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from hydraulic property scalings revealed by a pumping

test
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bUniversité de Rennes, CNRS, Inra, OSUR – UMS 3343, F–35000 Rennes, France.

cUniversité de Rennes, CNRS, Géosciences Rennes – UMR 6118, F–35000 Rennes, France.

Abstract

A long duration pumping test conducted over 151 days in a fractured sandstone

and shale formation displays a nonstandard drawdown response and anomalous

pressure diffusion, which cannot be properly interpreted using existing frame-

works (e.g., homogeneous, double porosity, boundary conditions, and fractal

models). An alternative framework with simple geometry and more complex hy-

draulic properties is thus proposed to interpret such kind of drawdown responses.

The analytical development allows first to demonstrate all scaling relations in

this interpretation framework. Then, and most importantly, the multi-scale hy-

draulic test provides consistent scalings of transmissivity, T , to storativity, S,

over distances ranging from 83 to 383 m in a faulted area. Drawdown analysis

in several monitoring wells shows persistent decrease of transmissivity in highly

channelized fracture flow structures. In one structure, the cubic dependency

of transmissivity to storativity identifies a well-defined fault and also demon-

strates the validity of Poiseuille flow at a scale rarely investigated. In the other

structure, the linear dependency of transmissivity to storativity indicates that
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the flow-bearing structure is the surrounding fracture network. Well-designed

pumping tests combined with scaling analysis driven by geological evidence thus

provide essential information on flow-bearing structures for site characterization

and modeling tasks. At least for moderate to low permeable fractured rocks,

the scaling of transmissivity to storativity appears to be more informative than

any separate interpretation of hydraulic property scaling exponents.

Keywords: Fractional flow, Hydraulic scaling, Pressure-transient analysis,

Sedimentary rocks, Fractured media, Fault

Highlights

• A simple framework is shown relevant to interpret nonstandard pressure

responses.

• Evidence of limited fracture connectivity from a multi-scale hydraulic test.

• Decrease of transmissivity with scale of investigation observed from a well

test.

• Scalings of T to S can provide essential information on flow-bearing struc-

tures.

• Despite strong heterogeneity, Poiseuille flow appears valid up to hundreds

of meters.
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1. Introduction1

Groundwater hydrology in fractured rocks persistently faces the issue of2

multi-scale heterogeneity resulting in highly different flow structures (Bonnet3

et al., 2001; Berkowitz, 2002; Lei et al., 2017). For instance, in one extreme4

case, most fractures remain dry and flows are localized in a few major fracture5

structures over a hundred meters or more (e.g., Guihéneuf et al., 2014; Maillot6

et al., 2016). In the other extreme case, locally higher fracture connectivity7

promotes more diffuse flows in some densely fractured zones (e.g., National8

Research Council, 1996; de Dreuzy et al., 2012). Any situation may also occur9

such as isolated high fracture flows neighboring lower permeable fracture clusters10

(e.g., Olsson and Gale, 1995; Day-Lewis et al., 2000), or flow channeling at11

small scales up to some homogenization scale where flows become more evenly12

distributed (e.g., Bernard et al., 2006).13

Identification of flow-bearing structures is the first and foremost issue for site14

understanding and management, especially in the context of contaminant trans-15

port and water supply (National Research Council, 1996). Any further char-16

acterization and modeling tasks rely on this identification (e.g., Kikuchi et al.,17

2015; Pham and Tsai, 2016; Ferré, 2017). For extremely channelized flows in a18

given fault (i.e., fracture or zone of fractures with appreciable relative displace-19

ment (Aydin, 1978)), characterization will focus on fault structures and their20

hydraulic properties (e.g., Aydin, 2000; Bense and Person, 2006; Faulkner et al.,21

2010; Savage and Brodsky, 2011; Bense et al., 2013; Farrell et al., 2014; Roques22

et al., 2014). For diffuse flows in highly connected fracture networks, single frac-23

tures become less relevant and more classical equivalent permeability concepts24

could be applied (e.g., National Research Council, 1996; Carrera and Martinez-25

Landa, 2000). It is shown here that extensively monitored well tests allow the26

identification of flow-bearing structures in combination with geologically-based27

interpretation.28

Well test responses have been widely used to characterize reservoir geome-29

tries and hydraulic properties (e.g. Gringarten, 2008). In some cases, well test30
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responses may exhibit nonstandard drawdown explained by fractional flow mod-31

els (e.g., Barker, 1988; Chang and Yortsos, 1990; Acuna and Yortsos, 1995;32

Hamm and Bidaux, 1996; Delay et al., 2004; Le Borgne et al., 2004; Bernard33

et al., 2006; Kaczmaryk and Delay, 2007; Lods and Gouze, 2008). Barker (1988)34

initially proposed the generalized radial flow model as a generalization of flows35

within 1D, 2D or 3D media. The flow dimension, n, is introduced and concep-36

tually related to reservoir geometry (e.g., Doe, 1991). The pressure diffusion is37

normal in this model because the mean square radius of diffusion 〈r2〉 is pro-38

portional to the time, t (e.g., Acuna and Yortsos, 1995; Le Borgne et al., 2004;39

de Dreuzy and Davy, 2007).40

In fractured rocks, however, the diffusion may be slowed down (see de Dreuzy41

and Davy, 2007, and references inside), and to account for this phenomenon42

Chang and Yortsos (1990) and Acuna and Yortsos (1995) proposed a model43

based on diffusion in fractal networks following O’Shaughnessy and Procaccia44

(1985)’s work. In this framework, the mean square radius of diffusion 〈r2〉 scales45

as t2/dw (Havlin and Ben-Avraham, 1987), where dw refers to the anomalous46

diffusion exponent characterized by dw > 2 for slow diffusion. An important47

behavior of a fractal object is that for a volume of size r, the density, ρ, is scaled48

such that ρ ∼ rdf−d with the fractal dimension, df , smaller than the embedded49

Euclidean dimension, d (e.g., Havlin and Ben-Avraham, 1987; Acuna and Yort-50

sos, 1995). Consequently, the macroscopic fracture porosity, φ, decreases with51

distance such that φ ∼ rdf−d (e.g., Acuna and Yortsos, 1995). The permeabil-52

ity, k, is also scaled such that k ∼ rdf−d−dw+2 (e.g., Havlin and Ben-Avraham,53

1987; Acuna and Yortsos, 1995; de Dreuzy and Davy, 2007). More information54

for generation of synthetic fractal media, such as percolation networks, and us-55

ing these parameters can be found in Acuna and Yortsos (1995) and de Dreuzy56

and Davy (2007).57

Translation of scalings in terms of generalized non-integral hydraulic di-58

mensions has proven informative but challenging (e.g., Doe, 1991; Le Borgne59

et al., 2004; Bernard et al., 2006; Cello et al., 2009; Rafini and Larocque, 2009;60

Odling et al., 2013; Giese et al., 2017; Ferroud et al., 2018). Nonstandard pres-61
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sure responses may be observed in complex reservoir geometries, which can be62

fractal-like structures (e.g., Chang and Yortsos, 1990; Acuna and Yortsos, 1995;63

Lods and Gouze, 2008) or non-fractal structures (e.g., Jourde et al., 2002b;64

Bowman II et al., 2013). Other studies have shown that fractional flow can be65

developed in some 2D heterogeneous transmissivity fields, such as long-range66

correlated media (e.g., Walker et al., 2006; de Dreuzy and Davy, 2007). Com-67

paring an analogous problem for heat transfer in a linear system (Carslaw and68

Jaeger, 1959, p. 412-415), Doe (1991) also suggested that non-integral hydraulic69

dimensions may arise with hydraulic properties varying as a power of distance.70

This latter configuration can be consistent with recurrent observations of scale-71

dependent hydraulic properties using experiments conducted at different loca-72

tions and for various sampling scales (e.g., Vesselinov et al., 2001; Illman, 2006;73

Jiménez-Mart́ınez et al., 2013; Pedretti et al., 2016).74

Based on a multi-scale hydraulic test (i.e., sampling at different distances75

from the tested well), this study shows that nonstandard drawdown behaviors76

can be used to characterize the Euclidean dimension (d = 1 for a channel, d = 277

for a plane or d = 3 for a volume) of the flow-bearing structure and the variability78

of its hydraulic properties. In particular, it is demonstrated that nonstandard79

well test responses could, in some cases, be interpreted through an alternative80

framework with simple geometry and heterogeneous hydraulic properties, which81

are scaled from the tested well according to power-laws. After a mathematical82

development (Appendix A), this framework is strongly supported by the anal-83

ysis of the well test data that shows consistent scalings of transmissivity, T,84

to storativity, S, which in turn allow the identification of flow-bearing struc-85

tures corroborated with geological information. We illustrate this in a faulted86

sandstone and shale formation where pressure was monitored during a pumping87

test of 151 days with numerous responding observation wells distributed over88

distances ranging from 83 to 406 m.89
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2. Site and Dataset90

2.1. The Santa Susana Field Laboratory91

The Santa Susana Field Laboratory (SSFL), located in the Simi Hills in92

southern California, USA (Figure 1a), is a contaminated former industrial re-93

search site about 11.5 km2 in extent, where flow and contaminant transport have94

been investigated since the 1980s (Cherry et al., 2009). The area is characterized95

by a semi-arid climate with a mean recharge of 19 mm per year (Manna et al.,96

2016). The Upper Cretaceous Chatworth Formation represents the main strati-97

graphic unit exposed at the site and consists of a composite turbidite sequence98

(Link et al., 1984) characterized by a typical bedding strike of N◦70E and dip99

of approximately 25–35◦NW (MWH, 2007; Cilona et al., 2015). The Chatworth100

Formation is primarily sandstones, referred to as mostly coarse-grained units,101

inter-bedded with shales and siltstones, referred to as fine-grained units (MWH,102

2007; Cilona et al., 2015, 2016).103

The dense fracture network consists of bedding plane fractures and differ-104

ent sub-vertical joint and fault populations identified from aerial photographs,105

outcrops and borehole geophysical and core logging (MWH, 2007; Cilona et al.,106

2016). Multiple sets of joints have been identified with measured lengths be-107

tween 10 cm and 10 m. Two sets of joints are characterized by strikes in approx-108

imate NW–SE and NE–SW directions with dips ranging from 65◦ to 90◦ (Cilona109

et al., 2016). The faults can be grouped in two populations with strikes in the110

E–W and NE–SW directions and dips > 70◦, for measured lengths ranging from111

a few meters to about 5 km (Cilona et al., 2016). Some fault zones with dis-112

placements from few to hundreds of meters, like the IEL fault (Figure 1a), may113

be characterized by numerous strands that link and overlap, and by relatively114

continuous and narrow (i.e., several decimeters) uncemented fault cores (Cilona115

et al., 2016).116

The hydraulic conductivity of the rock matrix estimated from air permeabil-117

ity laboratory measurements on 96 core samples of the sandstone (i.e., regular,118

hard, and banded sandstone) (Hurley, 2003, and unpublished data) displayed119
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values ranging from 2.9× 10−12 to 7.0× 10−8 m s−1 with a geometric mean of120

3.4 × 10−9 m s−1 (Appendix B). The matrix porosity estimated from 83 core121

samples of the sandstone displayed values ranging from 0.7 to 19.3 % with an122

arithmetic mean of 13 % (Hurley, 2003, and unpublished data). Concerning123

the fracture network, numerous small interval straddle-packer tests conducted124

in six wells illustrate transmissivity values ranging from 3.0×10−8 to 3.0×10−2
125

m2 s−1 (Quinn et al., 2015, 2016). By taking into account the length of the126

straddle packer test interval (i.e., 1.5 m), the equivalent hydraulic conductivity127

values range from 2.0 × 10−8 to 1.9 × 10−2 m s−1. From Earth tides analy-128

ses, the hydraulic conductivity values have been estimated from 9.5 × 10−9 to129

3.1 × 10−6 m s−1 and the specific storage from 2.1 × 10−6 to 8.9 × 10−6 m−1,130

which provide hydraulic diffusivity values between 2.9×10−3 and 5.0×10−1 m2
131

s−1 (Allègre et al., 2016). Note that these different characterization methods132

investigate different scales and geological structures in the system.133

2.2. Well test configuration134

A finely-resolved large-scale pumping experiment performed in a major fault135

zone (Figure 1a) was interpreted to evaluate hydraulic property scalings of the136

flow-bearing structures encountered at the site. This well test was carried out137

in the context of groundwater characterization at the Santa Susana Field Lab-138

oratory (MWH, 2004) and data has been previously analyzed using classical139

analytical solutions (e.g. Theis, 1935; Moench, 1984) to extract hydraulic prop-140

erties, either completely (MWH, 2004) or partially (i.e., only two observation141

wells) (Allègre et al., 2016). Nevertheless, all previous attempts to interpret this142

pumping test failed since solutions applied were not able to represent the well143

test behavior (Appendix B). This dataset also required additional processing144

before any interpretation, which was not performed in the previous analyses.145

The pumping test was performed in core-hole C-1 located at the IEL fault146

(Figure 1a) over 151 days (MWH, 2004). An initial flow rate of about 12 m3
147

h−1 was maintained relatively stable during 2 days, and then the flow rate148

was highly variable and decreased to about 7.5 m3 h−1 (Figure 2a). In the149
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pumping well, a single packer was installed at about 487 m above mean sea150

level (98 m below ground surface) with a submersible pump placed below (Figure151

1b). Multi-level monitoring systems using FLUTeTM liners (Cherry et al., 2007)152

were also deployed in observation wells RD-10, RD-31, RD-53, RD-72, RD-73,153

HAR-1, HAR-16, and HAR-24 to measure pressure at multiple depths within154

each well (Figure 1b). Pressure transducers from In-Situ Inc. were used to155

monitor pressure at the pumping well and the twenty-one observation wells. At156

the observation wells (i.e., both conventional and multi-level systems), pressure157

transducers had a typical range of 100 psi, equivalent to about 70 m, with158

an accuracy of ±0.08% of full scale. At the pumping well, the two pressure159

transducers above and below the packer had a range of 250 psi, equivalent to160

about 176 m, with an accuracy of ±0.08% of full scale.161

Twenty-one observation wells were monitored during this well test (MWH,162

2004), but only eleven observation wells provided meaningful information (Fig-163

ure 2b). Figure 2b also shows that the initial water levels in the observation164

wells RD-38A and RD-53 were significantly below the average initial water level165

of the other responding observation wells (i.e., about 14.38 m below the pump-166

ing well). Using the procedure described below, this difference will ultimately167

bias the results for these observation wells. RD-38A and RD-53 were therefore168

excluded from the analysis and all responding observation wells with similar ini-169

tial conditions (i.e., RD-31, RD-35A, RD-35B, RD-72, RD-73, HAR-1, HAR-16,170

HAR-24, and HAR-25) were analyzed (Figure 1 and 2b). The radial distances171

from the pumping well for these nine observation wells range from 83 to 406172

m (Figure 1b). The depths of the isolated intervals monitored using FLUTeTM
173

liners for wells RD-31, RD-72, RD-73, HAR-16, and HAR-24 are illustrated in174

Figure 1b. Red dots indicate an identical drawdown for each interval along the175

same well and green squares indicate intervals presenting different behaviors.176

Only intervals with specific responses and long records (i.e., not clogged or out177

of water during the experiment) were analyzed (Figure 1b). Note also that re-178

sponses above and below the packer in the pumping well were similar during179

the pumping phase (Figure 2b).180
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3. Methods and Model181

Proper drawdown analysis requires first removal of external influences (i.e.,182

barometric and tidal effects) and flow rate variation that impact shape and183

amplitude of the signal. The procedure used to filter out such influences and184

the interpretation framework are detailed below.185

3.1. Data processing186

The barometric pressure and tidal effects, although relatively negligible, have187

been first removed following the procedures proposed by Rasmussen and Craw-188

ford (1997) and Le Borgne et al. (2004), respectively. This pumping experiment189

also had many interruptions and flow rate variations (Figure 2a) that required190

the data to be processed before any further analysis (Gringarten, 2008; Renard191

et al., 2009). A deconvolution procedure filtered out variations of flow rate and192

provided an equivalent constant rate pumping response of the reservoir (i.e., nor-193

malized response to a unit rate), which improved the interpretation (Gringarten,194

2008). Among the different available algorithms (e.g., von Schroeter et al., 2004;195

Levitan, 2005; Al-Ajmi et al., 2008; Pimonov et al., 2009; Ahmadi et al., 2012),196

the deconvolution procedure in Laplace space proposed by Al-Ajmi et al. (2008)197

was used for convenience. In Laplace domain, the deconvolution of two functions198

becomes the division of their transforms, and therefore the deconvolution of the199

pressure response, pr(p), to the variable flow rate, q(p), is simply (Bourgeois200

and Horne, 1993; Al-Ajmi et al., 2008; Ahmadi et al., 2012):201

pu(p) =
pr(p)

p q(p)
, (1)

where pu(p) is the unit pressure function and p is the Laplace variable. To202

invert Laplace transforms, the algorithm proposed by den Iseger (2006) was203

used because of its demonstrated robustness for transient fluid-flow problems204

(Al-Ajmi et al., 2008).205

To transform real data into Laplace space, the linear piecewise approxi-206

mation developed by Romboutsos and Stewart (1988) was used as proposed207

9



by several authors (Bourgeois and Horne, 1993; Al-Ajmi et al., 2008; Stewart,208

2011). The algorithm of Romboutsos and Stewart (1988) can be applied to in-209

terpolate both the flow rate and pressure response (Bourgeois and Horne, 1993;210

Al-Ajmi et al., 2008; Stewart, 2011). Note that a running mean was applied211

to partially remove the noise in the flow rate measurements (Figure 3a), which212

may be linked to measurement errors (accuracy of ±3% for the flow meter used213

(MWH, 2004)). The Laplace transform of a sampled function f(t) is written214

as:215

f(p) =
f0
p

+
n−1
∑

i=0

fi+1 − fi
ti+1 − ti

e−p ti − e−p ti+1

p2
+

fn − fn−1

tn − tn−1

e−p tn

p2
, (2)

where fi corresponds to the value at time ti. As deconvolution is an ill-216

conditioned problem and may provide oscillations at late times due to small217

errors in input data, a 1D Gaussian kernel filter was also used to smooth re-218

sults as proposed by Ahmadi et al. (2012). Except for the early-time data (i.e.,219

less than 104 seconds), for which the procedure had no impact due to the in-220

sufficient temporal resolution of the flow rate measurements, the deconvolution221

significantly improved the signal by partially or completely removing the ef-222

fect of flow rate variability (Figures 3b and c). In particular, the procedure223

allowed correction for the general decreases in flow rate over the duration of224

the test, which is an important step to properly extract the flow pattern using225

the derivative, s′, of the drawdown, s (Bourdet et al., 1989; Gringarten, 2008;226

Renard et al., 2009).227

3.2. Interpretation framework228

The interpretation framework presented here is based on previous works re-229

lated to fractional flow (e.g. Barker, 1988; Acuna and Yortsos, 1995; Le Borgne230

et al., 2004) but differs from each by assuming simple geometry and hetero-231

geneous hydraulic properties. As demonstrated here, this framework appears232

more rational for the interpretation of nonstandard drawdown responses. The233

mathematical development leading to the relations presented in the following is234

detailed in Appendix A.235
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The general differential diffusion equation accounting for simple geome-236

tries of flow-bearing structure describing flow in radial coordinates is (e.g.,237

O’Shaughnessy and Procaccia, 1985; Chang and Yortsos, 1990; Delay et al.,238

2004; Lods and Gouze, 2008):239

S(r)
∂s

∂t
=

1

rd−1

∂

∂r

(

T (r)rd−1 ∂s

∂r

)

, (3)

where T [L2 T−1] is transmissivity, S [-] is the storativity, s [L] is the head240

drawdown, r [L] is the radial distance from the withdrawal well, and d is a241

classical Euclidean dimension equal to 1, 2, or 3, which respectively correspond242

to a channel, a plane, or a volume. T (r) and S(r) denote scale-dependency243

related to the distance r from the well. To remind, a nonstandard drawdown244

response refers here to a drawdown characterized by a derivative following a245

power-law over several orders of magnitude in time, and diverging from classical246

1D, 2D, and 3D flow regimes. To satisfy this fundamental condition, both247

transmissivity and storativity have to be scaled following power-laws. Other248

distributions would not necessarily produce non-integral hydraulic dimensions as249

is the case for multivariate-Gaussian permeability fields (e.g., Walker et al., 2006;250

de Dreuzy and Davy, 2007; Cello et al., 2009). For 2D multivariate-Gaussian251

fields, pressure responses rapidly converge to a radial flow regime (e.g., Walker252

et al., 2006; Cello et al., 2009) and thus, methods developed and validated for253

such a distribution of heterogeneity (e.g. Copty et al., 2011; Zech et al., 2016)254

cannot be applied here. In the proposed interpretation framework, hydraulic255

properties are thus scaled such as (equations (A.3) and (A.4) in Appendix A):256

T ∼ rτ , (4)

257

S ∼ rσ, (5)

where τ and σ are scaling exponents. These exponents represent an average258

behavior and their magnitudes indicate the degree of hydraulic heterogeneity259

(heterogeneous: 6= 0, increase: > 0 or decrease: < 0 with scale, and higher260

exponents mean higher heterogeneity). Hence, the geometrical dimension of the261
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flow-bearing structure and scalings of transmissivity and storativity control the262

pressure diffusion in the system. Like previous works (e.g., O’Shaughnessy and263

Procaccia, 1985; Acuna and Yortsos, 1995; Le Borgne et al., 2004; de Dreuzy and264

Davy, 2007), dimensional analysis and conservation arguments show that the265

drawdown response at distance r is of the form (equation (A.25) in Appendix266

A):267

s(r, t) = se(r)Γ

(

−ν,
tc(r)

t

)

, (6)

where se(r) [L] is the characteristic amplitude of the reference drawdown profile268

at the distance r, tc(r) [T] is the characteristic diffusion time at the distance269

r, Γ (x, y) is the complementary incomplete Gamma function representing the270

scaling function for an infinitesimal source and an infinite flow region, and ν271

represents the shape of the drawdown curve. This parameter can be deduced272

from the drawdown derivative s′ (Bourdet et al., 1989) as s′ ∼ tν , and is re-273

lated to the Euclidean dimension and scaling exponents (see equation (A.12) in274

Appendix A).275

For a configuration without scaling (i.e., τ = 0 and σ = 0), drawdown276

responses are characterized by s′ ∼ t0.5 for d = 1 (i.e., linear flow), s′ ∼ t0 for277

d = 2 (i.e., radial flow), and s′ ∼ t−0.5 for d = 3 (i.e., spherical flow) (e.g. Barker,278

1988) (Figure 4). For configurations with scaling, the characteristic amplitude,279

se, and time, tc, of the drawdown responses have simple scale dependencies280

(equations (A.26) and (A.27) in Appendix A):281

se ∼ r2−d−τ , (7)

282

tc ∼ r2+σ−τ . (8)

The scaling of the amplitude (equation (7)) is a function of the Euclidean283

dimension and transmissivity scaling while the scaling of the diffusion time284

(equation (8)) depends on the ratio of storativity to transmissivity scalings but285

not on the embedding Euclidean dimension. These relations are consistent with286

classical models where the characteristic amplitude is a function of the trans-287

missivity and the characteristic time of the hydraulic diffusivity (e.g. de Marsily,288
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1986, p. 162). Complementary information related to characteristic amplitude289

and time in the context of fractal models can be found in Le Borgne et al.290

(2004).291

Following the procedure proposed by Le Borgne et al. (2004), the scalings of292

se and tc can be extracted first by estimating the values for each observation well293

by fitting the general solution (6) to their drawdown curve using, for instance,294

the least-squares method; and second by plotting all individual values of se and295

tc in a log-log diagram as a function of distance, r, from the pumping well.296

Figure 4 presents a workflow diagram summarizing the full procedure.297

Additional geological arguments on the Euclidean dimension are necessary298

to relate the transmissivity and storativity scalings to those of the observed299

drawdown amplitude and diffusion time. For fractured rocks, a linear flow300

geometry characterized by d = 1 can be caused by a vertical well crossing a301

channel, a vertical fracture or a vertical zone of fractures (e.g., Cinco-Ley and302

Samaniego-V, 1981; Karasaki et al., 1988; Gringarten, 2008). An Euclidean303

dimension of one can either represent straight or curved structures. A radial304

flow geometry (d = 2) can be caused by a vertical well crossing one or several305

horizontal fractures or a horizontal formation with relatively well-connected306

fracture network (e.g., Cinco-Ley and Samaniego-V, 1981; Karasaki et al., 1988).307

Finally, a spherical flow geometry (d = 3) can be caused when the well crosses308

a small interval in a dense and well-connected fracture network (e.g., Barker,309

1988; Karasaki et al., 1988). In some configurations, an appropriate Euclidean310

dimension could be challenging to define, which in turn could also result in a311

non-unique interpretation.312

4. Results313

A preliminary investigation of the drawdown signal shows two distinct hy-314

draulic responses (Figure 5). In a first category, drawdowns of RD-35B, RD-31,315

HAR-24, and HAR-16 follow the late-time behavior of the pumping well re-316

sponse. They are characterized by a persistent scaling of s′ ∼ t0.80 over several317
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orders of magnitude (Figure 5b). In the second category, drawdowns of RD-35A,318

RD-73, RD-72, HAR-25, and HAR-1 have delayed responses and a different be-319

havior (Figure 5a), where s′ ∼ t0.98 (Figure 5b). Furthermore, normalizing320

time according to r2 (Figure 5a) did not display superimposed curves, which321

illustrates anomalous pressure diffusion. Consequently, this well test displays a322

clear nonstandard drawdown response and cannot be interpreted using classical323

analytical solutions generally used for these systems (Appendix B). Double-324

porosity solutions converge to a radial flow regime (i.e., a plateau on drawdown325

derivative) and no-flow boundaries conditions develop either s′ ∼ t0.5 or s′ ∼ t1326

depending on the number of boundaries (Appendix B).327

Hydraulic responses are strongly controlled by the structure intersected. In-328

deed, two observation wells, RD-35A and RD-35B, located in the same area329

and at approximately the same distance from the pumping well (83 and 91 m,330

respectively; Figure 1a), are in different categories (Figure 5b). RD-35A, which331

was drilled to 34 m below ground surface (Figure 1b), is classified in the second332

category while RD-35B, which was drilled to 100 m (Figure 1b), is in the first333

category. These observations of two different responses at nearly the same lo-334

cation but different depth intervals suggest the intersection of two structures of335

different hydraulic properties, referred to hereafter as structure 1 and 2 for the336

first and second categories, respectively.337

The shape of the drawdown curves characterized by s′ ∼ t0.80 and s′ ∼ t0.98,338

extracted from the behavior observed on the drawdown derivatives (Figure 5b)339

of the closest observation wells (i.e., RD-35A and RD-35B), were fixed hereafter340

to analyze the responses using the equation (6). In other words, the parameter341

ν was fixed to ν = 0.8 for structure 1 and to ν = 0.98 for structure 2, which342

implies that only the characteristic amplitude, se, and time, tc, were estimated343

using the least-squares method. Trust Region Reflective algorithm implemented344

in Python was used to solve the least-squares problem. Residuals were simply345

calculated using differences between data and model curves without involving a346

logarithmic comparison. This procedure gives more importance to intermediate347

and late-time data, where the shapes of drawdown curves are stabilized. This348

14



choice excludes strong influences of measurement uncertainties (i.e., uncertainty349

of pressure transducers and lack of flow-rate data at the beginning of the test)350

and local heterogeneities, which impacted early-time data from the test. Table351

1 summarizes the values of se and tc obtained for each observation well esti-352

mated using equation (6). The normalized root-mean-square deviation values,353

NRMSD, calculated between 0.37 and 1.42 %, indicate very good fits to the354

solution.355

The corresponding spatial analysis displays consistent scalings of the char-356

acteristic amplitude and time, with se ∼ r2.26 and tc ∼ r2.82 (Figure 6, blue357

squares) for structure 1 (i.e., s′ ∼ t0.80), and se ∼ r2.08 and tc ∼ r2.12 (Figure358

6, red dots) for structure 2 (i.e., s′ ∼ t0.98). Indeed, once the scalings of tc are359

extracted for each structure, the scalings of se can be estimated using the equa-360

tion (A.12) that relates the scaling exponents of se and tc (equations (7) and361

(8)) to the parameter ν. One may observe that the scale evolution of se from362

the data appear very consistent with the power laws described by the estimated363

exponents. Note however that scalings of se and tc correspond to global trends364

with three slight deviations of HAR-16P11, RD-72P6, and HAR-1P10 (Figure 6),365

which indicate some additional degree of heterogeneity.366

As classically known, a pumping test conducted in a vertical well located in367

a sub-vertical fault zone may produce a linear flow regime (i.e., s′ ∼ t0.5) for a368

case without scaling (Roques et al., 2014; Dewandel et al., 2014). This behavior369

is also true for a well test performed in a vertical well located in a narrow370

corridor, a channel, or a vertical fracture (e.g., Cinco-Ley and Samaniego-V,371

1981; Karasaki et al., 1988; Gringarten, 2008; Zhang et al., 2018). Using the372

equation (A.25), the linear flow regime can be simulated by fixing the Euclidean373

dimension to d = 1 and the scaling exponents to zero. In absence of hydraulic374

heterogeneity and matrix contribution, a linear flow regime is expected for the375

well test presented here because the vertical pumping well is located in a sub-376

vertical fault zone (i.e., the IEL fault). Consequently, the Euclidean dimension377

must be fixed to d = 1 to properly interpret this test. An Euclidean dimension378

of one is also strongly supported by the slope on the drawdown derivative (i.e.,379
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s′ ∼ t0.8 at the pumping well), which is higher than the slope for a linear flow380

regime. As mentioned above, in absence of hydraulic heterogeneity, drawdown381

is characterized by a plateau on its derivative (i.e., s′ ∼ t0) for an Euclidean382

dimension of two, and by s′ ∼ t−0.5 for an Euclidean dimension of three.383

Fixing d = 1 and using equations (7) and (8), the scaling exponents τ and384

σ for each structure can be estimated and correspond to τ = −1.26 and σ =385

−0.44 for structure 1 and τ = −1.08 and σ = −0.96 for structure 2. Figure 7386

illustrates the normalized deconvolved drawdown, s/[Q r2−d−τ ], as a function of387

the normalized time, t/r2+σ−τ , and confirms the grouping of well test responses388

in two structures. To check if scaling exponents can be properly extracted using389

equation (6) for a case with two structures, a numerical simulation has been390

performed and is presented in Appendix C. The numerical results (Figure C.11)391

show that the scaling exponents can be reasonably estimated in this case due392

to contrasted hydraulic properties. Notice also that the pumping well response393

was properly reproduced by this simple numerical simulation (Figure C.11d),394

while this response was not included in the scaling analysis.395

The hydraulic properties have been also estimated using equations (A.26),396

(A.27), and (A.30) for each structure (Table 2). The generalized scaled trans-397

missivity, T0, range from 48.3 to 106.8 m4−d−τ s−1 for structure 1 and from 0.9398

to 7.9 m4−d−τ s−1 for structure 2. The generalized scaled storativity, S0, range399

from 8.2 to 12.4 m2−d−σ for structure 1 and from 25.2 to 133.5 m2−d−σ for400

structure 2. The scaled hydraulic diffusivity, D0 = T0/S0, range from 3.9× 100401

to 1.2 × 101 m2+σ−τ s−1 for structure 1 and from 2.8 × 10−2 to 9.8 × 10−2
402

m2+σ−τ s−1 for structure 2. Using the equation (A.30), the equivalent cylin-403

drical hydraulic diffusivity at distance r ranges from 2.9 × 10−2 to 2.2 × 10−1
404

m2 s−1 for structure 1 and from 1.4 × 10−2 to 5.0 × 10−2 m2 s−1 for struc-405

ture 2. Consequently, structure 1 is significantly more permeable and diffusive406

compared to structure 2.407

As mentioned above, d = 1 is the most rational Euclidean dimension. For408

d = 2, the scaling exponents would be τ = −2.26 and σ = −1.44 for structure409

1 and τ = −2.08 and σ = −1.96 for structure 2. For d = 3, the scaling410
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exponents would be τ = −3.26 and σ = −2.44 for structure 1 and τ = −3.08 and411

σ = −2.96 for structure 2. These higher exponents for d = 2 and 3 imply higher412

hydraulic heterogeneity to generate the observed drawdown curves (equation413

(A.12)) that cannot be further justified. Indeed, d = 1 is strongly consistent414

with the hydraulic signal and the geological structures as demonstrated in the415

next section.416

5. Discussion417

Based on these results, the scaling of transmissivity to storativity is shown418

to provide essential information on flow-bearing structures, which can be then419

related to site geological evidence. The limitations and advantages of the pro-420

posed methodology are then discussed.421

5.1. Hydraulic property scalings422

The negative values of the transmissivity scaling τ for both structures suggest423

a strong decrease of transmissivity with scale of investigation. The magnitude424

of τ (−1.08 and −1.26) shows that the heterogeneity is very high. The strong425

decrease of transmissivity and storativity with scale of investigation observed426

does not provide independent information on the fracture structure. Their rela-427

tion is however highly informative. The scaling of transmissivity to storativity428

provides T ∼ S3 (τ ≈ 3×σ, with T ∼ rτ=−1.26 and S ∼ rσ=−0.44) for structure429

1 and T ∼ S (τ ≈ σ, with T ∼ rτ=−1.08 and S ∼ rσ=−0.96) for structure 2.430

With a simple model of N fractures of aperture af presented by Guéguen and431

Palciauskas (1994), hydraulic properties are simply expressed as T ∼ Naf
3 and432

S ∼ Naf (Guéguen and Palciauskas, 1994; Le Borgne et al., 2004). According to433

this simple model, fracture aperture af is the relevant parameter to obtain the434

relation T ∼ S3 for structure 1 while, for structure 2, fracture density N is the435

relevant parameter to obtain the relation T ∼ S. Hence, the scale dependency436

of hydraulic properties could be mainly related to aperture for structure 1 and437

to fracture density for structure 2. The strong decrease of hydraulic properties438
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with scale of investigation may thus be simply related to a decrease of fracture439

aperture in a single fracture or zone of fractures for structure 1. For structure440

2, the decrease of hydraulic properties may be simply related to a decrease of441

fracture density in a more dense fracture network. Although variability of frac-442

ture aperture in structure 2 is obviously not excluded, the signal still appears443

dominated by fracture density. Consequently, structure 1 behaves hydraulically444

as an idealized fault and structure 2 as a fracture network. This explanation is445

further confirmed with geological information on the flow-bearing structures.446

5.2. Geological identification of the flow-bearing structures447

The cubic relation of transmissivity to storativity (i.e., T ∼ S3) for structure448

1 indicates strongly channelized flow within a fault, which is supported by geo-449

logical information. Indeed, fault attributes (i.e., gouge, breccia, or striations)450

have been reported in C-1, RD-31, and RD-35B (Hurley, 2003; MWH, 2007,451

2016), and the sub-vertical IEL fault zone may be characterized by numerous452

strands that link and overlap, with narrow and relatively continuous uncemented453

fault cores (Cilona et al., 2016). Drawdowns in HAR-16 and HAR-24, both away454

from the IEL fault, follow the same trend indicating preferential connections to455

the IEL fault. The cubic dependency of transmissivity to storativity shows that456

drawdown is controlled by channelized flows in the IEL fault, and eventually457

suggest that Poiseuille flow may be valid to some hundreds of meters. Poiseuille458

flow, although classically interpreted as a parallel plate model which leads to459

the cubic law (i.e., cubic relation between transmissivity and aperture), does not460

preclude more complex fault organizations as long as the main least-resistance461

to flow is an open space and not a porous-like medium (Oron and Berkowitz,462

1998). The magnitude of τ (−1.26) also indicates a high heterogeneity thus a463

strong channeling in the fault zone.464

The linear relation of transmissivity to storativity (i.e., T ∼ S) for structure465

2 indicates more diffuse flows within a fracture network. All the wells of struc-466

ture 2 are within a few hundred meters from the shear zone fault, which falls into467

the corresponding damage zone independently estimated (Cilona et al., 2015,468
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2016). Even though bedding plane fractures and multiple sets of sub-vertical469

joints compose the surrounding fracture network (Cilona et al., 2016), the signal470

may be dominated by sub-vertical joints as flows appear confined within fracture471

zones of dimension one. This is supported by the absence of depth dependency472

of the drawdown revealed from multi-level monitoring systems. The confine-473

ment of flows within fracture zones of dimension one is however an indicator474

of limited lateral fracture connectivity. Higher fracture connectivity would be475

characterized by Euclidean dimension of d = 2 or 3. One may observe that476

whatever the Euclidean dimension, the relation of transmissivity to storativity477

remains linear for this structure.478

Even though the well test was conducted in a sandstone and shale forma-479

tion, the rock matrix influence appears to be negligible from the pumping signal480

that is also supported by other arguments. Firstly, the classical double-porosity481

signal (e.g., Warren and Root, 1963; Moench, 1984; Gringarten, 2008) did not482

appear and the drawdown did not converge to a pseudo-radial flow regime (i.e.,483

s′ ∼ t0) (e.g., Cinco-Ley and Samaniego-V, 1981; Gringarten, 2008). Secondly,484

the matrix permeability is significantly lower than the fracture network per-485

meability, although the porosity of the rock matrix (i.e., 13 %) may be much486

higher than the fracture porosity (Hurley, 2003; Quinn et al., 2015, 2016). To487

support these arguments, Appendix B presents simple modeling scenarios show-488

ing some classical signals expected for significant matrix influence. Thirdly, a489

simple numerical model considering hydraulic property scalings into idealized490

flow-structures embedded in an impermeable matrix consistently reproduces the491

observed signal (Appendix C). Hydraulic property scaling is also less expected492

for the rock matrix.493

5.3. Bias related to well location494

This well test dataset shows a relatively low-permeable reservoir where ten495

observation wells did not display a response (Figure 1a) when a single nearby496

well was pumped. The signal was not transmitted likely because of limited497

connectivity (i.e., d = 1) and low permeability. Observation wells on the western498
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side of the shear zone fault (Figure 1a) did not respond likely because of limited499

connectivity and/or impeded across-fault flow due to clay rich fault core and500

shale smearing reducing the permeability of the shear zone (Cilona et al., 2015).501

Note however that some connection may persist as illustrated by the observation502

wells RD-38A and RD-53 located in the Woolsey Canyon fault (Figures 1 and503

2).504

The point from which the well test is performed in the structure induces a505

strong bias in the characterization of heterogeneous reservoirs (e.g., Guimerà506

et al., 1995; Jourde et al., 2002a; de Dreuzy and Davy, 2007). This bias, in-507

troduced by the choice of the pumping well (i.e., typically the most productive508

well), may be somewhat expected as the pumped well should have an observable509

drawdown in a long-term hydraulic test. The long-term nature of the test is510

necessary to facilitate a relevant analysis of the scaling of the hydraulic prop-511

erties, from radius of investigation increasing over several orders of magnitude512

(i.e., typically from a few meters to some hundreds of meters). In a less or513

non-connected zone, the well test would not provide any observable drawdown514

and no meaningful observations.515

For broadly heterogeneous media such as fractured rock studied here, hy-516

draulic property scalings are first and foremost influenced by the location of the517

well in the structure rather than the mean hydraulic properties of the struc-518

ture. This is typically the case for multi-fractal structures, where synthetic well519

tests result in any possibility of transmissivity scaling between τ = −1 and520

τ = 0.5, with mean scaling similar to that of a homogeneous medium (τ = 0521

in dimension d = 2) (de Dreuzy and Davy, 2007). In such cases, any single522

realization does not reveal a mean behavior but a specific characterization bi-523

ased by the location of the well. Scaling from a single well test would give the524

same result as any other well tests only if the heterogeneity structure is a frac-525

tal, not a multi-fractal. Still, in such well-defined structures, transport scalings526

may be modified by boundary conditions, as it is the case for volatile fractals527

(Herrmann and Stanley, 1984; de Dreuzy et al., 2001). Whatever their type,528

regularity of fractal structures is not observed in fractured media, the scaling529
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of which rather comes from the correlation of fracture locations, or the orga-530

nization of the largest and smallest structures according to some mechanical531

relaxation process (Davy et al., 2010). Consequently, one should not generalize532

the scaling exponents estimated here to another location at this site.533

5.4. Advantages of the geological-based interpretation framework534

To underline the relevance of the proposed interpretation framework with the535

hydraulic property scalings, results reported in this study can be alternatively536

analyzed according to well-discussed fractal flows originally based on diffusion537

in fractal structures (e.g., O’Shaughnessy and Procaccia, 1985; Havlin and Ben-538

Avraham, 1987; Chang and Yortsos, 1990; Acuna and Yortsos, 1995; Le Borgne539

et al., 2004; de Dreuzy and Davy, 2007). The fractal dimension, df , and the540

anomalous diffusion exponent, dw, can be linked to the scaling exponents:541

df = d+ σ, (9)

542

dw = 2 + σ − τ. (10)

In the case of normal diffusion where dw = 2, the fractal dimension has543

been also denoted as the generalized flow dimension, n (Barker, 1988), where544

df = n×dw/2 (e.g., Acuna and Yortsos, 1995; Le Borgne et al., 2004; de Dreuzy545

and Davy, 2007), which reduces to the Theis (1935) solution for n = 2. In546

this framework, the scaling of the characteristic amplitude, se, and time, tc,547

are se ∼ rdw−df and tc ∼ rdw , respectively. The interpretation framework548

with the hydraulic property scalings is more appropriate here because the ob-549

served scaling of the characteristic amplitude (i.e., se ∼ r2.26) associated with550

an anomalous diffusion of dw = 2.82 leads to an inconsistent fractal dimension551

lower than 1 (i.e., df = 0.56) for a continuous fracture network. A fractal di-552

mension of 1 corresponds to the minimum dimension for a fracture (e.g., Acuna553

and Yortsos, 1995). Generalized radial flow models (Barker, 1988; Liu et al.,554

2016) or more advanced models based on diffusion in fractal structures (e.g.,555

21



Chang and Yortsos, 1990; Acuna and Yortsos, 1995; Lods and Gouze, 2008) are556

thus inappropriate in this case.557

It is proposed here that hydraulic scalings be interpreted with simple fracture558

geometries (i.e., d = 1, 2, or 3) with more complex hydraulic properties. The559

Euclidean dimensions of the structures should be confirmed based on the avail-560

able geological knowledge. In most cases with prominent faults, the Euclidean561

dimension of the fault structure will be one or two depending on the respec-562

tive orientations of the fault and well. An Euclidean dimension of three would563

only be found in more connected and dense fracture networks inconsistent with564

the low connectivity and transmissivity observed here. The scaling observed565

for structure 1 of T ∼ S3 is highly consistent with a fault and the negative566

exponents with an effective aperture that decreases away from the tested well.567

Structure 2 shows the confinement of flows within fracture zones of dimension568

one. The low dimension (i.e., d = 1) is a consistent indicator of the lack of con-569

nectivity. As the dimension of the geological structures (faults, joints) remains570

in most cases quite simply equal to an Euclidean dimension, it is proposed that571

the scaling identified in a well test be interpreted as the relative scaling from572

this given location.573

The hydraulic property scaling is not only an absolute characteristic but574

an indication of the degree of hydraulic heterogeneity of the structure. Higher575

transmissivity scaling would mean higher heterogeneity. This interpretation576

framework is also consistent with recurrent observations of highly heterogeneous577

fracture apertures and transmissivities (e.g., Méheust and Schmittbuhl, 2001;578

Ishibashi et al., 2015).579

The results obtained from this well test ultimately show that the relation of580

transmissivity to storativity is highly informative with respect to the nature of581

the hydraulically effective fractures. Well tests conducted using a network of582

many responsive piezometers may provide efficient hydraulic information on the583

fracture nature (i.e., fault and fracture network), the Euclidean dimension, and584

the degree of heterogeneity. Hence, the proposed interpretation framework can585

be a useful tool to define relevant groundwater flow models (e.g., single fracture586
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with heterogeneous aperture, fracture network with varying density, etc.). The587

extracted information (i.e., nature of flow-bearing structure, Euclidean dimen-588

sion, and degree of heterogeneity) can be indeed used thereafter for predictive589

modeling involving different scales and boundary conditions.590

6. Conclusions591

Based on a multi-scale pumping experiment conducted in a fractured for-592

mation, a framework with simple geometry and heterogeneous hydraulic prop-593

erties is demonstrated relevant to interpret nonstandard drawdown responses.594

Most importantly, the scaling of transmissivity to storativity is demonstrated595

to be highly informative with respect to identifying flow-bearing structures in596

combination with geological information, at least for moderate to low perme-597

able fractured rocks. The analysis reveals an important decrease of hydraulic598

properties from the tested well to some hundreds of meters, which suggests a599

highly heterogeneous reservoir. The observed responses can be interpreted in600

terms of decrease of fracture density in the surrounding fracture network with601

limited connectivity and of decrease of fracture aperture in the well-identified602

fault. The cubic relation of transmissivity to storativity for the fault suggests603

that Poiseuille flow may be valid at a scale rarely investigated (i.e., about 400604

m). Although individual values of the scaling exponents are representative of605

a specific characterization, well-designed hydraulic tests and scaling analysis606

may provide unique information on the flow-bearing structures and additional607

capacity for modeling.608
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Figure 1: a) Boreholes location and geological map of the SSFL (modified after MWH

(2007); Cilona et al. (2015, 2016)). b) Configuration of observation wells analyzed and

distances investigated.
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Figure 2: a) Measured flow rate with an accuracy of ±3% for the flow meter used

(MWH, 2004). b) Water level measurements for the observation wells with response

to the pumping test. Note that the initial water level in RD-38A and RD-53P9 were

below the initial water level in the pumping well with a difference of about 14.38 m.
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Figure 3: a) Measured flow rate smoothed with a running mean (red line). The running

mean removed partially the noise but kept the pumping interruptions. b) Measured

and deconvolved drawdown at C-1 pumping well above and below the packer. Note

that the deconvolved drawdown are normalized to the initial flow rate. c) Measured

and deconvolved drawdown at C-1 pumping well above the packer in log-log diagram,

both normalized to the unit-rate response or equivalent (i.e. normalized by the mean

initial flow rate for the measured drawdown). Because the temporal resolution of the

flow-rate measurement was not sufficient, the deconvolution had no impact at the early

times.
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Well test configuration:
• Pumping well
• Observation wells properly distributed to

span, ideally, several orders of magnitude
in space

Data processing:
• Barometric and Earth tides influences
• Flowrate variation

Temporal analysis:
• Drawdown derivative to extract ν defining

the shape of the drawdown curve

Spatial analysis:
• Estimate tc and se for each wells with Eq. (6)
• Plot all tc and se values as function of r
• Extract scaling of tc
• With Eq. (A.12), estimate scaling of se
• Check consistency with observation

Define the Euclidean dimension, d:
• Geological information
• Hydraulic information

Estimate the scaling exponents:

T ∼ r
τ and S ∼ rσ
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Figure 4: Workflow diagram summarizes the procedure to estimate scaling exponents of

hydraulic properties from a well test. Behaviors for linear, radial, and spherical flow

geometry with normal diffusion in homogeneous media are illustrated (e.g. Barker,

1988) as references in order to compare with nonstandard drawdown responses with

anomalous diffusion in heterogeneous media.
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Figure 5: a) Specific drawdown (i.e., deconvolved and normalized to a unit rate) for all

responding observation wells in log-log diagram. Time is normalized according to the

square of the distance, r, to the pumping well. Two categories of observation wells can

be extracted according to the normalized arrival time and the shape of the drawdown

curves. One may observe that the classical normalization for normal pressure diffusion

is inappropriate since drawdown curves are not superimposed. b) Specific drawdown

derivatives calculated using Bourdet et al. (1989)’s method of RD-35B (category 1)

and RD-35A (category 2), the closest observation wells from the pumping well C-1.

The slopes observed on derivatives were used to fix the parameter ν for each structure.
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Figure 6: Characteristic time, tc, and amplitude, se, as a function of the distance, r,

to the pumping well for both structures (Table 1). For structure 1, tc ∼ r2.82 and

se ∼ r2.26 and for structure 2, tc ∼ r2.12 and se ∼ r2.08. Once these exponents are

estimated, the hydraulic property scaling exponents can be next calculated by fixing

the Euclidean dimension. Using d = 1, the exponents are σ = −0.44 and τ = −1.26

for structure 1 and σ = −0.96 and τ = −1.08 for structure 2.
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Figure 7: a) Drawdowns, s, and b) derivatives, s′, using Bourdet et al. (1989)’s method,

with fits of the equation (6) using the least-squares method. Drawdowns and deriva-

tives are both normalized in time and amplitude according to the respective scaling

exponents of each structure, which are tc ∼ r2+σ−τ=2.82 and se ∼ r2−d−τ=2.26 for

structure 1 and tc ∼ r2+σ−τ=2.12 and se ∼ r2−d−τ=2.08 for structure 2.
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Tables619

Table 1: Parameters for each observation well, where r is the distance from the pumping

well, tc is the characteristic time, se is the characteristic drawdown amplitude, ν is the slope

of drawdown derivative. Note that ν was fixed from derivative analysis to estimate tc and

se from the equation (6) using the least-squares method. The normalized root-mean-square

deviation, NRMSD, which was calculated using NRMSD =

√

∑
N
i=1

(yi−ymi
)2

N
/(ymax −

ymin), is expressed in percentage.

Name Str.
r tc se ν NRMSD

(m) (h) (m) (-) (%)

RD-35B

1

91.5 1.34 14.15

0.80

0.94

RD-31P7 169.1 8.07 57.02 0.37

HAR-24P7 270.9 22.12 111.79 0.43

HAR-16P11 383.2 174.59 541.13 0.69

HAR-16P12 383.2 87.67 295.50 0.54

RD-35A

2

83.4 19.01 24.67

0.98

1.32

RD-73P12 145.0 70.95 167.37 0.75

RD-72P5 272.9 319.80 391.87 1.42

RD-72P6 272.9 92.16 112.03 1.00

HAR-25 278.9 193.72 467.79 0.87

HAR-1P10 405.7 354.13 158.65 0.81
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Table 2: Parameters obtained for each observation well using equations (A.26), (A.27), and

(A.30). T0 is the generalized scaled transmissivity, S0 is the generalized scaled storativity, D0

is the scaled hydraulic diffusivity (i.e., D0 = T0/S0), and D(r) is the equivalent cylindrical

hydraulic diffusivity at distance, r.

Name Str.
T0 S0 D0 D(r)

(m4−d−τ s−1) (m2−d−σ) (m2+σ−τ s−1) (m2 s−1)

RD-35B

1

72.8 8.2 8.9× 100 2.2× 10−1

RD-31P7 72.3 8.7 8.4× 100 1.2× 10−1

HAR-24P7 106.8 9.3 1.2× 101 1.2× 10−1

HAR-16P11 48.3 12.4 3.9× 100 2.9× 10−2

HAR-16P12 88.4 11.4 7.7× 100 5.8× 10−2

RD-35A

2

1.9 49.3 3.8× 10−2 2.3× 10−2

RD-73P12 0.9 26.5 3.3× 10−2 1.8× 10−2

RD-72P5 1.4 49.7 2.8× 10−2 1.4× 10−2

RD-72P6 4.9 50.0 9.8× 10−2 5.0× 10−2

HAR-25 1.2 25.2 4.9× 10−2 2.5× 10−2

HAR-1P10 7.9 133.5 5.9× 10−2 2.9× 10−2
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Appendix A. Mathematical derivation of the solution620

Mathematical development leading to the relations presented in the proposed621

interpretation framework is detailed here. Although the mathematical formal-622

ism is closely related to models based on diffusion in fractal structure (e.g. Lods623

and Gouze, 2008), the assumptions are different. This development was realized624

according to the hydraulic head to consider both injection and withdrawal of625

water from a well. The relation between hydraulic head and drawdown is simply626

defined such as:627

s(t) = h(t = 0)− h(t). (A.1)

Traditional diffusion equation generalizing the classical Euclidean geometry628

in radial coordinates is (e.g., O’Shaughnessy and Procaccia, 1985; Chang and629

Yortsos, 1990; Delay et al., 2004; Lods and Gouze, 2008):630

S(r)
∂h

∂t
=

1

rd−1

∂

∂r

(

T (r)rd−1 ∂h

∂r

)

, (A.2)

where T [L2 T−1] is transmissivity, S [-] is the storativity, h [L] is the hydraulic631

head, r [L] is the radial distance from the injection/withdrawal well, and d is632

the Euclidean dimension. T (r) and S(r) denote dependence of transmissivity633

and storativity to the distance r from the tested well. To develop nonstandard634

responses as defined here, and consistently with previous works (e.g., Acuna and635

Yortsos, 1995; Delay et al., 2004; de Dreuzy and Davy, 2007; Lods and Gouze,636

2008), these scale-dependencies have to be represented by power-laws:637

T (r) = T0r
τ , (A.3)

638

S(r) = S0r
σ, (A.4)

where τ and σ are scaling exponents, T0 [L4−d−τ T−1] is the generalized scaled639

transmissivity, S0 [L2−d−σ] is the generalized scaled storativity, which are both640

constant values. The introduction of hydraulic property scalings in equation641

(A.2) results in heterogeneous systems and the diffusion equation becomes:642

ξ
∂h

∂t
=

1

rd−1+σ

∂

∂r

(

rd−1+τ ∂h

∂r

)

, (A.5)
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with ξ = S0/T0. The mass balance differential equation at the tested well643

describing the exchange between the well and the reservoir is (e.g., Lods and644

Gouze, 2008):645

Cw
∂hw

∂t
= αdr

d−1
w

(

T (r)
∂h

∂r

)

r=rw

+Q(t), (A.6)

where hw [L] is the hydraulic head at the well (i.e., h(r = rw, t) = hw(t)), Cw646

[L2] is the well-bore storage (i.e., Cw = 2πr2c , where rc is the well casing), rw647

[L] is the radius of the well, Q [L3 T−1] is the flow rate, and αd = 2πd/2/Γ (d/2)648

corresponding to the area of a unit sphere in d dimensions (e.g., Barker, 1988;649

Lods and Gouze, 2008), where Γ (x) is the Gamma function. For linear, radial,650

and spherical flow geometries, αd = 2, 2π, 4π, respectively (e.g., Barker, 1988,651

Table 1). Equation (A.6) in developed form becomes:652

Cw
∂hw

∂t
= T0αdr

d−1+τ
w

∂h

∂r

∣

∣

∣

∣

r=rw

+Q(t). (A.7)

The initial boundary condition assumes the hydraulic head equals zero in653

the system:654

h(r, t = 0) = 0, (A.8)

and for an infinite flow region:655

lim
r→∞

h(r, t) = 0. (A.9)

Using the initial condition (A.8), and applying Laplace transform to the656

equation (A.5) with respect to time, we obtain:657

ξph̄rσ−τ =
(d− 1 + τ)

r

dh̄

dr
+

d2h̄

dr2
, (A.10)

where p is the Laplace variable. The general solution of this equation is of the658

form:659

h̄ = rαν [C1Kν(βr
α) + C2Iν(βr

α)] , (A.11)

with C1 and C2 are functions that need to be determined using the boundary660

conditions, K and I are the modified Bessel functions of the second and first661

kind, respectively, and the other parameters are defined as follows:662

ν =
2− d− τ

2 + σ − τ
, (A.12)
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663

α =
2 + σ − τ

2
, (A.13)

664

β =

√
ξp

α
. (A.14)

The boundary condition (A.9) leads to C2 = 0, which simplifies the solution665

to:666

h̄ = rανC1Kν(βr
α). (A.15)

The Laplace transform of (A.7) is:667

Cwph̄w = T0αdr
d−1+τ
w

dh̄

dr

∣

∣

∣

∣

r=rw

+ Q̄, (A.16)

with Q̄ = Q/p for a constant flow rate. Taking the derivative of equation (A.15),668

which is:669

dh̄

dr
= −C1βαr

α−1rανKν−1(βr
α), (A.17)

the equation (A.16) becomes:670

Cwph̄w =
Q

p
− C1T0αdβαr

d+σ
2

w Kν−1(βr
α
w). (A.18)

The objective here is to obtain the solution for an infinitesimal source. In671

this case, Cw = 0 and rw tends to zero. Taking properties of the modified Bessel672

function of the second kind, which are:673

K−x(z) = Kx(z) z > 0, (A.19)

and674

lim
z→0

zxKx(z) = 2x−1Γ(x) z > 0, (A.20)

we obtain the function C1:675

C1 =
Q

pT0αdβνα2−νΓ(1− ν)
. (A.21)

Injecting (A.21) in the equation (A.15), one may notice that the solution is676

of the form:677

h̄ = Dp−1− ν
2 Kν(βr

α), (A.22)
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with678

D =
Qrαν

T0αdξ
ν
2 α1−ν2−νΓ(1− ν)

, (A.23)

which can be easily inverted to time domain using:679

L

{

1

2

(z

2

)x

Γ

(

−x,
z2

4t

)}

= p−1− x
2 Kx(z

√
p), (A.24)

where Γ (x, y) is the complementary incomplete Gamma function. Consequently,680

the solution in time domain is:681

h(t) =
Qr2αν

2T0αdαΓ(1− ν)
Γ

(

−ν,
S0r

2α

4tT0α2

)

. (A.25)

This solution in pumping configuration can be written in the form presented682

in equation (6) with:683

se(r) =
Qr2−d−τ

T0αd(2 + σ − τ)Γ( d+σ
2+σ−τ )

, (A.26)

and684

tc(r) =
S0r

2+σ−τ

T0(2 + σ − τ)2
. (A.27)

Using equations (A.26) and (A.27), the generalized scaled transmissivity,685

T0, and storativity, S0, can be calculated. Along the lines of Lods and Gouze686

(2004), the equivalent cylindrical transmissivity, T [L2 T−1], and storativity, S687

[−], at the distance r can be also approximated using:688

T0αdr
d−1+τ = T (r)2πr, (A.28)

689

S0αdr
d−1+σ = S(r)2πr. (A.29)

Note that these equations may be only valid for d = 2 and d = 3. For d = 1,690

because the area open to flow is generally difficult to estimate (Karasaki et al.,691

1988), only the equivalent cylindrical hydraulic diffusivity, D [L2 T−1], can be692

properly evaluated at the distance r with:693

D(r) =
T0r

τ

S0rσ
. (A.30)
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Appendix B. Fracture vs matrix, and no-flow boundaries694

To check that matrix influences can be ignored for this well test, different695

simple modeling scenarios have been evaluated. The first scenario (SPm) (Fig-696

ure B.8, left) represents the classical radial flow model accounting for well-bore697

storage (Papadopulos and Cooper, 1967) with the average hydraulic conduc-698

tivity estimated for sandstone (Kg = 3.4 × 10−9 m s−1, the geometric mean)699

obtained from Hurley (2003) and unpublished data (Figure B.8, right). The700

second scenario (SPf ) displays the same model using fracture transmissivity701

(Tf = 6.0 × 10−2 m2 s−1) roughly estimated at the vicinity of the pumping702

well, and converted into hydraulic conductivity (Kf = 4.0× 10−4 m s−1) based703

on the saturated length of the well (i.e., 150 m). The third and fourth sce-704

nario represent behaviors of a double porosity model (Moench, 1984) for slab705

(DPSl) and spherical blocks (DPSph) using previous estimated parameters for706

fracture and matrix. More information concerning definitions of slab and spher-707

ical blocks can be found in Moench (1984). In these models, the average half708

thickness or the diameter of block matrix is assumed to be 5 m, the hydraulic709

conductivity of fracture system is Kf = 4.0 × 10−4 m s−1, the hydraulic con-710

ductivity of the matrix block is Km = 3.4 × 10−9 m s−1, the specific storage711

of fracture system is Ss = 1.0 × 10−7 m−1, the specific storage of the matrix712

block is Ssm = 1.0 × 10−5 m−1, and the fracture skin is sf = 1.0. The three713

latter parameters have been arbitrarily set, but they only impact the shape714

of the derivative for double-porosity systems (i.e., the V-shape). These simple715

modeling scenarios highlight that, first, all these models failed to represent the716

drawdown behavior, second, well-bore storage appears to be relatively negligi-717

ble at early-time data, and third, matrix influences can be neglected for the718

analyzed well test.719
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Figure B.8: Left diagram: normalized drawdowns, sD, and derivatives, s′D, for data at

the pumping well and modeling scenarios for single porosity (SP), using one classical

radial flow solution (Papadopulos and Cooper, 1967), and double porosity (DP), using

another classical solution (Moench, 1984). Double porosity scenarios were simulated

for slab (DPSl) and spherical blocks (DPSph) (Moench, 1984). Relation between the

drawdown derivative for radial flow model, characterized by a plateau in log-log di-

agram, and the transmissivity is provided using T = Q/[4πs′] (Renard et al., 2009).

Right diagram: matrix hydraulic conductivity measurements from rock cores analysis

(Hurley, 2003, and unpublished data). Relationship between the transmissivity and

hydraulic conductivity were based on the full saturated length of the pumping well

(i.e., 150 m).
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To evaluate influences of no-flow boundaries at intermediate and late-time720

behaviors, three models with different boundary conditions have been simulated721

using well-images theory (Figure B.9). A skin factor of 1 was assumed at the722

pumping well. The hydraulic conductivity and specific storage were fixed to723

K = 4.0 × 10−4 m s−1 and Ss = 4.0 × 10−5 m−1, respectively. The specific724

storage was fixed arbitrary to obtain a hydraulic diffusivity value of 10 m2
725

s−1. Notice that changing the hydraulic diffusivity value only impacts distances726

between boundaries and the pumping well. For all models, the early-time display727

a radial flow regime with relatively negligible well-bore storage. The first model,728

with two no-flow boundaries (2-NFB) located at 60 m each from the pumping729

well, displays a slope of 0.5 at intermediate and late-times, which is lower than730

the observed behavior. The second model, with an additional no-flow boundary731

(3-NFB) located at 150 m from the pumping well, also displays a slope of 0.5 at732

at intermediate and late-times. A transition can be observed with a higher slope733

between 103 to 104 seconds once the third boundary is reached. The last model,734

a closed reservoir with an additional no-flow boundary located at 400 m from735

the pumping well, displays a slope of 1 at intermediate and late-times, which is736

higher than the observed behavior. These simple modeling scenarios highlight737

that no-flow boundaries cannot explain the persistent behavior observed at the738

pumping well.739
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Figure B.9: Normalized drawdowns, sD, and derivatives, s′D, for data at the pumping

well and models with two no-flow boundaries (2-NFB), three no-flow boundaries (3-

NFB), and four no-flow boundaries (4-NFB). The first two boundaries were located at

60 m each from the pumping well. The third and fourth boundaries were located at

150 m and 400 m from the pumping well, respectively.
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Appendix C. Numerical model740

To evaluate if the equation (6) can be properly used in the present case,741

where two structures have been highlighted, a simulation has been conducted in742

an idealized geometry considering two structures with heterogeneous hydraulic743

properties embedded in an impermeable matrix (Figure C.10). Structure 1 cor-744

responds to the linear feature located at the center of the domain and structure745

2 corresponds to the surrounding linear features partly distributed radially from746

the pumping well. This simulation does not aim to represent the complexity of747

the site but has the objective to validate if scaling exponents can be properly748

estimated using the equation (6) for the case of two structures.749

Figure C.10: Distribution of hydraulic conductivity and specific storage in the idealized

geometry considering two structures. The pumping well is located at the intersection

of the linear features. Structure 1 is represented by the feature at the center of the

domain and structure 2 is represented by the surrounding linear features.

Numerical modeling was achieved with Modflow 6, which is based on a gen-750

eralized control-volume finite-difference approach (Hughes et al., 2017; Langevin751

et al., 2017, 2018), using the FloPy package (Bakker et al., 2016, 2018). Grid-752

gen program (Lien et al., 2015, 2017) was used to define unstructured quad-tree753

grids using discretization with vertices in order to improve time calculation.754

Mesh refinement have been realized at well locations and at the areas of inter-755

est, which are the linear features. Multi-aquifer well package was used to define756
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observation and pumping wells. Well-bore storage and skin effects have been757

considered at the pumping well in order to fully reproduce the early-time be-758

havior. To simulate skin effects, a cylindrical zone around the pumping well has759

been defined with a radius of 1 m, a transmissivity of 4.2× 10−2 m2 s−1, and a760

storativity of 2.0×10−1. Simulation was performed assuming a confined system761

to be consistent with the analytical solution. No-flow boundary conditions were762

assigned in a sufficiently large domain (i.e., Lx = 10000 m and Ly = 10000 m)763

to be of negligible influences during simulation.764

To scale hydraulic properties radially from the pumping well, the following765

equations have been applied:766

K(r) = K0r
τ , (C.1)

767

Ss(r) = Ss0r
σ, (C.2)

where K0 [L1−τ T−1] and Ss0 [L−1−σ] are the scaled hydraulic conductivity and768

specific storage, respectively. The scaling exponents introduced in the model769

correspond to those extracted from the well test analysis. Table C.3 lists the770

parameters’ values.771

Table C.3: Summary of numerical model parameters: τi and σi are the introduced scaling

exponents, K0 is the scaled hydraulic conductivity, Ss0 is the scaled specific storage, D0 is

the scaled hydraulic diffusivity, Wd is the width of the linear structures, b is the thickness of

the reservoir. The scaling exponents, τe and σe are extracted from the model output using

the scaling analysis procedure.

Str.
τi σi K0 Ss0 D0 Wd b τe σe

(-) (-) (m1−τ s−1) (m−1−σ) (m2+σ−τ s−1) (m) (m) (-) (-)

1 −1.26 −0.44 2.5× 10−2 2.8× 10−3 9.0× 100 12.5 200 −1.19 −0.45

2 −1.08 −0.96 1.0× 10−4 4.3× 10−3 2.4× 10−2 26.5 200 −1.15 −0.96

The results are presented in Figure C.11, which displays the drawdown be-772

havior for the two structures (Figure C.11, a and b), the characteristic time and773

amplitude as a function of distance from the pumping well in comparison with774
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the trends obtained from the well test analysis (Figure C.11, c), and the simula-775

tion at the pumping well in comparison with the data (Figure C.11, d). Based776

on this simple model, the extraction of the scaling exponents with two struc-777

tures of different hydraulic properties appears to be valid for such contrasted778

hydraulic properties.779
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Figure C.11: Results of the numerical model for the idealized structures 1 and 2 geom-

etry: a) Drawdowns, s, and b) derivatives, s′, both normalized in time and amplitude

according to the respective scaling exponents with fits of the equation (6) using the

least-squares method; c) Characteristic time, tc, and amplitude, se, as a function of

the distance, r, from the pumping well (colored dashed and dotted lines correspond

to the results displayed in Figure 5); d) Normalized drawdowns, sD, and derivatives,

s′D, for data and model at the pumping well.
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flows in weathered crystalline rocks: Impact of piezometric variations and924

depth-dependent fracture connectivity. Journal of Hydrology 511, 320–334.925

doi:10.1016/j.jhydrol.2014.01.061.926
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