristic emission temperature of each spec-
tral band. The smooth shape of the correlation is a consequence
of the DEM reconstruction technique, which cannot resolve fine
temperature bands. The transition region between 105 and 106 K
should be disregarded, because the DEM maps in that range are
merely extrapolated from the temperatures above and below.

The SVD partly succeeds in separating solar features accord-
ing to their characteristic temperature. Each image is now more
strongly dominated by one particular temperature band, and yet
source images 1 and 3 still exhibit double peaks. The key result
is that a better separation is achieved by the ICA as compared
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Fig. 5. The weighting coefficients applied to the original EIT images to obtain the source images by SVD (top row) and ICA (bottom row). The
numbering of the images corresponds to Fig. 4.

to the SVD, since each source image reveals one single tem-
perature band. For source image 1, the correlation is very sim-
ilar to that of the original EIT image at 30.4 nm, with a large
maximum corresponding to the cold lower transition region. In
contrast to the EIT image, however, the high temperature con-
tribution above 106 K is now subtracted better. Source image 2
captures the hottest coronal regions better than any other. The
resolving power of source image 3 is somewhat weaker, yet it
remains the best image for extracting the medium hot corona.
Source image 4 is more enigmatic, but since it peaks in the tem-
perature band where the DEM is the least well defined, a physi-
cal interpretation is risky.

We conclude that the ICA succeeds in separating structures
that have both specific morphologies and specific characteris-
tic temperatures. It is remarkable that this separation is achieved
only on the basis of statistical criteria, without invoking the com-
plex physics behind solar spectroscopy. We believe that the rea-
son for this successful separation comes from the intimate con-
nection between the physical characteristics of solar structures
observed in EUV and their morphological properties, which
provide leverage to the ICA. The resulting source images are
of course empirical. The Solar Dynamics Observatory, with its
9 wavelengths, will provide a different set of sources that are
likely to provide an even better temperature separation. As al-
ready mentioned in the introduction, these empirical source im-
ages can be valuable input for space weather products, for stere-
oscopy, and for plain visualisation.

We must stress that all these results are reproducible in the
sense that we obtain essentially the same combinations regard-
less of the period the data are taken from (quiet Sun versus ac-
tive Sun). The results are also robust with respect to the choice
of the region, as long as the region covers a sufficiently com-
plete ensemble of solar structures, including both the disc and
the corona. This reproducibility is important since it means that
the mixing matrix needs to be computed only once, regardless of
the number of events considered.

Our results are obtained after taking the square root of the
image intensity. Such a transform, however, does not conform
with the linear relationship between source images. The con-
nection between the ICA source images and different tempera-
ture bands of the DEM actually hardly changes if the Anscombe
transform is not applied, or if we take the logarithm of the im-
ages (which is equivalent to assuming multiplicative sources).
This resilience to the preprocessing of the images probably has
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Fig. 6. Spectral indices β estimated from the original EIT images (top)
and from the four ICA modes (bottom). The indices are estimated by
the wavelet transform, for scales ranging from 32 to 128 pixels. Error
bars correspond to ± one standard deviation resulting from the power
law fit.

to do with the occurrence, for each characteristic temperature,
of structures at all intensities. As a consequence, the separation
into different morphologies is rather insensitive to the scaling
of the intensity. The clearest temperature separation, however, is
obtained with the Anscombe transform.

8. Multispectral imaging of the Sun

An interesting by-product of the SVD and the ICA is a feature
called multispectral imaging in the remote sensing of the Earth.
The interpretation of multispectral images is often hampered by
the difficulty visualising different wavelengths at once. A simple
solution consists in combining three of the images into a single
colour picture, by assigning different image intensities to the red,
green, and blue channels. When applying this method to raw
EIT images, using the red channel for 28.4 nm, the green one for
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Fig. 7. Spearman’s rank correlation coefficient r as a function of temperature T . The correlation is computed between the DEM and: original EIT
images (top row), SVD source images (middle row), and ICA source images (bottom row). The ordering of the images is identical to Fig. 4.
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Fig. 8. Grayscale version of multispectral solar images obtained by assigning different image intensities to the red, green, and blue channels. The
colour version, which is much more meaningful, is available in electronic form. The top images are obtained from the traditional combination of
EIT images at 28.4 nm (red), 19.5 nm (green), and 17.1 nm (blue). The bottom images are obtained from ICA source images 2 (red), 3 (green),
and 1 (blue). The right column shows an enlarged portion of the east limb.

19.5 nm, and the blue one 17.1 nm, we obtain the pictures shown
in Fig. 8.

Most of the features in Fig. 8 appear greyish because the
information stored in the three colour channels is highly redun-
dant. A less redundant combination of colours channels would
be needed, for which the source images are an obvious solution.

Figure 8 shows the multispectral image obtained by combining
ICA source images 1, 2 and 3; the ordering of the colours re-
flects our perception of the characteristic temperature of each
source. The higher contrast eases the visual interpretation of dif-
ferent solar structures. Notice in particular how active regions
now appear less saturated. Although this method gives a purely
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qualitative view of the Sun, its widespread use in airborne sur-
veying suggests that it can be a valuable tool as well for visualis-
ing multispectral solar images. The same technique can also be
used for segmentation purposes and the robust detection of dif-
ferent regions such as coronal holes, see Dudok de Wit (2006).

9. Conclusions
The broadband spectral response of EUV imagers has stimu-
lated the search for finding ways of extracting specific temper-
ature bands from multispectral images. In this study, we used
a BSS approach to tackle this problem in a statistical, and thus
rather unconventional, way. Using independent component anal-
ysis, we show how multispectral images taken by EIT can be de-
composed into a set of more contrasted source images that reveal
solar structures with specific morphologies. A comparison with
the DEM indeed confirms that each source image captures solar
structures that have a specific emission temperature, thereby es-
tablishing a natural link between morphology and temperature.
The most conspicuous regions that come out are the lower tran-
sition region, the million degree corona, and the hot corona.

The source images are obtained on the basis of the statisti-
cal properties of the EIT images only and so cannot be inter-
preted as temperature maps, and yet their good agreement with
the DEM suggests that they can be valuable for a visual inspec-
tion of EUV images. These source images are easy to compute,
which makes this empirical approach well-suited to processing
large volumes of multispectral data. The concept of BSS will be-
come more relevant as future missions will be observing in more
than four wavelengths simultaneously.

One obvious improvement, which is in progress, consists in
constraining the source images, as well as their mixing coeffi-
cients, to be positive. Another approach would consist in mixing
ICA with a multiscale analysis by first decomposing the images
into multiple scales using a wavelet transform and then perform-
ing the ICA.
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