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Abstract 21 

The accuracy of a wave model can be improved by assimilating an adequate number of 22 

remotely sensed wave heights. The Surface Waves Investigation and Monitoring (SWIM) and 23 

Scatterometer (SCAT) instruments onboard China-France Oceanic SATellite (CFOSAT) provide 24 

simultaneous observations of waves and wide swath wind fields. Based on these synchronous 25 

observations, a method for retrieving the SWH over an extended swath is developed using the 26 

deep neural network (DNN) approach. With the combination of observations from both SWIM 27 

and SCAT, the SWH estimates achieve significantly increased spatial coverage and promising 28 

accuracy. As evidenced by the assessments of assimilation experiments, the assimilation of this 29 

‘wide swath SWH’ achieves an equivalent or better accuracy than the assimilation of the 30 

traditional nadir SWH alone and enhances the positive impact when assimilated with the nadir 31 

SWH. Therefore, insights into the better utilization of wave remote sensing in assimilation are 32 

presented. 33 

Plain Language Summary 34 

Data assimilation is an effective way to improve wave numerical simulations, and its impact 35 

is related to both the quality and the quantity of wave observations. China-France Oceanic 36 

SATellite (CFOSAT) carries two instruments, namely, Surface Waves Investigation and 37 

Monitoring (SWIM) and a scatterometer (SCAT), which are designed to provide along-track 38 

wave parameters and wind observations over a wide swath, respectively. By combining 39 

observations from both instruments, we propose a method to estimate the SWH (significant wave 40 

height) over a wide swath (typically ±100 km on each side of the nadir track) that aims to 41 

achieve an accuracy as good as the SWIM nadir and an improved spatial coverage. The method 42 

is developed by using the deep neural network (DNN) approach. With the advantage of both a 43 

significantly increased spatial coverage and reasonable accuracy, the wide swath SWH has the 44 

potential to enhance the positive impacts of wave assimilation. Assimilation experiments 45 

demonstrate that the wide swath SWH achieves impacts as good as the assimilation of the SWIM 46 

nadir SWH and enhances the accuracy of the wave model when assimilated together with the 47 

nadir SWH. Hence, synchronous observations from CFOSAT will facilitate relevant applications 48 

in operational wave forecasting. 49 
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1 Introduction 50 

A better description of the sea state directly leads to better wave climate evaluations and 51 

climate projections of sea level in coastal areas. The significant wave height (SWH) is the most 52 

widely used indicator to measure the sea state. Therefore, it is critical to accurately monitor and 53 

forecast the SWH, and extensive studies have been performed to improve the accuracy of wave 54 

observations in this context. Data assimilation has been shown to be an effective method to 55 

improve numerical forecasts by reducing the error of the initial field from observations (Daley 56 

1993). The assimilation of wave observations is proved to be able to have an obvious positive 57 

impact on the model accuracy (Lionello et al., 1992). From another perspective, due to the 58 

principles of a numerical wave model, an adequate number of wave observations must be 59 

assimilated into the model to implement continuous corrections against the deviation introduced 60 

by the forcing (Portilla, 2009). Therefore, increasing both the quality and the quantity of wave 61 

observations is critical for improving the wave forecast accuracy, which is exactly the objective 62 

of developing new wave observation methods. 63 

Wave buoys are the most traditional method of measuring waves, as they can provide the 64 

most comprehensive information (Hasselmann et al., 1980; Steele et al. 1992) and thus be used 65 

as a reference. However, the distribution of wave buoys is severely limited due to costs. The 66 

rapid development of wave remote sensing, a promising alternative, has been extremely 67 

meaningful to wave forecasting and related studies. The spaceborne radar altimeter has become 68 

the major instrument for the acquisition of SWH observations (Fedor et al., 1979; Hayne, 1980; 69 

Dobson et al., 1987). Through decades of improvement in the related hardware and processing 70 

algorithms (Cotton et al., 1994; Liu et al., 2016), modern operational altimeters, such as the 71 

Jason series (Nerem et al., 2010) and HY2 series (Jiang et al., 2012), provide global SWH 72 

observations along their nadir tracks with high accuracy. The significant increase in the quantity 73 

of wave observations from altimeters has surely led to valuable improvements in the impacts of 74 

data assimilation (Lionello et al., 1992; Breivik et al., 1994; Bhatt et al., 2005; Emmanouil et al., 75 

2007; Cao et al., 2015, Aouf et al. 2015). However, altimeter observations are still limited to 76 

their nadir tracks, limiting the number of observations. 77 

The SWIM (Surface Waves Investigation and Monitoring) instrument carried by CFOSAT 78 

(China-France Oceanic SATellite) was launched in 2018. SWIM is a new and unique instrument 79 
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that can provide two additional sets of observations of wave spectra observations at wavelengths 80 

from 70m to 500m from each side of the altimeter nadir (Hauser et al., 2016; Xu et al. 2019). 81 

Moreover, CFOSAT also carries a microwave scatterometer (SCAT) that works simultaneously 82 

with SWIM to obtain a wind field with high accuracy across a wide swath of approximately 800 83 

km (Lin et al., 2018). Wind is the source of wave energy, so the possibility exists for SWH 84 

observations to be extended from the nadir to a swath covered by SCAT, the so-called ‘wide 85 

swath SWH’. The wide swath SWH, which has scarcely been investigated and discussed 86 

heretofore, is obtained by extracting synchronously observed information from both SWIM and 87 

SCAT. Therefore, together with the SWIM nadir, the addition of the wide swath SWH could 88 

significantly increase the quantities of wave observations comparing to that of originally 89 

designed SWIM products, which would potentially further improve wave forecasts with data 90 

assimilation. 91 

In this paper, we present a novel method for obtaining the SWH over a wide swath from the 92 

synchronous observations of SWIM and SCAT. A retrieval model based on a deep neural 93 

network (DNN) is established and trained using the SWH acquired from state-of-the-art high-94 

accuracy altimeters, namely, Jason-3 and SARAL (Abdalla, 2015; Yang et al., 2020). The 95 

method and dataset used in the DNN to estimate the SWH over SCAT grid points at a swath 96 

distance of up to 200 km are described in section 2. The SWH estimated over this wide swath is 97 

validated in section 3. In section 4, the results of assimilation experiments are described to 98 

provide a comprehensive and fundamental confirmation of the impact of the newly estimated 99 

wide swath SWH. The validation of the assimilation of the wide swath SWH reveals an 100 

improvement in the model accuracy compared with the assimilation of the nadir SWH only, 101 

which offers evidence for the benefit of the wide swath wave product. 102 

 103 

2 Data Setup and Method 104 

The setup of the observations from CFOSAT is indicated in Figure 1a. The unique 105 

synchronous observations from the SCAT and SWIM instruments used to obtain simultaneous 106 

wind and wave information are described here. First, SWIM can provide the nadir total SWH 107 

similar to traditional altimeters. In addition, SWIM observes two additional ‘boxes’ containing 108 

wave directional spectra distributed on either side of the nadir track. However, only the waves 109 
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whose wavelengths range from 70 m to 500 m can be observed in these boxes (Hauser et al., 110 

2020). The distance between the boxes and the nadir track is approximately 50km. Second, a 111 

wide swath of the wind field, including both wind speed and wind direction data, can be obtained 112 

from SCAT. 113 

The wind observations cover a larger region than the SWIM nadir and boxes. The key idea 114 

of retrieving the wide swath SWH is to acquire the total SWH by extracting the information from 115 

both wind and wave observations, in other words, to obtain more SWH observations by 116 

converting some ‘wind grids’ from SCAT into ‘SWH grids’ from the combination with SWIM 117 

observations. Being a widely used method in the field of deep learning, the deep neural network 118 

(DNN) is a powerful technique for refining features and information from big data. The 119 

efficiency and robustness of DNN have been demonstrated in classification, data mining and 120 

other fields, and DNN has been shown to be effective when applied to wave remote sensing 121 

(Wang et al., 2020). Thus, we build the wide swath SWH retrieval model based on DNN. 122 

 123 

Figure 1. Schematic diagram of retrieving the wide swath SWH. Panel 1a shows a schematic of 124 

the observations made with SWIM and SCAT onboard CFOSAT. The boxes and nadir samples 125 

from SWIM are marked as red and blue circles, respectively. The wind speed grids are shown in 126 

gray, and the green square is one of these SCAT grids. The distances from this grid to the nearest 127 

SWIM box and nadir point are defined as R1 and R2, respectively. Panel 2b indicates the 128 

structure of the DNN model for the retrieval of the wide swath SWH. 129 

The structure of the DNN model is presented in Figure 1b. Seven parameters are used as the 130 

inputs. Wind speed data from the SCAT grid can be seen as information highly related to the 131 

windsea. The SWH and peak period from the SWIM boxes can provide the wave information 132 

(over wavelengths from70 m to 500 m) for the DNN model, approximately compensating for the 133 

missing wave energy if the wave information is obtained only from the SCAT wind speed grid. 134 
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The nadir total SWH from SWIM is used as an important reference for the estimation of the wide 135 

swath SWH. The sigma0 (backscattered cross section) from the nadir track is also an important 136 

parameter that is highly related to the sea surface roughness, giving the model the information 137 

regarding the sea state as it is related to both the wind speed and the SWH. R1 and R2 are also 138 

included in the DNN model as indicators of the impacts from the SWIM boxes and nadir. 139 

The model comprises 6 layers of neurons. The rectified linear unit (ReLU, Nair et al., 2010) 140 

is used as the activation function in each neuron of the DNN model. The parameters of DNN, 141 

such as the weights between the neurons of layers, are determined by ‘supervised training’, that 142 

is, an iterative algorithm that updates these parameters depending on the calculation of the ‘loss’ 143 

between the DNN output and the truth. The SWH data from the collocated observations of the 144 

Jason-3 and SARAL altimeters are used as the truth to train the wide swath DNN model. The 145 

distance between the SCAT grid and altimeter is limited to less than 12.5 km, and the time 146 

window is ±30 min. The periods of the collocated data range from April to June 2019 and from 147 

January to February 2020. There are 6090 match-ups between CFOSAT and Jason-3/SARAL; 75% 148 

of these match-ups are used to train the DNN model, while the other 25% are used as the 149 

independent dataset for validation. 150 

 151 

3 Wide Swath SWH Estimation and Accuracy 152 

An example of the geographical coverage of actual CFOSAT observations is presented in 153 

Figure 2 to show the distributions of nadir and non-nadir data. The SWH estimates from the 154 

SWIM nadir beam are oriented along the nadir track (blue line in Figure 2), and spectral wave 155 

information is given up to approximately 50 km on either side of the nadir track (red squares in 156 

Figure 2), while wind speeds and directions are provided from SCAT measurements along a 157 

swath of approximately 800 km. As shown in Figure 2, some SWIM and SCAT data points are 158 

missing because they have been rejected during quality control. As is typical for the spatial 159 

criterion of collocation during the assessment of altimeter measurements, we assume that the 160 

SWH observations inside a 50 km radius are highly related. Therefore, considering the relevant 161 

radius of wave impact, we limit R1 to 50 km, which makes R2 equal to 100 km. Under this 162 

setting, the SCAT wind grids within a distance of 100 km from nadir are transitioned into wave 163 

grids for the DNN model. Therefore, we now obtain a 200 km swath of wave observations at a 164 
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resolution of 25 km (the spatial resolution of SCAT), which are marked as gray circles in Figure 165 

2. It can be clearly noted that the spatial coverage of wave observations is significantly increased 166 

compared to the original SWIM observations. The distributions of nadir and wide swath SWH 167 

observations acquired over a 24-hour period are presented in Figure 2b and 2c, respectively. 168 

There are 42176 samples from the SWIM nadir and 47560 samples from the wide swath SWH. It 169 

should be noted that the wide swath SWH can not only provide the same amount of data as the 170 

SWIM nadir but also cover a larger area of the ocean surface. 171 

 172 

Figure 2. Geometry used for the wide swath SWH retrieval. Panel 2a shows the locations of the 173 

CFOSAT observations at 07 UTC on 1 May 2019. SWIM wave boxes and nadir data are marked 174 

as red boxes and blue points, respectively. The wind grid points from CFOSAT SCAT are 175 

marked as colored points, and the wide swath SWH grid points are indicated as gray circles. The 176 

distributions of the nadir and wide swath SWH observations acquired over a 24-hour period are 177 

presented in 2b and 2c, respectively. 178 

In addition to the significant improvements in the amount of data and spatial coverage, the 179 

accuracy of the wide swath SWH is also validated against the independent match-ups with Jason-180 

3 and SARAL. Five statistical parameters, namely, the bias, mean absolute error (MAE), root 181 

mean square error (RMSE), normalized root mean square error (NRMSE) and scatter index (SI), 182 

are used in the validation (Yang et al., 2020). A good scatter pattern of 1580 samples is achieved 183 

with bias of only 0.001m, obtaining small MAE, RMSE, NRMSE and SI values of 0.181m, 184 

0.257 m 8.2% and 8.2%, respectively. An unbiased SWH and a reasonable RMSE can be 185 
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achieved over most of the SWH range, and satisfactory NRMSE and SI values (both under 10%) 186 

can be found when the SWH is above 1m. The validation of the wide swath SWH demonstrates 187 

an accuracy equivalent to that of the SWIM nadir SWH or state-of-the-art altimeters. 188 

Consequently, the wide swath SWH, which is retrieved by combining the observations of 189 

both SWIM and SCAT from the DNN model, provides not only a significantly improved spatial 190 

coverage but also an accuracy comparable to that of altimeter observations. 191 

 192 

4 Impact of Wide Swath SWH on Data Assimilation 193 

With the increased spatial coverage and good accuracy, wide swath SWH data have the 194 

potential to enhance the assimilation of data in wave models compared with the assimilation of 195 

nadir data only. Therefore, a set of assimilation experiments is performed to investigate this topic. 196 

The assimilation experiments are implemented using the wave model MFWAM, which is a 3rd-197 

generation numerical wave forecast model that is applied during the operational forecasts of 198 

Meteo France. The assimilation system of the MFWAM model can jointly use altimeter SWH 199 

and directional wave spectra parameters from SAR or CFOSAT observations (Lefèvre et al., 200 

2012). The MFWAM model has demonstrated good accuracy in a validation against buoy data 201 

(Bidlot, 2017). 202 

As indicated in Table 1, four model runs are performed, including three runs with the 203 

assimilation of wide swath SWH and nadir SWH (Run A), wide swath SWH only (Run B), and 204 

SWH from nadir only (Run C); in addition, a control run without any assimilation is also 205 

conducted. The SWH observations are assimilated into MFWAM by using optimal interpolation 206 

(Aouf et al., 2015) with a 3-hour time window (±1.5 hours). The model runs globally with a 207 

spatial resolution of 0.5° and is forced by 3-hourly wind and sea ice fraction fields provided by 208 

the IFS-ECMWF atmospheric system. The time period of the model experiments is May 2019. 209 

The SWH observations from National Data Buoy Center (NDBC) buoys are used as the 210 

reference to assess the accuracy of each run. A total of 45 NDBC buoys with distances off the 211 

coast beyond 60 km are selected for the assessment. From the 7377 matchups with buoys, the 212 

results of the validations are presented in Table 1. First, all three runs with assimilation achieved 213 

improved error statistics compared to the control run, reflecting the positive impacts of 214 
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assimilation. From the comparison between Run B and Run C, which employ an approximately 215 

equal number of SWH observations, the assimilation of the wide swath SWH resulted in a lower 216 

RMSE, NRMSE and SI than the assimilation of the nadir SWH only and is degraded only in the 217 

bias. Therefore, we can say that, with the increased number of observations and the acceptable 218 

accuracy, the newly retrieved wide swath SWH obtains an almost equivalent assimilation effect 219 

as nadir observations. Therefore, it is reasonable that Run A, which assimilates both wide swath 220 

and nadir SWH, achieves better values of the RMSE (which improved from 0.319 m for Run C 221 

to 0.302 m for Run A), NRMSE (from 18.88% for Run C to 17.85%) and SI (from 18.74 for Run 222 

C to 17.65) than the assimilation of nadir SWH only, although the bias is nonsignificantly 223 

degraded from -0.038 to -0.044. Consequently, the addition of wide swath SWH enhances the 224 

positive impact of the assimilation of traditional nadir observations. 225 

Table 1. Setups of the assimilation runs and their validations against NDBC buoys 226 

Runs Assimilated Data Bias (m) RMSE (m) NRMSE (%) SI (%) 

A Wide Swath SWH, Nadir SWH -0.044 0.302 17.85 17.65 

B Wide Swath SWH only -0.066 0.306 18.09 17.66 

C Nadir SWH only -0.038 0.319 18.88 18.74 

CTRL No -0.111 0.343 20.32 19.22 

As the NDBC buoys are located mainly in the Northeast Pacific and West Atlantic, the 227 

assimilation impact on the global wave system is further investigated by using the Jason-3 and 228 

SARAL altimeters. As the significant positive impact of assimilation is clearly seen in Table 1, 229 

here, we focus more on the improvements between Run A and Run C. To illustrate the positive 230 

assimilation effect of the addition of the wide swath SWH in a more obvious way, the 231 

improvements in the bias and RMSE are defined as follows: 232 

imp Rc Rabias bias bias  (1)    imp Rc RaRMSE RMSE RMSE  (2) 233 

where the subscript ‘imp’ indicates an improvement and the subscripts ‘Rc’ and ‘Ra’ indicate the 234 

parameters from Run A and Run C, respectively. Therefore, it can be inferred that when Run A 235 

gives a lower bias or RMSE, the improvement parameter would be positive; in contrast, 236 

degradation would lead to a negative value. 237 



Manuscript submitted to Geophysical Research Letters 

10 

 238 

Figure 3. Distribution of the improvements in Run A relative to Run C. The improvements of 239 

the bias and RMSE are indicated in panels 3a and 3b, respectively. 240 

The global distributions of the improvements due to the addition of the wide swath SWH 241 

are presented in Figure 3. Red color represents a positive improvement, that is, a lower bias or 242 

RMSE, while blue reflects degraded accuracy. With the assimilation of both wide swath SWH 243 

and nadir SWH, improvements can be found in most of the global ocean, as red is dominant in 244 

both Figure 3a and Figure 3b, especially in the mid-latitude regions. As indicated in Figure 3a, 245 

the most significant improvement in the bias occurred in the mid-latitude oceans of the Southern 246 

Hemisphere between 40°S and 60°S, where the bias was reduced by an average of 0.1 m. 247 

Obvious bias improvements are also observed in the North Pacific and most of the Atlantic. 248 

Slight degradations in the bias appear mainly in the tropical oceans, where the SWH is lower 249 



Manuscript submitted to Geophysical Research Letters 

11 

than in the subtropical and mid-latitude oceans. The distribution of the RMSE improvement is 250 

similar to that of the bias improvement, showing general improvement globally. Specifically, 251 

positive impacts on the bias and RMSE are achieved for 65.0% and 62.5% of the global ocean, 252 

respectively, when the wide swath SWH is assimilated with the nadir SWH. We note that the 253 

slight degradation can be explained by the lack of scaling in the model and the observation errors 254 

used in the optimal interpolation of the assimilation scheme. Optimization of the assimilation 255 

scheme for the wide swath SWH should be considered before the implementation of operational 256 

applications. 257 

 258 

5 Conclusions and Discussion 259 

The accuracy of wave simulations from numerical wave models can be effectively 260 

improved by assimilating all available observations, including the remotely sensed SWH from 261 

spaceborne altimeters. And the impact of wave assimilation is highly related to the quantity of 262 

the observations. 263 

CFOSAT is a new and unique oceanographic satellite equipped with two sensors, namely, 264 

SWIM and SCAT, which provide simultaneous observations of waves and surface winds. 265 

Although SWIM provides information in two additional columns of ‘boxes’ on either side of the 266 

nadir track, the spatial coverage of SWIM data remains limited. SCAT observations, in contrast, 267 

provide wind observations over a large swath (approximately 800 km). Since the wind speeds 268 

observed by SCAT are highly related to the wave state, a method for obtaining the SWH over a 269 

wider swath (with respect to only the nadir track) is presented that makes use of wind speed 270 

measurements from SCAT and wave observations from SWIM simultaneously. A retrieval 271 

method for obtaining the wide swath SWH is constructed based on a deep neural network. The 272 

major inputs of the DNN model are the SWH and sigma0 from the SWIM nadir observations, the 273 

SWH and peak period from the wave spectra in the SWIM off-nadir boxes, and the wind speed 274 

from SCAT. The training of the deep neural network is carried out by using collocated 275 

independent SWH altimeter observations. The model is then used to estimate the SWH at SCAT 276 

grid points to provide the SWH over an extended spatial coverage. 277 
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In addition to the significantly increased number of observations, the wide swath SWH has 278 

been shown to achieve good accuracy based on independent validations against altimeters. 279 

Therefore, a set of assimilation runs is implemented to assess the potential impact of the wide 280 

swath SWH. Promising results are found from a validation against NDBC buoy wave 281 

observations. The assimilation of the wide swath SWH achieves an equivalent positive impact to 282 

the assimilation of SWIM nadir SWH observations. It should be noted that the assimilation of the 283 

wide swath SWH achieves lower values of the RMSE, NRMSE and scatter index. Assessing the 284 

SWH from altimeters, a global validation also presents a satisfactory conclusion that, together 285 

with traditional nadir SWH observations, the addition of the wide swath SWH does enhance the 286 

positive impact of the assimilation. The enhancements produced by assimilating the wide swath 287 

SWH occur mainly in the subtropical and mid-latitude oceans where non-fully-developed wind 288 

seas are dominant. 289 

The success of the wide swath SWH estimation comes from the setup of CFOSAT payloads, 290 

which provide synchronous observations of waves and winds from SWIM and SCAT, 291 

respectively. To a certain extent, the wide swath SWH combines the advantages of both SWIM 292 

and SCAT, thereby obtaining significantly increased spatial coverage and reasonable accuracy. 293 

As evidenced by the assimilation experiments, the wide swath SWH also has an enhanced 294 

positive impact on the wave model accuracy. Therefore, this research provides insights into how 295 

we can increase the usage efficiency of ocean remote sensing. 296 

It is also worth noting that CFOSAT is not the only satellite carrying both wind and wave 297 

instruments. The HY2 series, including the HY2A (Wang et al., 2013), the HY2B (Jia et al., 298 

2020) and the most recently launched HY2C satellites, are all equipped with both an altimeter 299 

and a scatterometer, giving them the ability to monitor nadir waves and wide swath winds 300 

simultaneously. However, further research is needed on the synchronous remote sensing based 301 

observation of winds and waves. Although the acquisition of the wide swath SWH provides 302 

evidence for the potential of these synchronous observations, the wide swath SWH estimation 303 

must be further perfected. For instance, in this paper, the swath of the SWH is limited to 200 km, 304 

while a naturally wider swath would achieve more observations; however, a swath that is too 305 

wide would also degrade the accuracy because greater distance from the nadir track may lead to 306 

larger deviations for the assimilation. Therefore, more work should be conducted to optimize the 307 

SWH swath to obtain the maximum positive impact on wave assimilation. Furthermore, because 308 
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the wind and wave states are highly coupled, the synchronous observation of winds and waves 309 

from satellites such as CFOSAT and the HY2 series would provide valuable information on 310 

wind-wave interactions and related topics. 311 
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