

Source rocks in foreland basins: a preferential context for the development of natural hydraulic fractures

Alain Zanella, Peter R Cobbold, Nuno Rodrigues, H Loseth, Marc Jolivet, F

Gouttefangeas, D Chew

► To cite this version:

Alain Zanella, Peter R Cobbold, Nuno Rodrigues, H Loseth, Marc Jolivet, et al.. Source rocks in foreland basins: a preferential context for the development of natural hydraulic fractures. AAPG Bulletin, 2021, 105 (4), pp.647-668. 10.1306/08122018162 . insu-03010282

HAL Id: insu-03010282 https://insu.hal.science/insu-03010282v1

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Source rocks in foreland basins: a preferential context for the development of natural hydraulic fractures.

A. Zanella, P.R. Cobbold, N. Rodrigues, H. Loseth, M. Jolivet, F. Gouttefangeas, and D. Chew

AAPG Bulletin published online 28 August 2020 doi: 10.1306/08122018162

Disclaimer: The AAPG Bulletin Ahead of Print program provides readers with the earliest possible access to articles that have been peer-reviewed and accepted for publication. These articles have not been copyedited and are posted "as is," and do not reflect AAPG editorial changes. Once the accepted manuscript appears in the Ahead of Print area, it will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. *This process will likely lead to differences between the accepted manuscript and the final, printed version.* Manuscripts will remain in the Ahead of Print area until the final, typeset articles are printed. Supplemental material intended, and accepted, for publication is not posted until publication of the final, typeset article.

Cite as: Zanella, A., P.R. Cobbold, N. Rodrigues, H. Loseth, M. Jolivet, F. Gouttefangeas, and D. Chew, **Source rocks in foreland basins: a preferential context for the development of natural hydraulic fractures.**, *(in press; preliminary version published online Ahead of Print* 28 August 2020): AAPG Bulletin, doi: 10.1306/08122018162.

Copyright © Preliminary Ahead of Print version 2020 by The American Association of Petroleum Geologists

1	Source rocks in foreland basins: a preferential context for the		
2	development of natural hydraulic fractures.		
3			
4	A. Zanella ^{a*} , P.R. Cobbold ^b , N. Rodrigues ^{b,c} , H. Loseth ^c , M. Jolivet ^b , F. Gouttefangeas ^d , D.		
5	Chew ^e		
6			
7	^a Le Mans Université, L.P.G-UMR 6112, avenue Olivier Messiaen, 72085 Le Mans, Cedex 9, France		
8	^b Géosciences Rennes, UMR 6118, Université de Rennes 1, 35042 Rennes, France		
9	^c Statoil Research Centre, 7005 Trondheim, Norway		
10	^d Centre de Microscopie Electronique à Balayage et Microanalyse, Université de Rennes 1, 35042 Rennes, France		
11	*Department of Geology, Irinity College Dublin, Dublin 2, Ireland *Corresponding author: alain zanella@univ-lemans fr		
12			
14	KEYWORDS		
15	beef veins; natural hydraulic fractures; petroleum source rocks; fluid overpressure; foreland basins		
16			
17	ABSTRACT		
18			
19	Bedding-parallel veins of fibrous calcite (also called BPV or 'beef') occur in many sedimentary		
20	basins, especially those containing low-permeability strata with organic source material for petroleum.		
21	The formation of such veins is often linked with fluid overpressure in these source rocks. In this		
22	review, we demonstrate that beef veins are most commonly present in foreland basins worldwide or in		
23	basins that recorded a compressive tectonic period. The formation of beef veins is related to two main		
24	phases: (1) the initiation of bedding-parallel fracture and (2) the infilling of the fracture.		
25	Previous structural studies have shown that formation of beef veins occurred during a period of		
26	compressive stress activity. This is especially the case for the Wessex Basin (UK) and the Neuquén		
27	Basin (Argentina). Here we provide more observations for other basins: the Cordillera Oriental		
28	(Colombia), the Paris Basin (France), the northern Pyrenees (France), the Uinta Basin (US), the Tian		
29	Shan Mountains (central Asia) and the Appalachian Mountains (US). In the Paris Basin, beef vein		
30	formation is dated at 155 Ma (U/Pb calcite method) and is coeval with the compressional deformation		
31	in the eastern part of the basin.		
32	Because of the timing of generation for such veins and even if the theory and the experiments of		
33	fracturing demonstrate that bedding-parallel fractures can be generated only with a distributed fluid		
34	overpressure, the formation of beef veins seems to be a consequence of both fluid overpressures and a		
35	compressional tectonic stress.		
36			

37

38 1. Introduction

39

40 Many of the major mountain ranges around the world have resulted from recent horizontal 41 shortening and vertical thickening (Figure 1). Others have resulted from rifting, strike-slip faulting or 42 uplift associated with magmatism. In contrast, most older mountain ranges have tended to disappear 43 by active erosion of their sharp topographic profiles. For recent shortening and thickening, the main 44 causes are (1) subduction beneath active continental margins, especially in the Atlantic and Pacific 45 oceans, or (2) continental collision, for example between Europe and Africa or central Asia and India 46 (Figure 1). In such tectonic settings, there has been progressive development of adjacent foreland 47 basin systems as a result of thrusting and local sedimentation and in many cases, they contain 48 petroleum systems. 49 Because they are commonly hydrocarbon-bearing, foreland basins are major targets for the 50 study of source rocks and reservoirs. In the last twenty years, organic-rich source rocks have been 51 extensively studied because of their hydrocarbon potential. Within these sedimentary units, many 52 fractures occur and some of them can affect the permeability as well as the cap capability of the source 53 rocks. This is especially the case for the natural hydraulic fractures, such as bedding-parallel veins 54 (also called BPV or 'beef'). The first examples of beef to be described were likely those in the Wessex 55 Basin of Southern England (Buckland & De la Beche, 1835). The veins were easily observable along 56 coastal cliffs and provided useful material for building walls and roads. More generally, bedding-57 parallel veins are common worldwide in sedimentary basins, especially those containing 58 hydrocarbons, indicating that the host rock has reached maturity (Cobbold et al., 2013; Gale et al., 59 2014). The formation of such veins is often linked to fluid overpressure during hydrocarbon generation 60 (Rodrigues et al., 2009; Zanella et al., 2015a). Beef veins therefore consist of natural hydraulic 61 fractures, infilled by a fibrous mineral, such as calcite, gypsum or quartz (Cobbold et al. 2013). Other 62 mechanisms are also involved, but seem to be more minor, such as, for example, the force of 63 crystallization (e.g. Taber, 1916; Means & Li, 2001; Gratier et al., 2012). Recent studies have shown 64 that many bedding-parallel veins formed during horizontal shortening, as in the Wessex Basin, 65 southern England, (Zanella et al., 2015b), in the Bristol Channel Basin, England and Wales, (Meng et 66 al., 2017), or in the Neuquén Basin of western Argentina (Rodrigues et al., 2009; Ukar et al., 2017;

67 Ukar et al. 2018).

This paper presents a worldwide review of bedding-parallel veins (natural hydraulic fractures) within foreland basins and discusses the development of such natural hydraulic fracturing processes within this particular tectonic basin setting. We also present new observations and data to complete those of previous studies, particularly with respect to four localities: (1) the Northern Pyrenees, France; (2) the Uinta Basin, USA; (3) the Tian Shan Basin, China and (4) the Appalachian Basin,

73 USA.

- 74
- 75

76 **2. Formation of beef veins**

77

78 The simplest calcite beef veins, which form in tectonically quiescent basins, are typically bedding-79 parallel (horizontal), of regular thickness and contain calcite fibers, which have formed almost 80 vertically and antitaxially, separating the two boundaries of the fracture. The best evidence for 81 epitaxial separation comes from the presence of flattened fossils (for example, ammonites), which 82 remain in the central part of the vein, while counterparts of them are visible at the two outer 83 boundaries, but displaced along the directions of the calcite fibers, which may be somewhat oblique 84 (Rodrigues et al., 2009). Other forms of calcite beef are cone-in-cone structures, which likely form as a 85 result of shear faulting during epitaxial growth of the calcite veins (e.g. Cobbold et al. 2013). 86 Two successive phases characterize the formation of a beef vein: (1) the initiation of the fracture 87 and (2) the opening of the fracture. For the initiation of the fracture, the model can explain the 88 generation of horizontal hydraulic fractures without external tectonic stresses (e.g. compressive stress) 89 (Cobbold et al. 2007, Mourgues & Cobbold, 2003). However, much of our knowledge of the mechanisms involved in such processes come from experimental models developed during the early 90 91 21st century. In the early iterations of these experimental models, the pore fluids were injected from the 92 outside, at measured rates and pressures (Cobbold & Castro, 1999; Mourgues & Cobbold, 2003). 93 Thus, it became clear that vertical gradients of overpressure counteract the weight of the granular 94 material. When noncohesive materials were also compressed horizontally, the pore fluid gradient 95 facilitated detachments for thrust faults and caused these to become more nearly horizontal (Cobbold et al., 2001). When the material was cohesive, the vertical pressure gradient generated horizontal 96 97 tensile fractures, which opened progressively (Cobbold & Rodrigues, 2007). Moreover, when the 98 models were also compressed horizontally, the resulting stresses facilitated the formation of horizontal 99 tensile fractures. Because the early experimental models simulated the origin of the fluid overpressure 100 as an injector-type system, they were not adapted for the study of the origin and mechanisms involved 101 in the development of such fluid overpressures.

102 Thus, to be able to study the origin of fluid overpressures and the parameters involved in the 103 process of natural hydraulic fracturing within source rocks, later experiments have used transition 104 phases (solid to liquid), to produce a fluid within a closed experimental setup. From solid organic 105 particles (such as beeswax microspheres), models were able to generate a fluid by chemical 106 compaction-like mechanisms, which occur during burial of organic-rich source rock (Fig. 2; 107 Lemrabott & Cobbold, 2010; Zanella et al., 2014a). In such models, the wax was able to melt, on 108 heating the model from below. The resulting decrease in underlying support allowed solid particles to

109 move downwards, causing compaction of the underlying framework and an increase in pore fluid

- pressure, by a mechanism of load transfer (Zanella et al. 2014a). In other models, which were saturated with water but not subject to horizontal shortening (Figure 2), the overpressure developed soon after the temperature had reached the melting point of beeswax, at the base of the model. This overpressure became great enough to cause horizontal hydraulic fracturing of the wax-rich layer. Molten wax then migrated vertically and horizontally through the pore space and filled the opening generated by hydraulic fractures. In similar models, which were also subject to horizontal shortening, the hydraulic
- 116 fractures developed more strongly, becoming wider and longer. Furthermore, many of the fractures
- 117 varied laterally in thickness and orientation, as a result of local folding and thrust faulting.
- 118

119 For the filling of the natural hydraulic fractures, beef veins appear to have incrementally grown 120 by successive phases of crystallization (e.g. Taber, 1918; Ramsay, 1980; Rodrigues et al., 2009). Thus, 121 fibers appear to have grown incrementally during the displacement of the edges of the veins by a 122 crack-seal mechanism (Ramsay, 1980) or more continuously (Taber 1918; Durney & Ramsey, 1973; 123 Means & Li, 2001). The mechanisms involved in the formation of beef veins are complex and several 124 of them have been postulated by previous authors. The opening of the vein implies a key mechanism 125 already describe by several authors: the force of crystallization (e.g. Baker et al., 2006; Bons, 2001; 126 Bons et al., 2012; Keulen et al., 2001; Mean & Li, 2001). Indeed, several experiments have 127 demonstrated the great importance of the force of crystallization in the beef vein opening (Bons & 128 Jessel, 1997; Hilgers et al., 2001; Nollet et al., 2005, 2009) Thus, the tectonic stress, the pore fluid 129 pressure (fluid overpressures) and the force of crystallization appear to be the major mechanisms (e.g. 130 Sibson, 2003; Shearman et al., 1972; Stoneley, 1983; Taber, 1916; Gratier et al., 2012).

131

132 In many basins worldwide, the formation of beef veins seems to be linked to the generation of 133 hydrocarbons, as showing by scanning electron microscopy for calcite beef of the Wessex Basin 134 (Zanella et al., 2015b), the Neuquén Basin (Rodrigues et al., 2009; Ukar et al. 2017, 2018), the 135 Magellan Basin (Zanella et al., 2014b) and the Paris Basin. All of these examples show that beef veins 136 contain inclusions of organic matter (liquid, solid or both) within or next to the calcite crystals, 137 indicating that the organic matter was diffusing, while the calcite crystals were growing. Other 138 examples of calcite beef, e.g. in the Lourdes area, the Uinta Basin or the Appalachians, may either 139 include or be adjacent to veins of organic material. Investigating the relationship between the organic 140 matter and the hydraulic fracturing, Zanella et al. (2014a) showed with their experiments that the 141 maturity degree is a key parameter to explain the increase of pore fluid pressure within source rocks 142 and that a horizontal compressive stress can favor the development of horizontal hydraulic fractures. 143 144

145 **3. Worldwide distribution of beef veins within foreland basins**

146

148

149 A global topographic map (Figure 1) illustrates the occurrence of significant present-day 150 mountain ranges, especially along continental margins such as the Andes or within zones of 151 continental collision (such as central Asia or the Alps). Many recent foreland basins have formed next 152 to these current mountain ranges. Additional evidence for compressional reactivation of such 153 mountains comes from stress maps on a global scale, which show directions of horizontal 154 compressional stress (e.g. Heidbach et al., 2009). Although many such mountain ranges have formed 155 recently and expose Mesozoic or younger rocks, others expose older rocks (Paleozoic or even 156 Precambrian). In many cases, however, older mountain belts have been subject to recent localized 157 reactivation, such as the Appalachian Mountains in the eastern US and Canada, but also parts of the 158 mountains of Scotland, Norway, Brazil, northern Africa or Australia. Indeed, such reactivation 159 explains why the mountains still exist today, despite relatively active erosion. 160 Foreland basins (such as those next to the Andes) tend to have relatively low and flat upper 161 surfaces, but deep basements, which have subsided, as a result of (1) the weight of nearby mountains, 162 (2) the propagation of outward-verging thrust faults, (3) the local accumulation of sediments derived 163 from erosion of the mountains, (4) the accumulation of evaporites or limestones within local 164 depressions and (5) the accumulation of volcanic and plutonic rocks propagated out from the mountain 165 belt, especially in subduction zone settings. Petroleum source rocks (commonly of Mesozoic age, but also of Paleozoic age) often have 166 167 formed within many of these foreland basins, in part because the surface depressions yield sufficient 168 accomodation space, but also because of suitable climatic and environmental conditions. Progressive 169 subsidence of foreland basins leads to heating and maturation of source rocks at depth. Fluid 170 overpressure tends to be common within such source rocks, as a result of the heating, maturation, 171 increases in volume and chemical compaction (under the weight of the overlying rock column and the 172 effect of horizontal tectonic compression). Such heating is mainly associated with burial but may also 173 be due to magmatic intrusions, especially in subduction zone systems (Zanella et al. 2015a). 174 Finally, thrust detachments are common in foreland basins, especially within overpressured 175 source rocks, where seepage forces counteract the weight of gravity and sedimentary strata providing 176 an anisotropic mechanical response (Cobbold et al., 2001). 177 178 3.2. Calcite beef within foreland basins (Mesozoic host rocks)

179

180 Calcite beef is common within petroleum source rocks, especially those which have reached

maturity (Table. 1). In the last few years, several authors have described examples of beef within
 foreland basins, especially within Mesozoic rocks of the Wessex Basin (UK), the Neuquén Basin

183 (Argentina), the Magellan Basin (Chile and Argentina) and the Paris Basin (France). Other examples
184 have been described worldwide (e.g. Cobbold et al., 2013; Gale et al. 2014), although not necessarily
185 in such detail.

186 Where a basin has been subject to compressional tectonics, it may also contain synchronous 187 calcite beef. Typically, the veins will then be variable in thickness and orientation (Figs. 3, 4 and 5). A 188 vein may vary in thickness across small amplitude folds becoming thicker within synclines and thinner 189 over anticlines. Other variations in thickness may occur across reverse faults (see the examples from 190 the Wessex Basin; Figure 3). In the Magellan Basin, Zanella et al. (2014b) show that beef vein 191 occurrences are more numerous closed to main thrust faults. Finally, some veins may have formed 192 obliquely to bedding, (i.e. nearly horizontally) after the bedding has rotated, as a result of 193 compressional deformation. These structures are similar to some of those described from the 194 experimental modeling with fluid overpressures (Zanella et al., 2014a). 195 196 3.2.1. Wessex Basin, southern England 197

198 The Wessex Basin covers much of southern England (Figure 3A) and consists of Mesozoic and 199 Cenozoic rocks that young in general towards the east, but is subject to folding and faulting, especially 200 near the southern basin margin (Wight-Bray and Purbeck faults). A north-south section across the 201 Purbeck fault (Figure 3A) and its restoration, published by Underhill & Stoneley (1998), show that 202 much of the slip has been of Late Cretaceous to Cenozoic age. The Wessex Basin also has several 203 oilfields, which produce hydrocarbons from Jurassic source rocks (Underhill & Stoneley, 1998). 204 Within the Liassic source rocks, calcite beef are common and have drawn attention for many 205 years from geologists (e.g. Lang et al., 1923; Richardson, 1923; Buckland & De la Beche, 1835; 206 Marshall, 1982), who at first attributed them to early diagenesis of the sediments. However, later work 207 revealed epitaxial growth of calcite fibers (e.g. Cobbold & Rodrigues, 2007), after splitting of the

208 rock.

On studying other calcite veins in the Purbeck Formation (latest Jurassic or Early Cretaceous) at 209 210 Lulworth Cove (above the Purbeck fault), Zanella et al. (2015b) discovered that many of them are 211 localized very closed to thrust faults (Figure 3). These veins show sigmoidal fibers (Fig. 3B & C) as 212 well as variations in thickness around folds (Figure 3D). Such observations argue for a vein 213 development synchronous with a horizontal shortening period. Indeed, recent uranium-lead dating of 214 calcite (Chew et al., work in progress) has produced Albian ages (about 107 Ma) for such 215 compressional beef veins, both at Lulworth Cove and also at Charmouth (in the Shales-with-Beef 216 Formation of Liassic age). Thus, the beef veins in the Wessex Basin formed during the onset of 217 inversion tectonics.

218

219 3.2.2. Neuquén Basin, western Argentina

220

The Neuquén Basin covers an area of western Argentina, in the Andean foreland (Figure 4A). Its western margin is in the sub-Andes and it contains many north-northwest-trending folds. An eroded anticline exposes large areas of the Vaca Muerta Formation (Figure 4A), which is an Upper Jurassic organic-rich shale and a world-class source rock for oil. A geological section (Figure 4B, after Vera et al., 2014), through the city of Chos Malal (eastern side of the cross-section on Figure 4B), illustrates uplifted blocks of Palaeozoic basement, as well as thrust faults, many of which have detached near the base of the Vaca Muerta Formation.

228 Also, in the Vaca Muerta Formation are many examples of calcite beef. Although some of these 229 veins are as much as 30 cm thick and are laterally continuous over distances of hundreds of meters 230 (e.g. Cobbold et al., 2013, fig. 3A; Gale et al., 2014), others show local variations in thickness across 231 minor folds and reverse faults (Figure 4A), indicating that they formed during horizontal compression 232 and shortening. By analyses of the domal structures from beef veins, Ukar et al. (2017) concluded that 233 beef veins, in the area of Loncopué, developed during the Late Cretaceous. This conclusion is 234 consistent with Rodrigues (2008) and Weger et al. (2018), which concluded by isotopes analysis that 235 beef veins growth occurred at depth related to high temperatures (120°C to 185°C). Beef veins also 236 occur elsewhere in the Neuquén Province (Cobbold et al., 2013) within shales of the Los Molles 237 Formation (Lower Jurassic) or Agrio Formation (Lower Cretaceous). Finally, beef veins also occur in 238 the Vaca Muerta Formation further north in Mendoza Province (Zanella et al., 2015a). 239 In summary, there is good evidence in the Neuquén Basin for recent overpressure, thrust 240 detachments and multiple veins of compressional calcite beef, all within source-rock shale. Much of

detachments and multiple veins of compressional calcite beef, all within source-rock shale. Much of
the heating was probably related to foreland subsidence, but some may have come from magmatic
intrusions, which are abundant, especially in Mendoza Province (Zanella et al., 2015a).

243 244

245

3.2.3. Edges of the Cordillera Oriental, central Colombia

246 The Cordillera Oriental is an Andean mountain belt in eastern part of Colombia (Fig. 5A, after 247 Mora et al., 2015). Within it, folds and thrusts trend north-northeast, affecting mainly Cretaceous 248 rocks. The geological section shows uplift of Paleozoic to Precambrian basement between reverse 249 faults, as well as major folds within Cretaceous sedimentary rocks, some of which are source rocks for 250 petroleum (Figure 5A). On the western side of the Cordillera, folds and thrusts verge towards the west 251 (Figure 5A) and Cretaceous shales contain layers of calcite beef (white to yellow), which vary in 252 thickness across folds (Figure 5C). At the eastern edge of the Cordillera, in the Macanal Formation 253 (Lower Cretaceous), some beef contains thin layers of yellow pyrite, which have folded (Figure 5B, 254 bottom right), while calcite has grown antitaxially above and below them, filling synclines more than 255 anticlines, indicating a synchronous development with a horizontal shortening.

In summary, there is good evidence, at both edges of the Cordillera Oriental, for recent
 overpressure, thrust detachments and multiple veins of compressional calcite beef veins, all within
 organic-rich mature shale source rocks.

259

260 3.2.4. Paris Basin, northcentral France

261 The Paris Basin occupies a large area of northcentral France (Figure 6A0 and consists mainly of 262 Triassic, Jurassic and Cretaceous marine strata, but also some Cenozoic strata (mainly lacustrine) in its 263 central part (Guillocheau et al., 2000). A cross-section (Figure 6A) shows that the basin has undergone 264 some uplift and erosion, especially on its eastern margin. In the past, there have been some 265 descriptions of calcite beef or cone-in-cone structures, mostly within Jurassic shales of the Schistes 266 Carton Formation (lower Toarcian, about 185 Ma) on the eastern basin margin (e.g. Denaeyer, 1943, 267 1947), but also within Callovian shales at the northern edge (Voisin, 1999). The Schistes Carton have 268 been subject to much exploration as potential source rocks for oil, and this has revealed the presence 269 of fluid overpressure at several localities. Cobbold et al. (2015) investigated a ditch through the 270 Schistes Carton Formation at Gélaucourt, near Nancy at the eastern edge of the basin (Fig. 6B, left). 271 The ditch (Figure 6B, left) contains many beef veins, several cm thick and several meters long (Fig. 272 6B, right). These veins had been identified previously by Denaeyer (1947). They consist mainly of 273 calcite fibers, almost perpendicular to bedding, but they also contain some inclusions of hydrocarbons, 274 which are visible in hand specimens, but especially by scanning electron microscopy (Figure 7B; 275 Cobbold et al., 2015). Recently, by uranium-lead dating of calcite, we have determined the age of 276 formation of this calcite beef to be 155 Ma (Figure 7A). This is about 30 m.y. younger than the 277 stratigraphic age of the host rock (about 185 Ma). Indeed, the age of the calcite almost coincides with the age of onset of compressional deformation on the eastern edge of the Paris Basin (see Guillocheau 278 279 et al., 2000).

280

281 4. New results: field data for calcite beef in other compressional basins

282

283 4.1. Lourdes, northern Pyrenees, France (locality 22)

284

At the northern edge of the Pyrenees, a major thrust fault zone separates this mountain range to the south from the Aquitaine Basin to the north. Geological maps of Lourdes (e.g. BRGM, Carte Géologique Détaillée de la France, 1:50 000, sheet XVI-46, 1970) show multiple folds and faults within Mesozoic strata, especially near the town of Lourdes (Choukroune, 1969). Indeed, an oblique view of the Pic du Béout hills, to the east of Lourdes (Figure 8A) shows repetitions of resistant white Aptian-Albian limestones, which dip 30° to 40° towards the south. Between the limestones are darker and softer layers of upper Aptian shale, which have acted as thrust detachments and exhibit some 292 cleavage and down-dip lineations. The plains surrounding the hills consist mainly of unconformably 293 overlying Upper Cretaceous flysch. Some of the upper Aptian shale contains layers of fibrous calcite 294 beef (Figure 8B), especially near the village of Aspin-en-Lavedan (Figure 8A). Many of the veins are 295 almost parallel to bedding, whereas younger ones are less steeply dipping and therefore somewhat 296 oblique to bedding. The dipping of the sediments is the result of the compressional deformation from 297 the Late Cretaceous to present day. Because the compression is active since these geological times, 298 beef veins in this area are synchronous with this deformation. Thus, they probably formed once the 299 bedding had rotated and partly as a result of compressional deformation. Our analyses, by scanning 300 electron microscopy (Figure 8C), have revealed steep fractures across a flat-lying vein of calcite beef, 301 the fractures containing much more carbon (orange color) than pure calcite. 302 It also happens that the Aquitaine Basin is hydrocarbon prone, especially beneath low-303 permeability upper Aptian shale (Biteau & Canérot, 2007). Thus, there is evidence, around Lourdes,

for synchronicity of (1) Late Cretaceous or Cenozoic compressional deformation, (2) generation and
 accumulation of organic-rich fluids and (3) formation of calcite beef.

306

307 4.2. Uinta Basin, Utah (locality 12)

308

309 While investigating the presence of bitumen veins in the Uinta Basin, we discovered veins of 310 calcite beef (up to 3 cm thick), which are common within Eocene shales of the Green River Formation, 311 which are also source rocks for petroleum with several major oil fields. The Uinta Basin is a typical 312 intermontane basin (Fig. 9A). At its northern edge, the basin abuts a major thrust fault, which has 313 uplifted Paleozoic basement (part of the Uinta Mountains). At the northern margin of the basin, 314 overpressure occurs within hydrocarbons of the Altamont-Bluebell oil field (Dubiel, 2003). Elsewhere, 315 exposures of Green River shales (for example, within open mines) contain visible beef, which consist 316 mainly of calcite with dominantly vertical fibers (Fig. 9B). However, in some places the veins consist, 317 not only of calcite, but also of solid hydrocarbons (gilsonite; Fig. 9C). Some veins also contain 318 bitumen between fibers of calcite. Thus, there is evidence for synchronicity of compressional 319 tectonics, maturation of source rocks and growth of beef veins.

320

321 4.3. Tian Shan Mountains, central Asia (localities 30 to 32)

322

In central Asia, the Tian Shan Mountains (up to 7439 m high) separate the Junggar Basin to the north from the Tarim Basin to the south, and the Fergana Basin to the west (Figure 10A). The Junggar Basin has a long history of development (Jolivet et al., 2010; 2013; Jolivet, 2015), from the Paleozoic onwards, and experienced significant Cenozoic deformation as a result of tectonic reactivation of the Tian Shan intracontinental range (Figure 10B). Our recent fieldwork has shown that calcite beef (several cm thick) and cone-in-cone (Figure 10C) occur frequently within mid-Jurassic strata (mainly 329 the Xishanyao and Totounhe Formations), which crop out in the Junggar Basin on its southern margin 330 (Wusu and Totoun localities) or eastern edge (Kalameili region), along a series of thrust faults and 331 folds, related to the development of the Tian Shan and Altai ranges, respectively. Inside the Tian Shan 332 range itself, cone-in-cone structures occur at Nileke (Figure 10D), at the eastern tip of the intra-333 mountain Yili Basin within the Middle Jurassic Totounhe Formation (Figures 1 and 10). This area has 334 been subject to large-scale thrusting, during Neogene growth of the northern Tian Shan subrange. 335 Finally, to the west in the intramountain Issik-Kul Basin (Kyrgyzstan), bedding-parallel beef with 336 vertical fibers (Figure 10E, F) occur in Jurassic strata along the southern edge of the basin, which has 337 been subject to Cenozoic compressional deformation in the Terzkey range (Figsure 1 and 10). The 338 proximity between our beef occurrences and major thrust faults suggests that beef and the Cenozoic

339 reactivation of the basin are synchronous.

340 At all of these localities, the beef or cone-in-cone occur within organic-rich fine-grained alluvial 341 plain deposits (Heilbronn, 2014). In the Junggar and Yili basins, they are also close to coal layers, 342 which are several metres thick. At some localities, especially in the Yili and Issik-Kul basins, the 343 calcite beef is close to iron-rich sandy layers of probable diagenetic origin. At Issik-Kul, strong 344 uranium enrichment of the Jurassic series (Kaji Sai mine) containing the beef again indicates post-345 sedimentary fluid circulation. In the Junggar Basin, the main source rocks for oil are the upper 346 Permian, Upper Triassic and Middle Jurassic detrital series (Jiao et al., 2007). The occurrence of 347 calcite beef within the Middle Jurassic series and the systematic association between beef and organic-348 rich siltstone or coal layers suggests a link between hydrocarbon source rocks and calcite beef. 349 In the southern Junggar Basin (locality 8, Figure 1), Jiao et al. (2007) (Fig. 2) described and 350 illustrated thin bedding-parallel veins of calcite within the upper Permian Lucaogou Formation near 351 Urumqi. These authors did not refer to fibrous calcite (beef) or cone-in-cone, but they showed many 352 examples of solid hydrocarbons within cavities, the Lucaogou Formation being a mature petroleum 353 source rock.

354

355 4.4. Appalachian Mountains, United States (locality 2, Fig. 1).

356

357 In the eastern US (Figure. 11A), the Appalachian Mountains trend northeast-southwest and 358 consist mainly of Paleozoic strata, folds and thrusts (Gilman & Metzger, 1967; Evans, 1995; Tobin et 359 al., 1996). At the southwestern end of the mountains, a major unconformity underlies Cretaceous 360 strata, which form a broad anticline (Figure 11A). This provides good evidence for Late Cretaceous or 361 Cenozoic reactivation of the mountain belt. Indeed, even today, the belt is subject to earthquakes, 362 resulting from compressive stress (Heidbach et al., 2009), which appears to derive from ridge-push of 363 the Atlantic spreading center. Veins of calcite beef and bitumen (e.g. Figure 11B) occur within the 364 Devonian Marcellus Shale (Gale et al., 2014; Aydin & Engelder, 2014). Some of the veins are 365 undulating and have additional lenses within synclines (Gale et al., 2014, their fig. 9E). Even today,

- 366 the Marcellus Shale is a source rock for oil and locally reaches overpressure (Aydin & Engelder,
- 367 2014), possibly as a result of long-term and recent burial. Furthermore, the layers of Marcellus Shale
- 368 have acted as detachments for thrust faults in the Appalachians (Aydin & Engelder, 2014). Thus, the
- 369 Appalachians, like other areas, provide evidence for synchronicity of (1) compressional deformation,
- 370 (2) generation of organic-rich fluids and (3) formation of calcite beef. A possible problem in the
- 371 Appalachians is to date these features, which may have started long ago, but still be occurring today.
- 372
- 373

5. Discussion

375

376 Because beef veins seem to be proxies for natural hydraulic fracturing in rocks, especially within 377 source rocks for petroleum, the studies of such fractures are key to the understanding of such 378 geological processes and for the migration and interactions between fluids and rocks. Their formation 379 depends on 2 main phases: (1) the generation of the fracture and (2) the filling of the fracture. 380 For the initiation of the natural hydraulic fractures, and thus the initiation of beef veins, the theory 381 and the experiments of fracturing demonstrate that horizontal (or bedding-parallel) fractures can be 382 generated, due to a distributed fluid overpressure (Cobbold & Rodrigues, 2007; Mourgues et al. 2011; 383 our review; Zanella et al. 2014a). Nevertheless, previous reviews (Cobbold et al. 2003; Gale et al. 384 2014) and more recent and local studies (e.g. Rodrigues et al. 2007; Zanella et al. 2014a, 2014b, 2015a, 2015b; Weng et al. 2017; Ukar et al. 2017; Ukar et al. 2018) have shown that the natural 385 hydraulic fracturing often occurred within sedimentary basins which experienced a compressive 386 387 tectonic history. Moreover, according to several previous studies, the timing of development of beef 388 veins was synchronous with a compressive period in the basin. This is, in particular, well-illustrated 389 for the Neuquén Basin (Rodrigues et al. 2009; Zanella et al. 2015a; Ukar et al. 2017; Ukar et al. 2018), 390 the Wessex Basin (Zanella et al. 2015b), the Bristol Chanel (Weng et al. 2017) and the Magallanes 391 Basin (Zanella et al., 2014). In our study, we demonstrate that this observation is also true for the 392 development of beef veins in the Paris Basin (beef veins dated at 155 Ma), in the northern Pyrenees, in 393 the Uinta Basin, in the Tian Shan Mountains and in the Appalachian Mountains. In view of all of these 394 observations and conclusions, we ask some questions: even if in theory the compressive tectonic stress 395 is not necessary to develop bedding-parallel natural hydraulic fractures, is, in nature, this stress crucial 396 for the development of such fractures? Is the fluid overpressure, generated by hydrocarbons, enough to 397 induce hydraulic fracturing of shales?

We thus propose that compressional tectonic stress is one of the key parameters in the development of bedding-parallel veins in shales. This could have major consequences for the understanding of fluid migration in sedimentary rocks, because of the historical complexity of such geological processes. Concerning the generation of hydrocarbons, even if tectonic activity has a big role, the maturation of organic matter, which leads to the development of distributed fluid

- 403 overpressures and then to natural hydraulic fracturing, is still the main parameter. Indeed, as already
- 404 demonstrated, during the maturation of the source rock a part of the solid framework (the organic
- 405 matter) will be transform into fluid (hydrocarbons), implying a collapse and a load transfer responsible
- 406 of the increasing of the pore fluid pressure (Zanella et al. 2014a). These fractures are always within or
- 407 near source rocks for petroleum (Cobbold et al. 2013; Gale et al. 2014). All of our examples respect
- 408 the previous observations. So, as already suggested by previous authors (Ukar et al. 2017, 2018;
- 409 Zanella et al. 2014b; Zanella et al. 2015a; Zanella et al. 2015b), the link between the presence of beef
- 410 veins and organic matter is strong. Moreover, the degree of maturity of the source rock is a key
- 411 parameter for the development of beef veins and other tectonic structures, such as detachments, as
- 412 demonstrated in the Magellan Basin (Zanella et al. 2014b). In this basin, Zanella et al. (2014b) also
- 413 demonstrated that there is a link between beef vein composition and the degree of maturity of the
- 414 source rock. Thus, we infer that this natural fluid generation process is the main driver for inducing
- 415 fluid overpressure in mature shales, but needs to be assisted by another force, such as the compressive
- 416 tectonic stress, to be able to induce natural fracturing of the host rocks.
- 417 Concerning the filling of the fracture and thus the cementation and growth of the bedding-parallel 418 fractures, other mechanisms have to be involved to precipitate minerals. Indeed, the opening of the 419 fractures is in mode 1 and is facilitated by a horizontal compressive stress. Nevertheless, the force of 420 crystallization also participates to pushing outward the vein walls. Currently, which of these two 421 precesses place the dominant role is not yet because
- 421 processes plays the dominant role is not yet known.
- 422
- 423

424 6. Conclusions

425

426 Beef veins (BPV) are common in or near source rocks for petroleum. The study of such geological 427 evidences can help to understand the mechanisms involved in their formation: (1) the generation of the 428 fracture and (2) the opening of the fracture, as well as the migration of fluids in sedimentary basins. 429 Studies of beef vein occurrences around the world have led us to conclude that it is especially common 430 within foreland basins. Here we have reviewed examples (or described new ones) from the Wessex 431 Basin (UK), the Neuquén Basin (Argentina), the Cordillera Oriental (Colombia), the Uinta Basin 432 (USA), the Paris Basin (France), the northern Pyrenees (France), the Tian Shan Mountains (central 433 Asia) and the Appalachian Mountains (USA). However, we have discovered similar beef within other 434 localities of foreland basins (some of which are visible in Fig. 1). 435 In this review, we demonstrate that the development of beef veins occurs worldwide within or

- 436 near source rocks for petroleum and during a period of hydrocarbon generation. It is now becoming
- 437 clearer that the maturation of the organic matter can lead to fluid overpressures. Beef veins (and more
- 438 generally the natural hydraulic fractures) can therefore be used as proxy to determine very quickly if a

439 source rock was or has been mature. On a global scale, many foreland basins contain source rocks,

440 near active or ancient mountain belts, the latter of which may have been reactivated by recent tectonic

441 stress. Many such basins contain enough organic material to have acted as source rocks for petroleum

442 systems, especially where recent burial has generated sufficiently high temperatures. In some

- 443 examples (such as the Neuquén Basin of Argentina), next to subduction-zone systems, magmatic
- 444 intrusions or extrusions have added heat and facilitated the maturation of the source rocks, also during
- 445 compressional tectonic activity.

The timing of beef vein generation in foreland basins is always coeval with shortening periods, due to compressive tectonic stress. Thus, even if the theory and the experiments of fracturing demonstrate that bedding-parallel fractures can be generated only with a distributed fluid overpressure, the beef veins formation seems to require an external tectonic stress to develop in nature. The filling of the fractures is likely related to force of crystallization, during the compressive period and facilitates the vertical opening of veins.

- 452
- 453

454 Acknowledgements

455 During the years 2005 to 2012, Ian West of Southampton University introduced us to some of the 456 best beef localities in the Wessex Basin, along the coast of southern England (West, 2015). We thank 457 Tony Boassen (Statoil Research Centre, Trondheim), for help with scanning electron microscopy of 458 calcite beef from the Wessex Basin and Neuquén. We also thank Andres Mora of Ecopetrol for 459 showing Peter Cobbold some beef veins at the eastern edge of the Cordillera Oriental, Colombia (Fig. 460 5). Fieldwork in central Asia was funded by the DARIUS group. Elsewhere, much of the fieldwork 461 and experimental work, as well as PhD studies, were funded by Statoil (Norway). DC acknowledges 462 support from Science Foundation Ireland under Grant Number 15/IACA/3365.

463 464

465 **References**

- 466
- 467 Aydin, M.G., Engelder, T., 2014. Revisiting the Hubbert-Rubey pore pressure model for overthrust
 468 faulting: Inferences from bedding-parallel detachment surfaces within Middle Devonian gas
 469 shale, the Appalachian Basin, USA. J. Struct. Geol. 69, 519-537.
- Barker, S.L.L., Cox, S.F., Eggins, S.M., Gagan, M.K., 2006. Microchemical evidences for episodic
 growth of antitaxial veins during fracture-controlled fluid flow. Earth and Planetary Science
 Letters 250, 331-344.
- 473 Biteau, J.-J., Canérot, J., 2007. La Chaîne des Pyrénées et ses avant-pays d'Aquitaine et de l'Ebre:
- 474 systèmes pétroliers et gisements d'hydrocarbures. Géologues 155, 29-41.

- 475 Bons, P., 2001. Development of crystal morphology during unitaxial growth in a progressively
- 476 widening vein: I. The numerical model. Journal of Structural Geology, 23(6-7): 865-872.
- Bons, P.D., Elburg, M.A. and Gomez-Rivas, E., 2012. A review of the formation of tectonic veins and
 their microstructures. Journal of Structural Geology, 43: 33-62.
- Bons, P.D., Jessell, M.W.,1997. Experimental simulation of the formation of fibrous veins by localised
 dissolution-precipitation creep. Mineralogical Magazine 61, 53-63.
- Bradbury, K.K., Davis, C.R., Shervais, J.W., Janecke, S.U., Evans, J.P., 2015. Composition, alteration,
 and texture of fault-related rocks from Safod core and surface outcrop analogs: evidence for
- 483 deformation processes and fluid-rock interactions. Pure and Applied Geophysics 172, 1053–1078.
- Buckland, W., De la Beche, H.T., 1835. On the geology of the neighbourhood of Weymouth and the
 adjacent parts of the coast of Dorset. Trans. Geol. Soc. Lond., s2 4, 1-46.
- 486 Chatellier, J.-Y., 2013. How to maximize the use of TMAX, compositional ratios and stable carbon
 487 isotopes to accurately infer the maturity of a shale. Tight Oil Canada, 2013.
- 488 Choukroune, P., 1969. Sur la presence, le style et l'âge des tectoniques superposées dans le Crétacé
- 489 nord-pyrénéen de la région de Lourdes (Hautes-Pyrénées). Bulletin du Bureau de Recherches
 490 Géologiques et Minières Section I, No. 2, 11-20.
- 491 Cobbold, P.R., 2013. Geological evidence for fluid overpressure in mature source rocks within
 492 foreland basins of the Americas. American Association of Petroleum Geologists, International
 493 Conference and Exhibition, Cartagena, Colombia, 8-11 September. Search and Discovery Article
- 494 #30291.
- 495 Cobbold, P.R., Castro, L., 1999. Fluid pressure and effective stress in sandbox models.
- 496 Tectonophysics 301, 1-19.
- Cobbold, P.R., Durand, S., Mourgues, R., 2001. Sandbox modelling of thrust wedges with fluidassisted detachments. Tectonophysics 334, 245-258.
- Cobbold, P.R., Rodrigues, N., 2007. Seepage forces, important factors in the formation of horizontal
 hydraulic fractures and bedding-parallel fibrous veins ("beef" and "cone-in-cone"). Geofluids 7,
 313-332.
- 502 Cobbold, P.R., Zanella, A., Ruffet, G., Rodrigues, N., Loseth, H., 2013. Bedding-parallel fibrous veins
 503 (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid
 504 overpressure, hydrocarbon generation and mineralization. Mar. Petrol. Geol. 43, 1-20.
- 505 Cobbold, P., Zanella, A., Fourdan, B., Néraudeau, D., Gouttefangeas, F., 2015. Natural hydraulic
 506 fractures in the Eastern Paris Basin. Bull. Inf. Géol. Bassin Paris 52 (2), 23-30.
- 507 David, L., 1952. Présence de la structure "beef" et "cone-in-cone" dans le Crétacé de l'Est-
- 508 Constantinois (Algérie). Comptes Rendus Sommaires de la Société Géologique de France 3, 51-
- 509 52.

511 Minéral. 66 (1-6), 173-221. 512 Denaeyer, M.-E., 1947. Les gisements de cone-in-cone de France et de Grande-Bretagne. Première 513 Partie. Bulletin de la Société Belge de Géologie, Paléontol. Hydrol. 56, 21-46. 514 Dubiel, R.F., 2003. Geology, depositional models, and oil and gas assessment of the Green River total 515 petroleum system, Uinta-Piceance Province, Eastern Utah and Western Colorado. In: Petroleum 516 systems and geologic assessment of oil and gas in the Uinta-Piceance Province, Western 517 Colorado. U.S. Geological Survey, Digital Data Series DDS-69-B, 1-41. 518 Evans, M.A., 1995. Fluid inclusions in veins from the Middle Devonian shales: A record of 519 deformation conditions and fluid evolution in the Appalachian Plateau. Geol. Soc. Am. Bull. 107 520 (3), 327–339. 521 Fischer, M.P., Higuera-Diaz, I.C., Evans, M.A., Perry, E.C., Lefticariu, L., 2009. Fracture-controlled 522 paleohydrology in a map-scale detachment fold: Insights from the analysis of fluid inclusions in 523 calcite and quartz veins. J. Struct. Geol. 31, 1490-1510. 524 Fitz-Diaz, E., Hudleston, P., Siebenaller, L., Kirschner, D., Camprubi, A., Tolson, G., Puig, T.P., 525 2011. Insights into fluid flow and water-rock interaction during deformation of carbonate 526 sequences in the Mexican fold-thrust belt. J. Struct. Geol. 33, 1237-1253. 527 Gale, J.F.W., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A., 2014. Natural fractures in shale: a 528 review and new observations. Am. Assoc. Petrol. Geol. Bull. 98 (11), 2165-2216. 529 Gely, J-P., Hanot, F., 2014. Le bassin parisien : un nouveau regard sur la géologie. In: Bulletin 530 d'information des géologues du bassin de Paris, 9, 229 pp. 531 Gilman, R.A., Metzger, W.J., 1967. Cone-in-cone concretions from western New York. J. Sed. Petrol.

Denaeyer, M.-E., 1943. Les cone-in-cone de la France métropolitaine et d'outre-mer. Bull. Soc. Fr.

532 37, 87-95.

510

- Gressier, J.B., Mourgues, R., Bodet, L., Matthieu, J.Y., Galland, O., Cobbold, P.R., 2010. Control of
 pore fluid pressure on depth of emplacement of magmatic sills: An experimental approach.
 Tectonophysics 489, 1-13.
- 536 Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromart, G., Friedenberg, R.,
- 537 Garcia, J.-P., Gaullier, J.-M., Gaumet, F., Grosdoy, B., Hanot, F., Le Strait, P., Mettraux, M.,
- 538 Nalpas, T., Prijac, C., Rigollet, C., Serrano, O., Grandjean, G., 2000. Meso-Cenozoic geodynamic
- evolution of the Paris Basin: 3D stratigraphic constraints. Geodinamica Acta 13, 189-246.
- Heidbach, O., Tingay, M., Bartyh, A., Reinecker, J., Kurfeth, B., Müller, B., 2009. World stress map,
 2nd Edition. GFZ German Research Centre for Geosciences.
- Heilbronn, G., 2014. Evolution paléogéographique et paléotopographique du Tian Shan Chinois au
 Mésozoïque. PhD thesis, Univ. Rennes, 267 pp.
- 544 Hilgers, C., Koehn, D., Bons, P.D. and Urai, J.L., 2001. Development of crystal morphology during
- 545 unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of
- antitaxial fibrous veins. Journal of Structural Geology, 23(6-7): 873-885.

- 547 Hillier, R.D., Cosgrove, J.W., 2002. Core and seismic observations of overpressure-related
- deformation within Eocene sediments of the Outer Moray Firth, UKCS. Petroleum Geoscience 8,141-149.
- 550 Jiao, Y.Q., Wu, L.Q., He, M.C., Mason, R., Wang, M.F., Xu, Z.C., 2007. Occurrence, thermal
- 551 evolution and primary migration processes derived from studies of organic matter in the
- 552 Lucaogou source rock at the southern margin of the Junggar Basin, NW China. Science in China,
- 553 Series D Earth Sciences 50, 114-123.
- Jolivet, M., Dominguez, S., Charreau, J., Chen, Y., Li, Y., Wang, Q., 2010. Mesozoic and Cenozoic
 tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active
 deformation. Tectonics 29, 1-30.
- Jolivet, M., Heilbronn, G., Robin, C., Barrier, L., Bourquin, S., Guo, Zh., Jia, Y., Guerit, L., Yang, W.,
 Fu, B., 2013. Reconstructing the Late Palaeozoic Mesozoic topographic evolution of the
- 559 Chinese Tian Shan: available data and remaining uncertainties. Advances in Geosciences 37, 7-560 18.
- 561 Jolivet, M., 2015. Mesozoic tectonic and topographic evolution of Central Asia and Tibet: a
- 562preliminary synthesis. In: Brunet, M.-F., McCann, T. & Sobel, E.R. (eds) Geological evolution of563Central Asian Basins and the Western Tien Shan Range. Geol. Soc. London Sp. Publ., 427,
- 564 http://doi.org/10.1144/SP427.2
- 565 Kemp, J., 2014. The Big One: Russia's Bazhenov shale.
- 566 http://www.reuters.com/article/2014/07/18/us-russia-shale-kemp-idU.
- Kershaw, S., Guo, L. 2016. Beef and cone-in-cone calcite fibrous cements associated with the endPermian and end-Triassic mass extinctions: Reassessment of processes of formation. J.
 Palaeogeog. 5 (1), 28-42.
- Keulen, N. T., den Brok, S.W.J., Spiers, C.J., 2001. Force of crystallisation of gypsum during
 hydration of synthetic anhydrite rock. 13th DRT conference, Deformation Mechanisms,
 Rheology, and Tectonics, Noordwijkerhout, The Netherlands.
- Kowal-Linka, M., 2010. Origin of cone-in-cone calcite veins during calcitization of dolomites and
 their subsequent diagenesis: A case study from the Gogolin Formation (Middle Triassic), SW
 Poland. Sed. Geol. 224, 54-64.
- Kozlowski, E.E., Cruz, C.E., Sylwan, C., 1998. Geologia estructural de la zona de Chos Malal, Cuenca
 Neuquina, Argentina. In: XIII Congreso Geologico Argentino y III Congreso de Exploracion de
- 578 Hidrocarburos, Buenos Aires, Actas 1, 15-26.
- 579 Labaume, P., Sheppard, S.M.F., Moretti, I., 2001. Fluid flow in cataclastic thrust fault zones in
 580 sandstones, Sub-Andean Zone, southern Bolivia. Tectonophysics 340, 141-172.
- Lamb, S., 2004. Devil in the mountain. A search for the origin of the Andes. Princeton University
 Press 335 pp.

- Lang, W.D., Spath, L.F., Richardson, W.A., 1923. Shales-With-'Beef', a sequence in the Lower Lias of
 the Dorset Coast. Q. J. Geol. Soc. Lond.79, 47-99.
- Le Breton, E., Cobbold, P.R., Zanella, A., 2013. Cenozoic reactivation of the Great Glen Fault,
 Scotland: additional evidence and possible causes. J. Geol. Soc. Lond. 170, 403-415, doi:
 10.1144/jgs2012-067.
- Lee, G.W., 1920. The Mesozoic rocks of Applecross, Raasay and North-East Skye. H.M. Geological
 Survey, Scotland, 93 pp.
- Lemrabott, A., Cobbold, P.R., 2010. Physical modeling of fluid overpressure and compaction during
 hydrocarbon generation in source rock of low permeability. Search and Discovery, Article
 #40518.
- Leythaeuser, D., Littke, R., Radke, M., Schaefer, R.G., 1988. Geochemical effects of petroleum
 migration and expulsion from Toarcian source rocks in the Hils Syncline area, NW-Germany. In:
- Mattavelli, L. & Novelli, L. (Eds.), Advances in Organic Geochemistry 1987. Organic
 Geochemistry 13, 489-502.
- 597 Lilloe-Olsen, T., Bang, N.A., 2012. DNO and Tawke in Kurdistan: How an Iraq oil giant has emerged.
- 598 Oil & Gas Journal 1-19. http://www.ogj.com/articles/print/vol-110/issue-2/exploration 599 developmet/dno-and-tawke-in...
- Macsotay, O., Erlich, R.N., Peraza, T., 2003. Sedimentary structures of the La Luna, Navay and
 Querecual Formations, Upper Cretaceous of Venezuela. Palaios 18, 334-348.
- Mahboubi, A., Moussavi-Harami, R., Collins, R.B., Muhling, J.R., 2010. Petrography and
- geochemical signatures in cracks filling calcite sequences in septarian concretions, Sanganeh
 Formation, Kopet-Dagh Basin, NE Iran. J. Appl. Sci. 10, 526-534.
- Maillot, H., Bonte, A., 1983. Cone-in-cone texture from Deep Sea Drilling Project Leg 71, Site 511,
 Falkland Plateau, South Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project 71(1),
 345-349.
- Mangenot, X., Gasparrini, M., Rouchon, V., Bonifacie, M., 2018. Basin-scale thermal and fluid flow
 histories revealed by carbonate clumped isotopes (Δ47)–Middle Jurassic carbonates of the Paris
 Basin depocentre. *Sedimentology*, 65(1), 123-150.
- 611 Marques, F.O., Nogueira, F.C.C., Bezerra, F.H.R., Castro, D.L. de, 2014. The Araripe Basin in NE
- Brazil: An intracontinental graben inverted to a high-standing horst. Tectonophysics 630, 251–
 264.
- Marshall, J.D., 1982. Isotopic composition of displacive fibrous calcite veins; reversals in pore-water
 composition trends during burial diagenesis. J. Sediment. Petrol. 52, 615-630.
- Martinius, A.W., Hegner, J., Kaas, I., Bejarano, C., Mathieu, X., Mjoes, R., 2012. Sedimentology and
 depositional model for the Early Miocene Oficina Formation in the Petrocedeño Field (Orinoco
 heavy-oil belt, Venezuela). Mar. Petrol. Geol. 35, 354-380.
- 619 Means, W. and Li, T., 2001. A laboratory simulation of fibrous veins: some first observations. Journal

- 620 of Structural Geology, 23(6-7): 857-863.
- Mora, A., Blanco, V., Naranjo, J., Sanchez, N., Ketcham, R.A., Rubiano, J., Stockli, D.F., Quintero, I.,
 Nemcok, M., Horton, B.K., Davila, H., 2013. On the lag time between internal strain and
- basement involved thrust induced exhumation: The case of the Colombian Eastern Cordillera. J.
- 624 Struct. Geol. 52, 96-118.
- 625 Mora, A., Casallas, W., Ketcham, R.A., Gomez, D., Parra, M., Namson, J., Stockli, D., Almendral, A.,
- Robles, W., Ghorbal, B., 2015. Kinematic restoration of contractional basement structures using
 thermokinematic models. Am. Assoc. Petrol. Geol. Bull. 99 (8), 1575–1598.
- Mourgues, R., Cobbold, P.R., 2003. Some tectonic consequences of fluid overpressures and seepage
 forces as demonstrated by sandbox modeling. Tectonophysics 376, 75-97.
- Nollet, S., Urai, J.L., Bons, P.D., Hilgers, C., 2005. Numerical simulations of polycrystal growth in
 veins. Journal of Structural Geology 27, 217-230.
- Nollet, S., Koerner, T., Kramm, U., Hilgers, C., 2009. Precipitation of fracture fillings and cements in
 the Buntsandstein (NW Germany). Geofluids 9, 373-385.
- 634 Nomura, S.F., Sawakuchi, A.O., Bello, R.M.S., Méndez-Duque, J., Fuzikawa, K., Giannini, P.C.F.,

Dantas, M.S.S., 2014. Paleotemperatures and paleofluids recorded in fluid inclusions from calcite
veins from the northern flank of the Ponta Grossa dyke swarm: Implications for hydrocarbon
generation and migration in the Paraná Basin. Mar. Petrol. Geol. 52, 107-124.

- 638 Parnell, J., Blamey, N.J.F., Costanzo, A., Feely, M., Boyce, A.J., 2014. Preservation of
- 639 Mesoproterozoic age deep burial fluid signatures, NW Scotland. Mar. Petrol. Geol. 55, 275-281.
- 640 Pearson, P.N., Nicholas, C.J., Singano, J.M., Bown, P.R., Coxall, H.K., van Dongen, B.E., Huber,
- B.T., Karega, A., Lees, J.A., MacLeod, K., McMillan, I.K., Pancost, R.D., Pearson, M., Msaky,
 E., 2006. Further Paleogene and Cretaceous sediment cores from the Kilwa area of coastal
- 643Tanzania: Tanzania Drilling Project Sites 6–10. J. Afr. Earth Sci. 45, 279-317.
- Richardson, W.A., 1923. Petrology of the Shales-with-"Beef." Q. J. Geol. Soc. Lond. 79, 88-99.
- 645 Rodrigues, N., Cobbold, P.R., Loseth, H., Ruffet, G., 2009. Widespread bedding-parallel veins of

646 fibrous calcite ("beef") in a mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina):

evidence for overpressure and horizontal compression. J. Geol. Soc. Lond. 166, 695-709, doi
10.1144/0016-76492008-111.

- 650 the Holy Cross Mountains Fold Belt, central Poland. Geological Quarterly 58 (1), 99–116.
- 651 Silva, A.L. Da, 2003. Estratigrafia física e deformação do sistema lacustre carbonático (Aptiano-
- Albiano) da Bacia do Araripe em afloramentos selecionados. Dissertação de Mestrado, Univ. Fed.
 Pernambuco, Pós-graduação em Geociências, 118 pp.

Smith, A.P., Fischer, M.P., Evans, M.A., 2014. On the homogeneity of fluids forming bedding-parallel veins. Geofluids 14, 45-57.

⁶⁴⁹ Rybak-Ostrowska, B., Konon, A., Nejbert, K., Kozlowski, A., 2014. Bedding-parallel calcite veins in

- Suchy, V., Dobes, P., Filip, J., Stejskal, M., Zeman, A., 2002. Conditions for veining in the Barrandian
 Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission
 track analysis. Tectonophysics 348, 25-50.
- Tarney, J., Schreiber, B.C., 1976. Cone-in-cone and beef-in-shale textures from DSDP site 330,
- Falkland Plateau, South Atlantic. In: Barker, P.F., Dalziel, I.W.D. et al. (Eds), Initial Reports of
 the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, D.C. 36, 865-870.
- 662 Tobin, K.J., Walker, K.R., Steinhauff, D.M., Mora, C.I., 1996. Fibrous calcite from the Ordovician of
- 663 Tennessee: preservation of marine oxygen isotopic composition and its implications.664 Sedimentology 43, 235-251.
- Trabucho-Alexandre, J., Dirkx, J., Veld, H., Klaver, G., De Boer, P.L., 2012. Toarcian black shales in
 the Dutch Central Graben: Record of energetic, variable depositional conditions during an
 oceanic anoxic event. J. Sed. Res. 82, 104-120.
- 668 Ukar, E., Lopez, R.G., Gale, J.F., Laubach, S. E., Manceda, R., 2017. New type of kinematic indicator
 669 in bed-parallel veins, Late Jurassic–Early Cretaceous Vaca Muerta Formation, Argentina: EW
 670 shortening during Late Cretaceous vein opening. *Journal of Structural Geology*, *104*, 31-47.
- 671 Ukar, E., López, R., Hryb, D., Gale, J.F., Manceda, R., Fall, A., Brisson, I., Hernandez-Bilbao, E.,
 672 Weger, R., Marchal, D., Zanella, A., Lanusse, I., 2018. Natural fractures in the Vaca Muerta
 673 Formation: from core and outcrop analog observations to subsurface models. AAPG Memoir,
 674 120, (submitted).
- Underhill, J.R., Stoneley, R., 1998. Introduction to the development, evolution and petroleum geology
 of the Wessex Basin. In: Geol. Soc., London, Sp. Publ. 133, 1-18.
- Vera, E.A.R., Folguera, A., Valcarce, G.Z., Bottesi, G., Ramos, V. A., 2014. Structure and
 development of the Andean system between 36 and 39 S. Journal of Geodynamics, *73*, 34-52.
- 679 Voisin, L., 1999. Le "beef" de Chaumiau (08). Bull. d'Inform. Géol. Bassin de Paris 36 (2), 13-16.
- Volk, H., Horsfield, B., Mann, U., Suchy, V., 2002. Variability of petroleum inclusions in vein, fossil
 and vug cements a geochemical study in the Barrandian Basin (Lower Palaeozoic, Czech
 Republic). Organic Geochemistry 33, 1319-1341.
- Watts, N.L., 1978. Displacive calcite: Evidence from recent and ancient calcretes. Geology 6, 699-703.
- Weger, R.J., Murray, S.T., McNeill, D.J., Swart, P.K., Eberli, G.P., Rodriguez Blanco, L., Tenaglia,
 M., Rueda, L., 2018. Paleo thermometry and distribution of calcite beef in the Vaca Muerta
- 687 Formation, Neuquén Basin, Argentina. AAPG Bulletin, (submitted).
- West, I.M., 2015. Geology of the Wessex coast of southern England the World Heritage Jurassic
 Coast and more. Internet page: http://www.southampton.ac.uk/~imw/index.htm.
- Woodland, B.G., 1964. The nature and origin of cone-in-cone structure. Fieldiana: Geology 13 (4),187-305.
- 692 Zanella, A., Cobbold, P.R., Le Carlier de Veslud, C., 2014a. Physical modelling of chemical

- 693 compaction, overpressure development, hydraulic fracturing and thrust detachments in organic-
- rich source rock. Mar. Petrol. Geol. 55, 262-274.
- 695 http://dx.doi.org./10.1016/j.marpetgeo.2013.12.017.
- 696 Zanella, A., Cobbold, P.R., Rojas, L., 2014b. Beef veins and thrust detachments in Early Cretaceous
- 697 source rocks, foothills of Magallanes-Austral Basin, southern Chile and Argentina: structural
- 698 evidence for fluid overpressure during hydrocarbon maturation. Mar. Petrol. Geol. 55, 250-261.
- 699 http://dx.doi.org/10.1016/j.marpetgeo.2013.10.006.
- 700 Zanella, A., Cobbold, P.R., Ruffet, G., Leanza, H.A., 2015a. Geological evidence for fluid
- 701 overpressure, hydraulic fracturing and strong heating during maturation and migration of
- hydrocarbons in Mesozoic rocks of the northern Neuquén Basin, Mendoza Province, Argentina. J.
 S. Am. Earth Sci. 62, 229-242.
- Zanella, A., Cobbold, P.R., Boassen, T., 2015b. Natural hydraulic fractures in the Wessex Basin, SW
 England: widespread distribution, composition and history. Mar. Petrol. Geol. 68, 438-448.
- Zhang, B., Yin, C.Y., Gu, Z.D., Zhang, J.J., Yan, S.Y., Wang, Y., 2015. New indicators from beddingparallel beef veins for the fault valve mechanism. Science China: Earth Sci., doi: 10.1007/s11430-
- 708
- 709 710

711 Figure captions

015-5086-6.

712

Table. 1. Global distribution of compressional basins, where calcite beef or cone-in-cone occur. For
 localities (numbers at left), see Figure 1. Not all references are to previous descriptions of calcite beef.

715

Figure 1. Map showing distribution of calcite beef (bedding-parallel veins), either within Mesozoic or
Cenozoic sedimentary rocks (light triangles) or within Paleozoic sedimentary rocks (dark triangles).
The numbers next to the triangles refer to the localities in Table 1.

719

Figure 2. A. Physical model of horizontal hydraulic fracturing with no deformation (after Zanella et al., 2014a); B. Physical model of horizontal hydraulic fracturing with shortening (after Zanella et al., 2014a); C. Cross-section of a 3-D physical model showing the different styles of deformation due to
the propagation of a detachment linked to overpressure development (after Zanella et al., 2014a).

724

Figure 3. A. Geological map and cross-section of the Wessex Basin, southwestern England (after

- 726 Zanella et al. 2015B, modified from Underhill et al. 1998). B. folded and faulted beef veins, the
- thickness of which is again variable, especially across the main reverse fault (center). C. Locally
- folded beef, the thickness of which is variable (thicker in syncline, thinner in anticline). D. Steeply
- 729 dipping but curved calcite fibers, which comprise a layer of beef. (scales: pen: 14cm; coin diameter:

730 2.4 cm).

731

732 Figure 4. A. Calcite beef in the Neuquén Basin, Argentina (white locality 4, Figure 1) (after

733 Rodrigues et al., 2009). The Landsat image (left) shows sub-Andean folds, trending north-northwest.

Field observations (bottom right) show that beef is common in the Vaca Muerta Formation at various

scales. B. Geological section through the fold and thrust belt of the Neuquén Basin (located with the

- red line in Figure 4A.) (after Vera et al., 2014).
- 737

738 Figure 5. A. Geological map and cross-section, showing the main structures of the eastern Cordillera

739 (after Mora et al., 2013, 2015). B. Calcite beef (bedding-parallel) veins (white to yellow), which vary

740 in thickness across folds (Cobbold, 2013). C. On the western side of the Cordillera, near Villeta, folds

and thrusts verge westward and Cretaceous shales contain layers of calcite beef. D. At the eastern edge

742 of the Cordillera, in the Macanal Formation (Lower Cretaceous) near Villavicencio, some beef

contains thin layers of yellow pyrite, which are folded, while calcite has grown epitaxially above and

below them, filling in synclines more than anticlines. (scales: coin diameter: 2.2 cm).

745

746 **Figure 6.** A. Geological map of the Paris Basin (after Gely and Hanot, 2014; Mangenot et al. 2018).

747 The basin has an elliptical shape with a long axis trending approximately northeast-southwest. The line

748 of section is indicated in red. B. Gélaucourt, near Nancy, ehere ditches have exposed Liassic shales of

the Schistes Carton Formation (lower Toarcian, Denaeyer, 1943; ca 185 Ma,), which contain abundant

veins of fibrous calcite beef (hammer length: 33 cm). C. Calcite beef from the Toarcian at Gélaucourt

751 (coin diameter: 2.3 cm).

752

753Figure 7. A. U-Pb Tera-Wasserburg calcite lower intercept age of 155 ± 19 Ma (Oxfordian) for the754formation of the calcite beef (Chew et al., work in progress). B&C. Scanning electron microscopy755(SEM) analyses of calcite beef (bedding-parallel veins) from the Liassic "Schistes Carton" near756Gélaucourt in the Paris Basin (see Fig. 6). Scanning electron microscopy (SEM) has yielded757significant quantities of calcium (B) and carbon (C), which are typical of calcite. However, the amount758of carbon is locally greater (pink, top right), due to inclusions of hydrocarbons within the calcite759crystals (Cobbold et al., 2015).

760

Figure 8. Calcite beef near Lourdes, at the northern edge of the Pyrenees (white locality 22, Figure 1).

A. Google Earth oblique view of the Pic du Béout hills (1530 m high, near the southeast end of

763 Lourdes city), shows repetitions of white, thick, resistant layers of Aptian-Albian limestones, which

dip at about 30° to 40° to the south forming scarps. The white line represents the main thrust fault. B.

765 Road outcrop showing fibrous calcite beef (bedding-parallel veins) in upper Aptian shales (coin

diameter: 2.3 cm). C. Scanning electron microscopy and the repartition of the carbon, the calcium and

- the oxygen in the beef vein.
- 768

769 Figure 9. Calcite beef and bitumen in the Uinta Basin, Utah (white locality 13, Fig. 1). A. A 770 simplified geological section (top, north-northeast to southwest, after Dubiel, 2003) shows the 771 asymmetric structure of the basin. B. Outcrop, discovered in 2009, showing gently dipping beds of the 772 Green River Formation (grey) and numerous veins, either of pure fibrous calcite (orange, left), or of 773 fibrous calcite (coin diameter: 2.4 cm). C. Beef veins with gilsonite (whitish and grey; beneath 774 hammer) (hammer length: 33 cm). 775 776 Figure 10. Calcite beef around the Tian Shan Mountains, central Asia (localities 30 to 32, Fig. 1). A: 777 Topographic and tectonic map of the Tian Shan and Junggar region (modified from Jolivet et al., 778 2013). B: Geological cross-section (approximately north-south) of the Junggar Basin (red line, A). C: 779 Cone-in-cone structures in the Xishanyao Formation (Middle Jurassic) at Wusu (top) (lens cover

780 diameter: 5.2 cm). D: Cone-in-cone structures in the Totounhe Formation (Middle Jurassic) at Nileke

781 (top). E and F: bedding-parallel calcite beef in Jurassic strata at Kaji Sai (Issik Kul Basin, top) (pen: 14

782

cm).

783

784 **Figure 11.** Calcite beef and bitumen in the Appalachian Mountains, US (locality 2, Figure 1). A.

785 Simplified geological map showing the Paleozoic thrust belt (red), trending northeast-southwest. At its

southwestern end, a major unconformity marks the base of Cretaceous strata (green), which

nevertheless form a broad anticline, plunging southwest. Red dot refers to Fig. 11B. B. Veins of calcite

beef (bedding-parallel veins) and bitumen occurring within the Marcellus Shale (Devonian) along

Route 250, Highland County, Virginia (38°19'34.31°N; 79°26'32.29°W, south-southeast of

- 790 Pittsburgh, Pennsylvania) (coin diameter: 2.4 cm).
- 791

70°W

Ca

C

No. Location	References		
A. Mesozoic or Cenozoic hostrocks			
1 Magallanes Basin (Chile, Tierra del Fuego), Rio Jackson Fm (Early Cretaceous)	Zanella et al., 2014a		
2 Magallanes-Austral Basin (Chubut, Argentina), Rio Mayer Fm (Early Cretaceous)	Zanella et al., 2014a		
3 Falkland Plateau, Maurice Ewing Bank (Late Jurassic to Early Cretaceous)	Tarney & Schreiber, 1976; Maillot & Bonte, 1983		
4 Neuquén Basin, Argentina, Los Molles, Vaca Muerta, Agrio Fms (Jurassic to Cretaceous) Fig. 4; Rodrigues et al., 2009; Cobbold et al., 2013; Gale et al., 2014; Ukar		
	et al. 2017; Zanella et al., 2015		
5 Sub-Andean Zone, southern Bolivia (Tertiary strata)	Labaume et al., 2001; Lamb, 2004		
6 Araripe Basin, NE Brazil (Early Cretaceous)	Silva, 2003; Marques et al., 2014		
7 Eastern Cordillera, Colombia, (Early Cretaceous source rock)	Fig. 5; Cobbold et al., 2013; Mora et al., 2013; Mora et al., 2015		
8 Northern Venezuela, La Luna Fm (Late Cretaceous)	Macsotay et al., 2003		
9 Northern Venezuela, Oficina Fm (Early Miocene)	Martinius et al., 2012		
10 Central Mexico Fold-and-Thrust Belt, (Cretaceous)	Fitz-Diaz et al., 2011		
11 Sierra Madre Oriental, NE Mexico (Jurassic-Cretaceous)	Fischer et al., 2009; Smith et al., 2014		
12 SW California, USA, Franciscan Complex (Late Jurassic to Cretaceous)	Bradbury et al., 2015		
13 Uinta Basin, Utah, Green River Fm (Eocene)	Fig. 9; Woodland, 1964; Dubiel, 2003		
14 Texas, Haynesville Shale (Jurassic)	Gale et al., 2014		
15 Outer Hebrides (Eigg, Raasay, Skye), Scotland, UK (Jurassic)	Lee, 1920; Marshall, 1982; Parnell et al., 2014		
16 Eathie, Great Glen, NE Scotland (Jurassic)	Le Breton et al., 2013		
17 Alba Field, Outer Moray Firth, United Kingdom (Eocene)	Hillier & Cosgrove, 2002		
18 Lavernock Point, South Wales (Triassic)	Kershaw & Guo, 2016		
19 Wessex Basin, UK (Liassic to Mid-Cretaceous)	Fig. 3; Buckland & De la Beche, 1835; Richardson, 1923; Marshall, 1982;		
	Underhill & Stoneley, 1998; Cobbold & Rodrigues, 2007; Zanella et al.,		
	2015b; Kershaw & Guo, 2016		
20 Dutch Central Graben (Toarcian)	Trabucho-Alexandre et al., 2012		
21 Eastern and Northern Paris Basin, France (Triassic, Liassic)	Figs. 6 & 7; Denaeyer, 1943, 1947; Voisin, 1999; Cobbold et al., 2015		
22 Lourdes, North-Central Pyrenees, France (Aptian-Albian)	Fig. 8; Choukroune, 1969; Biteau & Canérot, 2007		
23 Hils Syncline, NW Germany (Toarcian)	Leythaeuser et al., 1988		
24 West Siberia Basin, Russia, Bazhenov Shale (Tithonian-Berriasian)	Kemp, 2014; Fjellanger et al., 2015		
25 Algeria-Tunisia (Cretaceous)	David, 1952		
26 Kalahari Desert, South Africa and Botswana (Quaternary)	Watts, 1978		
27 Kilwa, coastal Tanzania (Cretaceous, Paleogene)	Pearson et al., 2006		
28 Tawke Field, Kurdistan, NW Iraq, Sargelu Fm (Jurassic)	Lilloe-Olsen & Bang, 2012		
29 Kopet-Dagh Basin, NE Iran, Sanganeh Fm (Late Cretaceous)	Mahboubi et al., 2010		
30 Junggar Basin, China, Xishanyao Fm. (Middle Jurassic)	Fig. 10; Jolivet et al., 2010; Heilbronn, 2014		
31 Yili Basin, China, Totounhe Fm. (Middle Jurassic)	Fig. 10		
32 Issyk-Kul Basin, Kyrgyzstan (Jurassic)	Fig. 10		
33 Sichuan Basin, China, Jialingjiang Fm (Triassic)	Zhang et al., 2015		

B. Palaeozoic or Precambrian host rocks

- 1 Parana Basin, SE Brazil, Teresina Fm (Permian)
- 2 Appalachian Mountains, USA, MarcellusFm (Devonian)
- 3 Appalachian Mountains, Quebec, Canada, Utica Shale Fm (Ordovician)
- 4 Barrandian Basin, Czech Republic (Lower Palaeozoic)
- 5 Holy Cross Mountains, Poland (Devonian, Triassic)
- 6 Junggar Basin, China, Lucaogou Fm (Upper Permian)
- 7 Kalahari Desert, South Africa and Botswana, (Silurian-Devonian)
- 8 Australia, New South Wales, Murrumbidgee Fm (Devonian)

Nomura et al., 2014

Fig. 11; Gilman & Metzger, 1967; Evans, 1995; Tobin et al., 1996; Gale et al., 2014; Aydin & Engelder, 2014 Séjourné et al., 2005; Chatellier, 2013 Suchy et al., 2002; Volk et al., 2002 Kowal-Linka, 2010; Rybak-Ostrowska et al., 2014 Jiao et al., 2007 Watts, 1978 Barker et al., 2006