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ABSTRACT
We analyze the dynamics of solute mixing and reaction in a mixing-limited reactive flow by considering the transport of a tracer in a linear
shear flow and in a Rankine vortex. The action of a shear flow, in general, achieves stretching of fluid elements due to the heterogeneous
nature of the flow. A vortex flow exhibits not only stretching but also folding of fluid elements in a way that brings adjacent fluid elements
closer at every turn. A strong stretching along the tangential direction is accompanied by a concomitant thinning in the radial direction
leading to a strong diffusive flux, which may cause the material from neighboring regions of the mixing interface to aggregate. Through a
Lagrangian concentration evolution technique, the diffusive strip method, we obtain the concentration field and pinpoint the signature of
coalescence of two neighboring concentration regions by analyzing the concentration distribution profiles. The role of substrate deformation
on the reaction kinetics of a classical heterogeneous chemical reaction is also studied where we derive analytical expressions for the cou-
pling between the rate of product formation and the Péclet number in different time limits. Finally, the impact of coalescence on reaction
rates is studied for a Rankine vortex, a result that holds important implications for simple bimolecular reactions. This analysis is useful to
understand scalar dispersion in vortical flow structures and the consequences of stretching-enhanced diffusion in mixing-limited reactive
flows.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0022798., s

I. INTRODUCTION

Modeling reactive transport involves a mathematical analysis of
the evolution of the concentration of solutes that undergo a chemical
reaction as they are transported in an underlying flow. Understand-
ing the reactive dynamics is paramount in studies related to contam-
inant transport in the Earth’s surface and subsurface flows,1,2 geolog-
ical storage of carbon dioxide,3 fate of reactive solutes in oceans,4,5

clogging of geothermal installations and growth of biofilms,6,7 indus-
trial mixers,8,9 and other chemical processes.10,11 The earliest stud-
ies on solute transport in porous media considered the evolution
of conservative species that is typically modeled by the advection–
dispersion equation.12–15 Due to the highly nonlinear nature of the
equation governing the dynamics of solute transport, numerical
approaches were generally used to obtain the solution.16–19

However, in the context of subsurface flows, this gives an
incomplete picture of the reality since chemical reactions strongly
influence the fate of solutes as they are transported with the flow. The
effect of the chemical reaction is incorporated in transport problems
by appropriately modifying the equations governing the transport of
conservative solutes. This is done typically by adding (or subtract-
ing) a source term, with the nature of the resulting differential equa-
tion depending strongly on the type of chemical reaction.20 Again,
the nonlinear nature of the equations makes the problem analytically
intractable and has resulted in a host of numerical codes to simulate
reactive transport.21–24 In many situations, however, an analytical
solution is desired in order to gain deeper physical insight into the
solution and assess the influence of various transport and reaction
parameters. This has led to the development of analytical solutions,
most of which are based on the concept of a component, that is, a
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linear combination of the species that remains conserved during the
transport process.25 The idea of components has simplified the prob-
lem of solute transport by enabling the decoupling of the transport
equations from the chemical relation equations, where the chemi-
cal relations were either of the chemical equilibrium type or of the
chemical kinetic type.26–28

From a groundwater system perspective, there has been an
enormous amount of academic interest over the decades in this area
due to the importance of simulating the extent of damage due to
pollutants at uncontaminated sites, assuming the geomorphology is
known, and to predict the effectiveness of remedial measures at con-
taminated sites.29–32 Due to large transport times in groundwater
flows, the chemical reactions during solute transport in such systems
are assumed to be of the “sufficiently fast” reversible type such that
locally, chemical equilibrium equations are valid everywhere in the
domain.27 The assumption of fast reactions implies that the char-
acteristic time scale for the reaction is several orders of magnitude
smaller than that of any transport process which alters the concen-
tration of the solute. Such a system is called mixing-limited since the
driving force for chemical reactions is the disequilibrium induced
due to the simultaneous processes of advection and diffusion, that
is, mixing.

The influence of mixing on reaction kinetics has been studied
for the mixing of waters with different chemical composition.33–35

Recently, emphasis has been put on understanding the role of
fluid deformation on mixing rates and its consequences for reac-
tivity.36–40 The stretching of fluid elements by a heterogeneous flow
field is known to exert a dominant control on mixing rates of scalar
fields.41–43 While the mechanisms leading to the elongation of mate-
rial lines are well understood, predicting mixing rates and under-
standing their influence on reaction kinetics remains a challenge
particularly when there is a reconnection (or aggregation) between
several parts of the mixing interface, leading, at large mixing time,
to a so-called coalescence regime.44–49 Understanding the dynamics
of this coalescence regime becomes important in flows of geophys-
ical relevance since coalescence destroys concentration gradients,
thereby influencing mixing rates.50,51 On the other hand, sharp gra-
dients in concentration form fronts that act as hotspots for chemical
reactions.52–54

In this work, we analyze the effect of stretching-enhanced mix-
ing and coalescence dynamics on reactivity through scalar transport
in a linear shear flow and in a Rankine vortex. To solve the transport
problem, we propose a Lagrangian method that extends the Ranz
stretch framework to model high Péclet number reactive flows.55,56

We use this Lagrangian method to reconstruct the scalar concen-
tration fields and to compute the evolution of the distribution of
concentration levels in time. The analytical solution for the solute
concentration is substituted in the speciation equation to obtain
closed form solutions for the upscaled reactivity and mass of pre-
cipitate as a function of time. Finally, we compare the integrated
reactivity obtained from the independent lamellar model and that
from a numerical reconstruction of the spatial concentration distri-
bution to emphasize the impact of coalescence on reaction kinetics.
These analytical results highlight the power of our computational
model as they offer valuable insight into the interplay between reac-
tive transport parameters and rates of mixing and the reaction in
different time limits of a given stirring protocol. These insights
are difficult to glean from Eulerian simulations where analytical

solutions are found to be lacking. Moreover, the time taken for
computation in the Lagrangian method is independent of the Péclet
number because advection dominated flows can be modeled to be an
advection step on to which diffusion occurs. These points make our
formulation an excellent alternative to Eulerian methods for solv-
ing reactive transport problems, especially in the high Péclet number
regime.

II. NUMERICAL METHODS
A. Mathematical formulation

In this work, we analyze a chemical system consisting of a sin-
gle heterogeneous bimolecular reaction where two reactive species
are in equilibrium with a precipitate [A(aq .) + B(aq .) ⇌ C(s)]. We
assume a simplified setting where the precipitate does not inter-
act with the background flow and leaves transport properties in the
domain unchanged. The reactants are denoted by A and B, and the
solid product is denoted by C; their dimensional concentrations are
a, b, and c, respectively. Expressing the reactivity as r and assum-
ing a homogeneous, isotropic diffusion coefficient D, the transport
equations are given by

∂a
∂t

+ v ⋅∇a = D∇2a − r,

∂b
∂t

+ v ⋅∇b = D∇2b − r,

∂c
∂t
= r.

(1)

We can justify the assumption of a homogeneous, isotropic
diffusion coefficient D by considering the dedolomitization reac-
tion where the chemical system consists of four equilibrium reac-
tions.27 Let us look specifically at the sub-system consisting of the
reaction where a calcium cation reacts with a carbonate anion to
give a calcium carbonate precipitate since it resembles our system.
Results from the capillary tube method57 and molecular dynam-
ics simulations58 show that all three species in the chemical reac-
tion considered have diffusion coefficients in sea water of the
order of 10−9 m2/s. Since linear shear flows are often used to
model saltwater intrusion in freshwater, the assumption of equal
diffusion coefficients as experimentally found in seawater is a
good assumption to use in our formulation. We use the idea of
components, which are linear combinations of chemical species
that are conserved during transport, to reduce the mathematical
complexity of the transport problem.25,59,60 Using the framework
introduced in Ref. 27, we deduce that our chemical system con-
tains only one component, q = a − b, such that the transport
problem reduces to the conventional advection–diffusion equation
in q,

∂q
∂t

+ v ⋅∇q = D∇2q. (2)

Under the assumption of a mixing-limited reaction, the chem-
ical relation equation takes the form of the chemical equilibrium
equation ab = Keq, where we assume that the stoichiometric coeffi-
cients are unitary and Keq is a constant (not a function of either time
or position in space). The equilibrium equation can be solved to yield
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the solute concentrations in terms of the component concentration
as follows:

a =
q +
√
q2 + 4Keq

2
, b =

−q +
√
q2 + 4Keq

2
, (3)

where the form of Eq. (3) implies the inherent coupling between
transport and speciation and requires us to solve for Eq. (2). Eule-
rian methods are useful numerical tools to model the advection–
diffusion process but require great computational power to com-
pletely resolve the concentration field for high Péclet number flows.
Due to this shortcoming, efforts have been made to develop alter-
native modeling techniques based on the Lagrangian framework.
In our study, we integrate the Lagrangian concentration evolution
technique called “the diffusive strip method” with particle tracking
routines to analyze the evolution of a passive scalar. In the first step
of the algorithm, scalar strips are advected in a velocity field given
a priori, and their positions are computed kinematically by solving
the equation dxi

dt = vi(xi) using an explicit Runge–Kutta method.
The transport problem is made analytically tractable by applying the
lamellar representation of mixing where we shift to a frame of ref-
erence fixed on the scalar support.55,56 The passive scalar is shown
in its initial configuration, as a straight material line, represented by
a finite number of points and in a deformed state at a later point
in time in Fig. 1, where for strip i, σi and ni denote the local lon-
gitudinal direction and local transverse direction, respectively. The
figure also shows other physical quantities that are fundamental to
our formulation. In the initial state, we have shown the initial stria-
tion thickness s0 and initial distance Δx0

i between points xi and xi+1,
both of which are uniform throughout the material line. However,
due to the heterogeneity in the underlying flow field, the strips are
deformed non-uniformly leading to a striation thickness, si, and dis-
tance between consecutive points Δxi, both of which vary from one

FIG. 1. Schematic of the tracer representation using a finite number of points at the
initial time instant shown as a straight material line and at a later time instant in a
deformed configuration. In the initial configuration, the material line has a uniform
thickness, s0, and a uniform gap between consecutive points xi and xi +1, denoted
by Δx0

i where the superscript 0 corresponds to the value at the initial time instant
and i is the index of the material point. In the deformed configuration, the material
line has a non-uniform striation thickness and a non-uniform distance between
consecutive tracers, that is, between xi and xi +1 being si and Δxi , respectively.
The local coordinate system corresponding to the strip of scalar between xi and
xi +1 is also shown with the direction along the curve being denoted by σ i and that
perpendicular to the curve being denoted by ni .

strip to another in the same material line. The quantities are related
to each other by the conservation of areas si = (s0Δx0

i )/Δxi, which is
a useful expression in the derivation of the velocity field in a frame
of reference fixed on the material line. This transformation of the
frame of reference allows us to account for diffusion, independent of
advection, by inserting diffusive material segments along the strip.
We represent the velocity field in the local coordinate system as a
first-order Taylor expansion of the flow around xi,

vσ ∣xi ≈
∂vσi
∂σi

σi +
∂vσi
∂ni

ni = −
σi
si
dsi
dt

+
∂vσi
∂ni

ni ,

vn∣xi ≈
∂vni
∂ni

ni =
ni
si
dsi
dt

.
(4)

The expression above, for dσi/dt or equivalently, vσ |xi, is simpli-
fied using the conservation of areas to obtain d

dt (lnsi) = −
1
σi

d
dt σi.

In this model, the scalar is assumed to undergo a series of stretching
and folding operations, thereby organizing itself into an elongated
filament-like structure.61–63 The deformation of the strip of scalar is
such that its characteristic length scale in the local normal coordinate
is much smaller than that along the material line, which allows us
to neglect concentration gradients along the strip in comparison to
those normal to the strip. Hence, it is mostly the diffusion-reaction
process occurring in the direction normal to the strip that con-
tributes to mass transfer, effectively decoupling the transport due to
advection only and diffusion-reaction (only normal to the orienta-
tion of the strip). Considering a solitary strip in the material line and
dropping the subscript index i, this simplifying assumption mod-
ifies the governing differential equations in the frame of reference
attached to the tracer to

∂a
∂t

+
n
s
ds
dt

∂a
∂n
= D∂2a

∂n2 − r,

∂b
∂t

+
n
s
ds
dt

∂b
∂n
= D∂2b

∂n2 − r.
(5)

However, the implicit coupling between substrate deformation and
the extent of diffusion and/or reaction is obtained by transform-
ing the equations to the warped coordinates:55 ñ = n/s and
τ(t) = D

s2
0
∫t0 ρ(t′)2dt′, where ρ = s0/s. Using the chain rule for

differentiation, the terms in Eq. (5) are transformed as follows:

∂a
∂t
= ∂a
∂τ

∂τ
∂t

+
∂a
∂ñ

∂ñ
∂t
= D
s2
∂a
∂τ
− ñ

s
ds
dt

∂a
∂ñ

,

n
s
ds
dt

∂a
∂n
= ñ

s
ds
dt

∂a
∂ñ

,

D
∂2a
∂n2 =

D
s2

∂2a
∂ñ2 .

(6)

Using similar expressions for the reactant concentration b and
substituting (6) in (5), we obtain the simplified governing differential
equations in the warped coordinates as

∂a
∂τ
= ∂2a
∂ñ2 −

s2

D
r, (7a)

∂b
∂τ
= ∂2b
∂ñ2 −

s2

D
r, (7b)

Phys. Fluids 32, 106602 (2020); doi: 10.1063/5.0022798 32, 106602-3

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

where r is the local reactivity or the source term corresponding to
a solitary strip in the material line. This problem can be reduced to
the one-dimensional diffusion equation for the component q in the
warped set of coordinates by subtracting (7b) from (7a) such that the
governing equation finally reduces to

∂q
∂τ
= ∂2q
∂ñ2 . (8)

Assuming an initial distribution of a and b such that q = a − b ini-
tially has a Gaussian distribution given by e−ñ

2
, we get the classical

solution for a diffusion equation in an infinite domain,

q(ñ, t) = 1√
1 + 4τ(t)

exp( −ñ2

1 + 4τ(t)). (9)

Equation (9) indicates that all we need to compute during the
advection problem in the diffusive strip method are the positions xi,
warped times τi, and lamella thicknesses si of the strips in order to
reconstruct the spatial distribution of the scalar. This is carried out
numerically by adding Gaussian ellipses that are centered at the mid-
point of the segment connecting consecutive points on the material
strip,

q(x) =∑
i

1/1.7726√
1 + 4τi(t)

exp(− [(x − xi) ⋅ σi]
2

Δx2
i

− [(x − xi) ⋅ ni]2
s2
i (1 + 4τi(t))

),

(10)

where σi and ni are the unit vectors along and perpendicular to strip
i in the material line (see Fig. 1).

We may now obtain the mass of precipitate during such a flow.
An explicit expression for the reactivity due to a solitary strip is
obtained by substituting the solution for b from Eq. (3) into the
corresponding transport equation (7b),

∂c
∂τ
= s2

D
r = 2Keq

(q2 + 4Keq)3/2
(∂q
∂ñ
)

2
. (11)

The two soluble species, when in equilibrium, yield an insoluble
static species whose rate of formation per unit area, in the limit of
Keq ≫ q2, is governed by

∂c
∂τ
= s2

D
r = 1

4
√
Keq
(∂q
∂ñ
)

2
. (12)

The dimensional version of this result can be obtained by substi-
tuting n = sñ and by defining D = UL/Pe ⇒ D ≈ 1/Pe [assume
U,L ∼ O(1)],

r = 1
4Pe
√
Keq
(∂q
∂n
)

2
. (13)

This is a key result since it highlights the explicit dependence
of the reactivity on the mixing rate, quantified by (∂q/∂n)2/Pe, an
expression which is consistent with the idea of a dilution index.64 In
order to obtain the mass of precipitate as a function of time, due to
the reaction with a solitary strip, we integrate Eq. (12) with respect

to the spatial coordinates and the warped time to obtain

mc = ∫
τ

0
∫
l
∫
∞

−∞

∂c
∂τ

dndldτ

= s0l0 ∫
τ

0
∫
∞

−∞

ñ2

√
Keq(1 + 4τ)3

exp( −2ñ2

1 + 4τ
)dñdτ, (14)

where l0 and l denote the length of the solitary strip at the initial
time and at an arbitrary time, respectively (note that l0 represents
the same quantity as Δx0

i , but in this part of the mathematical for-
mulation, we do not use the subscript index i because we are dealing
with a solitary strip and not an arbitrary number of strips). Upon
integration, we finally obtain

mc =
s0l0
16

√
2π
Keq
(1 − 1√

1 + 4τ
). (15)

The lamellar mixing model is valid in the regime of no coalescence
and assumes that each strip evolves independent of all others in the
flow field, allowing us to upscale to the total mass of precipitate
formed in the entire domain by adding the contribution from each
strip mc ,total =∑imc.

B. Reaction kinetics in a linear shear flow
In order to test the validity of the diffusive strip method as a

viable alternative to Eulerian methods, we consider the prototypical
case of a linear shear flow to show the excellent agreement between
the results obtained from simulations carried out in the two different
modeling frameworks. The flow field

Ð→
V = uî + vĵ is given by

(u, v) = (y, 0). (16)

A strip of scalar of unit length and characteristic thickness s0 = 0.1
units is initially placed along the y axis at x = 0 and is sheared by
this flow field. We reconstruct the concentration field and derive
the PDF of concentration using both the Eulerian and Lagrangian
schemes. In the PDF, the concentration c has been normalized by
the maximum concentration c0, which in turn is assumed through-
out our study to be 1. A very good match between the results from
the two modeling methods is observed in Fig. 2 for a range of Péclet
numbers. A careful comparison between the PDFs obtained from
the Lagrangian and Eulerian simulations reveals, however, that the
Eulerian PDFs show a slightly greater decay in concentration than
that shown in the results obtained from the diffusive strip method.
This additional decay is absent in the Lagrangian simulations pre-
cisely because here the advection and diffusion processes are decou-
pled. This decoupling causes the velocity field and its gradient to
act only on points representing the centerline of the strip, and thus,
the effect of the space-continuous velocity field on the mass com-
prising the entire material lamella is unaccounted for. This is why
we observe uniform stretching normal to the strip in the images
for the concentration field reconstructed from the Lagrangian sim-
ulations (see Fig. 7). This difference is due to the existence of a
velocity gradient normal to the strip, i.e., ∂u

∂n ≠ 0, which causes
differential stretching normal to the strip for the case of the Eule-
rian simulations. However, for most of the PDF, the two numer-
ical schemes are in excellent agreement with one another since
the differential stretching experienced locally normal to the strip,
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FIG. 2. An excellent agreement between the PDFs obtained from the Lagrangian
and Eulerian simulations at (a) t = 5 and (b) t = 10 for a linear shear flow. The
solid line corresponds to the Lagrangian simulation, whereas the dashed-dotted
line with markers corresponds to the Eulerian simulation.

due to the non-zero contribution from ∂u
∂nΔn, is negligible com-

pared to the absolute velocity. This validation exercise establishes
the much faster Lagrangian technique based on the diffusive strip
method as a very good alternative to Eulerian methods, allowing us
to proceed in our study of reactive mixing using the diffusive strip
method.

Using the mathematical formulation derived in Sec. II A, we
first demonstrate the reactive dynamics of a solitary strip being
transported in a linear shear flow (u, v) = (y, 0). Consider a mate-
rial line of initial width s0 = 0.1 placed along the y axis in −0.5 < y
< 0.5 at xpos = 0. The initial conditions for the species are chosen
in such a manner that equilibrium is satisfied everywhere in the

domain while yielding a Gaussian distribution for the conservative
component, q.

In Fig. 3(a), we represent the evolution of the reactant masses
toward equilibrium in the concentration space. At equilibrium, the
concentration of both the species tends to the value of

√
Keq. It

is seen that the evolution follows the equilibrium curve ab = Keq
[denoted by the line joining markers of a single color in Fig. 3(a)].
Disequilibrium conditions are constantly created due to the com-
bined effects of advection and diffusion. A decrease in the concen-
tration of a results in traversal along the equilibrium curves. This
traversal is equivalent to the two reactants attempting to reach the
equilibrium condition of a = b =

√
Keq after which there are no

more reactions in the system. It must be noted that as the system
approaches the a = b line, the rate of approach first increases and
then decreases. In the initial stages, the fast rate of approach is due
to the large driving force for reaction, which increases as long as
concentration gradients increase and then decreases asymptotically
to zero. The fact that the maximum reactivity does not correspond
to the initial time but to a later time instant also holds interesting
implications for the regions in which the maximum mass would be
expected to be precipitated. Figure 3(b) represents the spatial evo-
lution of the normalized concentrations of species A and B (relative
to the equilibrium concentration

√
Keq), and the upper set of curves

represents species A along the normal coordinate n at time inter-
vals of Δt = 1. The concentration profiles of the reactants are dis-
tributed about the eventual equilibrium concentration

√
Keq in such

a manner that the product is always constrained to ab = Keq. Such
an evolution of the concentration profile has also been reported by
De Simoni et al.27

As time progresses, we see that instead of concentration gra-
dients attenuating by diffusing immediately from the initial profile,
there is first an increase in the normal concentration gradient. This
occurs since, in the initial stages of the deformation protocol, shear
is the dominant mechanism governing the evolution of the scalar,
thereby causing a net reduction in strip width. The thinning contin-
ues until the rate of compression of the strip is equilibrated by the
rate of increase in the thickness due to diffusion s0

∇vt ∼
√
Dt (here,

∇v is the stretching rate; see Fig. 6). The time at which this event
occurs is known as the mixing time tmix and this is also the time at
which concentration gradients are at a maximum. Beyond the mix-
ing time, the width of the strip increases [Fig. 6(b)] and as a result,
attenuates concentration gradients. It was shown through Eq. (13)
how the reactivity is related to the quantity of mixing of the conser-
vative species.27 The important consequence of the fluid deforma-
tion dynamics on a reaction is that the heterogeneity in the flow leads
to mixing and reactive behavior that is very different from what is
observed in a homogeneous flow field. The compression locally nor-
mal to the strip drives an enhanced mass flux in that direction due
to the increased gradient. This is clearly seen in Fig. 4 through the
spatio-temporal evolution of the reactivity at different time instants.
The form of Eq. (13) tells us that the reactivity is zero at the peak of
the concentration (that is, at the center of the lamella) and is high-
est where the gradient in the concentration is the maximum. Due to
the symmetry of the concentration profile about the centerline of the
lamella, we have shown only one side of the distribution about the
origin of the normal direction.

The concentration distributions depicted in Figs. 3(b) and 4
may now be used to study the reactivity integrated over the spatial
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FIG. 3. (a) In a linear shear flow, we plot the evolution of the concentration of A toward the global equilibrium state for different equilibrium constants. The markers are plotted
from tstart = 0 to tend = 50 at intervals of Δt = 1. From the density of the markers, we can see that initially, the concentration a evolves at an increasing rate and then at a
decreasing rate as it approaches the equilibrium line. This is an indicator of the driving force for the reaction, which is the reactivity. The faster increments in the concentration
of a occur until a certain point in time when the concentration gradients are the highest, and in turn, the reactivity is also at its peak, beyond which the approach becomes
slower. (b) The evolution of a and b toward the equilibrium concentration

√

Keq in a linear shear flow from t = 0 (outer-most curves) to t = 7 (inner-most curves) at intervals
of Δt = 1.

coordinates (in the direction normal to the strip and also along the
strip). The fundamental premise of the lamellar approach is that the
concentration variation (and consequently the reactivity) along the
length of a solitary strip can be neglected in comparison to that along

FIG. 4. The reactivity is plotted for a solitary strip in a linear shear flow along the
local normal direction. It can be seen that the maximum reactivity is not reached at
the initial injection time but at a later stage corresponding to the time and location
when the concentration gradient is at a maximum.

the transverse variation. This simplifies the spatial integration and
results in the following solution for the integrated reactivity:

R = ∫
l
∫
∞

−∞
rdndl = l

4Pe
√
Keq
∫
∞

−∞
(∂q
∂n
)

2
dn. (17)

Substituting the expression for q given in Eq. (9) into the integral
above yields

R = l0s0

Pes2
1
8

√
2π
Keq

1
(1 + 4τ)3/2

Ô⇒ lim
t→0

R ∼ 1
Pe

. (18)

This analysis is useful when it is important to have knowledge
of the rate of formation and mass of product at any given instant of
time. In Figs. 5(a) and 5(b), we depict the reactivity and temporal
evolution of the mass of product, respectively. We observe a depen-
dence of the initial time reactivity on the Péclet number as limt→0R
∼ 1/Pe and also observe that the rate at which the mass of precipitate
is formed increases initially and then saturates. We may gain a bet-
ter physical insight into the situation by observing that up until the
mixing time, the reactivity increases since shear dominates diffusion,
beyond which we observe a significant drop in the reactivity. This
behavior of the reactivity is reflected in the variation of mass in time.
At early times, the mass of product, which is obtained through inte-
gration in time of the reactivity term, is shown to vary as mc ∼ t/Pe.
This can be obtained from Eq. (15) by using the binomial expansion
for (1 + 4τ)−1/2 for small τ and by substituting τ = 1

Pes2
0
[t + γ2t3/3].

Beyond this stage, indicated accurately by the mixing time (black
markers), there is a drastic decay in the reactivity and that is reflected
in the saturation of the mass of the product formed. Importantly,
we note that the limit of the total mass precipitated (=

√
2π

16 s0ltotal,
where ltotal is the initial length of the entire material line) at large
times is independent of the Péclet number. Thus, the influence of the
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FIG. 5. (a) The integrated reactivity
R = ∫∫rdndl is plotted against time for
a solitary strip in a linear shear flow
for a range of Péclet numbers (with
Keq = 1). In each case, the reactivity
in the initial stages is constant and is
seen to scale as 1/Pe, a result con-
sistent with Eq. (18), and as expected
from the lamellar description of mixing,
decreases beyond the mixing time indi-
cated by the black markers. (b) The total
mass obtained in the domain is plotted
for various Péclet numbers. All yield the
same final mass but do so at different
times. Low Péclet number flows reach
the mixing time before that of high Péclet
number flows and react faster to give the
same final mass.

Péclet number is most prominently manifested at the initial times, as
indicated by Eq. (18).

A scaling law is also derived relating the integrated reactivity
with the Péclet number at long times beyond the mixing time. From
Eq. (18) and by using s = s0/

√
1 + t2 for a linear shear, we obtain

R = s0l0
8

√
2π
Keq

1
Pes2

0

1 + t2

[1 + 4
Pes2

0
(t + t3

3 )]
3/2

. (19)

In the limit of t≫ tmix, this reduces to [Fig. 5(a)]

R = s2
0l0
64

√
2π
Keq

Pe1/2t−5/2 ∼ Pe1/2t−5/2. (20)

III. RESULTS
A. Rankine vortex flow

The Rankine vortex is a flow model with an inner circular zone
comprising a forced vortex and an outer region characterized by a
free vortex. The radial symmetry in the flow makes it appropriate to
define the velocity field in the cylindrical polar coordinate system (r,
θ, z), where the z axis is the axis of symmetry and r and θ coordinates
are in the plane of flow. The analytical expression for the Rankine
vortex is as follows:

(vr , vθ, vz) = {
(0, c1r, 0), r ≤ rc
(0, c2

r , 0), r > rc
, (21)

in which case the velocity field attains a maximum at the character-
istic distance of the vortex, rc, where the flow field changes its nature
from linear to hyperbolic. An important feature of this flow field,
with consequences for turbulence,65 is a discontinuity in its vortic-
ity, which is a constant (=2c1) in the inner circular zone and a null
vector in the outer region. Despite its simplicity, the Rankine vor-
tex has frequently been used to model a generic phenomenon in the
atmosphere, such as tornadoes and mesocyclones.66–68 At the same
time, the outer free vortex region of the flow model, resembling a

point vortex, is a common approximation to circulating regions of a
stagnant fluid in porous media flows.69,70 Hence, the Rankine vortex
becomes a good choice of a flow field to illustrate coalescence during
scalar mixing and also explore the influence of coalescence dynamics
on reactivity for a mixing-limited reactive flow.

In our numerical study, c1 = 2, c2 = 0.5, r denotes the distance
of the material lamella from the center of the vortex, and the criti-
cal radius where the flow field has a discontinuous slope is rc = 0.5.
All values have been reported in a non-dimensional form by assum-
ing the domain length scale to be O(1). A strip of scalar, initially
placed along the x axis in the range 0.45 < x < 2.0, is advected in the
flow field of a Rankine vortex. We assume that in this flow field, the
deformation of material lines is governed by a single stretching rate,
similar to the case of a linear shear flow. We denote this stretch-
ing rate by ∇v and assume that it is equal to the velocity gradient
in the radial direction. Shearing due to this radial velocity gradi-
ent increases the length of the strip linearly in time and causes a
compression transverse to the strip due to the fact that the veloc-
ity field is solenoidal. Figure 6(a) shows this phenomenon yielding
the following expression for the striation thickness s:

s = s0√
1 +∇v2t2

Ô⇒ s ≈ s0

∇vt , (22)

once shear effects are significant. The thinning of the strip simulta-
neously increases the concentration gradient transverse to the strip,
thereby, inducing a diffusive flux that increases the strip width as√
t + t3. The competing processes of striation thinning and diffu-

sion broadening decrease the strip width until the mixing time,
tmix ∼∇v−1Pe1/3, when the associated length scale is the well-known
Batchelor scale71 sB ∼ s0Pe−1/3; here, Pe = (s2

0∇v/D). Beyond the
mixing time, the rate of compression is not enough to balance the
broadening due to diffusion and the strip width increases as

√
t/Pe.

By solving the advection problem and by keeping track of the stri-
ation thicknesses and warped times, we compute the width using
wi = si

√
1 + 4τi.56 We plot the evolution of this width, averaged over

the strip, in time for a range of Péclet numbers in Fig. 6(b). In the cal-
culation of the analytically averaged width, the value of ∇v is taken
to be 0.85, which is obtained by averaging ∇v = ∣∂v

∂r ∣ over the radial
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FIG. 6. (a) Shearing of a strip of scalar due to the presence of a velocity gradient in the direction perpendicular to the longest dimension of the strip. (b) Evolution of the strip
width in time; here, γ =∇v. (c) The numerically obtained values for the Batchelor scale through the simulation (averaged minimum width of strips during the simulation) are
represented by the marker ∗ and are plotted over a range of Péclet numbers. We observe a good agreement between the numerical data and the power law scaling between
the Batchelor scale and Péclet number predicted by the theory. (d) Random walk particle tracking (RWPT) in a Rankine vortex for Pe = 103. The reconstruction is equivalent
to that of the Eulerian simulation, with the phenomenon of axial diffusion being observed here but not in the Lagrangian Ranz stretch model.

limits of the tracer, i.e., 0.45 < r < 2.0. The plot shows an excellent
agreement between analytical predictions and data from the numer-
ical routine, thus, justifying our assumption that a single stretching
rate governs the stirring protocol in the vortex flow. The power law
scaling corresponding to the dependence of the Batchelor scale on
Péclet numbers also matches well with numerical results [Fig. 6(c)].
The blue points correspond to the minimum width achieved in the
simulation for a particular Péclet number. In Fig. 6(d), we show the
scalar distribution in a Rankine vortex for Pe = 103, computed using
a simple random walk particle tracking (RWPT) algorithm. The
RWPT starts with an initial set of points distributed in space accord-
ing to the initial condition e−ñ

2
. The advection step is carried out by

solving dxi
dt = vi(xi) using an explicit Runge–Kutta method, and dif-

fusion is accounted for by making the particles move an additional
step given by

√
2Δt/Pe× randn, where Δt = 0.01 is the time step used

in the simulation and “randn” is an in-built MATLAB function that
returns a scalar drawn from the standard normal distribution. This
result is used for the purpose of verifying the concentration PDF in
the coalescence regime, as described later in Sec. III C.

B. Reconstruction of spatial distribution of scalar
The task of reconstructing the spatial distribution of the scalar

on a 2D grid is computationally very intensive. An alternative to a
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FIG. 7. Reconstruction of spatial distribution of scalar at t = 20 for Pe = (a) 103 and
(b) 105. The vertical color bars beside the figures represent the normalized scalar
concentration.

complete spatial reconstruction is to derive mixing characteristics
from the evolution of qmax = 1/

√
1 + 4τi(t) and that of ρ = Δxi/Δx0

i .
However, this technique will be inaccurate in our case since it

does not account for the significant overlap between different parts
of the strip as it undergoes stretching and folding. Hence, a complete
reconstruction becomes essential in order to capture coalescence.
We reconstruct the spatial distribution of the scalar on a 2D grid
(−2.5 ≤ x, y ≤ 2.5) of dimension 1024 × 1024 for two representative
Péclet numbers using the diffusive strip method as the much faster
alternative to fully resolved Eulerian simulations. Figure 7 shows
the numerical reconstruction of the spatial distribution of scalar at
t = 20, where the time has been normalized by the time scale for
advection tadv ∼ O(1). In Fig. 7(a), corresponding to Pe = 103,
the effect of stretching-enhanced diffusion can clearly be seen in
many parts of the material lamella, especially at the region where
the flow field changes its nature from linear to hyperbolic. Higher
velocity gradients in that zone cause greater stretching and conse-
quently more diffusion broadening. Different parts of the strip have

overlapped to a significant extent over there, destroying concentra-
tion gradients, giving an indication that the mixing time had been
attained well before. On the other hand, in Fig. 7(b), the concen-
tration has not decayed much at parts of the strip away from the
center of the vortex, whereas segments closer to the vortex eye have
just started to overlap, implying that the mixing time has just been
reached for Pe = 105.

C. Probability density function of concentration
An accurate description of the evolution of the probability den-

sity function of the scalar is an important component of understand-
ing the mixing dynamics of a flow field.72,73 Numerically, the PDF
can be obtained by computing the histogram of the spatial distri-
bution of scalar over the 2D grid. This is computationally intensive
since it requires a full reconstruction on a 2D grid. However, there
is a faster alternative that uses the fact that each strip has a Gaus-
sian transverse variation. This is done by computing the histogram
of concentrations due to a solitary strip in the material line and then
adding the contributions from each strip in order to get the total
PDF. A linear sum computed over the strip will not yield the correct
result once coalescence occurs; hence, this method is valid only at
initial stages when different parts of the strip do not overlap. In spite
of its limited accuracy, this is an important quantity as its deviation
from the numerically computed PDF will be a measure of the extent
of mixing that has occurred in the flow (see Appendix A for more
details). Figure 8(a) shows the PDF of the concentration of scalar
for Pe = 103 at t = 15. Unlike the PDF for Pe = 105, we observe a
much faster decay in concentration in this case since diffusion plays
a more prominent role in low Péclet number flows. The numerically
obtained PDF is seen to have a higher frequency of cells in inter-
mediate and high concentration regimes than that in the PDF (in
blue) obtained analytically by assuming that the strips constituting
the material line do not overlap as they evolve. However, the aggre-
gation of different parts of the scalar support is a reality when the
strip width, defined by wi = si

√
1 + 4τi, is of the order of the distance

separating adjacent segments of the folded strip. This aggregation or

FIG. 8. PDF of concentration of scalar for (a) Pe = 103 and (b) Pe = 105 at t = 15. (c) The PDF in the coalescence regime is validated with the PDF obtained from the random
walk particle tracking simulation in a Rankine vortex.
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re-connection between different parts of the mixing interface causes
the PDF to peak at higher concentrations. On the other hand, the
two different versions of the PDF in Fig. 8(b) are a good match with
one another because, at that stage of the simulation, the reconnec-
tion of lamellae had not occurred for Pe = 105. The PDF has also
been computed using random walk particle tracking in a Rankine
vortex flow field to validate the diffusive strip method [Fig. 8(c)].
The difference in the two arises due to axial diffusion, shown clearly
in Fig. 6(d), a phenomenon captured in Eulerian simulations (see
Fig. 2 also) but not in the Ranz stretch model.

It must be noted that the numerical PDF was obtained by
assuming that the concentration at an arbitrary position in space is
equal to a simple addition of the concentration contributions from
different Gaussian segments. This is a valid construction rule for the
PDF since the Fourier equation that governs the evolution of the
tracer is linear, thereby allowing us to superimpose the concentra-
tion fields from various sources. This construction rule amounts to
saying that if the concentration c at a certain position in space is
due to the addition from multiple (say, two), independent but iden-
tical sources, then the distribution P(c) of the concentration c in the
resulting mixture is given by the self-convolution,74

P(c) = ∫
c

0
P1(c1)P2(c − c1)dc1, (23)

where P1 and P2 are identical. The situation that we are analyz-
ing is that of an ever-dispersing mixture since the scalar does not
have a compact support. For such a scenario, we observe the relax-
ation of the mixture toward a uniform state and bring out the
role of the Péclet number in this process. Specifically, we com-
pare the PDF in the coalescence regime, computed using the dif-
fusive strip method, with an aggregation model in order to gain
deeper insight into how the shape of the PDF evolves.75 In the
PDF shown in Fig. 9(a), we observe a cusp near zero followed by
an exponential decay. The existence of exponential tails is consis-
tent with existing formulations on the evolution of the concentra-
tion PDF of a dye diluting in an unbounded medium.76,77 There
is a steepening of the tail in time, and we observe a dependence

of the kind P(c) ∼ exp(−αC), α = t⋅f (Pe), where f (Pe) is observed
to be a decreasing function of Péclet number. The physical sig-
nificance of the rate of decay of the tail is that it is proportional
to the amount of material overlap or equivalently proportional
to the number of self-convolutions of individual concentration
distributions.

We identify the onset of coalescence across a range of Péclet
numbers by observing a characteristic time at which the analytical
and numerical PDFs start deviating from each other. We intro-
duce some notation that makes it easier to follow the results—let
us assume that the numerical PDF peaks at c = c1 and the ana-
lytical PDF peaks at c = c2. On a logarithmic scale, the peaks are
at log(c1) and log(c2), respectively. Let the difference between the
peaks be denoted by Δlog(c/c0) = log(c1) − log(c2) such that larger
values of Δlog(c/c0) indicate a greater separation between the peaks
of the two PDFs, which in turn represents a greater degree of coa-
lescence. The cross correlation function of the two PDFs is com-
puted, and we observe the peak of this function shifting to higher
values of Δlog(c/c0) with time. This shifting of the peak for lower
Péclet is seen in Fig. 10, where the normalized cross correlation
at two times (a) t = 7 and (b) t = 50, for Pe = 103, 105, and 107

is shown, where the characteristic deviation time is defined as the
time at which the peak of the cross correlation function crosses
Δlog(c/c0) = k. Here, k can be set arbitrarily based on a threshold
that the end user of this algorithm sets as a suitable indicator of
coalescence.

D. Impact of coalescence on reaction kinetics
in a Rankine vortex

We extend the ideas developed in Subsection II B to study the
impact of coalescence on reaction kinetics during scalar mixing in
a Rankine vortex. Using the numerical reconstruction of the spatial
distribution of concentration, and by considering the same “fast,”
equilibrium-controlled bimolecular precipitation reaction that we
analyzed in a linear shear flow, we compare the reactivity predicted
by the independent lamellar model of mixing and that obtained

FIG. 9. (a) The PDF in the coalescence
regime is obtained using the diffusive
strip method. It is observed to have a
cusp near 0 and an exponential falloff,
consistent with formulations of the dilu-
tion of a passive scalar in an unbounded
medium. (b) The slope of the exponential
tail in the PDF at any given point in time
is seen to be proportional to the number
of reconnections of the mixing interface.
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FIG. 10. The normalized cross corre-
lation function of the analytical PDF
(denoted by f ) and numerical PDF
(denoted by g) is shown at (a) t = 7 and
(b) t = 50. Even at times as early as
t = 7, the two PDFs start deviating from
one another for Pe = 103 implying a very
fast onset of coalescence relative to the
start of the stirring protocol. On the other
hand, even at t = 50, the cross correlation
function of the two PDFs peaks around
k = 0 for Pe = 107,

in a coalescence regime. It has been shown for mixing-limited
bimolecular reactions yielding a precipitate that the rate of reaction
is proportional to the square of the spatial gradient of the concen-
tration field [see Eq. (13)]. In a flow where we assume that the solute
concentration evolves under an independent lamella model, that is,
each strip evolves as if it is the solitary strip in the flow, the mixing
rate is higher than that in an actual flow where the reconnection of
different parts of the mixing interface is possible. In the latter, con-
centration gradients are smothered due to diffusive coalescence lead-
ing to material overlap, and in turn, the reactivity in the flow domain
decreases.

These areas of coalesced scalar are characterized by the absence
of distinguishable lamellae. On the other hand, zones where the

lamellar structure of the scalar is preserved create steeper concentra-
tion gradients leading to faster reaction rates. These interfaces with
sharp concentration gradients strongly influence subsurface dynam-
ics since they act as hotspots for biochemical reactions. Such reac-
tive hotspots create an environment for the development of micro-
organisms leading to the formation of biofilms, govern the reaction
dynamics at the interface of saltwater and freshwater bodies, and also
play a crucial role in chemical injection based remediation of con-
taminated groundwater. Since we are considering an ever-dispersing
mixture, and not a confined mixture, the average concentration of
the mixture will eventually homogenize to zero everywhere in the
domain. However, the time it takes to do so will be different for
different Péclet numbers.

FIG. 11. (a) We highlight the effect of coalescence on reactivity in this plot. The integrated reactivity R = ∫∫rdndl from the independent lamella model (solid line) is compared
to that obtained from the numerical reconstruction using the diffusive strip method (markers). The reactivity in the presence of coalescence or, equivalently, in the absence of
discrete lamellar structures is seen to be less than that in the absence of coalescence. The onset of coalescence smothers concentration gradients, and this in turn reduces
the reactivity. Thus, the role of coalescence is seen to be that of decreasing the rate of product formation. (b) The mass of precipitate, calculated using the independent
lamella model, is plotted against time for a range of Péclet numbers. In both figures, the results are shown for Keq = 1.
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The time evolution of the reactivity integrated over the spa-
tial coordinates yields a trend that is consistent with the hypothe-
sis that the presence of lamellar structures, or equivalently higher
concentration gradients, enhances reaction rates. The predictions
for the integrated reactivity [Eq. (17)] in the independent lamella
model (which does not account for coalescence) have been shown to
slightly exceed those obtained from a high resolution reconstruction
using the diffusive strip method (which accounts for coalescence) in
Fig. 11(a). These results clearly indicate that the discerning feature
governing reaction kinetics at the interface is the extent of coales-
cence or its absence thereof. This insight is crucial in understanding
how much mass is produced in a given span of time for a precipi-
tation/dissolution reaction driven by mixing. Just as in the case of
a linear shear flow, we observe that after a sufficient time, all the
mass in the lamella is consumed to yield the equilibrium precipitate
mass, and in the limit t≫ tmix, the total mass formed in the domain
equals mc,total = (s0ltotal/16)

√
2π
Keq

, where ltotal is the initial length of
the entire material line composed of multiple strips [see Fig. 11(b)].
The similarity in the mass dynamics for a linear shear and Rank-
ine vortex can be attributed to the fact established in Sec. III A that
the substrate deformation dynamics in a Rankine vortex is essen-
tially the same as that in a linear shear where material lines elongate
linearly in time.

It is important to note that at very long times, the same mass of
product is formed irrespective of the model (coalescence vs no coa-
lescence) since we have the same mass of reactants to start with in
both models. Hence, the role of coalescence is to reduce concentra-
tion gradients only until a certain stage in the stirring protocol, and
by that point in time, much of the reactants have been converted
to the product. Therefore, the difference between the models lies
in the rate at which the final mass asymptote [Eq. (15)] is reached,
the rate being faster in the independent lamellar model, since the
reactivity is higher there in the initial stages by virtue of larger con-
centration gradients. Thus, understanding the mixing and reaction
dynamics in such prototypical laminar flows is the first step toward
a mechanistic understanding of transport in reactive flow systems.
The ubiquity of the Rankine vortex makes this fundamental study
an important contribution to our understanding of mixing-limited
reactive transport.

IV. CONCLUSION
In this work, we have demonstrated the influence of stretching

on mixing and reaction kinetics for mixing-limited reactions in two
prototypical flow models, the linear shear and Rankine vortex. The
Ranz stretch model has been used to reconstruct the distribution of
a conservative scalar in two dimensions, and a key signature of coa-
lescence during scalar mixing has been identified as the difference
between the actual PDF of concentration, obtained from numerical
simulations by exploiting the linear nature of the Fourier equation,
and the concentration PDF obtained from analytical considerations,
which does not account for the phenomena of strip overlap.

We have then established the fundamental behavior of species
undergoing an equilibrium-controlled precipitation reaction. The
lamellar representation of mixing has been used to decouple the
advection process from the diffusion-reaction processes, and using
this model, we derive closed-form analytical expressions for the local

reactivity, upscaled reactivity, and mass of precipitate obtained at
any given point in time as a function of transport and reaction
parameters. The role of fluid deformation due to the inherent het-
erogeneity in the flow is shown to significantly enhance reactivity
than that for a homogeneous flow. Concentration gradients and
reactivity are observed to increase until the Péclet number depen-
dent mixing time, beyond which gradients are smothered and a
simultaneous decay in the reactivity occurs. Importantly, the mass
of precipitate after sufficient time is shown to be independent of
the Péclet number, and the role of the Péclet number is seen to
be important only at t < tmix for the mass dynamics. Finally, we
have highlighted the impact of coalescence during scalar transport
in a Rankine vortex on reaction kinetics where the smothering of
concentration gradients due to the onset of coalescence is shown
to decrease the upscaled reactivity in comparison to the integrated
reactivity obtained from an independent lamella model.

We hope that this work improves our fundamental understand-
ing of scalar dispersion in a vortex and that of mixing-driven reactive
flows. These ideas may be very useful if extended to simulations
of three-dimensional flows in porous media where scalar blobs are
sheared at different rates and will lay the foundation for studying
reactive mixing in groundwater flows.
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APPENDIX A: ANALYTICAL EXPRESSION FOR
CONCENTRATION PDF IN AN INDEPENDENT
LAMELLA MODEL

We derive the analytical expression for the PDF of concentra-
tion P(c) by making the following change of variables:

P(c; t)dc = Q(x; t)dx, (A1)

where the concentration PDF P(c; t) is defined so that P(c; t)dc is the
probability, or frequency of occurrence, of concentration c at time t
in the domain and Q(x; t)dx is the mass in an area dx centered at x.
Here, we assume a uniform distribution of x over a fixed domain of
interest. This allows us to write

P(c) = Q(x)
∣ dcdx ∣

. (A2)

At an arbitrary time in the simulation, the concentration for a soli-
tary strip in the flow is given by Eq. (9). Substituting Eq. (9) in (A2)
yields

dc
dx
= c −2x

s2(1 + 4τ) (A3)

with x ≡ n. Separating the variables and integrating from the strip
center to a certain distance normal to the strip in the local coordinate
system, we get

∫
c

cmax

1
c′
dc′ = ∫

x

0

−2x′

s2(1 + 4τ)dx
′, (A4)
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where cmax = 1/
√
(1 + 4τ). The integration above gives an expres-

sion for x, which when substituted in (A3) gives the final expression
for the PDF for the ith segment as

Pi(c) = A
siΔxi
√

1 + 4τi
c
√

ln (cmax,i/c)
, (A5)

where cmax,i = 1/
√
(1 + 4τi). The normalizing constant, A, can-

not be obtained from this analytical expression since the integral
∫∞−∞ P(c)dc = 1 is divergent at c = 0. The global PDF is calculated
by adding the contributions from all strips, assuming they do not
overlap with each other.

APPENDIX B: DETAILS OF EULERIAN SIMULATIONS
The task is to solve the following equation in the Eulerian

framework:

∂c
∂t

+ v ⋅∇c = D∇2c. (B1)

We solve the advection–diffusion equation using in-built solvers in
Basilisk.78 The advection equation ∂c

∂t + u ⋅ ∇c = 0 is solved using
the Bell–Collela–Glaz (BCG) scheme that is a flux-based advection
scheme having second-order accuracy in time. While computing the
gradient of the scalar, instead of a cell-centered gradient, a general-
ized “minmod” limiter is used where the parameter θ, which decides
the limiting scheme, is set to 1.3 to prevent spurious oscillations in
the scalar field.79 The diffusion equation ∂c

∂t = ∇ ⋅ (D∇c), on the
other hand, is solved using the diffusion solver in Basilisk. Finally, an
adaptive grid, where the two-dimensional space is partitioned using
a quadtree data structure, is implemented at each time step to reduce
computation time and errors due to numerical diffusion.80 The grid
used for reconstruction of the scalar had the same limits as that used
in the diffusive strip method (refer to Sec. III B) and was of dimen-
sion 1024 × 1024 with a maximum and minimum of 12 and 10 levels
of refinement, respectively.
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