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Abstract. We discuss an acceleration mechanism of charged particles by magnetohydrodynamic (MHD) structures, such as
quasi-parallel shocks and short-large amplitude magnetic structures (SLAMS). In the presence of electromagnetic waves and
an electrostatic electric field, particles are accelerated efficiently in the perpendicular direction to the background magnetic field
by the combination of two effects, the trapping of particles by the wave and the dragging by the electrostatic field to keep the
resonance condition. This allows particles to propagate downstream even when they initially have smaller kinetic energy than
the potential. We show the fundamental properties of this mechanism, referred to as gyroresonant surfing.
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1. Introduction

It is widely accepted that diffusive shock acceleration (DSA)
is a major cosmic ray acceleration mechanism in astrophysical
and solar system plasmas (Krymskii 1977; Axford et al. 1978;
Bell 1978; Blandford & Ostriker 1978). It is essentially the first
order Fermi acceleration, and predictions of DSA agree well
with the observed cosmic ray spectra. Since it is necessary for
particles to cross the shock front back and forth many times,
the particles should have high initial energy and be well sepa-
rated from the thermal background, that is, the so called “seed”
population should exist. An important issue is related to the in-
jection problem; the formation of this population still remains
controversial (see for reviews Forman & Webb 1985; Jones &
Ellison 1991; Scholer et al. 1998).

Malkov & Voelk (1995) and Malkov (1998) discussed the
injection problem of DSA assuming ion leakage from down-
stream of the parallel shock. In their models particles are ac-
celerated directly from the thermal population in the same way
as the DSA. In this sense, there is no need for the seed popu-
lation, and the injection problem becomes the question of how
to produce backstreaming particles. The formation of leakage
particles from downstream thermal plasma might be considered
as a solution of the injection problem if such a process would
supply a significant particle flux. This is the key assumption
of Malkov & Voelk (1995) and they further assumed that this
population can be described as a “warm beam”. Such a wide-
spread beam will excite waves with a wide spectrum that can be
described by quasi-linear theory, but not quasi-monochromatic
waves as often detected in in situ observations (Hoppe et al.
1981; Hoppe & Russell 1983). Moreover, in the standard quasi-
linear theory, there is no pitch angle diffusion over 90 degrees

when the waves propagate parallel to the background magnetic
field (e.g., Schlickeiser 1989; Ng & Reames 1995). This prob-
lem does not exist for the finite amplitude waves. When the
wave amplitude is finite, particle simulations show that par-
ticles can diffuse over 90 degrees because of nonlinearity in
the particle dynamics (e.g., Tsurutani et al. 2002). Nonlinear
interaction between particles and finite amplitude waves is es-
sential for acceleration and transport processes in the presence
of large amplitude waves often observed in situ at the quasi-
parallel shocks.

Performing particle simulations, Scholer et al. (1998)
pointed out that incoming particles gain considerable energy
at the first encounter with the shock. This cannot result from
the leakage process. Sugiyama et al. (2001) proposed a sim-
ple idea to explain this; they found that particles are trapped
at the shock front by large amplitude waves resulting in rapid
acceleration. This process is the same as the first order Fermi
acceleration, i.e., the particles are scattered back and forth in
shock front. In order to accelerate particles efficiently, there-
fore, the shock must have a sharp transition in their model.
While the quasi-perpendicular shocks can have a sharp tran-
sition, however, the quasi-parallel shocks have a rather broader
spatial scale. Recent electric and magnetic field measurements
gave clear evidence that the quasi-parallel shock front struc-
ture can be presented as a patchwork of short large amplitude
magnetic structures (SLAMS) rather than a continuous tran-
sition (Schwartz & Burgess 1991; Schwartz et al. 1992). The
first measurements obtained from Cluster satellites of the shock
electrostatic potential (Behlke et al. 2004) are often ignored in
the context of ion acceleration since the electrostatic fields of
shocks are considered to decelerate ions.

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20042283

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20042283


392 Y. Kuramitsu and V. Krasnoselskikh: Acceleration of charged particles by gyroresonant surfing at quasi-parallel shocks

The direct in-situ observations of particles and related wave
activities are impossible in astrophysical plasmas. Therefore,
revealing the relation between observed ion populations and
shock structure with various wave activities by using in-situ
observations of the Earth’s bow shock is essential to under-
stand the acceleration of energetic particles or cosmic rays from
thermal plasmas. Recent satellite programs have carried out de-
tailed studies of the Earth’s bow shock, a relatively small and
weak nonrelativistic version of astrophysical shocks. In situ
studies of particle distribution functions have allowed identi-
fication of several suprathermal ion populations and their rela-
tionship to different forms of wave activity in the vicinity of
the quasi-parallel shock front (Paschmann et al. 1981; Hoppe
et al. 1981). Generation of different ion populations is often ex-
plained by the following scenario. Some portion of solar wind
ions is specularly reflected at the shock front, the reflected
population then excites low-frequency quasi-monochromatic
waves via Doppler shifted cyclotron resonance, and these
waves in turn scatter particles, forming a diffuse distribution
(Hoshino & Terasawa 1985). In this scenario, another popula-
tion, the intermediate ions, is trapped by the waves and some-
times observed as phase bunched or “gyrating” ions (Meziane
et al. 2001). The other possible scenario is the direct production
of gyrating ions as a result of a specularly reflection of the solar
wind at the shock (Gosling et al. 1982). Since He2+/H+ density
ratios in the field aligned beams show significantly smaller val-
ues than those of diffuse ions, the evolution from beam to dif-
fuse distribution is unlikely to take place (Ipavich et al. 1984,
1988; Fuselier et al. 1995; Fuselier 1995). It is more proba-
ble that the diffuse ion distributions evolve from ring beam
populations produced by direct reflection from the solar wind
(Fuselier et al. 1995; Fuselier 1995). In both scenarios, ions
must have been reflected before they are observed in the fore-
shock region. However, if there is no acceleration, the spec-
ularly reflection results in a strong underestimate of particles
perpendicular velocity and predicts narrower velocity distribu-
tions than observed.

In this paper, we study ion motion in the vicinity of shock
type structures or SLAMS in the presence of an electromag-
netic circularly polarized wave, as often observed in in-situ ob-
servations. In Sect. 2, we describe the basic idea of gyrores-
onant surfing acceleration. We start from a simplified model
where an electromagnetic wave and an electrostatic field act
on a particle resulting in strong and efficient acceleration un-
der a certain condition, namely, when a particle is in resonance
with the propagating wave. In Sect. 3, we show that the ac-
celeration operates for a wide class of potentials. Before dis-
cussing the gyroresonant surfing in the presence of the potential
at the shock, we consider the upstream particle motion where
the electrostatic field is absent and the electromagnetic field
is present. We discuss the finite amplitude effects on particle
trapping by the monochromatic wave. Then, we start with the
resonant particles to investigate fundamental properties of gy-
roresonant surfing. We show that the acceleration occurs only
for certain polarizations of electromagnetic waves, while for
the others the action of fields results in deceleration. Next, we
use the more realistic parameters often observed in situ mea-
surement or in computer simulations. We show that for a

shock-like profile of the potential with a monochromatic wave
excited by the specularly reflected portion of the solar wind, the
acceleration occurs efficiently for reflected particles. In Sect. 4,
we summarize our results and discuss the injection problem for
cosmic rays.

2. Basic idea

We introduce gyroresonant surfing (Kuramitsu &
Krasnoselskikh 2005) focusing on a resonant particle in
an ideal situation. We consider a parallel shock geometry
where a monochromatic electromagnetic wave propagates
parallel to a background magnetic field with a certain velocity
with respect to the upstream plasma. We assume an electro-
static potential profile of the shock varying along the same
direction. The basic equations are the equations of motion,

m
du
dt
= e
(
E +
u

c
× B
)
, (1)

with the electric and magnetic fields given by E = (Ex, Ey, Ez)
and B = (B0, By, Bz), where B0 is the magnitude of the back-
ground magnetic field, and Ex = −∂ϕ/∂x is the electrostatic
electric field. The electromagnetic wave’s magnetic field is
written as

By + iBz = Bw exp i(kx − ωt + θw), (2)

where Bw is the wave amplitude, k is the wave number, ω is
the wave angular frequency, and θw is the phase. The transverse
electric field is determined from the relation k × E = ωB/c.
Using the complex variable ṽ = vy+ ivz, the perpendicular com-
ponent of Eq. (1) is written as

d
dt

[ṽ exp(iΩt)] = −iΩ(cp − vx)b exp i(kx − ωt + Ωt + θw). (3)

Here we focus on the resonant particles satisfying Eq. (12). As
we see in the next section, in the presence of a monochromatic
wave without other forces, particles are trapped around the res-
onant velocity by the wave. Thus, the particle parallel velocity
oscillates around the resonant velocity except for the center of
trapping. We assume that the electrostatic potential acts so that
the particles keep the exact resonance condition, vx = vr. In
such ballistic motion, one can set x = x0 + vrt, and x0 = 0
without losing generality. Integrating Eq. (3) gives

ṽ = −i
Ω2b

k
t exp i(θw − Ωt) + v⊥0 exp i(θp −Ωt), (4)

where v⊥0 and θp are constants determined by initial conditions.
To satisfy the resonance condition along the trajectory, the RHS
of the parallel component of Eq. (1) must be zero. To satisfy
this the electrostatic field should have the form,

e
m

Ex = −Ω
3b2

kvr
x − Ωbv⊥0 sinψ0, (5)

where ψ0 = θw − θp is the initial phase difference between the
wave and the particle and time is converted to space using the
relation x = vrt. Thus in the presence of such an external force,
particles can be accelerated monotonically in the perpendicular
direction.
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Fig. 1. Resonant particle (solid lines) trajectories are shown a) in x−vx

space with electrostatic potential (dotted line); b) in the perpendicular
plane; and c) the time evolution of v⊥.

We show in Fig. 1 the particle trajectories obtained by nu-
merical integration of Eq. (1), where the electrostatic field is
given by Eq. (5). All the variables are normalized using B0,
|cp|, and Ω. Figure 1 shows the trajectories of a resonant parti-
cle (solid lines) in x − vx space together with the electrostatic
field (dotted line) (a), in perpendicular velocity space (b), and
the time evolution of the ion perpendicular velocity (c). The
parameters are b = 0.3, k = 2, cp = 1, ψ0 = 3, v = 1, and
vx = vr = 0.5. In Fig. 1a, the particle propagates against the
electrostatic potential, which is calculated from Eq. (5) for this
ion, keeping the parallel velocity constant. From panels b and c,
one can see that the particle is accelerated monotonically in the
perpendicular direction satisfying the cyclotron resonance con-
dition along the trajectory.

Figure 2a shows the time evolution of relative phases ψ
(solid lines) with the same parameters as in Fig. 1 except ψ0

ranges [0, 2π]. The relative phases approach π/2 (dotted line)
asymptotically. Since the particles have a π/2 phase difference
with the magnetic field, they are in phase with the electric field
of the electromagnetic wave. The trajectories are unstable when
ψ0 is close to 0 and 2π, which corresponds to the separatrix
when −∂ϕ/∂x = 0. Figure 2b shows the time evolution of vy
(solid lines) and Ey (dotted line). Particles begin to oscillate in
phase with the wave electric field with time resulting in efficient
acceleration. This phase synchronization can be understood as
follows. From Eq. (4) the y component of the particle velocity
is written as

vy =
Ω2b

k
t sin(θw −Ωt) + v⊥0 cos(θp − Ωt). (6)
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Fig. 2. a) Time evolution of ψ. Regardless of the initial values, ψ tends
to π/2 (dotted line) as time passes. b) Time evolution of vy (solid lines)
and Ey (dotted line) are shown.

The first and second terms of the RHS give the oscillation with
growing amplitude and Larmor motion, respectively. The same
component of electric field is written as

Ey =
cp

c
Bw sin(kx − ωt + θw). (7)

We can write the argument of sine which particles will feel
as θw − Ωt using the resonance condition Eq. (12). Thus the
wave has the same phase as the growing oscillation part of the
particle. In Eq. (6) the first term is dominant and the second
term is negligible when t is large. Consequently, the particle
gyrophase starts to synchronize with the electromagnetic wave
phase by the dragging force of the electrostatic field resulting
in efficient acceleration in the perpendicular direction.

We show another example in Fig. 3 where an electro-
static field attempts to accelerate a particle. The parameters are
k = 0.5, v = 2, vx = vr = −1, and the others are the same as
Fig. 1. From Eq. (5), the electrostatic potential decreases along
the trajectory, thus the particle will be accelerated in the paral-
lel direction. However, the particle keeps the resonant condition
in panel a and is accelerated efficiently in the perpendicular di-
rection in panel b and c, similar to the situation when the elec-
trostatic field attempts to decelerate particles. Since the wave
number is smaller than in the previous run, the rate of perpen-
dicular velocity gain is higher. The ratio of rates corresponds to
the wave number ratio. The energy that a particle gets is much
larger than the potential energy difference. Thus, the acceler-
ation is not a simple transformation from parallel to perpen-
dicular energy, but rather is due to the electromagnetic electric
fields as we described above. We will return to this point later.
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Fig. 3. Same as Fig. 1, except k = 0.5, v = 1, and vx = vr = −1. The
electrostatic field “pushes” the particle in the parallel direction along
the trajectory.

3. Application to parallel shock fronts

3.1. Model

The above ideal situation is useful to understand the basic
feature of the gyroresonant surfing. The gyroresonant surf-
ing acceleration can take place not only for resonant particles
but also non-resonant or near-resonant particles (Kuramitsu &
Krasnoselskikh 2005). It follows then that the acceleration op-
erates in the presence of a wider class of potential fields. This
flexibility comes from the trapping of particles by the wave,
since there is little difference in dynamics between resonant
and trapped particles. As we see below, in the presence of fi-
nite amplitude wave particles close to resonance are trapped by
the wave in repeated acceleration and deceleration around the
trapping center that is out of phase with the wave electric field.
Thus, there is no net energization of particles in the wave frame
when the other external forces are absent. Therefore, if the trap-
ping center can be shifted to be in-phase with the wave electric
field, i.e., if the particle gyrophase is synchronized to the phase
of the wave electric field, there will be a net energy change
of the particle. Importantly, this phase shift does not need to
be exactly in-phase, but even a slight shift can make the net
energy change; this is valid only for trapped particles. In this
section we apply our model to parallel shock fronts, including
SLAMS, which generally grow from upstream to downstream.
Thus, we assume a model electric field of the form

Ex = −a sech2
( x

l

)
, (8)

which gives a tanh-type electrostatic potential with a poten-
tial difference ∆ϕ = 2al. Note that in general the electrostatic

potential in the (quasi-)parallel shocks and SLAMS is com-
plicated and it can vary widely inside the shock and SLAMS.
SLAMS could have bipolar potential in a zeroth order approx-
imation. Nevertheless, the front of such MHD-type structures
can be considered as growing and can be modeled by Eq. (8).

Let us define the reference frame where the electrostatic
field profile is at rest as the S-system and the upstream plasma
frame as the P-system. We consider a shell distribution with a
thermal spread corresponding to vt as a part of upstream plas-
mas. We choose the system such that both the wave and the par-
ticles are convected towards the electrostatic potential profile.
In solar wind plasma the bulk velocity is often much larger than
the thermal velocity vu � vt, and the monochromatic wave,
which is associated with the intermediate or gyrating ions, is
considered to be excited via cyclotron resonance by the back-
streaming component of the solar wind. We assume here spec-
ularly reflection, i.e., vr = −vu in the S-system (e.g., Fuselier
et al. 1990). Thus, the wave should be a right-hand polarized
anti-parallel propagating wave (R−), and the wave number has
to satisfy the relation k = Ω/(2vu + cp), where the factor two
comes from the particle velocity in the P-system. Such a low
frequency MHD wave, here an Alfvén wave, can have a larger
amplitude as is often detected by in-situ observations (Hoppe &
Russell 1983). Moreover, the electrostatic potential energy dif-
ference between the upstream and downstream is believed to be
comparable to that of the upstream plasma flow, (∆eϕ ∼ mv2

u/2)
(Scholer et al. 2003).

Some important external parameters are: the electric field
amplitude a, spatial scale l, the wave amplitude b, the wave
number k, the upstream plasma velocity vu, and the particle
thermal velocity vt. We define the wave and the particle pa-
rameters in the P-system, then transform all the variables to the
S-system. Injecting the particles from far upstream of the pro-
file, we solve Eq. (1) in the S-system numerically.

3.2. Trapping of particles by an electromagnetic wave

Before discussing the combined effects of the electromagnetic
wave and the electrostatic potential on a particle, we study the
upstream particle motion where the role of the electrostatic
field is still negligible. The description of such motion was
studied in detail by many authors (see for instance, Karpman
1974; Matsumoto 1979). In the presence of a finite amplitude
electromagnetic wave, particles having a velocity around res-
onant velocity are trapped by the wave. To describe this, we
define the phase relation of particle and wave in the perpendic-
ular plane to the background magnetic field as shown in Fig. 4,
where φp is the particle gyrophase, φw = kx − ωt + θw is the
wave phase, and ψ is their difference. Now we use a coordi-
nate moving with the wave phase velocity (W-system), namely
vx − cp → ux, where cp ≡ ω/k is the wave phase velocity. In
this system particle energy is conserved. We rewrite ux = uµ
and u⊥ = u(1−µ2)1/2, where µ is the pitch angle cosine defined
in the W-system. We can reduce the equation of motion to

µ̇ = −∂H
∂ψ

, ψ̇ =
∂H
∂µ

; (9)
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Fig. 4. Definition of the phase relation in the perpendicular plane is
shown.

here both equations are normalized to the ion gyrofrequency
Ω ≡ eB0/mc, and H is the first integral written as

H =
κ

2

(
µ +

1
κ

)2
+ b(1 − µ2)1/2 cosψ, (10)

where b is the wave amplitude normalized to B0, and κ ≡ ku/Ω
is a dimensionless parameter that represents the scale ratio be-
tween particle and wave. The constant of motion H is equiv-
alent to χ in (Matsumoto 1979; Hoshino & Terasawa 1985).
Note that if κ is the same, any pair of u and k have a physi-
cal similarity. These are simple expressions of the evolution of
the relative phase and pitch angle. In this phase plane, we find
the stationary point by letting d/dt ∼ 0. From the first equa-
tion of (9), stationary points are µ = ±1 or ψ = 0, π. Since we
derived Eq. (9) under the assumption of u⊥ � 0, we should re-
move µ = ±1. However, we can have ψ = π/2, 3/2π from the
second equation of (9) even when µ = ±1. When ψ = 0 or π,
we obtain the equation for stationary points as

f (µ̄) = (1 − µ̄2)(1 + κµ̄)2 − b2µ̄2 = 0, (11)

where µ̄ denotes the stationary point of µ. In the linear limit,
i.e., b → 0, Eq. (11) can be written as (1 − µ̄2)(1 + κµ̄)2 = 0.
The first parenthesis represents beam particles; since there is
no magnetic field perturbation, beam particles are force free.
The second parenthesis denotes the linear cyclotron resonance
condition, which is written using the original variables as

ω − kvx −Ω = 0. (12)

In the W-system it can be written as

κµ + 1 = 0. (13)

Thus there is no linear resonance for |κ| < 1. Only when |κ| > 1
does linear cyclotron resonance take place.

Figure 5 shows the particle trajectories in the µ − ψ phase
space when κ = 3 with wave amplitude b = 0.01, 0.1, 1, 10.
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Fig. 5. Particle trajectories are shown in the µ − ψ phase space with
κ = 3 when a) b = 0.01; b) b = 0.1; c) b = 1; and d) b = 10. One line
corresponds to one constant of motion H (Eq. (10)).

When the wave amplitude is small (b = 0.01), particles are
trapped around the linear cyclotron resonant velocity, µr =

−1/κ, which is equivalent to vr = (ω − Ω)/k using the original
variables. As the wave amplitude becomes larger, the trapping
region also becomes larger. A new trapping region is born in a
location far from the linear cyclotron resonance condition. We
refer to this trapping as the “non-resonant trapping”. In the very
large amplitude limit, the non-resonant trapping region has al-
most the same size as the trapping region from the linear reso-
nance (b = 10).

Figure 6 shows the particle trajectories in the case κ = 0.3
with the same amplitude as Fig. 5. Since |κ| < 1, we can see no
trapping region when the wave amplitude is small, b = 0.01.
However, as the wave amplitude becomes larger, the (non-
resonant) trapping regions appear around the beam velocity as
we saw in the previous case; the resonant and the non-resonant
trapping regions occupy almost the same areas of the phase
space. When a large amplitude wave exists, particles can be
trapped regardless of the linear cyclotron resonance condition.

3.3. Resonant particles

As mentioned above, since the monochromatic waves are ex-
cited by the backstreaming particles, the incoming solar wind
particles do not satisfy the resonance condition, and the wave
is R− in the P-system. In spite of this, to study the fundamental
aspects of gyroresonant surfing, we start by considering reso-
nant particle motion under the influence of each of the wave
families, i.e., either right or left-hand polarization, and either
parallel or anti-parallel velocity with respect to the background
magnetic field in the P-system. Thus, the parameters we ap-
plied here are not realistic in terms of intermediate or gyrating
ions associated with the monochromatic wave.
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Fig. 6. Same as Fig. 5 except the κ = 0.3. Particles cannot satisfy the
linear cyclotron resonance condition Eq. (12).

Let us start with the dependence of acceleration on the
wave families. In the presence of R− or the left-hand polar-
ized parallel propagating wave (L+), ions parallel velocity must
be negative to resonate with the wave vr < 0 in the P-system.
On the other hand, in the presence of the left-hand polarized
anti-parallel (L−) or the right-hand polarized parallel propagat-
ing wave (R+), the resonant velocity is positive vr > 0 in the
P-system. We keep parameters equal for all runs as a = 1,
l = 10, b = 0.2, vu = 4, vt = 4, except k = 0.4, cp = −1
for R−, k = 0.4, cp = 1 for L+, k = −0.4, cp = −1 for L−,
and k = −0.4, cp = 1 for R+. We choose the wave numbers
and the thermal velocity so that the shell includes the resonant
velocity. From the resonance condition Eq. (12) the resonant
velocities are vr = −3.5(0.5),−1.5(2.5), 1.5(5.5) and 3.5(7.5),
respectively in the P (S)-system.

Figure 7 shows the difference of perpendicular velocity of
particles between before and after the interaction ∆v⊥ with the
profile as a function of the initial pitch angle and the phase in
the presence (red dots) of R− (a), L+ (b), L− (c), and R+ (d),
respectively. Here µ ≡ vx/v is the pitch angle cosine in the P-
system. In (a) acceleration is most efficient, in (b) we still see
efficient acceleration, although we cannot see it in (c) and (d).

Figure 8 shows ion trajectories upstream of the profile, i.e.,
Ex = 0, in the same phase space as Fig. 7. Note that a shell in
the P-system is different from that of the W-system; the group
of particles having a constant value of the velocity (v0 = const.)
in one reference frame does not satisfy the same condition in
another reference frame (u0 � const.). Thus in the P-system
we cannot write Eq. (1) in a form like Eq. (9). Some trajecto-
ries can cross in the phase space since they have the same H
but different κ. However, this is not essential to gyroresonant
surfing. Comparing Figs. 7 and 8, we can see that the gyrores-
onant surfing is efficient around trapping regions. While for (a)
and (b) (k > 0, vr < 0 in the P-system) the trapped particles
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are accelerated efficiently, for (c) and (d) (k < 0, vr > 0 in the
P-system) trapped particles are decelerated.

Keeping the parameters for the particles and potential the
same as Fig. 7, we change the wave numbers over wide range.
As we previously noted, to apply our theory to the parallel
shock environment, the wave frequency must be smaller than
the ion gyrofrequency. However, it is always useful to know
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what happens in the limits where the governing parameters are
small or large. Figure 9 shows the wave number dependence
of perpendicular acceleration using a wide parameter space of
the wave number, where circles, squares, triangles and inverse
triangles represent the presence of R−, L+, L− and R+, respec-
tively. In (a) the ensemble average of the particle perpendicular
velocity after interaction with the profile is plotted against the
absolute value of the wave number. The ensemble averages are
taken over all the particles, for example, in Fig. 7a, and so on.
In (b) the maximum values of perpendicular velocity out of
the same ensemble are plotted in the same coordinates as (a).
When the wave number is very large, that is, at the high fre-
quency limit, both the ensemble averages and maximum values
approach constants; 〈v⊥〉 ∼

√
2/3vt and the maximum v⊥ ∼ vt.

Those are the average and maximum values of the initial dis-
tribution. Thus nothing happens in this limit in the perpendic-
ular direction regardless of the wave family. When the wave
number is very small, the effects of waves are also small. The
maxima are larger than vt; however, the averages are still close
to
√

2/3vt, suggesting that the waves scatter particles in the per-
pendicular direction but that the net acceleration is still small.
When 0.03 < |k| < 1, efficient acceleration takes place for
R− and L+, on the other hand for L− and R+ no efficient ac-
celeration is observed. Comparing (a) and (b), peak values
are reversed for R− and L+, since 〈v⊥〉 depends on how many

particles are accelerated and this is dependent on the trapping
width in the µ − ψ phase space (for instance Figs. 8a and 8b).
There is a large difference in low frequency waves (|k| < 1)
between k > 0 (R−, L+) and k < 0 (L−,R+), namely vr < 0
and vr > 0 in the P-system. In (c) and (d) the abscissa of (a)
and (b) are converted to resonant velocity (in a linear scale)
and its absolute value in the S-system, respectively. While the
resonant velocity for L−,R+ in the P-system is always positive,
for R−, L+ it can be positive or negative because of the Doppler
shift. It is clear that the acceleration is efficient around vr = 0,
since the acceleration time is proportional to l/vx, i.e. the time
for a particle to cross the potential. Another reason is that par-
ticles are initially distributed vu − vt ≤ vx ≤ vu + vt, in this
case 0 ≤ vx ≤ 8, and if particles are specularly reflected by the
potential, they are distributed as −8 ≤ vx ≤ 0. As a natural con-
sequence of the gyroresonant surfing, particles are accelerated
when resonant waves exist.

Focusing on R− and L+, the acceleration is more efficient
when vr < 0 than vr > 0. This is understood from Eq. (4);
the ideal perpendicular acceleration is inversely proportional
to k, and k is smaller when vr < 0 than vr > 0. This is clear
in (d), where in the large |k| limits the resonant velocity ap-
proach ±1(3, 5) in the P (S)-system since vr = cp + vu − Ω/k,
and maximum values of v⊥ approach vt(=4). From these limits
as k becomes smaller, the maximum value of v⊥ becomes larger
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when |vr| becomes smaller. From the peaks, as |vr| increases the
maxima become smaller, where the sign of resonant velocity
is negative. Reflected particles can be accelerated in a similar
way, as was shown in Fig. 3. We will discuss this further later.

On the other hand, in the presence of L− and R+ the larger vr

has a larger maximum. As seen in Figs. 7c and 7d, the trapped
particles are decelerated rather than accelerated. At some point
0.3 � k � 3, 〈v⊥〉 is smaller than the asymptotic value, i.e.,
there is a net deceleration. To confirm this, we perform test runs
using the same resonant velocity in the S-system and the same
absolute value of wave number with different signs. We set vx =

vr = 1.5, vu = 1.5, then k = ±1 for L+ and L−, respectively. The
other parameters are b = 0.5, a = −1, l = 20, v⊥ = 5, and
ψ = π (0) for L+ (L−).

Figure 10 shows the particle trajectories in the presence of
L+ (solid lines) and in the presence of L− (dashed lines) in v⊥−x
space (a), in vx − x space (b) and in the perpendicular velocity
space (c). In the presence of L+ the particle is accelerated ef-
ficiently around the profile in the perpendicular direction (a)
keeping the parallel velocity constant on average (b). In (c) we
can see the typical trajectory of gyroresonant surfing accelera-
tion, which is spiral. On the other hand, in the presence of L−,
even though the initial velocity is the same, the particle is decel-
erated in the profile in the perpendicular direction (a), keeping
vx constant on average (b) before reflection. After reflection,
while v⊥ is almost constant (a), in the parallel direction the par-
ticle is accelerated efficiently. In (c) we can see a similar trajec-
tory to the red one, however this is a deceleration process. Thus,
there exists a gyroresonant surfing deceleration. Since the per-
pendicular deceleration ends when v⊥ = 0, it is impossible to
keep on decelerating monotonically. This results in the reflec-
tion of the particle by the profile. The parallel acceleration after
reflection is explained as follows. The gyroresonant surfing can
transport a particle to a higher potential than the parallel energy
of the particle, however, the particle cannot continue gyroreso-
nant surfing because of the above limits. After reflection, parti-
cle are accelerated in the parallel direction by the potential. In
(c) the particle is reflected (vx = 0) at x ∼ 0, thus the potential
difference between here and upstream is about half of the total
potential difference. If this potential energy (∼20) is converted
into particle parallel energy, vx → −

√
40, this is consistent with

the numerical result.

3.4. Non-resonant particles

Up to now we used ideal parameters to show the fundamen-
tal properties of gyroresonant surfing. Here we choose a more
realistic set of parameters corresponding to typical in situ ob-
servations. To this end, we choose the upstream bulk velocity
to be larger than the thermal velocity (vu = 6, vt = 1.5), the
wave amplitude is moderately large (b = 0.5), and the wave
frequency is small (|ω| = 0.1), which is typical of in situ ob-
servations. The other parameters are the same as in Fig. 7a.
Now flow energy of the upstream particles is comparable to the
potential difference across the shock and the resonant velocity
is close to −vu. All the particles do not satisfy the resonance
condition Eq. (12), vr = −5(−11) in the S (P)-system.

Figure 11a shows the dependence of the perpendicular ac-
celeration on the initial pitch angle and phase. We can see
a quite efficient acceleration and a clear separation between
accelerated and non-accelerated particles in the phase space.
Figure 11b shows the particle parallel position after interac-
tion with the profile in the same phase space as in Fig. 11a.
We also see the clear separation in particle positions and the
considerable acceleration corresponding to reflected particles
x < 0. Figure 11c shows the distribution of the particles before
(blue crosses) and after (red dots) interaction. The green circles
represent the distribution when the wave is absent b = 0 for
reference. In this case, upstream particles with mv2

x/2 < e∆ϕ
cannot propagate downstream resulting in “specularly” reflec-
tion, vx → −vx. These reflected particles are considered to ex-
cite the monochromatic wave via cyclotron resonance. On the
other hand, particles with mv2

x/2 > e∆ϕ go through the poten-
tial losing the parallel energy by an amount of the potential
difference, vx → (v2

x − 2e∆ϕ/m)1/2. On the contrary, when the
wave exists, there are two distinct components; one is thermal,
low energy particles, and the other is non-thermal, high energy
particles. Some of thermal particles have a parallel velocity less
than zero. However, from (b) this is simply because of oscil-
lations by the large wave amplitude. All the thermal particles
are downstream particles and all the non-thermal particles are
reflected upstream ones. The non-thermal particles are not dis-
tributed around the resonant velocity, and have a smaller abso-
lute value of the parallel velocity than the resonant one. As we
see in Fig. 6, when the wave amplitude is large, particles can
be trapped by the wave regardless of the resonance condition.

Figure 12 shows trajectories of particles from those in
Fig. 11 in x − v⊥ space (a), in x − ψ space (b) and in veloc-
ity space (c). The initial parameters are chosen as ψ0 = π,
µ0 = −0.9, 0 and 0.9, represented with red, black, and blue
lines, respectively. The first two particles have a smaller initial
parallel energy than the potential, however, the particle with
µ0 = 0 goes through the potential. This is due to the transport
property of gyroresonant surfing. In (a), the reflected particles
(red) are accelerated efficiently before and after reflection by
the potential; on the contrary, the particle with µ = 0 propa-
gating to the downstream (black) is slightly accelerated. From
panel b, the reflected particles are trapped before and after re-
flection. The transmitted particle with µ = 0 is trapped when it
goes through the potential, although one with µ0 = 0.9 is not
trapped through the trajectory. Thus, non-thermal particles are
accelerated on approaching and coming back from the poten-
tial; on the other hand, thermal particles can be accelerated only
when they go through the potential. There is no efficient accel-
eration in the parallel direction, unlike in Fig. 10b, where the
particle is accelerated about four times more efficiently than by
specularly reflection. Furthermore, the particles have smaller
|vx| ∼ 2 than that of specularly reflection, |vx| ∼ 5. This is also
because of the transport property of gyroresonant surfing; even
when a potential attempts to accelerate particles in the paral-
lel direction, particles can keep the parallel velocity constant
while they are accelerated in the perpendicular direction. We
have already illustrated this in Fig. 3.

Finally, we discuss the dependence of perpendicular ac-
celeration on the spatial scale of the potential and the wave
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amplitude. Although the potential difference is believed to be
comparable to the upstream plasma kinetic energy, there are
not many observations of shock or SLAMS potential, more-
over the estimates of spatial scales are still controversial. Thus,
it is interesting to study the dependence of the characteristics
of acceleration on the spatial scale of the potential, keeping the
potential difference across the layer constant. These character-
istics are determined by the combination of two effects, trap-
ping of a particle by the electromagnetic wave and dragging
or pushing by the electrostatic potential. Therefore, the bal-
ance of these two forces is of special importance here. We also
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Fig. 11. a) Difference of perpendicular velocity; and b) parallel posi-
tion after the interaction of particles in the same phase space as Fig. 7.
c) The distribution of particles in velocity space are shown with the
resonant velocity (dotted line).

focus on the wave amplitude since the theoretical electric field
Eq. (5) is proportional to b2. We change a, l and b keeping
∆ϕ = 2al and the other parameters the same as in Fig. 11.

Figure 13 shows the ensemble average of the perpendicular
velocity difference of particles before and after interaction with
the profile (a), and those of the maximum values (b) in the b− l
parameter space. Note that the potential spatial scale is directly
related to the amplitude of electrostatic field, because we keep
the potential difference constant. From Fig. 13a, looking at a
certain l, one can see that 〈∆v⊥〉 has a maximum in terms of b,
and when the l is large, the b tends to be small. The larger wave
amplitude naturally needs the larger electrostatic field to accel-
erate particles efficiently. However, the b2 dependence is not
clear; this may come from the functional difference between
Eqs. (5) and (8). In (a), when b = 1 and l = 1, the net accelera-
tion is most efficient, and when b = 0.1 and

√
10, acceleration

is efficient in a relatively wider parameter space. In (b), when
〈∆v⊥〉 is large, the maximum is also large. However, when the
wave amplitude is very large and the potential scale is very
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small, i.e., the electric field amplitude is very large, we can see
very efficient acceleration. Even a very thin shock can produce
high energy particles when a large amplitude wave exists.

4. Discussion and conclusion

We have discussed the gyroresonant surfing operating by the
combination of trapping of particles by the electromagnetic
wave and the parallel force of the electrostatic field. One im-
portant aspect of this process is the efficient acceleration in the
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perpendicular direction. In the presence of a finite amplitude
wave, particles are trapped by the wave, repeating acceleration
and deceleration as we see in Fig. 5, while they keep the en-
ergy constant in the wave frame. When an electrostatic field is
introduced here, the parallel force tunes the particle gyrophase
to the phase of the wave electric field, resulting in mono-
tonic acceleration in the perpendicular direction. This acceler-
ation mechanism is similar to the conventional surfing acceler-
ation (Sagdeev 1966; Sagdeev & Shapiro 1973; Katsouleas &
Dawson 1983; Zank et al. 1996; Lee et al. 1996), where parti-
cles “surf” on the electrostatic field. In our theory, particles surf
on the rotating perpendicular electromagnetic wave spirally as
seen in Figs. 1b, 3b, and 10c. The acceleration is most efficient
in the presence of a right hand polarized anti-parallel propagat-
ing wave and a left hand polarized parallel propagating wave in
the plasma frame. On the other hand, in the presence of a left
hand polarized anti-parallel propagating wave and a right hand
polarized parallel propagating wave, particles are decelerated
rather than accelerated. Gyroresonant surfing deceleration also
exists.

Another important aspect of gyroresonant surfing is trans-
portation of particles downstream even when the particle en-
ergy is less than the potential. This is very important since the
transport of particles from upstream to downstream of shocks
is quite often discussed only in terms of parallel energy bal-
ance. Moreover, if a particle is transported to a high poten-
tial position then the gyroresonant surfing is terminated; this
leads to parallel acceleration of reflected particle due to the
electrostatic field as seen in Fig. 10b. The reflection of parti-
cles transported to high potential fields by gyroresonant surfing
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can accelerate particles much more than the specularly reflec-
tion, which is simple mirroring of the parallel velocity of par-
ticles. Although we have discussed the in-coming particle, it
is possible to transport downstream particles upstream without
gaining energy of amount of the electrostatic potential differ-
ence. The same mechanism can also accelerate or decelerate
electrons. The major difference will consist of the scales and
characteristics of waves needed to provide a similar efficiency.
For electrons, we have to consider the electron scale, high fre-
quency wave, such as whistler waves, instead of the Alfvén
waves or MHD waves considered here. Such high frequency
waves are also common in the shock environments, for exam-
ple, whistler precursor of SLAMS (Dudok de Wit et al. 1995).
One interesting application to electron transport at collisionless
shocks is the so-called de Hoffman-Teller gap (Gedalin 1999).
All the electrons passing the shock potential must be acceler-
ated by the amount of the potential difference. Thus, from this
idea there should be a hole in the electron distribution, however,
such a hole distribution has not been observed in in situ mea-
surements. The gyroresonant surfing can potentially transport
electrons without gaining energy from the electrostatic field,
and can also decelerate them in the perpendicular direction.

Since the monochromatic waves often observed are ex-
cited by backstreaming ions, the wave must be R− in the
plasma frame. When we apply the appropriate parameters as
often observed in situ measurements, ions are accelerated ef-
ficiently and are separated into two populations, one thermal,
low-energy downstream particles, and another non-thermal,
high-energy upstream particles with a ring beam distribution
(Fuselier et al. 1995; Fuselier 1995) or like gyrating ions of-
ten associated with the quasi-monochromatic waves (Meziane
et al. 2001). Furthermore, the typical energy of accelerated par-
ticles by this mechanism can be estimated to be 4–5 times
greater than the potential difference of the electrostatic poten-
tial. Thus, it is 4–5 times greater than the energy of the up-
stream particles. This can be much larger than the thermal en-
ergy of particles. This particular feature makes this mechanism
an excellent candidate to operate as an injection mechanism for
DSA acceleration in quasi-parallel shocks. Incoming upstream
particles do not satisfy the resonance condition initially, as in-
dicated in Fig. 11c; the resonant velocity (dotted line) is far
away from the initial distribution of ions (blue crosses). Thus,
those particles are simply decelerated by the potential, then,
some of them are trapped by the wave because of the large
wave amplitude effects. Among such trapped particles, some
can be reflected by the potential and accelerated by gyrores-
onant surfing, where the potential field attempts to accelerate
particles, resulting in clear separation of non-thermal reflected
and thermal transmitted particles.

In this paper, we have neglected the wavelength, the wave
amplitude, the wave phase velocity, and the plasma flow
changes through the shock crossing. In general, the plasma is
compressed by the shock, thus, within linear theory, the wave-
length becomes shorter, the wave amplitude becomes larger, the
Alfvén velocity becomes larger, and the plasma flow is decel-
erated downstream of the shock. A change of wavelength can
be crucial for cyclotron resonance; however, as we have shown
in Fig. 9, the gyroresonant surfing has a large flexibility, about

one order of wavelength, to accelerate particles efficiently. The
amplification of wave amplitude and Alfvén velocity makes the
acceleration more efficient, and the deceleration of plasma can
decrease the efficiency because of the diminishing of the wave
electric field in the S-system. Further, neglecting those changes
corresponds to excluding the possibilities of first and second
order Fermi acceleration. Thus, we have discussed the pure ef-
fect of a combination of wave and potential, that is, gyroreso-
nant surfing. Comparing Fig. 2b or Fig. 10b of Sugiyama et al.
(2001) and our Fig. 12c one can see clear difference; the first or-
der Fermi accelerated particle crosses v‖ = 0 several times with
(approximately) two scattering centers, on the other hand, in
our case particle are accelerated monotonically in the perpen-
dicular direction. While the particle is accelerated by gyrores-
onant surfing, there is no scattering center. While the particle is
downstream and upstream (Ex ∼ 0), there is only one scatter-
ing center. Furthermore, unlike to their model, where the shock
transition has to be sharp, the gyroresonant surfing has a large
flexibility of wave amplitude and shock potential width as seen
in Fig. 13. Moreover, since the reflected particles are acceler-
ated substantially, the downstream plasma state is not crucial
for those particles.

The gyroresonant surfing is efficient in a wider range of pa-
rameter space. Importantly it is not an exclusive process. When
the field inhomogeneity exists and/or at the oblique shocks, gy-
roresonant surfing is still efficient (not shown here, details will
be published elsewhere). Furthermore, in the presence of ellip-
tically and linearly polarized waves, which are often observed
in situ in association with diffuse ions, particles are accelerated
efficiently and diffuse in pitch angle at the same time as diffuse
ions (submitted to J. Geophys. Res.). We can conclude that gy-
roresonant surfing provides an efficient injection mechanism;
the particles are accelerated from the thermal background and
form a non-thermal population to be further accelerated by the
DSA. The model electric field Eq. (8) used here is considered
to roughly correspond to the shock potential or SLAMS poten-
tial. The electrostatic potential of quasi-parallel shocks was not
directly measured until recent Cluster attempts (Behlke et al.
2004). Further comparison between our model and observa-
tions needs more detailed data of electrostatic fields at shock,
together with the parameter changes we mentioned above.
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