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ABSTRACT 17 
 18 
Bedding-parallel veins of fibrous calcite (also called BPV or ‘beef’) occur in many sedimentary 19 
basins, especially those containing low-permeability strata with organic source material for petroleum. 20 
The formation of such veins is often linked with fluid overpressure in these source rocks. In this 21 
review, we demonstrate that beef veins are most commonly present in foreland basins worldwide or in 22 
basins that recorded a compressive tectonic period. The formation of beef veins is related to two main 23 
phases: (1) the initiation of bedding-parallel fracture and (2) the infilling of the fracture. 24 
Previous structural studies have shown that formation of beef veins occurred during a period of 25 
compressive stress activity. This is especially the case for the Wessex Basin (UK) and the Neuquén 26 
Basin (Argentina). Here we provide more observations for other basins: the Cordillera Oriental 27 
(Colombia), the Paris Basin (France), the northern Pyrenees (France), the Uinta Basin (US), the Tian 28 
Shan Mountains (central Asia) and the Appalachian Mountains (US). In the Paris Basin, beef vein 29 
formation is dated at 155 Ma (U/Pb calcite method) and is coeval with the compressional deformation 30 
in the eastern part of the basin. 31 
Because of the timing of generation for such veins and even if the theory and the experiments of 32 
fracturing demonstrate that bedding-parallel fractures can be generated only with a distributed fluid 33 
overpressure, the formation of beef veins seems to be a consequence of both fluid overpressures and a 34 
compressional tectonic stress.  35 
 36 
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 37 

1. Introduction 38 

 39 
Many of the major mountain ranges around the world have resulted from recent horizontal 40 

shortening and vertical thickening (Figure 1). Others have resulted from rifting, strike-slip faulting or 41 
uplift associated with magmatism. In contrast, most older mountain ranges have tended to disappear 42 
by active erosion of their sharp topographic profiles. For recent shortening and thickening, the main 43 
causes are (1) subduction beneath active continental margins, especially in the Atlantic and Pacific 44 
oceans, or (2) continental collision, for example between Europe and Africa or central Asia and India 45 
(Figure 1). In such tectonic settings, there has been progressive development of adjacent foreland 46 
basin systems as a result of thrusting and local sedimentation and in many cases, they contain 47 
petroleum systems. 48 

Because they are commonly hydrocarbon-bearing, foreland basins are major targets for the 49 
study of source rocks and reservoirs. In the last twenty years, organic-rich source rocks have been 50 
extensively studied because of their hydrocarbon potential. Within these sedimentary units, many 51 
fractures occur and some of them can affect the permeability as well as the cap capability of the source 52 
rocks. This is especially the case for the natural hydraulic fractures, such as bedding-parallel veins 53 
(also called BPV or ‘beef’). The first examples of beef to be described were likely those in the Wessex 54 
Basin of Southern England (Buckland & De la Beche, 1835). The veins were easily observable along 55 
coastal cliffs and provided useful material for building walls and roads. More generally, bedding-56 
parallel veins are common worldwide in sedimentary basins, especially those containing 57 
hydrocarbons, indicating that the host rock has reached maturity (Cobbold et al., 2013; Gale et al., 58 
2014). The formation of such veins is often linked to fluid overpressure during hydrocarbon generation 59 
(Rodrigues et al., 2009; Zanella et al., 2015a). Beef veins therefore consist of natural hydraulic 60 
fractures, infilled by a fibrous mineral, such as calcite, gypsum or quartz (Cobbold et al. 2013). Other 61 
mechanisms are also involved, but seem to be more minor, such as, for example, the force of 62 
crystallization (e.g. Taber, 1916; Means & Li, 2001; Gratier et al., 2012). Recent studies have shown 63 
that many bedding-parallel veins formed during horizontal shortening, as in the Wessex Basin, 64 
southern England, (Zanella et al., 2015b), in the Bristol Channel Basin, England and Wales, (Meng et 65 
al., 2017), or in the Neuquén Basin of western Argentina (Rodrigues et al., 2009; Ukar et al., 2017; 66 
Ukar et al. 2018). 67 

This paper presents a worldwide review of bedding-parallel veins (natural hydraulic fractures) 68 
within foreland basins and discusses the development of such natural hydraulic fracturing processes 69 
within this particular tectonic basin setting. We also present new observations and data to complete 70 
those of previous studies, particularly with respect to four localities: (1) the Northern Pyrenees, 71 
France; (2) the Uinta Basin, USA; (3) the Tian Shan Basin, China and (4) the Appalachian Basin, 72 
USA. 73 
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 74 

 75 

2. Formation of beef veins 76 

 77 
The simplest calcite beef veins, which form in tectonically quiescent basins, are typically bedding-78 
parallel (horizontal), of regular thickness and contain calcite fibers, which have formed almost 79 
vertically and antitaxially, separating the two boundaries of the fracture. The best evidence for 80 
epitaxial separation comes from the presence of flattened fossils (for example, ammonites), which 81 
remain in the central part of the vein, while counterparts of them are visible at the two outer 82 
boundaries, but displaced along the directions of the calcite fibers, which may be somewhat oblique 83 
(Rodrigues et al., 2009). Other forms of calcite beef are cone-in-cone structures, which likely form as a 84 
result of shear faulting during epitaxial growth of the calcite veins (e.g. Cobbold et al. 2013). 85 

Two successive phases characterize the formation of a beef vein: (1) the initiation of the fracture 86 
and (2) the opening of the fracture. For the initiation of the fracture, the model can explain the 87 
generation of horizontal hydraulic fractures without external tectonic stresses (e.g. compressive stress) 88 
(Cobbold et al. 2007, Mourgues & Cobbold, 2003). However, much of our knowledge of the 89 
mechanisms involved in such processes come from experimental models developed during the early 90 
21st century. In the early iterations of these experimental models, the pore fluids were injected from the 91 
outside, at measured rates and pressures (Cobbold & Castro, 1999; Mourgues & Cobbold, 2003). 92 
Thus, it became clear that vertical gradients of overpressure counteract the weight of the granular 93 
material. When noncohesive materials were also compressed horizontally, the pore fluid gradient 94 
facilitated detachments for thrust faults and caused these to become more nearly horizontal (Cobbold 95 
et al., 2001). When the material was cohesive, the vertical pressure gradient generated horizontal 96 
tensile fractures, which opened progressively (Cobbold & Rodrigues, 2007). Moreover, when the 97 
models were also compressed horizontally, the resulting stresses facilitated the formation of horizontal 98 
tensile fractures. Because the early experimental models simulated the origin of the fluid overpressure 99 
as an injector-type system, they were not adapted for the study of the origin and mechanisms involved 100 
in the development of such fluid overpressures. 101 

Thus, to be able to study the origin of fluid overpressures and the parameters involved in the 102 
process of natural hydraulic fracturing within source rocks, later experiments have used transition 103 
phases (solid to liquid), to produce a fluid within a closed experimental setup. From solid organic 104 
particles (such as beeswax microspheres), models were able to generate a fluid by chemical 105 
compaction-like mechanisms, which occur during burial of organic-rich source rock (Fig. 2; 106 
Lemrabott & Cobbold, 2010; Zanella et al., 2014a). In such models, the wax was able to melt, on 107 
heating the model from below. The resulting decrease in underlying support allowed solid particles to 108 
move downwards, causing compaction of the underlying framework and an increase in pore fluid 109 
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pressure, by a mechanism of load transfer (Zanella et al. 2014a). In other models, which were saturated 110 
with water but not subject to horizontal shortening (Figure 2), the overpressure developed soon after 111 
the temperature had reached the melting point of beeswax, at the base of the model. This overpressure 112 
became great enough to cause horizontal hydraulic fracturing of the wax-rich layer. Molten wax then 113 
migrated vertically and horizontally through the pore space and filled the opening generated by 114 
hydraulic fractures. In similar models, which were also subject to horizontal shortening, the hydraulic 115 
fractures developed more strongly, becoming wider and longer. Furthermore, many of the fractures 116 
varied laterally in thickness and orientation, as a result of local folding and thrust faulting.  117 

 118 
For the filling of the natural hydraulic fractures, beef veins appear to have incrementally grown 119 

by successive phases of crystallization (e.g. Taber, 1918; Ramsay, 1980; Rodrigues et al., 2009). Thus, 120 
fibers appear to have grown incrementally during the displacement of the edges of the veins by a 121 
crack-seal mechanism (Ramsay, 1980) or more continuously (Taber 1918; Durney & Ramsey, 1973; 122 
Means & Li, 2001). The mechanisms involved in the formation of beef veins are complex and several 123 
of them have been postulated by previous authors. The opening of the vein implies a key mechanism 124 
already describe by several authors: the force of crystallization (e.g. Baker et al., 2006; Bons, 2001; 125 
Bons et al., 2012; Keulen et al., 2001; Mean & Li, 2001). Indeed, several experiments have 126 
demonstrated the great importance of the force of crystallization in the beef vein opening (Bons & 127 
Jessel, 1997; Hilgers et al., 2001; Nollet et al., 2005, 2009) Thus, the tectonic stress, the pore fluid 128 
pressure (fluid overpressures) and the force of crystallization appear to be the major mechanisms (e.g. 129 
Sibson, 2003; Shearman et al., 1972; Stoneley, 1983; Taber, 1916; Gratier et al., 2012). 130 

 131 
In many basins worldwide, the formation of beef veins seems to be linked to the generation of 132 

hydrocarbons, as showing by scanning electron microscopy for calcite beef of the Wessex Basin 133 
(Zanella et al., 2015b), the Neuquén Basin (Rodrigues et al., 2009; Ukar et al. 2017, 2018), the 134 
Magellan Basin (Zanella et al., 2014b) and the Paris Basin. All of these examples show that beef veins 135 
contain inclusions of organic matter (liquid, solid or both) within or next to the calcite crystals, 136 
indicating that the organic matter was diffusing, while the calcite crystals were growing. Other 137 
examples of calcite beef, e.g. in the Lourdes area, the Uinta Basin or the Appalachians, may either 138 
include or be adjacent to veins of organic material. Investigating the relationship between the organic 139 
matter and the hydraulic fracturing, Zanella et al. (2014a) showed with their experiments that the 140 
maturity degree is a key parameter to explain the increase of pore fluid pressure within source rocks 141 
and that a horizontal compressive stress can favor the development of horizontal hydraulic fractures. 142 
 143 
 144 

3. Worldwide distribution of beef veins within foreland basins 145 

 146 
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3.1. Foreland basins 147 

 148 

A global topographic map (Figure 1) illustrates the occurrence of significant present-day 149 
mountain ranges, especially along continental margins such as the Andes or within zones of 150 
continental collision (such as central Asia or the Alps). Many recent foreland basins have formed next 151 
to these current mountain ranges. Additional evidence for compressional reactivation of such 152 
mountains comes from stress maps on a global scale, which show directions of horizontal 153 
compressional stress (e.g. Heidbach et al., 2009). Although many such mountain ranges have formed 154 
recently and expose Mesozoic or younger rocks, others expose older rocks (Paleozoic or even 155 
Precambrian). In many cases, however, older mountain belts have been subject to recent localized 156 
reactivation, such as the Appalachian Mountains in the eastern US and Canada, but also parts of the 157 
mountains of Scotland, Norway, Brazil, northern Africa or Australia. Indeed, such reactivation 158 
explains why the mountains still exist today, despite relatively active erosion. 159 

Foreland basins (such as those next to the Andes) tend to have relatively low and flat upper 160 
surfaces, but deep basements, which have subsided, as a result of (1) the weight of nearby mountains, 161 
(2) the propagation of outward-verging thrust faults, (3) the local accumulation of sediments derived 162 
from erosion of the mountains, (4) the accumulation of evaporites or limestones within local 163 
depressions and (5) the accumulation of volcanic and plutonic rocks propagated out from the mountain 164 
belt, especially in subduction zone settings. 165 

Petroleum source rocks (commonly of Mesozoic age, but also of Paleozoic age) often have 166 
formed within many of these foreland basins, in part because the surface depressions yield sufficient 167 
accomodation space, but also because of suitable climatic and environmental conditions. Progressive 168 
subsidence of foreland basins leads to heating and maturation of source rocks at depth. Fluid 169 
overpressure tends to be common within such source rocks, as a result of the heating, maturation, 170 
increases in volume and chemical compaction (under the weight of the overlying rock column and the 171 
effect of horizontal tectonic compression). Such heating is mainly associated with burial but may also 172 
be due to magmatic intrusions, especially in subduction zone systems (Zanella et al. 2015a). 173 

Finally, thrust detachments are common in foreland basins, especially within overpressured 174 
source rocks, where seepage forces counteract the weight of gravity and sedimentary strata providing 175 
an anisotropic mechanical response (Cobbold et al., 2001). 176 

 177 

3.2. Calcite beef within foreland basins (Mesozoic host rocks) 178 

 179 
Calcite beef is common within petroleum source rocks, especially those which have reached 180 

maturity (Table. 1). In the last few years, several authors have described examples of beef within 181 
foreland basins, especially within Mesozoic rocks of the Wessex Basin (UK), the Neuquén Basin 182 
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(Argentina), the Magellan Basin (Chile and Argentina) and the Paris Basin (France). Other examples 183 
have been described worldwide (e.g. Cobbold et al., 2013; Gale et al. 2014), although not necessarily 184 
in such detail. 185 

Where a basin has been subject to compressional tectonics, it may also contain synchronous 186 
calcite beef. Typically, the veins will then be variable in thickness and orientation (Figs. 3, 4 and 5). A 187 
vein may vary in thickness across small amplitude folds becoming thicker within synclines and thinner 188 
over anticlines. Other variations in thickness may occur across reverse faults (see the examples from 189 
the Wessex Basin; Figure 3). In the Magellan Basin, Zanella et al. (2014b) show that beef vein 190 
occurrences are more numerous closed to main thrust faults. Finally, some veins may have formed 191 
obliquely to bedding, (i.e. nearly horizontally) after the bedding has rotated, as a result of 192 
compressional deformation. These structures are similar to some of those described from the 193 
experimental modeling with fluid overpressures (Zanella et al., 2014a). 194 

 195 
3.2.1. Wessex Basin, southern England  196 
 197 

The Wessex Basin covers much of southern England (Figure 3A) and consists of Mesozoic and 198 
Cenozoic rocks that young in general towards the east, but is subject to folding and faulting, especially 199 
near the southern basin margin (Wight-Bray and Purbeck faults). A north-south section across the 200 
Purbeck fault (Figure 3A) and its restoration, published by Underhill & Stoneley (1998), show that 201 
much of the slip has been of Late Cretaceous to Cenozoic age. The Wessex Basin also has several 202 
oilfields, which produce hydrocarbons from Jurassic source rocks (Underhill & Stoneley, 1998). 203 

Within the Liassic source rocks, calcite beef are common and have drawn attention for many 204 
years from geologists (e.g. Lang et al., 1923; Richardson, 1923; Buckland & De la Beche, 1835; 205 
Marshall, 1982), who at first attributed them to early diagenesis of the sediments. However, later work 206 
revealed epitaxial growth of calcite fibers (e.g. Cobbold & Rodrigues, 2007), after splitting of the 207 
rock. 208 

On studying other calcite veins in the Purbeck Formation (latest Jurassic or Early Cretaceous) at 209 
Lulworth Cove (above the Purbeck fault), Zanella et al. (2015b) discovered that many of them are 210 
localized very closed to thrust faults (Figure 3). These veins show sigmoidal fibers (Fig. 3B & C) as 211 
well as variations in thickness around folds (Figure 3D). Such observations argue for a vein 212 
development synchronous with a horizontal shortening period. Indeed, recent uranium-lead dating of 213 

calcite (Chew et al., work in progress) has produced Albian ages (about 107 Ma) for such 214 
compressional beef veins, both at Lulworth Cove and also at Charmouth (in the Shales-with-Beef 215 
Formation of Liassic age). Thus, the beef veins in the Wessex Basin formed during the onset of 216 
inversion tectonics. 217 
 218 
3.2.2. Neuquén Basin, western Argentina 219 
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 220 
The Neuquén Basin covers an area of western Argentina, in the Andean foreland (Figure 4A). Its 221 

western margin is in the sub-Andes and it contains many north-northwest-trending folds. An eroded 222 
anticline exposes large areas of the Vaca Muerta Formation (Figure 4A), which is an Upper Jurassic 223 
organic-rich shale and a world-class source rock for oil. A geological section (Figure 4B, after Vera et 224 
al., 2014), through the city of Chos Malal (eastern side of the cross-section on Figure 4B), illustrates 225 
uplifted blocks of Palaeozoic basement, as well as thrust faults, many of which have detached near the 226 
base of the Vaca Muerta Formation. 227 

Also, in the Vaca Muerta Formation are many examples of calcite beef. Although some of these 228 
veins are as much as 30 cm thick and are laterally continuous over distances of hundreds of meters 229 
(e.g. Cobbold et al., 2013, fig. 3A; Gale et al., 2014), others show local variations in thickness across 230 
minor folds and reverse faults (Figure 4A), indicating that they formed during horizontal compression 231 
and shortening. By analyses of the domal structures from beef veins, Ukar et al. (2017) concluded that 232 
beef veins, in the area of Loncopué, developed during the Late Cretaceous. This conclusion is 233 
consistent with Rodrigues (2008) and Weger et al. (2018), which concluded by isotopes analysis that 234 
beef veins growth occurred at depth related to high temperatures (120°C to 185°C). Beef veins also 235 
occur elsewhere in the Neuquén Province (Cobbold et al., 2013) within shales of the Los Molles 236 
Formation (Lower Jurassic) or Agrio Formation (Lower Cretaceous). Finally, beef veins also occur in 237 
the Vaca Muerta Formation further north in Mendoza Province (Zanella et al., 2015a). 238 

In summary, there is good evidence in the Neuquén Basin for recent overpressure, thrust 239 
detachments and multiple veins of compressional calcite beef, all within source-rock shale. Much of 240 
the heating was probably related to foreland subsidence, but some may have come from magmatic 241 
intrusions, which are abundant, especially in Mendoza Province (Zanella et al., 2015a). 242 

 243 
3.2.3. Edges of the Cordillera Oriental, central Colombia  244 
 245 

The Cordillera Oriental is an Andean mountain belt in eastern part of Colombia (Fig. 5A, after 246 
Mora et al., 2015). Within it, folds and thrusts trend north-northeast, affecting mainly Cretaceous 247 
rocks. The geological section shows uplift of Paleozoic to Precambrian basement between reverse 248 
faults, as well as major folds within Cretaceous sedimentary rocks, some of which are source rocks for 249 
petroleum (Figure 5A). On the western side of the Cordillera, folds and thrusts verge towards the west 250 
(Figure 5A) and Cretaceous shales contain layers of calcite beef (white to yellow), which vary in 251 
thickness across folds (Figure 5C). At the eastern edge of the Cordillera, in the Macanal Formation 252 
(Lower Cretaceous), some beef contains thin layers of yellow pyrite, which have folded (Figure 5B, 253 
bottom right), while calcite has grown antitaxially above and below them, filling synclines more than 254 
anticlines, indicating a synchronous development with a horizontal shortening. 255 
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In summary, there is good evidence, at both edges of the Cordillera Oriental, for recent 256 
overpressure, thrust detachments and multiple veins of compressional calcite beef veins, all within 257 
organic-rich mature shale source rocks. 258 

 259 
3.2.4. Paris Basin, northcentral France  260 

The Paris Basin occupies a large area of northcentral France (Figure 6A0 and consists mainly of 261 
Triassic, Jurassic and Cretaceous marine strata, but also some Cenozoic strata (mainly lacustrine) in its 262 
central part (Guillocheau et al., 2000). A cross-section (Figure 6A) shows that the basin has undergone 263 
some uplift and erosion, especially on its eastern margin. In the past, there have been some 264 
descriptions of calcite beef or cone-in-cone structures, mostly within Jurassic shales of the Schistes 265 
Carton Formation (lower Toarcian, about 185 Ma) on the eastern basin margin (e.g. Denaeyer, 1943, 266 
1947), but also within Callovian shales at the northern edge (Voisin, 1999). The Schistes Carton have 267 
been subject to much exploration as potential source rocks for oil, and this has revealed the presence 268 
of fluid overpressure at several localities. Cobbold et al. (2015) investigated a ditch through the 269 
Schistes Carton Formation at Gélaucourt, near Nancy at the eastern edge of the basin (Fig. 6B, left). 270 
The ditch (Figure 6B, left) contains many beef veins, several cm thick and several meters long (Fig. 271 
6B, right). These veins had been identified previously by Denaeyer (1947). They consist mainly of 272 
calcite fibers, almost perpendicular to bedding, but they also contain some inclusions of hydrocarbons, 273 
which are visible in hand specimens, but especially by scanning electron microscopy (Figure 7B; 274 
Cobbold et al., 2015). Recently, by uranium-lead dating of calcite, we have determined the age of 275 
formation of this calcite beef to be 155 Ma (Figure 7A). This is about 30 m.y. younger than the 276 
stratigraphic age of the host rock (about 185 Ma). Indeed, the age of the calcite almost coincides with 277 
the age of onset of compressional deformation on the eastern edge of the Paris Basin (see Guillocheau 278 
et al., 2000). 279 

 280 

4. New results: field data for calcite beef in other compressional basins 281 

 282 
4.1. Lourdes, northern Pyrenees, France (locality 22) 283 
 284 

At the northern edge of the Pyrenees, a major thrust fault zone separates this mountain range to 285 
the south from the Aquitaine Basin to the north. Geological maps of Lourdes (e.g. BRGM, Carte 286 
Géologique Détaillée de la France, 1:50 000, sheet XVI-46, 1970) show multiple folds and faults 287 
within Mesozoic strata, especially near the town of Lourdes (Choukroune, 1969). Indeed, an oblique 288 
view of the Pic du Béout hills, to the east of Lourdes (Figure 8A) shows repetitions of resistant white 289 
Aptian-Albian limestones, which dip 30° to 40° towards the south. Between the limestones are darker 290 
and softer layers of upper Aptian shale, which have acted as thrust detachments and exhibit some 291 
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cleavage and down-dip lineations. The plains surrounding the hills consist mainly of unconformably 292 
overlying Upper Cretaceous flysch. Some of the upper Aptian shale contains layers of fibrous calcite 293 
beef (Figure 8B), especially near the village of Aspin-en-Lavedan (Figure 8A). Many of the veins are 294 
almost parallel to bedding, whereas younger ones are less steeply dipping and therefore somewhat 295 
oblique to bedding. The dipping of the sediments is the result of the compressional deformation from 296 
the Late Cretaceous to present day. Because the compression is active since these geological times, 297 
beef veins in this area are synchronous with this deformation. Thus, they probably formed once the 298 
bedding had rotated and partly as a result of compressional deformation. Our analyses, by scanning 299 
electron microscopy (Figure 8C), have revealed steep fractures across a flat-lying vein of calcite beef, 300 
the fractures containing much more carbon (orange color) than pure calcite. 301 
 It also happens that the Aquitaine Basin is hydrocarbon prone, especially beneath low- 302 
permeability upper Aptian shale (Biteau & Canérot, 2007). Thus, there is evidence, around Lourdes, 303 
for synchronicity of (1) Late Cretaceous or Cenozoic compressional deformation, (2) generation and 304 
accumulation of organic-rich fluids and (3) formation of calcite beef. 305 
 306 
4.2. Uinta Basin, Utah (locality 12) 307 
 308 

While investigating the presence of bitumen veins in the Uinta Basin, we discovered veins of 309 
calcite beef (up to 3 cm thick), which are common within Eocene shales of the Green River Formation, 310 
which are also source rocks for petroleum with several major oil fields. The Uinta Basin is a typical 311 
intermontane basin (Fig. 9A). At its northern edge, the basin abuts a major thrust fault, which has 312 
uplifted Paleozoic basement (part of the Uinta Mountains). At the northern margin of the basin, 313 
overpressure occurs within hydrocarbons of the Altamont-Bluebell oil field (Dubiel, 2003). Elsewhere, 314 
exposures of Green River shales (for example, within open mines) contain visible beef, which consist 315 
mainly of calcite with dominantly vertical fibers (Fig. 9B). However, in some places the veins consist, 316 
not only of calcite, but also of solid hydrocarbons (gilsonite; Fig. 9C). Some veins also contain 317 
bitumen between fibers of calcite. Thus, there is evidence for synchronicity of compressional 318 
tectonics, maturation of source rocks and growth of beef veins. 319 
 320 
4.3. Tian Shan Mountains, central Asia (localities 30 to 32) 321 
 322 

In central Asia, the Tian Shan Mountains (up to 7439 m high) separate the Junggar Basin to the 323 
north from the Tarim Basin to the south, and the Fergana Basin to the west (Figure 10A). The Junggar 324 
Basin has a long history of development (Jolivet et al., 2010; 2013; Jolivet, 2015), from the Paleozoic 325 
onwards, and experienced significant Cenozoic deformation as a result of tectonic reactivation of the 326 
Tian Shan intracontinental range (Figure 10B). Our recent fieldwork has shown that calcite beef 327 
(several cm thick) and cone-in-cone (Figure 10C) occur frequently within mid-Jurassic strata (mainly 328 
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the Xishanyao and Totounhe Formations), which crop out in the Junggar Basin on its southern margin 329 
(Wusu and Totoun localities) or eastern edge (Kalameili region), along a series of thrust faults and 330 
folds, related to the development of the Tian Shan and Altai ranges, respectively. Inside the Tian Shan 331 
range itself, cone-in-cone structures occur at Nileke (Figure 10D), at the eastern tip of the intra-332 
mountain Yili Basin within the Middle Jurassic Totounhe Formation (Figures 1 and 10). This area has 333 
been subject to large-scale thrusting, during Neogene growth of the northern Tian Shan subrange. 334 
Finally, to the west in the intramountain Issik-Kul Basin (Kyrgyzstan), bedding-parallel beef with 335 
vertical fibers (Figure 10E, F) occur in Jurassic strata along the southern edge of the basin, which has 336 
been subject to Cenozoic compressional deformation in the Terzkey range (Figsure 1 and 10). The 337 
proximity between our beef occurrences and major thrust faults suggests that beef and the Cenozoic 338 
reactivation of the basin are synchronous. 339 

At all of these localities, the beef or cone-in-cone occur within organic-rich fine-grained alluvial 340 
plain deposits (Heilbronn, 2014). In the Junggar and Yili basins, they are also close to coal layers, 341 
which are several metres thick. At some localities, especially in the Yili and Issik-Kul basins, the 342 
calcite beef is close to iron-rich sandy layers of probable diagenetic origin. At Issik-Kul, strong 343 
uranium enrichment of the Jurassic series (Kaji Sai mine) containing the beef again indicates post-344 
sedimentary fluid circulation. In the Junggar Basin, the main source rocks for oil are the upper 345 
Permian, Upper Triassic and Middle Jurassic detrital series (Jiao et al., 2007). The occurrence of 346 
calcite beef within the Middle Jurassic series and the systematic association between beef and organic-347 
rich siltstone or coal layers suggests a link between hydrocarbon source rocks and calcite beef. 348 

In the southern Junggar Basin (locality 8, Figure 1), Jiao et al. (2007) (Fig. 2) described and 349 
illustrated thin bedding-parallel veins of calcite within the upper Permian Lucaogou Formation near 350 
Urumqi. These authors did not refer to fibrous calcite (beef) or cone-in-cone, but they showed many 351 
examples of solid hydrocarbons within cavities, the Lucaogou Formation being a mature petroleum 352 
source rock.  353 
 354 
4.4. Appalachian Mountains, United States (locality 2, Fig. 1). 355 
 356 

In the eastern US (Figure. 11A), the Appalachian Mountains trend northeast-southwest and 357 
consist mainly of Paleozoic strata, folds and thrusts (Gilman & Metzger, 1967; Evans, 1995; Tobin et 358 
al., 1996). At the southwestern end of the mountains, a major unconformity underlies Cretaceous 359 
strata, which form a broad anticline (Figure 11A). This provides good evidence for Late Cretaceous or 360 
Cenozoic reactivation of the mountain belt. Indeed, even today, the belt is subject to earthquakes, 361 
resulting from compressive stress (Heidbach et al., 2009), which appears to derive from ridge-push of 362 
the Atlantic spreading center. Veins of calcite beef and bitumen (e.g. Figure 11B) occur within the 363 
Devonian Marcellus Shale (Gale et al., 2014; Aydin & Engelder, 2014). Some of the veins are 364 
undulating and have additional lenses within synclines (Gale et al., 2014, their fig. 9E). Even today, 365 
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the Marcellus Shale is a source rock for oil and locally reaches overpressure (Aydin & Engelder, 366 
2014), possibly as a result of long-term and recent burial. Furthermore, the layers of Marcellus Shale 367 
have acted as detachments for thrust faults in the Appalachians (Aydin & Engelder, 2014). Thus, the 368 
Appalachians, like other areas, provide evidence for synchronicity of (1) compressional deformation, 369 
(2) generation of organic-rich fluids and (3) formation of calcite beef. A possible problem in the 370 
Appalachians is to date these features, which may have started long ago, but still be occurring today. 371 
 372 

 373 

5. Discussion 374 
 375 

Because beef veins seem to be proxies for natural hydraulic fracturing in rocks, especially within 376 
source rocks for petroleum, the studies of such fractures are key to the understanding of such 377 
geological processes and for the migration and interactions between fluids and rocks. Their formation 378 
depends on 2 main phases: (1) the generation of the fracture and (2) the filling of the fracture. 379 

For the initiation of the natural hydraulic fractures, and thus the initiation of beef veins, the theory 380 
and the experiments of fracturing demonstrate that horizontal (or bedding-parallel) fractures can be 381 
generated, due to a distributed fluid overpressure (Cobbold & Rodrigues, 2007; Mourgues et al. 2011; 382 
our review; Zanella et al. 2014a). Nevertheless, previous reviews (Cobbold et al. 2003; Gale et al. 383 
2014) and more recent and local studies (e.g. Rodrigues et al. 2007; Zanella et al. 2014a, 2014b, 384 
2015a, 2015b; Weng et al. 2017; Ukar et al. 2017; Ukar et al. 2018) have shown that the natural 385 
hydraulic fracturing often occurred within sedimentary basins which experienced a compressive 386 
tectonic history. Moreover, according to several previous studies, the timing of development of beef 387 
veins was synchronous with a compressive period in the basin. This is, in particular, well-illustrated 388 
for the Neuquén Basin (Rodrigues et al. 2009; Zanella et al. 2015a; Ukar et al. 2017; Ukar et al. 2018), 389 
the Wessex Basin (Zanella et al. 2015b), the Bristol Chanel (Weng et al. 2017) and the Magallanes 390 
Basin (Zanella et al., 2014). In our study, we demonstrate that this observation is also true for the 391 
development of beef veins in the Paris Basin (beef veins dated at 155 Ma), in the northern Pyrenees, in 392 
the Uinta Basin, in the Tian Shan Mountains and in the Appalachian Mountains. In view of all of these 393 
observations and conclusions, we ask some questions: even if in theory the compressive tectonic stress 394 
is not necessary to develop bedding-parallel natural hydraulic fractures, is, in nature, this stress crucial 395 
for the development of such fractures? Is the fluid overpressure, generated by hydrocarbons, enough to 396 
induce hydraulic fracturing of shales?  397 

We thus propose that compressional tectonic stress is one of the key parameters in the 398 
development of bedding-parallel veins in shales. This could have major consequences for the 399 
understanding of fluid migration in sedimentary rocks, because of the historical complexity of such 400 
geological processes. Concerning the generation of hydrocarbons, even if tectonic activity has a big 401 
role, the maturation of organic matter, which leads to the development of distributed fluid 402 
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overpressures and then to natural hydraulic fracturing, is still the main parameter. Indeed, as already 403 
demonstrated, during the maturation of the source rock a part of the solid framework (the organic 404 
matter) will be transform into fluid (hydrocarbons), implying a collapse and a load transfer responsible 405 
of the increasing of the pore fluid pressure (Zanella et al. 2014a). These fractures are always within or 406 
near source rocks for petroleum (Cobbold et al. 2013; Gale et al. 2014). All of our examples respect 407 
the previous observations. So, as already suggested by previous authors (Ukar et al. 2017, 2018; 408 
Zanella et al. 2014b; Zanella et al. 2015a; Zanella et al. 2015b), the link between the presence of beef 409 
veins and organic matter is strong. Moreover, the degree of maturity of the source rock is a key 410 
parameter for the development of beef veins and other tectonic structures, such as detachments, as 411 
demonstrated in the Magellan Basin (Zanella et al. 2014b). In this basin, Zanella et al. (2014b) also 412 
demonstrated that there is a link between beef vein composition and the degree of maturity of the 413 
source rock. Thus, we infer that this natural fluid generation process is the main driver for inducing 414 
fluid overpressure in mature shales, but needs to be assisted by another force, such as the compressive 415 
tectonic stress, to be able to induce natural fracturing of the host rocks. 416 

Concerning the filling of the fracture and thus the cementation and growth of the bedding-parallel 417 
fractures, other mechanisms have to be involved to precipitate minerals. Indeed, the opening of the 418 
fractures is in mode 1 and is facilitated by a horizontal compressive stress. Nevertheless, the force of 419 
crystallization also participates to pushing outward the vein walls. Currently, which of these two 420 
processes plays the dominant role is not yet known. 421 
 422 
 423 

6. Conclusions 424 

 425 

Beef veins (BPV) are common in or near source rocks for petroleum. The study of such geological 426 
evidences can help to understand the mechanisms involved in their formation: (1) the generation of the 427 
fracture and (2) the opening of the fracture, as well as the migration of fluids in sedimentary basins. 428 
Studies of beef vein occurrences around the world have led us to conclude that it is especially common 429 
within foreland basins. Here we have reviewed examples (or described new ones) from the Wessex 430 
Basin (UK), the Neuquén Basin (Argentina), the Cordillera Oriental (Colombia), the Uinta Basin 431 
(USA), the Paris Basin (France), the northern Pyrenees (France), the Tian Shan Mountains (central 432 
Asia) and the Appalachian Mountains (USA). However, we have discovered similar beef within other 433 
localities of foreland basins (some of which are visible in Fig. 1). 434 

In this review, we demonstrate that the development of beef veins occurs worldwide within or 435 
near source rocks for petroleum and during a period of hydrocarbon generation. It is now becoming 436 
clearer that the maturation of the organic matter can lead to fluid overpressures. Beef veins (and more 437 
generally the natural hydraulic fractures) can therefore be used as proxy to determine very quickly if a 438 
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source rock was or has been mature. On a global scale, many foreland basins contain source rocks, 439 
near active or ancient mountain belts, the latter of which may have been reactivated by recent tectonic 440 
stress. Many such basins contain enough organic material to have acted as source rocks for petroleum 441 
systems, especially where recent burial has generated sufficiently high temperatures. In some 442 
examples (such as the Neuquén Basin of Argentina), next to subduction-zone systems, magmatic 443 
intrusions or extrusions have added heat and facilitated the maturation of the source rocks, also during 444 
compressional tectonic activity. 445 

The timing of beef vein generation in foreland basins is always coeval with shortening periods, due 446 
to compressive tectonic stress. Thus, even if the theory and the experiments of fracturing demonstrate 447 
that bedding-parallel fractures can be generated only with a distributed fluid overpressure, the beef 448 
veins formation seems to require an external tectonic stress to develop in nature. The filling of the 449 
fractures is likely related to force of crystallization, during the compressive period and facilitates the 450 
vertical opening of veins. 451 
 452 
 453 
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 709 
 710 
Figure captions 711 
 712 
Table. 1. Global distribution of compressional basins, where calcite beef or cone-in-cone occur. For 713 
localities (numbers at left), see Figure 1. Not all references are to previous descriptions of calcite beef. 714 
 715 
Figure 1. Map showing distribution of calcite beef (bedding-parallel veins), either within Mesozoic or 716 
Cenozoic sedimentary rocks (light triangles) or within Paleozoic sedimentary rocks (dark triangles). 717 
The numbers next to the triangles refer to the localities in Table 1. 718 
 719 
Figure 2. A. Physical model of horizontal hydraulic fracturing with no deformation (after Zanella et 720 
al., 2014a); B. Physical model of horizontal hydraulic fracturing with shortening (after Zanella et al., 721 
2014a); C. Cross-section of a 3-D physical model showing the different styles of deformation due to 722 
the propagation of a detachment linked to overpressure development (after Zanella et al., 2014a). 723 
 724 
Figure 3. A. Geological map and cross-section of the Wessex Basin, southwestern England (after 725 
Zanella et al. 2015B, modified from Underhill et al. 1998). B. folded and faulted beef veins, the 726 
thickness of which is again variable, especially across the main reverse fault (center). C. Locally 727 
folded beef, the thickness of which is variable (thicker in syncline, thinner in anticline). D. Steeply 728 
dipping but curved calcite fibers, which comprise a layer of beef. (scales: pen: 14cm; coin diameter: 729 
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2.4 cm). 730 
 731 
Figure 4. A. Calcite beef in the Neuquén Basin, Argentina (white locality 4, Figure 1) (after 732 
Rodrigues et al., 2009). The Landsat image (left) shows sub-Andean folds, trending north-northwest. 733 
Field observations (bottom right) show that beef is common in the Vaca Muerta Formation at various 734 
scales. B. Geological section through the fold and thrust belt of the Neuquén Basin (located with the 735 
red line in Figure 4A.) (after Vera et al., 2014). 736 
 737 
Figure 5. A. Geological map and cross-section, showing the main structures of the eastern Cordillera 738 
(after Mora et al., 2013, 2015). B. Calcite beef (bedding-parallel) veins (white to yellow), which vary 739 
in thickness across folds (Cobbold, 2013). C. On the western side of the Cordillera, near Villeta, folds 740 
and thrusts verge westward and Cretaceous shales contain layers of calcite beef. D. At the eastern edge 741 
of the Cordillera, in the Macanal Formation (Lower Cretaceous) near Villavicencio, some beef 742 
contains thin layers of yellow pyrite, which are folded, while calcite has grown epitaxially above and 743 
below them, filling in synclines more than anticlines. (scales: coin diameter: 2.2 cm). 744 
 745 
Figure 6. A. Geological map of the Paris Basin (after Gely and Hanot, 2014; Mangenot et al. 2018). 746 
The basin has an elliptical shape with a long axis trending approximately northeast-southwest. The line 747 
of section is indicated in red. B. Gélaucourt, near Nancy, ehere ditches have exposed Liassic shales of 748 
the Schistes Carton Formation (lower Toarcian, Denaeyer, 1943; ca 185 Ma,), which contain abundant 749 
veins of fibrous calcite beef (hammer length: 33 cm). C. Calcite beef from the Toarcian at Gélaucourt 750 
(coin diameter: 2.3 cm). 751 
 752 
Figure 7. A. U-Pb Tera-Wasserburg calcite lower intercept age of 155 ± 19 Ma (Oxfordian) for the 753 
formation of the calcite beef (Chew et al., work in progress). B&C. Scanning electron microscopy 754 
(SEM) analyses of calcite beef (bedding-parallel veins) from the Liassic “Schistes Carton” near 755 
Gélaucourt in the Paris Basin (see Fig. 6). Scanning electron microscopy (SEM) has yielded 756 
significant quantities of calcium (B) and carbon (C), which are typical of calcite. However, the amount 757 
of carbon is locally greater (pink, top right), due to inclusions of hydrocarbons within the calcite 758 
crystals (Cobbold et al., 2015).  759 
 760 
Figure 8. Calcite beef near Lourdes, at the northern edge of the Pyrenees (white locality 22, Figure 1). 761 
A. Google Earth oblique view of the Pic du Béout hills (1530 m high, near the southeast end of 762 
Lourdes city), shows repetitions of white, thick, resistant layers of Aptian-Albian limestones, which 763 
dip at about 30° to 40° to the south forming scarps. The white line represents the main thrust fault. B. 764 
Road outcrop showing fibrous calcite beef (bedding-parallel veins) in upper Aptian shales (coin 765 
diameter: 2.3 cm). C. Scanning electron microscopy and the repartition of the carbon, the calcium and 766 
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the oxygen in the beef vein. 767 
 768 
Figure 9. Calcite beef and bitumen in the Uinta Basin, Utah (white locality 13, Fig. 1). A. A 769 
simplified geological section (top, north-northeast to southwest, after Dubiel, 2003) shows the 770 
asymmetric structure of the basin. B. Outcrop, discovered in 2009, showing gently dipping beds of the 771 
Green River Formation (grey) and numerous veins, either of pure fibrous calcite (orange, left), or of 772 
fibrous calcite (coin diameter: 2.4 cm). C. Beef veins with gilsonite (whitish and grey; beneath 773 
hammer) (hammer length: 33 cm). 774 
 775 
Figure 10. Calcite beef around the Tian Shan Mountains, central Asia (localities 30 to 32, Fig. 1). A: 776 
Topographic and tectonic map of the Tian Shan and Junggar region (modified from Jolivet et al., 777 
2013). B: Geological cross-section (approximately north-south) of the Junggar Basin (red line, A). C: 778 
Cone-in-cone structures in the Xishanyao Formation (Middle Jurassic) at Wusu (top) (lens cover 779 
diameter: 5.2 cm). D: Cone-in-cone structures in the Totounhe Formation (Middle Jurassic) at Nileke 780 
(top). E and F: bedding-parallel calcite beef in Jurassic strata at Kaji Sai (Issik Kul Basin, top) (pen: 14 781 
cm). 782 
 783 
Figure 11. Calcite beef and bitumen in the Appalachian Mountains, US (locality 2, Figure 1). A. 784 
Simplified geological map showing the Paleozoic thrust belt (red), trending northeast-southwest. At its 785 
southwestern end, a major unconformity marks the base of Cretaceous strata (green), which 786 
nevertheless form a broad anticline, plunging southwest. Red dot refers to Fig. 11B. B. Veins of calcite 787 
beef (bedding-parallel veins) and bitumen occurring within the Marcellus Shale (Devonian) along 788 
Route 250, Highland County, Virginia (38°19’34.31°N; 79°26’32.29°W, south-southeast of 789 
Pittsburgh, Pennsylvania) (coin diameter: 2.4 cm). 790 
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No. Location References 
 A.  Mesozoic or Cenozoic host rocks  
1 Magallanes Basin (Chile,  Tierra del Fuego),  Rio Jackson Fm (Early Cretaceous) Zanella et  al., 2014a 
2 Magallanes-Austral  Basin (Chubut,  Argentina),  Rio Mayer Fm (Early Cretaceous) Zanella et  al., 2014a 
3 Falkland Plateau,  Maurice Ewing Bank (Late Jurassic to Early Cretaceous) Tarney & Schreiber, 1976; Maillot & Bonte, 1983 
4 Neuquén Basin, Argentina, Los Molles, Vaca Muerta, Agrio Fms (Jurassic to Cretaceous) Fig. 4; Rodrigues et al., 2009; Cobbold et al., 2013; Gale et al., 2014; Ukar 

et al. 2017; Zanella et al., 2015 
5 Sub-Andean Zone,  southern Bolivia (Tertiary strata) Labaume et al., 2001; Lamb, 2004 
6 Araripe Basin,  NE Brazil (Early Cretaceous) Silva, 2003; Marques et al., 2014 
7 Eastern Cordillera,  Colombia,  (Early Cretaceous source rock) Fig. 5; Cobbold et al., 2013; Mora et al., 2013; Mora et al., 2015 
8 Northern Venezuela,  La Luna Fm (Late Cretaceous) Macsotay et al., 2003 
9 Northern Venezuela,  Oficina Fm (Early Miocene) Martinius et  al., 2012 
10 Central  Mexico Fold-and-Thrust Belt, (Cretaceous) Fitz-Diaz et  al., 2011 
11 Sierra Madre Oriental, NE Mexico (Jurassic-Cretaceous) Fischer et al., 2009; Smith et al., 2014 
12  SW California, USA, Franciscan Complex  (Late Jurassic to Cretaceous) Bradbury et al., 2015 
13 Uinta Basin, Utah, Green  River Fm (Eocene) Fig. 9; Woodland, 1964; Dubiel, 2003 
14 Texas,  Haynesville Shale (Jurassic) Gale et al., 2014 
15 Outer Hebrides (Eigg, Raasay,  Skye), Scotland, UK (Jurassic) Lee, 1920; Marshall, 1982; Parnell et al., 2014 
16 Eathie, Great  Glen, NE Scotland (Jurassic) Le Breton et al., 2013 
17 Alba Field,  Outer Moray Firth,  United Kingdom (Eocene) Hillier & Cosgrove, 2002 
18 Lavernock Point, South  Wales (Triassic) Kershaw & Guo, 2016 
19 Wessex Basin,  UK (Liassic to Mid-Cretaceous) Fig. 3; Buckland & De la Beche, 1835; Richardson, 1923; Marshall, 1982; 

Underhill & Stoneley, 1998; Cobbold & Rodrigues, 2007; Zanella et al., 
2015b; Kershaw & Guo, 2016 

20 Dutch Central Graben (Toarcian) Trabucho-Alexandre et al., 2012 
21 Eastern  and Northern Paris Basin,  France (Triassic, Liassic) Figs. 6 & 7; Denaeyer, 1943, 1947; Voisin, 1999; Cobbold et al., 2015 
22  Lourdes,  North-Central Pyrenees, France (Aptian-Albian) Fig. 8; Choukroune, 1969; Biteau & Canérot, 2007 
23 Hils Syncline,  NW Germany (Toarcian) Leythaeuser et al., 1988 
24 West Siberia Basin, Russia, Bazhenov  Shale (Tithonian-Berriasian) Kemp, 2014; Fjellanger et al., 2015 
25 Algeria-Tunisia (Cretaceous) David, 1952 
26 Kalahari  Desert,  South Africa and Botswana (Quaternary) Watts, 1978 
27 Kilwa,  coastal Tanzania (Cretaceous, Paleogene) Pearson et al., 2006 
28 Tawke Field, Kurdistan, NW Iraq,  Sargelu Fm (Jurassic) Lilloe-Olsen & Bang, 2012 
29 Kopet-Dagh Basin,  NE Iran,  Sanganeh Fm (Late Cretaceous) Mahboubi et al., 2010 
30 Junggar Basin, China, Xishanyao Fm. (Middle Jurassic) Fig. 10; Jolivet et al., 2010; Heilbronn, 2014 
31 Yili Basin,  China,  Totounhe Fm. (Middle Jurassic) Fig. 10 
32 Issyk-Kul Basin, Kyrgyzstan (Jurassic) Fig. 10 
33 Sichuan Basin, China, Jialingjiang  Fm (Triassic) Zhang et al., 2015 
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 B. Palaeozoic or Precambrian  host rocks  
1 Parana Basin, SE Brazil, Teresina Fm (Permian) Nomura et al., 2014 
2 Appalachian Mountains,  USA,  Marcellus Fm (Devonian) Fig. 11; Gilman & Metzger, 1967; Evans, 1995; Tobin et al., 1996; Gale et 

al., 2014; Aydin & Engelder, 2014 
3 Appalachian Mountains, Quebec,  Canada,  Utica Shale Fm (Ordovician) Séjourné et al., 2005; Chatellier, 2013 
4 Barrandian Basin,  Czech Republic (Lower Palaeozoic) Suchy et al., 2002; Volk et al., 2002 
5 Holy Cross Mountains,  Poland (Devonian, Triassic) Kowal-Linka, 2010; Rybak-Ostrowska et al., 2014 
6 Junggar Basin, China, Lucaogou Fm  (Upper Permian) Jiao et al., 2007 
7 Kalahari Desert,  South Africa and Botswana, (Silurian-Devonian) Watts, 1978 
8 Australia, New South Wales,  Murrumbidgee Fm (Devonian) Barker et al., 2006 
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