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The impact of stretching-enhanced mixing and coalescence on reactivity in
mixing-limited reactive flows

Sabyasachi Sen,1 Prajwal Singh,1 Joris Heyman,2 Tanguy Le Borgne,2 and Aditya Bandopadhyay1, a)
1)Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur,
West Bengal - 721302, India
2)Géosciences Rennes, UMR 6118, Université de Rennes 1, CNRS, 35000 Rennes,
France

We analyze the dynamics of solute mixing and reaction in a mixing-limited reactive flow by considering the
transport of a tracer in a linear shear flow and in a Rankine vortex. The action of a shear flow, in general,
achieves stretching of fluid elements due to the heterogeneous nature of the flow. A vortex flow exhibits not
only stretching but also folding of fluid elements in a way which brings adjacent fluid elements closer every
turn. A strong stretching along the tangential direction is accompanied by a concomitant thinning in the radial
direction leading to a strong diffusive flux which may cause material from neighbouring regions of the mixing
interface to aggregate. Through a Lagrangian concentration evolution technique, the diffusive strip method,
we obtain the concentration field and pinpoint the signature of coalescence of two neighbouring concentration
regions by analyzing the concentration distribution profiles. The role of substrate deformation on the reaction
kinetics of a classical heterogeneous chemical reaction is also studied where we derive analytical expressions
for the coupling between rate of product formation and the Péclet number in different time limits. Finally,
the impact of coalescence on reaction rates is studied for a Rankine vortex, a result which holds important
implications for simple bimolecular reactions. This analysis is useful to understand scalar dispersion in vortical
flow structures and the consequences of stretching-enhanced diffusion in mixing-limited reactive flows.

Keywords: High Pe flows, scalar mixing, coalescence, reaction kinetics

I. INTRODUCTION

Modelling reactive transport involves a mathematical
analysis of the evolution of the concentration of solutes
which undergo chemical reaction as they are transported
in an underlying flow. Understanding the reactive dy-
namics is paramount in studies related to contaminant
transport in earth surface and subsurface flows1,2, ge-
ological storage of carbon dioxide3, fate of reactive so-
lutes in oceans4,5, clogging of geothermal installations
and growth of biofilms6,7, industrial mixers8,9 and other
chemical processes10,11. The earliest studies on solute
transport in porous media considered the evolution of
conservative species which is typically modelled by the
advection-dispersion equation12–15. Due to the highly
nonlinear nature of the equation governing the dynamics
of solute transport, numerical approaches were generally
used to obtain the solution16–19.

However, in the context of subsurface flows, this gives
an incomplete picture of the reality since chemical reac-
tions strongly influence the fate of solutes as they are
transported with the flow. The effect of chemical reac-
tion is incorporated in transport problems by appropri-
ately modifying the equations governing the transport of
conservative solutes. This is done typically by adding (or
subtracting) a source term, with the nature of the result-
ing differential equation depending strongly on the type
of chemical reaction20. Again, the nonlinear nature of
the equations make the problem analytically intractable

a)Corresponding author, email:aditya@mech.iitkgp.ac.in

and has resulted in a host of numerical codes to simulate
reactive transport21–24. In many situations, however, an
analytical solution is desired in order to gain deeper phys-
ical insight into the solution and assess the influence of
various transport and reaction parameters. This has led
to the development of analytical solutions, most of which
are based on the concept of a component, that is, a linear
combination of the species which remains conserved dur-
ing the transport process25. The idea of components has
simplified the problem of solute transport by enabling the
decoupling of the transport equations from the chemical
relation equations, where the chemical relations were ei-
ther of the chemical equilibrium type or of the chemical
kinetic type26–28.

From a groundwater systems perspective, there has
been an enormous amount of academic interest over the
decades in this area due to the importance of simulat-
ing the extent of damage due to pollutants at uncon-
taminated sites, assuming the geomorphology is known,
and to predict the effectiveness of remedial measures at
contaminated sites29–32. Due to large transport times
in groundwater flows, the chemical reactions during so-
lute transport in such systems are assumed to be of the
‘sufficiently fast’reversible type such that locally, chem-
ical equilibrium equations are valid everywhere in the
domain27. The assumption of fast reactions implies that
the characteristic time scale for the reaction is several
orders of magnitude smaller than that of any transport
process which alters the concentration of the solute. Such
a system is called mixing-limited since the driving force
for chemical reactions is the disequilibrium induced due
to the simultaneous processes of advection and diffusion,
that is, mixing.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
22

79
8



2

The influence of mixing on reaction kinetics has been
studied for the mixing of waters with different chemical
composition33–35. Recently, emphasis has been put on
understanding the role of fluid deformation on mixing
rates and its consequences for reactivity36–40. Stretching
of fluid elements by a heterogeneous flow field is known
to exert a dominant control on mixing rates of scalar
fields41–43. While the mechanisms leading to the elon-
gation of material lines are well understood, predicting
mixing rates and understanding their influence on reac-
tion kinetics remains a challenge particularly when there
is a reconnection (or aggregation) between several parts
of the mixing interface, leading, at large mixing time, to
a so-called coalescence regime44–49. Understanding the
dynamics of this coalescence regime becomes important
in flows of geophysical relevance since coalescence de-
stroys concentration gradients, thereby influencing mix-
ing rates50,51. On the other hand, sharp gradients in con-
centration form fronts that act as hot-spots for chemical
reaction52–54.

In this work, we analyze the effect of stretching-
enhanced mixing and coalescence dynamics on reactiv-
ity through scalar transport in a linear shear flow and in
a Rankine vortex. To solve the transport problem, we
propose a Lagrangian method which extends the Ranz
stretch framework to model high Péclet number reactive
flows55,56. We use this Lagrangian method to reconstruct
the scalar concentration fields and to compute the evolu-
tion of the distribution of concentrations levels in time.
The analytical solution for the solute concentrations is
substituted in the speciation equation to obtain closed
form solutions for the upscaled reactivity and mass of
precipitate as a function of time. Finally, we compare
the integrated reactivity obtained from the independent
lamellar model and that from a numerical reconstruction
of the spatial concentration distribution to emphasize the
impact of coalescence on reaction kinetics. These ana-
lytical results highlight the power of our computational
model as they offer valuable insight into the interplay be-
tween reactive transport parameters and rates of mixing
and reaction in different time limits of a given stirring
protocol. These insights are difficult to glean from Eu-
lerian simulations where analytical solutions are found
to be lacking. Besides the fact that the Lagrangian ap-
proach offers deeper insight into the physics governing re-
active transport while the time taken for computation is
independent of Péclet number. This is because advection
dominated flows can be envisioned to be an advection
step onto which diffusion occurs. These points make our
formulation an excellent alternative to Eulerian methods
for solving reactive transport problems, especially in the
high Péclet number regime.

II. NUMERICAL METHODS

A. Mathematical formulation

In this work, we analyze a chemical system consist-
ing of a single heterogeneous bimolecular reaction where
two reactive species are in equilibrium with a precipitate
(A(aq.) + B(aq.) ⇀↽ C(s)). We assume a simplified setting
where the precipitate does not interact with the back-
ground flow and leaves transport properties in the do-
main unchanged. The reactants are denoted by A and B
and the solid product is denoted by C; their dimensional
concentrations are a, b and c respectively. Expressing the
reactivity as r and assuming a homogeneous, isotropic
diffusion coefficient D, the transport equations are given
by:

∂a

∂t
+ v ·∇a = D∇2a− r

∂b

∂t
+ v ·∇b = D∇2b− r

∂c

∂t
= r.

(1)

A note on equal diffusion coefficients in the model for
species A and B - consider the dedolomitization reaction
where the chemical system consists of four equilibrium
reactions27. Let’s look specifically at the sub-system
consisting of the reaction where the calcium cation re-
acts with the carbonate anion to give a precipitate cal-
cium carbonate, since it resembles our system. Results
from the capillary tube method57 and molecular dynam-
ics simulations58 show that all 3 species in the chemical
reaction considered have diffusion coefficients in sea wa-
ter of the order of 10−9m2/s. Since linear shear flows
are often used to model saltwater intrusion in freshwa-
ter, the assumption of equal diffusion coefficients as ex-
perimentally found in seawater, is a good assumption to
use in our formulation. We use the idea of components,
which are linear combinations of chemical species that are
conserved during transport, to reduce the mathematical
complexity of the transport problem25,59,60. Using the
framework introduced by27, we deduce that our chemi-
cal system contains only one component, q = a− b, such
that the transport problem reduces to the conventional
advection-diffusion equation in q:

∂q

∂t
+ v ·∇q = D∇2q. (2)

Under the assumption of a mixing-limited reaction, the
chemical relation equation takes the form of the following
chemical equilibrium equation ab = Keq where we assume
that the stoichiometric coefficients are unitary and Keq

is a constant (not a function of either time or position
in space). The equilibrium equation can be solved to
yield the solute concentrations in terms of the component
concentration as follows:

a =
q +

√
q2 + 4Keq

2
, b =

−q +
√
q2 + 4Keq

2
, (3)
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FIG. 1. Schematic of tracer representation using a finite number of points at the initial time instant - shown as a straight
material line, and at a later time instant - in a deformed configuration. In the initial configuration, the material line has a
uniform thickness, s0, and a uniform gap between consecutive points xi and xi+1, denoted by ∆x0i where the superscript 0
corresponds to the value at the initial time instant and i is the index of the material point. In the deformed configuration, the
material line has a non-uniform striation thickness and a non-uniform distance between consecutive tracers, that between xi
and xi+1 being si and ∆xi respectively. The local coordinate system corresponding to the strip of scalar between xi and xi+1

is also shown with the direction along the curve being denoted by σi and that perpendicular to the curve being denoted by ni.

where the form of equation (3) implies the inherent cou-
pling between transport and speciation and requires us
to solve for equation (2). Eulerian methods are useful
numerical tools to model the advection-diffusion process
but require great computational power to completely re-
solve the concentration field for high Péclet number flows.
Due to this shortcoming, efforts have been made to de-
velop alternative modelling techniques based on the La-
grangian framework. In our study, we integrate the La-
grangian concentration evolution technique called ‘The
diffusive strip method’with particle tracking routines to
analyze the evolution of a passive scalar. In the first step
of the algorithm, scalar strips are advected in a velocity
field given apriori, and their positions are computed kine-
matically by solving the equation dxi

dt = vi(xi) using an
explicit Runge-Kutta method. The transport problem
is made analytically tractable by applying the lamellar
representation of mixing where we shift to a frame of ref-
erence fixed on the scalar support55,56. The passive scalar
is shown in its initial configuration, as a straight mate-
rial line, represented by a finite number of points, and
in a deformed state at a later point in time in Figure 1,
where for strip i, σi and ni denote the local longitudinal
direction and local transverse direction respectively. The
figure also shows other physical quantities that are funda-
mental to our formulation. In the initial state, we have
shown the initial striation thickness s0 and initial dis-
tance ∆x0i between points xi and xi+1, both of which are
uniform throughout the material line. However, due to
the heterogeneity in the underlying flow field, the strips

are deformed non-uniformly leading to a striation thick-
ness, si, and distance between consecutive points ∆xi,
both of which vary from one strip to another in the same
material line. The quantities are related to each other
by the conservation of areas si = (s0∆x0i )/∆xi, which
is a useful expression in the derivation of the velocity
field in a frame of reference fixed on the material line.
This transformation of the frame of reference allows us
to account for diffusion, independent of advection, by in-
serting diffusive material segments along the strip. We
represent the velocity field in the local coordinate system
as a first order Taylor expansion of the flow around xi:

vσ

∣∣∣xi ≈
∂vσi

∂σi
σi +

∂vσi

∂ni
ni = −σi

si

dsi
dt

+
∂vσi

∂ni
ni

vn

∣∣∣xi ≈
∂vni

∂ni
ni =

ni
si

dsi
dt
.

(4)

The expression above, for dσi/dt or equivalently, vσ

∣∣∣xi,

is simplified using the conservation of areas to obtain
d
dt (lnsi) = − 1

σi

d
dtσi. In this model, the scalar is assumed

to undergo a series of stretching and folding operations,
thereby organizing itself into an elongated filament-like
structure61–63. The deformation of the strip of scalar is
such that its characteristic length scale in the local nor-
mal coordinate is much smaller than that along the ma-
terial line which allows us to neglect concentration gra-
dients along the strip in comparison to those normal to
the strip. Hence, it is mostly the diffusion-reaction pro-
cess occurring in the direction normal to the strip that
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contributes to mass transfer, effectively decoupling the
transport due to advection only and diffusion-reaction
(only normal to the orientation of the strip). Consid-
ering a solitary strip in the material line and dropping
the subscript index i, this simplifying assumption mod-
ifies the governing differential equations in the frame of
reference attached to the tracer to:

∂a

∂t
+
n

s

ds

dt

∂a

∂n
= D

∂2a

∂n2
− r

∂b

∂t
+
n

s

ds

dt

∂b

∂n
= D

∂2b

∂n2
− r.

(5)

However, the implicit coupling between substrate defor-
mation and the extent of diffusion and/or reaction is
obtained by transforming the equations to the warped

coordinates55: ñ = n/s and τ(t) = D
s20

∫ t
0
ρ(t

′
)2dt

′
where

ρ = s0/s. Using the chain rule for differentiation, the
terms in equation (5) are transformed as follows:

∂a

∂t
=
∂a

∂τ

∂τ

∂t
+
∂a

∂ñ

∂ñ

∂t
=
D

s2
∂a

∂τ
− ñ

s

ds

dt

∂a

∂ñ
n

s

ds

dt

∂a

∂n
=
ñ

s

ds

dt

∂a

∂ñ

D
∂2a

∂n2
=
D

s2
∂2a

∂ñ2
.

(6)

Using similar expressions for the reactant concentra-
tion b and substituting (6) in (5) we obtain the simpli-
fied governing differential equations in the warped coor-
dinates as:

∂a

∂τ
=
∂2a

∂ñ2
− s2

D
r

∂b

∂τ
=
∂2b

∂ñ2
− s2

D
r,

(7)

where r is the local reactivity, or, the source term cor-
responding to a solitary strip in the material line. This
problem can be reduced to the one-dimensional diffusion
equation for the component q in the warped set of co-
ordinates by subtracting (7b) from (7a) such that the
governing equation finally reduces to:

∂q

∂τ
=
∂2q

∂ñ2
. (8)

Assuming an initial distribution of a and b such that
q = a − b initially has a Gaussian distribution given by

e−ñ
2

, we get the classical solution for a diffusion equation
in an infinite domain:

q(ñ, t) =
1√

1 + 4τ(t)
exp

(
−ñ2

1 + 4τ(t)

)
. (9)

Equation (9) indicates that all we need to compute dur-
ing the advection problem in the diffusive strip method
are the positions xi, warped times τi and lamella thick-
nesses si of the strips in order to reconstruct the spatial
distribution of the scalar. This is carried out numerically

by adding Gaussian ellipses which are centered at the
mid-point of the segment connecting consecutive points
on the material strip.

q(x) =
∑
i

1/1.7726√
1 + 4τi(t)

exp

(
− [(x− xi) · σi]2

∆x2i
−

[(x− xi) · ni]
2

s2i (1 + 4τi(t))

) (10)

where σi and ni are the unit vectors along and perpen-
dicular to strip i in the material line [please see Figure
1].

We may now obtain the mass of precipitate during such
a flow. An explicit expression for the reactivity due to
a solitary strip is obtained by substituting the solution
for b from equation (3) into the corresponding transport
equation (7b):

∂c

∂τ
=
s2

D
r =

2Keq

(q2 + 4Keq)3/2

(
∂q

∂ñ

)2

. (11)

The two soluble species, when in equilibrium, yield an
insoluble static species whose rate of formation per unit
area, in the limit of Keq >> q2, is governed by:

∂c

∂τ
=
s2

D
r =

1

4
√
Keq

(
∂q

∂ñ

)2

(12)

The dimensional version of this result can be obtained
by substituting n = sñ and by defining D = UL/Pe =⇒
D ≈ 1/Pe (assume U,L ∼ O(1)):

r =
1

4Pe
√
Keq

(
∂q

∂n

)2

. (13)

This is a key result since it highlights the explicit de-
pendence of the reactivity on the mixing rate, quantified
by (∂q/∂n)2/Pe, an expression which is consistent with
the idea of a dilution index64. In order to obtain the mass
of precipitate as a function of time, due to reaction with
a solitary strip, we integrate equation (12) with respect
to the spatial coordinates and the warped time to obtain:

mc =

∫ τ

0

∫
l

∫ ∞
−∞

∂c

∂τ
dndldτ

= s0l0

∫ τ

0

∫ ∞
−∞

ñ2√
Keq(1 + 4τ)3

exp(
−2ñ2

1 + 4τ
)dñdτ,

(14)

where l0 and l denote the length of the solitary strip
at the initial time and at an arbitrary time respectively
(note that l0 represents the same quantity as ∆x0i but
in this part of the mathematical formulation, we do not
use the subscript index i because we are dealing with
a solitary strip and not an arbitrary number of strips).
Upon integration, we finally obtain

mc =
s0l0
16

√
2π

Keq

(
1− 1√

1 + 4τ

)
. (15)
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(a) 

(b)

FIG. 2. An excellent agreement between the PDFs obtained from the Lagrangian and Eulerian simulations at (a)t=5 and
(b)t=10 for a linear shear flow. The solid line corresponds to the Lagrangian simulation whereas the dash-dot line with markers
corresponds to the Eulerian simulation.

The lamellar mixing model is valid in the regime of no
coalescence and assumes that each strip evolves indepen-
dent of all others in the flow field, allowing us to up-
scale to the total mass of precipitate formed in the en-
tire domain by adding the contribution from each strip
mc,total =

∑
imc.

B. Reaction kinetics in a linear shear flow

In order to test the validity of the diffusive strip
method as a viable alternative to Eulerian methods, we

consider the prototypical case of a linear shear flow to
show the excellent agreement between the results ob-
tained from simulations carried out in the two different
modelling frameworks. The flow field

−→
V = uî + vĵ is

given by:

(u, v) = (y, 0). (16)

A strip of scalar of unit length and characteristic thick-
ness s0 = 0.1 units is initially placed along the y-axis at
x=0 and is sheared by this flow field. We reconstruct
the concentration field and derive the PDF of concentra-
tion using both the Eulerian and Lagrangian schemes.
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(a) (b)

FIG. 3. a) In a linear shear flow, we plot the evolution of the concentration of A towards the global equilibrium state for
different equilibrium constants. The markers are plotted from tstart = 0 to tend = 50 at intervals of ∆t = 1. From the density
of the markers we can see that initially, the concentration a evolves at an increasing rate and then at a decreasing rate as it
approaches the equilibrium line. This is an indicator of the driving force for the reaction, which is the reactivity. The faster
increments in the concentration of a occur until a certain point in time when the concentration gradients are the highest and
in turn, the reactivity is also at its peak, beyond which the approach becomes slower. b) The evolution of a and b towards the
equilibrium concentration

√
Keq in a linear shear flow from t = 0 (outer-most curves) to t = 7 (inner-most curves) at intervals

of ∆t = 1.

In the PDF, the concentration c has been normalized
by the maximum concentration c0 which in turn, is as-
sumed throughout our study to be 1. A very good match
between the results from the two modelling methods is
observed in Figure 2 for a range of Péclet numbers. A
careful comparison between the PDFs obtained from the
Lagrangian and Eulerian simulations reveals, however,
that the Eulerian PDFs show a slightly greater decay in
concentration than that shown in the results obtained
from the diffusive strip method. This additional decay
is absent in the Lagrangian simulations precisely because
here, the advection and diffusion processes are decoupled.
This decoupling causes the velocity field and its gradient
to act only on points representing the center-line of the
strip and thus the effect of the space-continuous velocity
field on the mass comprising the entire material lamella is
unaccounted for. This is why we observe uniform stretch-
ing normal to the strip in the images for the concentra-
tion field reconstructed from the Lagrangian simulations
(See Figure 7). This difference is due to the existence
of a velocity gradient normal to the strip i.e. ∂u

∂n 6= 0,
which causes differential stretching normal to the strip
for the case of the Eulerian simulations. However, for

most of the PDF, the two numerical schemes are in ex-
cellent agreement with one another since the differential
stretching experienced locally normal to the strip, due to
the non-zero contribution from ∂u

∂n∆n, is negligible com-
pared to the absolute velocity. This validation exercise
establishes the much faster Lagrangian technique based
on the diffusive strip method as a very good alternative
to Eulerian methods, allowing us to proceed in our study
of reactive mixing using the diffusive strip method.

Using the mathematical formulation derived in Sec-
tion II A, we first demonstrate the reactive dynamics of
a solitary strip being transported in a linear shear flow
(u, v) = (y, 0). Consider a material line of initial width
s0 = 0.1 placed along the y axis in −0.5 < y < 0.5 at
xpos = 0. The initial conditions for the species is chosen
in such a manner that equilibrium is satisfied everywhere
in the domain while yielding a Gaussian distribution for
the conservative component, q.

In Figure 3(a), we represent the evolution of the re-
actant masses towards equilibrium in the concentration
space. At equilibrium, the concentration of both the
species tends to the value of

√
Keq. It is seen that the

evolution follows the equilibrium curve ab = Keq (de-
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noted by the line joining markers of a single colour in the
figure). Disequilibrium conditions are constantly created
due to the combined effects of advection and diffusion.
A decrease in the concentration of a results in traversal
along the equilibrium curves. This traversal is equivalent
to the two reactants attempting to reach the equilibrium
condition of a = b =

√
Keq after which there are no more

reactions in the system. It must be noted that as the sys-
tem approaches the a = b line, the rate of approach first
increases and then decreases. In the initial stages, the
fast rate of approach is due to the large driving force for
reaction which increases as long as concentration gradi-
ents increase and then decreases asymptotically to zero.
The fact that the maximum reactivity does not corre-
spond to the initial time but to a later time instant also
holds interesting implications for the regions in which the
maximum mass would be expected to be precipitated.
Figure 3(b) represents the spatial evolution of the nor-
malized concentrations of species A and B (relative to
the equilibrium concentration

√
Keq); the upper set of

curves represents species A along the normal coordinate
n at time intervals of ∆t = 1. The concentration profiles
of the reactants are distributed about the eventual equi-
librium concentration

√
Keq in such a manner that the

product is always constrained to ab = Keq. Such an evo-
lution of the concentration profile has also been reported
by De Simoni et al27.

As time progresses, we see that instead of concentra-
tion gradients attenuating by diffusing immediately from
the initial profile, there is first an increase in the normal
concentration gradient. This occurs since, in the initial
stages of the deformation protocol, shear is the dominant
mechanism governing the evolution of the scalar, thereby
causing a net reduction in strip width. The thinning con-
tinues until the rate of compression of the strip is equili-
brated by the rate of increase in thickness due to diffusion
s0
∇vt ∼

√
Dt. (here, ∇v is the stretching rate; please see

Figure 6). The time at which this event occurs is known
as the mixing time tmix and this is also the time at which
concentration gradients are at a maximum. Beyond the
mixing time, the width of the strip increases (Figure 6(b))
and attenuates concentration gradients. It was shown
through equation (13) how the reactivity is related to
the quantity of mixing of the conservative species27. The
important consequence of the fluid deformation dynam-
ics on reaction is that the heterogeneity in the flow leads
to mixing and reactive behaviour which is very differ-
ent from what is observed in a homogeneous flow field.
The compression locally normal to the strip drives an en-
hanced mass flux in that direction due to the increased
gradient. This is clearly seen in Figure 4 through the
spatio-temporal evolution of the reactivity at different
time instants. The form of equation (13) tells us that the
reactivity is zero at the peak of the concentrations - the
middle of the lamella, and is highest where the gradient
in the concentration is the maximum. Due to symmetry
of the concentration profile about the center-line of the
lamella, we have shown only one side of the distribution

FIG. 4. The reactivity is plotted for a solitary strip in a
linear shear flow along the local normal direction. It can
be seen that the maximum reactivity is not reached at the
initial injection time but at a later stage corresponding to
the time and location when the concentration gradient is at
a maximum.

about the origin of the normal direction.
The concentration distributions depicted in Figures

3(b) and 4 may be now used to study the reactivity in-
tegrated over the spatial coordinates (in the direction
normal to the strip and also along the strip). The fun-
damental premise of the lamellar approach is that the
concentration variation (and consequently the reactivity)
along the length of a solitary strip can be neglected in
comparison to that along the transverse variation. This
simplifies the spatial integration and results in the fol-
lowing solution for the integrated reactivity

R =

∫
l

∫ ∞
−∞

rdndl =
l

4Pe
√
Keq

∫ ∞
−∞

(
∂q

∂n

)2

dn. (17)

Substituting the expression for q given in equation (9)
into the integral above yields

R =
l0s0
Pes2

1

8

√
2π

Keq

1

(1 + 4τ)3/2
=⇒ lim

t→0
R ∼ 1

Pe
. (18)

This analysis is useful when it is important to have
knowledge of the rate of formation and mass of prod-
uct at any given instant of time. In Figure 5(a) and
5(b), we depict the reactivity and temporal evolution of
the mass of product respectively. We observe a depen-
dence of the initial time reactivity on the Péclet num-
ber as limt→0R ∼ 1/Pe and also observe that the rate
at which mass of precipitate is formed increases initially
and then saturates. We may gain a better physical in-
sight into the situation by observing that up until the
mixing time, the reactivity increases since shear domi-
nates diffusion, beyond which we observe a significant
drop in the reactivity. This behaviour of the reactivity
is reflected in the variation of mass in time. At early
times, the mass of product, which is obtained through
integration in time of the reactivity term, is shown to
vary as mc ∼ t/Pe. This can be obtained from equation
(15) by using the binomial expansion for (1 + 4τ)−1/2 for
small τ and by substituting τ = 1

Pes20
[t+γ2t3/3]. Beyond

this stage, indicated accurately by the mixing time (black
markers), there is a drastic decay in the reactivity and
that is reflected in the saturation of the mass of the prod-
uct formed. Importantly, we note that the limit of the

total mass precipitated (=
√
2π
16 s0ltotal where ltotal is the

initial length of the entire material line) at large times is
independent of the Péclet number. Thus, the influence
of the Péclet number is most prominently manifested at
the initial times as indicated by equation (18).
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(a) (b)

FIG. 5. a) The integrated reactivity R=
∫ ∫

rdndl is plotted against time for a solitary strip in a linear shear flow for a range
of Péclet numbers (with Keq = 1). In each case, the reactivity in the initial stages is constant and is seen to scale as 1/Pe, a
result consistent with equation (18) and as expected from the lamellar description of mixing, decreases beyond the mixing time
indicated by the black markers. b) The total mass obtained in the domain is plotted for various Péclet numbers. All yield the
same final mass but do so at different times. Low Péclet number flows reach mixing time before that of high Péclet number
flows and react faster to give the same final mass.

A scaling law is also derived relating the integrated re-
activity with Péclet number at long times beyond the
mixing time. From equation (18) and by using s =

s0/
√

1 + t2 for a linear shear we obtain,

R =
s0l0

8

√
2π

Keq

1

Pes20

1 + t2

[1 + 4
Pes20

(t+ t3

3 )]3/2
. (19)

In the limit of t >> tmix, this reduces to (Figure 5(a))

R =
s20l0
64

√
2π

Keq
Pe1/2t−5/2 ∼ Pe1/2t−5/2. (20)

III. RESULTS

A. Rankine vortex flow

The Rankine vortex is a flow model with an inner cir-
cular zone comprising a forced vortex and an outer region
characterized by a free vortex. The radial symmetry in
the flow makes it appropriate to define the velocity field
in the cylindrical polar coordinate system (r,θ,z) where

the z axis is the axis of symmetry and r,θ coordinates are
in the plane of flow. The analytical expression for the
Rankine vortex is as follows:

(vr, vθ, vz) =

{
(0, c1r, 0), r ≤ rc
(0, c2r , 0), r > rc,

(21)

in which case the velocity field attains a maximum at the
characteristic distance of the vortex, rc, where the flow
field changes its nature from linear to hyperbolic. An
important feature of this flow field, with consequences
for turbulence65, is a discontinuity in its vorticity, which
is a constant = 2c1 in the inner circular zone and a
null vector in the outer region. Despite its simplicity,
the Rankine vortex has frequently been used to model
generic phenomenon in the atmosphere, such as torna-
does and mesocyclones66–68. At the same time, the outer
free vortex region of the flow model, resembling a point
vortex, is a common approximation to circulating regions
of stagnant fluid in porous media flows69,70. Hence, the
Rankine vortex becomes a good choice of a flow field to
illustrate coalescence during scalar mixing and also ex-
plore the influence of coalescence dynamics on reactivity
for a mixing-limited reactive flow.

In our numerical study, c1 = 2, c2 = 0.5, r denotes the
distance of the material lamella from the center of the
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*

(a) (b)

(d)(c)

FIG. 6. (a)Shearing of a strip of scalar due to the presence of a velocity gradient in the direction perpendicular to the longest
dimension of the strip (b) Evolution of strip width in time; here γ = ∇v (c) The numerically obtained values for the Batchelor
scale through the simulation (averaged minimum width of strips during the simulation) are represented by the marker * and are
plotted over a range of Péclet numbers. We observe a good agreement between the numerical data and the power law scaling
between Batchelor scale and Péclet number predicted by the theory (d) Random walk particle tracking in a Rankine vortex
for Pe = 103. The reconstruction is equivalent to that of an Eulerian simulation, with the phenomenon of axial diffusion being
observed here but not in the Lagrangian Ranz stretch model.

vortex and the critical radius where the flow field has a
discontinuous slope is rc = 0.5. All values have been re-
ported in non-dimensional form by assuming the domain
length scale to be O(1). A strip of scalar, initially placed
along the x-axis between 0.45 < x < 2.0, is advected in
the flow field of a Rankine vortex. We assume that in
this flow field, the deformation of material lines is gov-
erned by a single stretching rate, similar to the case of a
linear shear flow. We denote this stretching rate by ∇v
and assume that it is equal to the velocity gradient in

the radial direction. Shearing due to this radial velocity
gradient increases the length of the strip linearly in time
and causes a compression transverse to the strip due to
the fact that the velocity field is solenoidal. Figure 6(a)
shows this phenomenon yielding the following expression
for the striation thickness s:

s =
s0√

1 +∇v2t2
=⇒ s ≈ s0

∇vt
(22)

once shear effects are significant. The thinning of the
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(a) (b)

FIG. 7. Reconstruction of spatial distribution of scalar at t=20 for Pe = a)103 and b) 105. The vertical color bars beside the
figures represent the normalized scalar concentration.

strip simultaneously increases the concentration gradient
transverse to the strip, thereby, inducing a diffusive flux
which increases the strip width as

√
t+ t3. The compet-

ing processes of striation thinning and diffusion broad-
ening decrease the strip width until the mixing time,

tmix ∼ ∇v−1Pe1/3, when the associated length scale is

the well-known Batchelor scale71 sB ∼ s0Pe−1/3; here,
Pe = (s20∇v/D). Beyond the mixing time, the rate of
compression is not enough to balance the broadening due
to diffusion and the strip width increases as

√
t/Pe. By

solving the advection problem and by keeping track of the
striation thicknesses and warped times, we compute the
width using wi = si

√
1 + 4τi

56. We plot the evolution of
this width, averaged over the strip, in time for a range
of Péclet numbers in Figure 6(b). In the calculation of
the analytically averaged width, the value of ∇v is taken
to be 0.85, which is obtained by averaging ∇v =

∣∣∂v
∂r

∣∣
over the radial limits of the tracer i.e. 0.45 < r < 2.0.
The plot shows an excellent agreement between analyti-
cal predictions and data from the numerical routine, thus,
justifying our assumption that a single stretching rate
governs the stirring protocol in the vortex flow. The
power law scaling corresponding to the dependence of
the Batchelor scale on Péclet number also matches well
with numerical results (Figure 6(c)). The blue points
correspond to the minimum width achieved in the sim-
ulation for a particular Péclet number In Figure 6(d),
we show the scalar distribution in a Rankine vortex for
Pe = 103, computed using a simple random walk particle
tracking (RWPT) algorithm. The RWPT starts with an
initial set of points distributed in space according to the

initial condition e−ñ
2

. The advection step is carried out
by solving dxi

dt = vi(xi) using an explicit Runge-Kutta
method and diffusion is accounted for by making the par-

ticles move an additional step given by
√

2∆t/Pe×randn
where ∆t = 0.01 is the time step used in the simulation
and ‘randn’is an in-built MATLAB function that returns
a scalar drawn from the standard normal distribution.
This result is used for the purpose of verifying the con-
centration PDF in the coalescence regime, as described
later in Section III C.

B. Reconstruction of spatial distribution of scalar

The task of reconstructing the spatial distribution of
the scalar on a 2-D grid is computationally very inten-
sive. An alternative to a complete spatial reconstruction
is to derive mixing characteristics from the evolution of
qmax = 1/

√
1 + 4τi(t) and that of ρ = ∆xi/∆x

0
i .

However, this technique will be inaccurate in our case
since it does not account for the significant overlap be-
tween different parts of the strip as it undergoes stretch-
ing and folding. Hence, a complete reconstruction be-
comes essential in order to capture coalescence. We re-
construct the spatial distribution of the scalar on a 2-D
grid (−2.5 ≤ x, y ≤ 2.5) of dimensions 1024×1024 for two
representative Péclet numbers using the diffusive strip
method as the much faster alternative to fully resolved
Eulerian simulations. Figure 7 shows the numerical re-
construction of the spatial distribution of scalar at t=20,
where the time has been normalized by the time scale
for advection tadv ∼ O(1). In Figure 7(a), corresponding
to Pe = 103, the effect of stretching-enhanced diffusion
can clearly be seen in many parts of the material lamella,
especially at the region where the flow field changes its
nature from linear to hyperbolic. Higher velocity gra-
dients in that zone cause greater stretching and conse-
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(a) (b) (c)

FIG. 8. PDF of concentration of scalar for (a) Pe = 103 and (b) Pe = 105 at t=15 (c) The PDF in the coalescence regime is
validated with the PDF obtained from a random walk particle tracking simulation in a Rankine vortex.

quently more diffusion broadening. Different parts of the
strip have overlapped to a significant extent over there,
destroying concentration gradients, giving an indication
that the mixing time had been attained well before. On
the other hand, in Figure 7(b), the concentration has not
decayed much at parts of the strip away from the center
of the vortex whereas segments closer to the vortex eye
have just started to overlap, implying that the mixing
time has just been reached for Pe = 105.

C. Probability density function of concentration

An accurate description of the evolution of the proba-
bility density function of the scalar is an important com-
ponent of understanding the mixing dynamics of a flow
field72,73. Numerically, the PDF can be obtained by com-
puting the histogram of the spatial distribution of scalar
over the 2-D grid. This is computationally intensive since
it requires a full reconstruction on a 2-D grid. However,
there is a faster alternative that uses the fact that each
strip has a Gaussian transverse variation. This is done by
computing the histogram of concentrations due to a soli-
tary strip in the material line and then adding the contri-
butions from each strip in order to get the total PDF. A
linear sum computed over the strip will not yield the cor-
rect result once coalescence occurs, hence, this method
is valid only at initial stages when different parts of the
strip do not overlap. In spite of its limited accuracy, this
is an important quantity as its deviation from the nu-
merically computed PDF will be a measure of the extent
of mixing that has occurred in the flow (please see Ap-
pendix A for more details). Figure 8(a) shows the PDF of
the concentration of scalar for Pe = 103 at t = 15. Unlike
the PDF for Pe = 105, we observe a much faster decay
in concentration in this case since diffusion plays a more
prominent role in low Péclet number flows. The numer-

ically obtained PDF is seen to have a higher frequency
of cells in intermediate and high concentration regimes
than that in the PDF (in blue) obtained analytically by
assuming that the strips constituting the material line
do not overlap as they evolve. However, aggregation of
different parts of the scalar support is a reality when the
strip width, defined by wi = si

√
1 + 4τi, is of the or-

der of the distance separating adjacent segments of the
folded strip. This aggregation or re-connection between
different parts of the mixing interface causes the PDF
to peak at higher concentrations. On the other hand,
the two different versions of the PDF in 8(b) are a good
match with one another because, at that stage of the
simulation, reconnection of lamellae had not occurred for
Pe = 105. The PDF has also been computed using ran-
dom walk particle tracking in a Rankine vortex flow field
to validate the diffusive strip method (Figure 8(c)). The
difference in the two arises due to axial diffusion, shown
clearly in Figure 6(d), a phenomenon captured in Eule-
rian simulations (please see Figure 2 also) but not in the
Ranz stretch model.

It must be noted that the numerical PDF was obtained
by assuming that the concentration at an arbitrary posi-
tion in space is equal to a simple addition of the concen-
tration contributions from different Gaussian segments.
This is a valid construction rule for the PDF since the
Fourier equation which governs the evolution of the tracer
is linear, thereby allowing us to superimpose the concen-
tration fields from various sources. This construction rule
amounts to saying that if the concentration c at a certain
position in space is due to the addition from multiple
(say, two), independent but identical sources, then the
distribution P(c) of the concentration c in the resulting
mixture is given by the self-convolution74:

P (c) =

∫ c

0

P1(c1)P2(c− c1)dc1, (23)
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FIG. 9. (a) The PDF in the coalescence regime is obtained using the diffusive strip method. It is observed to have a cusp near
0 and an exponential fall-off, consistent with formulations of the dilution of a passive scalar in an unbounded medium (b) The
slope of the exponential tail in the PDF at any given point in time is seen to be proportional to the number of reconnections
of the mixing interface.

(a) (b)

FIG. 10. The normalized cross correlation function of the analytical PDF (denoted by f) and numerical PDF (denoted by g)
is shown at (a) t= 7 and at (b) t= 50. Even at times as early as t= 7, the two PDFs start deviating from one another for
Pe = 103 implying a very fast onset of coalescence relative to the start of the stirring protocol. On the other hand, even at
t= 50, the cross correlation function of the two PDFs peaks around k = 0 for Pe = 107.
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where P1 and P2 are identical. The situation that we are
analysing is that of an ever-dispersing mixture, since the
scalar does not have a compact support. For such a sce-
nario, we observe the relaxation of the mixture towards
a uniform state and bring out the role of the Péclet num-
ber in this process. Specifically, we compare the PDF
in the coalescence regime, computed using the diffusive
strip method, with an aggregation model in order to gain
deeper insight into how the shape of the PDF evolves75.
In the PDF shown in Figure 9(a), we observe a cusp near
zero followed by an exponential decay. The existence of
exponential tails is consistent with existing formulations
on the evolution of the concentration PDF of a dye dilut-
ing in an unbounded medium76,77. There is a steepening
of the tail in time and we observe a dependence of the
kind: P (c) ∼ exp(−αC);α = t.f(Pe) where f(Pe) is
observed to be a decreasing function of Péclet number.
The physical significance of the rate of decay of the tail
is that it is proportional to the amount of material over-
lap, or equivalently, proportional to the number of self-
convolutions of individual concentration distributions.

We identify the onset of coalescence across a range
of Péclet numbers by observing a characteristic time
at which the analytical and numerical PDFs start de-
viating from each other. We introduce some notation
which makes it easier to follow the results - let us as-
sume that the numerical PDF peaks at c = c1 and
the analytical PDF peaks at c = c2. On a logarith-
mic scale, the peaks are at log(c1) and log(c2) respec-
tively. Let the difference between the peaks be denoted
by ∆log(c/c0) = log(c1)− log(c2), such that larger values
of ∆log(c/c0) indicate a greater separation between the
peaks of the 2 PDFs, which in turn represents a greater
degree of coalescence.The cross correlation function of
the two PDFs is computed and we observe the peak of
this function shifting to higher values of ∆log(c/c0) with
time. This shifting of the peak for lower Pe is seen in
Figure 10 where the normalized cross correlation at two
times, (a) t = 7 and (b) t = 50, for Pe = 103, 105, and
107 is shown. where the characteristic deviation time is
defined as the time at which the peak of the cross cor-
relation function crosses ∆log(c/c0) = k. Here k can be
set arbitrarily based on a threshold that the end user of
this algorithm sets as a suitable indicator of coalescence.

D. Impact of coalescence on reaction kinetics in a
Rankine vortex

We extend the ideas developed in subsection II B to
study the impact of coalescence on reaction kinetics dur-
ing scalar mixing in a Rankine vortex. Using the numer-
ical reconstruction of the spatial distribution of concen-
tration, and by considering the same ‘fast’, equilibrium-
controlled bimolecular precipitation reaction that we an-
alyzed in a linear shear flow, we compare the reactivity
predicted by the independent lamellar model of mixing
and that obtained in a coalescence regime. It has been

shown for mixing-limited bimolecular reactions yielding a
precipitate that the rate of reaction is proportional to the
square of the spatial gradient of the concentration field
(see equation 13). In a flow where we assume that the so-
lute concentration evolves under an independent lamella
model, that is, each strip evolves as if it is the solitary
strip in the flow, the mixing rate is higher than that in
an actual flow where reconnection of different parts of
the mixing interface is possible. In the latter, concentra-
tion gradients are smothered due to diffusive coalescence
leading to material overlap and in turn, the reactivity in
the flow domain decreases.

These areas of coalesced scalar are characterized by an
absence of distinguishable lamellae. On the other hand,
zones where the lamellar structure of the scalar is pre-
served create steeper concentration gradients leading to
faster reaction rates. These interfaces with sharp concen-
tration gradients strongly influence subsurface dynamics
since they act as hot-spots for biochemical reaction. Such
reactive hot-spots create an environment for the develop-
ment of microorganisms leading to formation of biofilms,
govern the reaction dynamics at the interface of saltwa-
ter and freshwater bodies and also play a crucial role
in chemical injection based remediation of contaminated
groundwater. Since we are considering an ever-dispersing
mixture, and not a confined mixture, the average concen-
tration of the mixture will eventually homogenize to zero
everywhere in the domain. However, the time it takes to
do so will be different for different Péclet numbers.

The time evolution of the reactivity integrated over the
spatial coordinates yields a trend which is consistent with
the hypothesis that the presence of lamellar structures, or
equivalently higher concentration gradients, enhances re-
action rates. The predictions for the integrated reactivity
(equation (17)) in the independent lamella model (which
does not account for coalescence) have been shown to
slightly exceed those obtained from a high resolution re-
construction using the diffusive strip method (which ac-
counts for coalescence) in Figure 11(a). These results
clearly indicate that the discerning feature governing re-
action kinetics at an interface is the extent of coalescence
or its absence thereof. This insight is crucial in under-
standing how much mass is produced in a given span
of time for a precipitation/dissolution reaction driven by
mixing. Just as in the case of a linear shear flow, we
observe that after a sufficient time, all the mass in the
lamella is consumed to yield the equilibrium precipitate
mass and in the limit t >> tmix, the total mass formed

in the domain equals mc,total = (s0ltotal/16)
√

2π
Keq

where

ltotal is the initial length of the entire material line com-
posed of multiple strips (see Figure 11(b)). The similarity
in the mass dynamics for a linear shear and rankine vor-
tex can be attributed to the fact established in III A that
the substrate deformation dynamics in a rankine vortex
is essentially the same as that in a linear shear where
material lines elongate linearly in time.

It is important to note that at very long times, the
same mass of product is formed irrespective of the model
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(a) (b)

FIG. 11. a) We highlight the effect of coalescence on reactivity in this plot. The integrated reactivity R=
∫ ∫

rdndl from the
independent lamella model (solid line) is compared to that obtained from the numerical reconstruction using the diffusive strip
method (markers). The reactivity in the presence of coalescence or equivalently, in the presence of discrete lamellar structures
is seen to be less than that in the absence of coalescence. The onset of coalescence smothers concentration gradients and this
in turn reduces the reactivity. Thus, the role of coalescence is seen to be that of decreasing the rate of product formation b)
The mass of precipitate, calculated using the independent lamella model, is plotted against time for a range of Péclet numbers.
In both figures, the results are shown for Keq = 1.

(coalescence vs no coalescence), since we have the same
mass of reactants to start with in both models. So, the
role of coalescence is to reduce concentration gradients
only until a certain stage in the stirring protocol, and by
that point in time, much of the reactants has been con-
verted to the product. Therefore, the difference between
the models lies in the rate at which the final mass asymp-
tote (equation 15) is reached, the rate being faster in the
independent lamellar model, since the reactivity is higher
there in the initial stages by virtue of larger concentration
gradients. Thus, understanding the mixing and reaction
dynamics in such prototypical laminar flows is the first
step towards a mechanistic understanding of transport
in reactive flow systems. The ubiquity of the Rankine
vortex makes this fundamental study an important con-
tribution to our understanding of mixing-limited reactive
transport.

IV. CONCLUSION

In this work, we have demonstrated the influence of
stretching on mixing and reaction kinetics for mixing-
limited reactions in two prototypical flow models, the lin-

ear shear and Rankine vortex. The Ranz stretch model
has been used to reconstruct the distribution of a con-
servative scalar in two dimensions and a key signature of
coalescence during scalar mixing has been identified as
the difference between the actual PDF of concentration,
obtained from numerical simulations by exploiting the
linear nature of the Fourier equation, and the concentra-
tion PDF obtained from analytical considerations which
does not account for the phenomena of strip overlap.

We have then established the fundamental behaviour
of species undergoing an equilibrium-controlled precipi-
tation reaction. The lamellar representation of mixing
has been used to decouple the advection process from
the diffusion-reaction processes and using this model, we
derive closed-form analytical expressions for the local re-
activity, upscaled reactivity and the mass of precipitate
obtained at any given point in time as a function of trans-
port and reaction parameters. The role of fluid deforma-
tion due to the inherent heterogeneity in the flow is shown
to significantly enhance reactivity than that for a homo-
geneous flow. Concentration gradients and reactivity are
observed to increase until the Péclet number dependent
mixing time, beyond which gradients are smothered and
a simultaneous decay in reactivity occurs. Importantly,
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the mass of precipitate after sufficient time is shown to be
independent of Péclet number and the role of the Péclet
number is seen to be important only at t < tmix for
the mass dynamics. Finally, we have highlighted the im-
pact of coalescence, during scalar transport in a Rankine
vortex, on reaction kinetics where the smothering of con-
centration gradients due to the onset of coalescence is
shown to decrease the upscaled reactivity in comparison
to the integrated reactivity obtained from an indepen-
dent lamella model.

We hope that this work improves our fundamental un-
derstanding of scalar dispersion in a vortex and that of
mixing-driven reactive flows. These ideas may be very
useful if extended to simulations of three-dimensional
flows in porous media where scalar blobs are sheared at
different rates, and will lay the foundations for studying
reactive mixing in groundwater flows.

V. DATA AVAILABILITY

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

Appendix A: Analytical expression for concentration PDF in
an independent lamella model

We derive the analytical expression for the PDF of
concentration P (c) by making the following change of
variables:

P (c; t)dc = Q(x; t)dx (A1)

where the concentration PDF P (c; t) is defined so that
P (c; t)dc is the probability, or frequency of occurrence, of
concentration c at time t in the domain and Q(x; t)dx is
the mass in an area dx centered at x. Here, we assume a
uniform distribution of x over a fixed domain of interest.
This allows us to write

P (c) =
Q(x)∣∣ dc
dx

∣∣ . (A2)

At an arbitrary time in the simulation, the concentration
for a solitary strip in the flow is given by equation (9).
Substituting equation (9) in A2 above yields

dc

dx
= c

−2x

s2(1 + 4τ)
, (A3)

with x ≡ n. Separating the variables and integrating
from the strip center to a certain distance normal to the
strip in the local co-ordinate system, we get:∫ c

cmax

1

c′
dc

′
=

∫ x

0

−2x
′

s2(1 + 4τ)
dx

′
, (A4)

where cmax = 1/
√

(1 + 4τ). The integration above gives
an expression for x which when substituted in (A3) gives
the final expression for the PDF for the ith segment as

Pi(c) = A
si∆xi

√
1 + 4τi

c
√

ln (cmax,i/c)
, (A5)

where cmax,i = 1/
√

(1 + 4τi). The normalizing constant,
A, cannot be obtained from this analytical expression
since the integral

∫∞
−∞ P (c)dc = 1 is divergent at c = 0.

The global PDF is calculated by adding the contributions
from all strips, assuming they do not overlap with each
other.

Appendix B: Details of Eulerian simulations

The task is to solve the following equation in an Eule-
rian framework:

∂c

∂t
+ v ·∇c = D∇2c. (B1)

We solve the advection-diffusion equation using in-built
solvers in Basilisk78. The advection equation, ∂c

∂t +
u.∇c = 0 is solved using the Bell-Collela-Glaz (BCG)
scheme which is a flux-based advection scheme having
second order accuracy in time. While computing the gra-
dient of the scalar, instead of a cell-centered gradient, a
generalised ‘minmod’limiter is used where the parame-
ter θ, which decides the limiting scheme, is set to 1.3 to
prevent spurious oscillations in the scalar field79. The
diffusion equation, ∂c

∂t = ∇.(D∇c), on the other hand, is
solved using the diffusion solver in Basilisk. Finally, an
adaptive grid, where the two-dimensional space is parti-
tioned using a quadtree data structure, is implemented
at each time step to reduce computation time and errors
due to numerical diffusion80. The grid used for recon-
struction of the scalar had the same limits as that used
in the diffusive strip method (please refer to Section III B)
and, was of dimensions 1024×1024 with a maximum and
minimum of 12 and 10 levels of refinement, respectively.
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