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Abstract 

The temporal evolution of the sedimentary source areas of the Armorican Massif, involving 

Ediacaran to Upper Ordovician strata, is investigated to gain insight into the palaeogeographic 

affinities and changes that occurred as a result of Cadomian orogenesis. Until now, 

palaeogeographic reconstructions based on geodynamic, stratigraphic and paleontological data have 

shown geological continuity between the Armorican Massif and the Iberian and Bohemian massifs 

and have allowed researchers to locate the Armorican Massif near the West African Craton and the 

Trans-Saharan Belt. This study goes beyond the interpretations based on lithostratigraphic 

correlation, which may be influenced by allocyclic factors (e.g., sea-level change) or fauna 

assemblages that have a wide provincial distribution, to provide a correct assessment of sediment 

flux. To determine the palaeogeographic location more accurately, the provenance of the 

siliciclastic sediments was examined in this study using U–Pb LA-MC-ICP–MS geochronology on 

detrital zircons coupled with whole-rock Sm–Nd and zircon Lu–Hf isotope analysis. This work was 

carried out on the sedimentary succession of the Medio Armorican Domain. The oldest studied 

sedimentary rocks were shown to belong to the Brioverian succession, which contains mainly 519–
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781 Ma old zircons, likely derived from sources that are still present in the Armorican basement. 

Successively, the lower Paleozoic succession was deposited in the rift stages of the Rheic Ocean, 

with contributions from a new source of 827–1,120 Ma old zircons. 

A comparison of the zircon populations showed an increase in negative εNd(t) and εHf(t) values of 

the sedimentary supply in the post-Cadomian samples. Moreover, it revealed that the Medio and 

North Armorican domains had different locations during the Lower Ordovician, and that some areas 

of the Iberian Massif and the Medio Armorican Domain close to the Sahara Metacraton and 

Arabian-Nubian Shield were contiguous.  

Keywords: North Gondwana; Cadomian Belt; Brioverian; Grès Armoricain Formation; U-Pb 

geochronology zircon 

 

1. Introduction 

The present study aims to analyse the provenance of sediments of the Armorican Massif (West 

France), from the Ediacaran–early Cambrian (Cadomian cycle) to the Late Ordovician, and to 

explore the palaeogeographic implications of the results. For this area, palaeogeographic 

reconstructions have been established on the basis of geodynamic arguments, i.e., the evolution of 

the Cadomian Belt during the Ediacaran, rifting of the Rheic Ocean in the Cambrian, and the 

opening in the Early Ordovician (e.g., Chantraine et al., 2001; Linnemann et al., 2014). In addition, 

and especially for Paleozoic times, stratigraphic and paleontological arguments have been used, 

e.g., the strong affinities between benthic fauna of the Medio and North Armorican Domain 

(Armorican Massif) and the Central Iberian Zone (Iberian Massif) (Paris and Robardet, 1977; 

Young, 1988; Robardet, 2002). These arguments have suggested geological continuity between the 

Armorican Massif and the Iberian and Bohemian massifs and allowed researchers to locate the 

Armorican Massif at the periphery of the Gondwana supercontinent close to the West African 

Craton and Trans-Saharan Belt (e.g., Linnemann et al., 2008; Avigad et al., 2012; Pereira et al., 

2012a, b). However, these proxies are not homogeneous and involve very large areas. This is the 
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case with some stratigraphic evolutions that may be controlled by allocyclic factors (e.g., sea-level 

variations) or with faunal assemblages that have a wide provincial distribution and appear rather 

homogeneous over vast domains. Other approaches can be used to reconstruct the palaeogeographic 

position, such as the characterization of source areas of siliciclastic supplies. In particular, detrital 

zircon age dating is a powerful tool to analyse the provenance of clastic sediments and to 

understand the paleogeography and tectonic evolution of continental realms. Only limited zircon 

data are available for the Armorican Massif (i.e., Fernández-Suráez et al., 2002a; Strachan et al., 

2014; Gougeon et al., 2018; Ballouard et al. 2018), but there is an abundance of chronological 

literature concerning the Iberian Massif (e.g., Fernández-Suárez et al., 2000, 2002b; Pereira et al., 

2012a, b; Shaw et al., 2014; Talavera et al., 2015), Saxo-Thuringia (Linnemann et al., 2008), and 

North Africa (e.g., Meinhold et al., 2011; Avigad et al., 2012; Gärtner et al., 2016).  

The purpose of the present study is to identify the origin of Ediacaran to Upper Ordovician 

sediments in the Crozon Peninsula within the Medio Armorican Domain (Fig. 1), in which U–Pb 

LA-MC-ICP–MS geochronology was applied in the characterization of detrital zircons and coupled 

with whole-rock Sm–Nd and Lu–Hf on zircon isotope analyses. As a consequence, the affinity 

between the Iberian and Armorican massifs is considered in order to provide insights into the 

palaeogeographic location of the Medio Armorican Domain at the North Gondwana margin and its 

relations with the Iberian Massif.  

 

Fig.1: (A) Schematic palaeogeographical reconstruction of the Gondwana supercontinent around 

485 Ma (modified from Linnemann et al., 2008). Terranes that are still recognizable are shown in 

black. OMZ: Ossa Morena Zone; AM: Armorican Massif; SXZ: Saxo-Thuringian Zone; TBU: 

Tepla-Barrandian Unit. 

(B) Simplified geological map of the Armorican Massif, modified after Chantraine et al. (1996), 

and location of the studied samples in the Medio Armorican Domain (black stars). Samples from 

Normandy (white squares: Strachan et al., 2014), North Brittany (grey square: Fernández-Suárez et 

al., 2002a), Central Brittany (black square; Gougeon et al., 2018); samples NEA, PON, DAO, PLO, 

and SNC are from Dabard et al. (1996), and samples 7a, 7b, 8, 18, and 26 are from Michard et al. 

(1985). 
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2. Geological setting 

Late Carboniferous transcurrent shear zones (Jégouzo, 1980; Gapais and Le Corre, 1980) 

subdivide the Armorican Massif into three domains: the North Armorican Domain (NAD) and the 

Medio Armorican Domain (MAD), which are grouped together into the Medio-North Armorican 

Domain (MNAD), and the South Armorican Domain (Fig.1). These serve as records of distinct 

tectonic and magmatic evolution during Cadomian and Variscan orogenesis.  

During the Neoproterozoic, the Armorican Massif experienced a suite of extensive and 

compressive episodes associated with magmatism that led to the development of the Cadomian Belt 

(cf. synthesis in Chantraine et al., 2001). The main evidence for the Cadomian orogeny, which is a 

part of the Pan-African orogeny, is derived from the NAD. In North Brittany, geochemical studies 

(e.g., Thiéblemont et al., 1999) demonstrated the existence of continental arcs around 750–650 Ma 

(Eocadomian) that affected the Icartian basement (1.8–2.1 Ga). Subsequently, several episodes of 

magmatic activity occurred in succession (ca. 620–575 Ma and 555–530 Ma). At the same time, a 

thick siliciclastic succession, called the Brioverian Supergroup, accumulated in extensional basins. 

They are divided into two groups. The lower Brioverian Group of Ediacaran age is located in the 

NAD and is made up of sediments containing interbedded graphitic cherts (phtanites: Dabard, 

2000) or devoid of cherts. This group was deposited between 624 Ma, the age of the youngest 

detrital zircon grains in the basal part of the group (e.g., Poudingue de Cesson: Samson et al., 2003), 

and about 580 Ma, the age of plutonic intrusions into the sedimentary successions (e.g., Coutances 

quartz diorite: Guerrot and Peucat, 1990; Saint Quay diorite: Nagy et al., 2002). The upper 

Brioverian Group of late Ediacaran to early Cambrian age (Guerrot et al., 1992; Gougeon et al., 

2018) is present in the three domains and is composed of sediments containing chert clasts.  

In the MAD, the upper Brioverian sediments consist of several-thousand-meters-thick 

alternations of wackes and siltstones that were mainly deposited in various sedimentary 

environments, ranging from submarine fans to continental shelf deposits. The latter are represented 

by distal to tidal plain facies. These sedimentary strata were, in part, slightly deformed during the 
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Cadomian orogeny (Le Corre, 1977). The lower Paleozoic deposits consist mainly of siliciclastic 

lithofacies alternating with some carbonate levels (Paris et al., 1999; Vidal et al., 2011a). The 

sedimentation of the Brioverian sediments began between the Tremadocian and the Floian (Lower 

Ordovician) with the Initial Red Beds (Cap de la Chèvre Formation in the Crozon Peninsula) and 

the Grès Armoricain Formation (Fm), which rest unconformably on the Brioverian strata (Fig. 2). 

The Initial Red Beds are characterized by lateral facies variations and were deposited in alluvial to 

deltaic environments (Bonjour, 1988; Suire et al., 1991). The Grès Armoricain Fm was deposited in 

wave- and tide-dominated nearshore environments (Dabard et al., 2007; Pistis et al., 2016). The 

significant lateral thickness variations (0–100 m for the Initial Red Beds and 20–700 m for the Grès 

Armoricain Fm) are related to the extensional event that led to the progressive opening from west to 

east, in present coordinates, of the Rheic Ocean between southern Avalonia and North Gondwana 

(Fig. 1a). A model of tilted blocks associated with listric faults was proposed for the Initial Red 

Beds (Dauteuil et al., 1987; Brun et al., 1991). For the Grès Armoricain Fm, the large thicknesses 

(several hundreds of meters) of isofacies are explained by high subsidence rates. The lateral 

variations in thicknesses are linked to tectonically controlled depocenters that are constantly filled 

in by oversupplied nearshore depositional systems (Dabard et al., 2015). From the Darriwilian 

(Middle Ordovician), the subsidence rate stabilized around 20 m/my, which is interpreted as post-

rift thermal subsidence (Dabard et al., 2015). Up to the end of the Ordovician, the sediments were 

laid down in a continental shelf whose main architecture was controlled by high glacioeustatic 

variations under icehouse conditions (Dabard et al., 2015). Until the Sandbian (early Late 

Ordovician), the sedimentation is represented by silty–clayey lithofacies (Postolonnec Fm on the 

Crozon Peninsula, 400 m thick, Fig. 2) deposited in a storm-dominated shelf environment (Dabard 

et al., 2015). After a major sea-level fall, sedimentation continued into the Katian with micaceous 

sandstones, quartz arenites and mudstones (Kermeur Fm on the Crozon Peninsula, 90–450 m thick, 

Fig. 2) deposited in bay/lagoon barrier environments evolving toward open shelf settings (Vidal et 
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al., 2011b; Gorini et al., 2008). Sedimentation then continued, without significant interruptions, 

until the Carboniferous with the development of several-thousand-meter-thick deposits. 

The samples for the U–Pb LA-MC-ICP–MS geochronology of detrital zircons were collected 

from the Crozon Peninsula (western part of the MAD, Figs. 1 and 2) at Trez Bihan (BS and IRBS 

samples at N 48°13'07.16"; W 4°22'57.36" and coordinate: N 48°13'15.70"; W 4°23'56.25", 

respectively), Morgat (GAFS sample, N 48°13'18.92"; W 4°29'43.43"), Postolonnec (PFS sample, 

N 48°14'17.47"; W 4°28'06.24") and Veryarc'h (KFS sample, N 48°15'40.15"; W 4°36'29.19") 

along beach cliffs. The Brioverian BS sample is a fine quartz wacke with a matrix and was taken 

about 10 meters below the post-Cadomian angular unconformity surface. The IRBS sample (Cap de 

la Chèvre Fm) is a subarkose with abundant lithic fragments, collected about 80 meters above the 

same angular unconformity. The IRBS sample (Cap de la Chèvre Fm) is a subarkose with abundant 

lithic fragments, collected about 80 meters above the angular discordance. The GAFS sample (Grès 

Armoricain Fm) is a fine-grained quartz arenite without a matrix of abundant heavy minerals (e.g., 

rutile, zircon, monazite, tourmaline, ...), collected about 60 meters below the stratigraphic boundary 

with the overlying Postolonnec Fm. The PFS sample (Postolonnec Fm) is a medium-grained quartz 

arenite without a matrix, taken at 136 meters from the base of the formation. The KFS sample 

(Kermeur Fm) is a medium-grained quartz arenite with low matrix content, which was collected at 

114 meters from the base of the formation. 

Some Sm–Nd whole-rock data of sedimentary rocks are partly provided by published data (for 

details, see Michard et al., 1985; Dabard et al., 1996). The samples of this study (Fig 1 and 2) are 

from different localities of the MAD. The sample of Brioverian quartz wacke, 99036, was taken at 

about 9 km from North Laval (black star in Fig. 1, N 48°09'22.21"; W 0°44'47.92"). The sample of 

sandy siltstone from the Initial Red Beds, LBG5-8872, was taken at Pont Réan (South of Rennes, 

black star in Fig. 1, at N 47°59'45.99"; W 1°45'00.26"). The quartz wacke sample 8RL3-8881, also 

from the Initial Red Beds succession, was taken at Cap de la Chèvre (Crozon Peninsula, black star 

in Fig. 1, at N 48°10'14.78"; W 4°32'25.62"). Two samples of very fine quartz arenite from the Grès 
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Armoricain Fm, denoted CFR25-5618 and CFR28-5617, were taken at the old quarry of Camp 

Français in North Laval (black star in Fig. 1, at N 48°09'17.52"; W 0°44'51.47" and N 

48°09'18.99"; W 0°44'59.33", respectively). All samples are poor in heavy mineral content and 

have a fine phyllosilicate matrix when a matrix is present. 

 

Fig.2: Lithostratigraphic (x-axis represents grain-size from mudstone to conglomerate) context of 

the Lower Paleozoic succession in the Crozon Peninsula (modified after Vidal et al., 2011a). This 

figure indicates the stratigraphic positions of the studied samples. 

 

3. Methodology 

The Sm and Nd concentrations were obtained by the isotope dilution method using a Cameca 

TSN 206 mass spectrometer at Rennes University. Total blanks for the chemical separations are 

estimated to be around 0.1 ng for Nd. Isotopic compositions of Nd were determined using a 

Finnigan MAT 262 mass spectrometer. Isotopic ratios were normalized to 
146

Nd/
144

Nd = 0.7219. 

The results are reported relative to the La Jolla Nd standard (= 0.511860). The detailed technique 

for Sm–Nd analysis is reported in Jahn et al. (1980). The precisions of measurements are given at 

the 95% confidence level. TDM model ages were calculated according to DePaolo (1981). 

Zircon concentrates were extracted from 3–4 kg of each rock sample by first crushing and then 

using conventional magnetic and heavy liquid separation techniques. The samples were not sieved 

before zircon separation. For each sample, an arbitrary aliquot of this detrital zircon fraction, almost 

150 zircon grains per sample, was placed in a glass with ethanol and selected randomly without bias 

using a pipette under a binocular microscope. This technique avoids bias as the grains are randomly 

selected without any pre-consideration of size, colour, or shape (Sláma and Košler, 2012). 

Afterward, the zircon grains were mounted into epoxy blocks and polished to about half-thickness 

in order to better expose internal surfaces. Then, the blocks were sputtered with carbon and zircon 

and examined for internal structures (such as magmatic zonation or metamorphic rims) using the 

FEI Quanta 450 scanning electron microscope at the University of Brasilia. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



The U–Pb and Lu–Hf isotopic analyses were performed on zircon using a Thermo Scientific 

Neptune MC-ICP–MS coupled with a Nd:YAG UP213 NewWave laser ablation system 

(Laboratory Conditions in Supplementary Materials) installed in the Laboratory of Geochronology 

and Isotope Geochemistry of Brasilia University. 

The U–Pb analyses of zircon grains were carried out using the sample–standard bracketing 

method (Albarède et al., 2004) using GJ-1 (Jackson et al., 2004) as the first standard zircon in order 

to quantify the amount of ICP–MS fractionation. Between four and eight (when little fractionation 

is observed) unknown zircon samples were analysed per two GJ-1 reference material analyses and 

the 
206

Pb/
207

Pb and 
206

Pb/
238

U ratios were time corrected. The raw data were processed offline and 

reduced using an Excel worksheet (Bühn et al., 2009). Analyses were performed using a spot size of 

30 μm in general, and laser-induced fractionation of the 
206

Pb/
238

U ratio was corrected using the 

linear regression method (Koşler et al., 2002). During each analytical session, the zircon standard 

Temora-2 (Black et al., 2004; Temora U/Pb data in Supplementary Material), for which the 

recommended age is 390–420 Ma, was also analysed as a secondary zircon standard. 

Lu–Hf isotopes were analysed in selected zircon grains that had previously been analysed using 

the U–Pb method. The selection was made on the basis of the highest concordance values (95–

105%) and for representativity of all observed U–Pb age groups in a sample’s age population. Lu–

Hf isotopic analyses were performed following the methodology of Matteini et al. (2010). The εHf(t) 

values were calculated using the decay constant λ = 1.865 x 10
−11 yr

−1
 proposed by Scherer et al. 

(2001) and 
176

Lu/
177

Hf and 
176

Hf/
177

Hf CHUR values of 0.0336 and 0.282785 (Bouvier et al., 2008). 

A two-stage TDM age was calculated from the initial Hf isotopic composition of the zircon using an 

average crustal Lu/Hf ratio of 0.0113 (Gerdes and Zeh, 2006, 2009; Nebel et al., 2007). This value 

was selected because it best represents the composition of a hypothetical crust. The initial Hf 

composition of zircon represents the 
176

Hf/
177

Hf value calculated at the time of zircon 

crystallization, given by the U-Pb age previously obtained for the same grain and that, if possible, 

should be concordant. The two-stage depleted mantle Hf model ages (TDM Hf) were calculated 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



using 
176

Lu/
177

Hf = 0.0384 and 
176

Hf/
177

Hf = 0.28325 for the depleted mantle (Chauvel and 

Blichert-Toft, 2001) and a 
176

Lu/
177

Hf value of 0.0113 for average crust (Taylor and McLennan, 

1985; Wedepohl, 1995). 

Before Hf isotope measurements of zircons, replicate analyses of a 200 ppb Hf JMC 475 

standard solution doped with Yb (Yb/Hf = 0.02) were carried out with the following result: 

176
Hf/

177
Hf = 0.282162 ± 13, 2s error, n = 4. During the analytical session replicate analyses of the 

GJ-1 standard zircon were conducted, which gave an average 
176

Hf/
177

Hf ratio of 0.282006 ± 16 2s 

(n = 25), in agreement with the reference value for the GJ standard zircon (Morel et al., 2008). 

 

4. Analytical results 

4.1. Whole rock Sm–Nd isotopic analyses  

The 
143

Nd/
144

Nd initial ratios and εNd were recalculated for each formation taking into 

account the stratigraphic available age. Samples from the upper Brioverian Group yield negative 

εNd (540) values ranging between −1.4 and −6.3 (Tab. 1, Fig. 3) and Mesoproterozoic Nd model 

ages ranging between 1.2 and 1.6 Ga. The two IRB samples also have negative εNd (480) values of 

−3.0 and −4.4 and Mesoproterozoic Nd model ages of 1.4 and 1.5 Ga, similar to the data obtained 

for the Brioverian sediments. For the Grès Armoricain Fm, all analysed samples exhibit large 

negative εNd(470) values between −8.5 and −11.5 and Paleoproterozoic Nd model ages ranging 

from 1.7 to 2.1 Ga. 

 

Table 1: Whole–rock Sm and Nd concentrations and Nd isotope data of Brioverian and Lower 

Ordovician sedimentary rocks. Data (1) from Dabard et al. (1996), (2) Michard et al. (1985), and (3) 

this work (LBG5: Pont Réan, South of Rennes; 8RL3: Crozon Peninsula; 99036, CFR25 and 

CFR28: North Laval). TDM model ages calculated according to DePaolo (1981). 
samples Ages 

Ma 

Sm Nd 
147

Sm/
144

Nd 
143

Nd/
144

Nd 

(± 2) 
Nd(0) Nd(t) 

TDM 

(Ga) 

Brioverian 540        

NEA (1)  2.96 15.36 0.1164 0.512283(6) -7.0 -1.4 1.20 

PON (1)  5.89 29.04 0.1225 0.512285(5) -6.9 -1.8 1.28 

DAO (1)  3.09 15.64 0.1194 0.512045(6) -11.6 -6.3 1.64 
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PLO (1)  2.81 13.95 0.1219 0.512100(7) -10.5 -5.4 1.60 

SNC (1)  4.34 22.62 0.116 0.512227(5) -8.1 -2.5 1.28 

8 (2)  5.95 27.2 0.1323 0.512266(28) -7.3 -2.9 1.48 

26 (2)  8.33 39.91 0.1263 0.512180(34) -9.0 -4.1 1.50 

99036 (3)  4.81 24.19 0.1201 0.512237(5) -7.9 -2.6 1.33 

         

Initial Red Beds  480        

LBG5-8872 (3)  6.07 29.28 0.1254 0.512191(3) -8.8 -4.4 1.48 

8RL3-8881 (3)  2.58 12.26 0.127 0.512269(3) -7.2 -3.0 1.39 

         

Grès Armoricain Fm  470        

7b (2)  9.57  45.99 0.1259 0.511988(29) -12.7 -8.5 1.84 

7a (2)  1.85 10.09 0.1109 0.511788(35) -16.6 -11.5 1.87 

18 (2)  3.76 22.43 0.1014 0.511755(33) -17.3 -11.5 1.73 

CFR25-5618 (3)  7.56 44.65 0.1023 0.511837(3) -15.7 -10.0 1.65 

CFR28-5617 (3)  18.13 85.24 0.1285 0.511885(3) -14.7 -10.6 2.07 

 

Fig.3: Age (Ga) versus Nd(t) diagram for the Brioverian (red triangles), Initial Red Beds (IRB) (blue 

circles) and Grès Armoricain (yellow squares) samples.  

 

 4.2. Detrital zircon ages  

Generally, the zircon grain sizes of the analysed samples did not exceed 260 µm, with the most 

frequently observed size being around 100 µm. The zircon grains of the GAFS (Grès Armoricain 

Fm) sample are very well sorted and, on average, smaller than those of the other samples. The 

zircon grains are generally colourless or weakly coloured and have euhedral shapes with rare 

rounded grains. An exception is the GAFS sample and, to a lesser degree, the samples from 

overlying strata, where the observation of numerous coloured and rounded grains are testament to 

long transport processes or multiple deposition/alteration/transport cycles. 

From the Brioverian sample (BS), 68 detrital zircon grains were analysed and 49 gave 

concordant data (Fig. 4 and U/Pb data in Supplementary Material). The most abundant age 

population (67%) is Ediacaran to Tonian <800 Ma in age (33 zircon grains). The Kernel probability 

plot shows two Ediacaran major peaks (587 Ma and 620 Ma) and two minor Cryogenian (666 Ma) 

and Tonian (724 Ma) peaks. There is a prominent age gap between 781 Ma and 1.93 Ga 

(Orosirian), with the exception of a single zircon grain with an age of 988 Ma. Ten zircon grains 

yield Paleoproterozoic ages, with a peak at 2.02 Ga, and four grains yield Archean ages. 
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In the Lower Ordovician sample (IRBS), 55 detrital zircon grains give concordant results, out of 

69 analysed grains. The ages for the most abundant zircon population (38 zircon grains) are from 

Furongian (latest Cambrian) to Tonian <800 Ma, with 24 zircon grains being Ediacaran in age. The 

Kernel probability plot shows two Ediacaran major peaks (568 and 622 Ma) and two minor peaks at 

490 Ma (late Cambrian) and 694 Ma (Cryogenian). There is a prominent age gap between the 

Tonian <800 Ma and the Orosirian, with exception of two zircon grains with ages of 901 and 998 

Ma. The other zircon grains are Paleoproterozoic (8 zircon grains, minor peak at 1.96 Ga) and 

Archean (7 zircon grains, 2.53–3.48 Ga) in age.  

In the Floian sample (GAFS), 51 zircon grains are concordant (69 analysed grains). The Kernel 

plot shows numerous age peaks between the Cambrian and Stenian with major peaks located at 537, 

616, 720, 899, and 980 Ma. Grains with Ediacaran and Tonian ages are abundant (16 and 19 zircon 

grains, respectively), whilst only one grain yields a Stenian age. The youngest concordant zircon 

grains are Fortunian in age (528–535 Ma), and the data reveal that the oldest grains are 

Paleoproterozoic and Neoarchean, with ages between 1.88 and 2.69 Ga.  

The PFS+KFS sample combines two samples from the Postolonnec (PFS) and the Kermeur 

(KFS) formations (Middle and Upper Ordovician, respectively). Seventy zircon grains are 

concordant out of an analysed population of 134 grains. The Kernel probability plot shows two 

main populations: an Ediacaran to Tonian <800 Ma population with ages of 584 to 785 Ma for 36 

zircon grains and major peaks at 640 and 697 Ma, and another population of Tonian (>800 Ma) to 

Stenian age, with several minor peaks at 855 Ma, 945 Ma, and as high as 1.05 Ga (17 zircon 

grains). The age distribution shows a gap at 800 Ma in the age diagram between these two age 

populations. The ages of the other zircon grains are widely dispersed over the Calymmian (early 

Mesoproterozoic), Orosirian (Paleoproterozoic), and Neoarchean. 

 

Fig.4: U–Pb ages of detrital zircon grains from the studied samples: frequency and Kernel density 

estimate (KDE) distribution plots. The 
207

Pb/
206

Pb and the 
206

Pb/
238

U ages have been used for zircon 

grains older and younger than 1 Ga, respectively. The vertical orange bands shown in the figure 
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represent the main range of ages for magmatic rocks. Magmatic rock ages are from (1) Auvray et al. 

(1980), Inglis et al. (2004), Samson and D'Lemos (1998), Vidal (1980), Martin et al. (2018); (2) 

Samson et al. (2003), Egal et al. (1996); (3) Samson et al. (2003), Guerrot and Peucat (1990), 

Graviou et al. (1988), Nagy et al. (2002); (4) Vidal (1980), Chantraine et al. (1999, 2001), Egal et 

al. (1996), Inglis et al. (2005), Cocherie et al. (2001), Guerrot and Peucat (1990), Peucat et al. 

(1981), Vidal et al. (1974), Strachan et al. (1996), Miller et al. (2001), Cocherie et al., 2001; (5) 

Auvray (1979), Graviou et al. (1988), Egal et al. (1996), Guerrot et al. (1992), Pasteel and Doré 

(1982), Peucat (1986), Chantraine et al. (2001), Hebert et al. (1993), Guerrot and Peucat (1990), 

Marcoux et al. (2009); (6), Guerrot et al. (1992), Auvray et al. (1980), Bonjour et al. (1988), Miller 

et al. (2001), Ballouard et al. (2018). 

 

As there is a low total number of studied zircon grains with concordant ages per sample, data 

from a recent compilation (Ballouard et al., 2018) for the same locations  as those in this study were 

compared with the present results . This can make up for the loss of underrepresented zircon age 

populations (Fig. 5). In this work, a Brioverian and Silurian sample from the Crozon Peninsula in 

the Medio Armorican Domain were analysed. For our Brioverian sample, the probability curve (BS 

in Fig. 4.) and the sample studied by Ballouard et al. (2018) in Fig. 5 are very similar. For the 

Ordovician samples, it is not possible to make a direct comparison, as these materials are not 

represented in the work by Ballouard et al. (2018). Nevertheless, it is possible to observe a 

coincidence between our data and the main populations of the Silurian sample from Crozon (213 

zircons analysed), in which there is also an evident gap in the age diagram that separates the two 

main age populations for the lower Cambrian to Tonian <800 Ma and for Tonian >800 Ma to 

Stenian ages. 

 

Fig. 5: U–Pb ages of detrital zircon grains for samples from the Crozon Peninsula (Medio 

Armorican Domain). Histogram and Kernel density estimate (KDE) modified after Ballouard et al. 

(2018). 

 

4.3. Lu-Hf on detrital zircons 

In order to characterize the recognized zircon populations with Lu–Hf isotope ratios, nineteen 

zircons of the main populations were selected from the Brioverian (BS) (Lu/Hf data in the 

Supplementary Materials). The results show variable Hf(t) values ranging from −30 to +4, 
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suggesting the involvement of Ediacaran-Cryogenian magma and Paleoproterozoic juvenile input 

(at 2.1 and 2.7 Ga).  

 

Fig. 6: U/Pb age (Ga) versus Hf for selected zircon grains from this study. DM indicates depleted 

mantle and CHUR is chondritic uniform reservoir; grey domains represent the Hf(t) bulk rock 

evolution trends for terranes of different ages that could be recognized from the studied samples, 

calculated using 
176

Lu/
177

Hf of 0.0113 (Taylor and McLennan, 1985; Wedepohl, 1995). Numbers 

indicate magmatic ages, whose references are listed in Fig. 4 caption. 

 

The fourteen representative zircons from the Lower Ordovician sample (IRBS) vary in Hf(t) values 

from −11 to +4, suggesting both the supply of juvenile material mainly in the Cryogenian and 

reworking of the older pre-existing crust. 

Twenty representative zircon crystals from the Ordovician (Floian) sample (GAFS) gave Hf(t) 

values between −32 and +7, which indicates a juvenile contribution for the zircon grains of Tonian 

age and, for the remaining grains, recycling of the oldest Paleoproterozoic and Archean crust. 

The five representative zircon crystals of sample PFS+KFS gave Hf(t) values ranging from −14 to 

+3, suggesting a juvenile contribution for the Stenian zircons and reworking of Paleoproterozoic 

crust for the Cryogenian population. 

The obtained Hf data allow for the following magmatic chronological evolution to be deduced:  

- The Archean population involves zircon grains from the Neoarchean and Mesoarchean. The 

Neoarchean population, represented by zircon grains from the BS, IRBS, and GAFS samples, 

shows negative and positive Hf(t) values (between −9.52 and +4.04). The TDM model ages indicate 

reworking of Paleoarchean (3.5 Ga) to Mesoarchean crusts (2.92 Ga). The Mesoarchean population, 

represented by zircon grains from the BS and IRBS samples, shows negative Hf(t) values between 

−7.37 and −3.18. The TDM model ages indicate reworking of Eoarchean (3.84 Ga) to Paleoarchean 

crusts (3.44 Ga). 
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- Paleoproterozoic magma input provided zircon grains from the Rhyacian and Orosirian periods. 

The Rhyacian population from the BS, IRBS, and GAFS samples gave negative to positive Hf(t) 

values ranging between −5.44 and + 2.88, with a TDM indicating reworking of Mesoarchean (2.95 

Ga) to Siderian (2.47 Ga) crusts. The Orosirian population, represented by zircons from BS and 

GAFS, yields negative Hf(t) values ranging between −18.89 and −3.44, and the TDM values of 

Orosirian zircon indicate reworking of Eoarchean (3.61 Ga) and Mesoarchean (2.76 Ga) crusts.  

- A Mesoproterozic population is only present in the PFS+KFS and GAFS samples. The analysed 

zircon crystals from the PFS+KFS sample gave a positive Hf(t) value of ca. +3.0 and a TDM model 

age of 1.66 Ga. This suggests reworking of Mesoproterozoic crust. The Stenian zircon in the GAFS 

sample is characterized by a negative Hf(t) value of −2.5 and a TDM of 1.97, which suggests 

reworking of Orosirian crust. 

- Neoproterozoic input was evidenced for all the studied samples (37 zircon grains analysed). The 

Cryogenian–Ediacarian is represented by zircon grains from the BS, IRBS, GAFS, and PFS+KPS 

samples. The Cryogenian zircon grains have negative to positive Hf(t) values (−10.52 to +4.57), 

which indicates that Rhyacian (2.20 Ga) to Stenian (1.20 Ga) crust was involved. The Tonian 

population (which is only missing from the zircon population of the PFS+KFS sample) gave mainly 

negative Hf(t) values and indicates that Paleo- and Mesoproterozoic crust was involved in the 

generation of these zircon grains. Only one Neoarchean zircon (2.72 Ga) is observed. The 

Ediacaran zircon grains with highly negative to slightly positive Hf(t) values (varying from −32.31 

to +2.13) have a TDM that indicates reworking of Mesoarchean (3.12 Ga) to Ectasian (1.27 Ga) 

crust. 

- Finally, the selected Cambrian to Ordovician zircons display negative Hf(t) values of −1.70 and 

−0.18, showing that Mesoproterozoic crust was involved in the recycling. 
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5. Discussion 

  5.1. General remarks 

Although the number of zircon grains per sample analysed in this study is lower than desirable, the 

reliability of the presented results is verified through comparison with provenance data recently 

compiled by Ballouard et al. (2018). They analysed a comparatively larger number of zircon grains 

but obtained a very similar distribution of population ages (Fig. 5) and also documented the Tonian 

gap in the data. These data would appear to be indicative of age gaps, but a more robust dataset may 

eventually clarify whether this is the case. 

The sedimentary zircon grains from the Brioverian sample (BS) are mainly of local origin, as 

deduced from the perfect coincidence of provenance ages with those of magmatic rocks 

outcropping in the Armorican Massif (denoted 1–6 in Figures 4 and 5). The Lu–Hf isotopic data for 

the other Ordovician samples analysed here show zircon grains with different ages, but they also 

show ages similar to those of the locally occurring magmatic rocks. However, the Hf(t) values 

obtained from the zircon grains of the BS and IRBS samples, which have an Armorican source area, 

are mostly positive, whereas the younger samples (GAFS and PFS+KFS) yield, on average, 

negative values (Fig. 6). 

A comparison of Hf(t) values from zircon in Cadomian (BS) and post-Cadomian (IRBS, GAFS and 

PFS+KFS) samples shows a progressive increase in the proportion of negative-value zircon grains 

in the post-Cadomian samples, and the younger the sample, the greater the negative-value zircon 

fraction. This progression is less evident in the IRBS sample, which contains local Cadomian 

contributions (pre-rift deposits), whereas the more recent samples (GAFS and PFS+KFS) show this 

trend strongly (syn-rift and post-rift deposits). This suggests that other source areas in the sediment 

flux became gradually involved and added to the earlier Cadomian sources. 
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This observation is in agreement with the results obtained by whole-rock Sm–Nd isotopic analysis 

(Fig. 3). In particular, the Tonian >800Ma and Stenian populations gave mostly negative Hf(t) 

values that indicate the recycling of older Orosirian crust (Fig. 6). It should be noted that the lack of 

zircons in the Brioverian sample (BS) is evidence for recycling of Orosirian crust.  

Furthermore, the U–Pb and Hf isotope results for zircon grains from the Armorican Massif suggest 

the importance of recycling of older crust, which is characteristic of the majority of the analysed 

samples. 

 

 5.2. Upper Brioverian and Cap de la Chêvre Fm  

The zircon populations of the Brioverian sample (BS) from West Brittany (this study, 1 in Fig. 7) 

and others from other Armorican areas (Fig. 7), i.e., Central Brittany (21: Gougeon et al., 2018) , 

North Brittany (3: Fernández-Suárez et al., 2002a) and Normandy (Samson et al., 2005; 2: Strachan 

et al., 2014), show strong similarities, i.e., in the prevalence of Neoproterozoic zircon grains, 

especially those of Ediacaran and Cryogenian ages, and the lack of Mesoproterozoic ones. The 

main differences between samples are the total lack of Tonian zircon grains in Normandy and 

Central Brittany and for the latter region, the lack of Paleoproterozoic and Archean zircon grains 

and the occurrence of Cambrian zircon grains. Additionally, in the Brioverian (BS) sample, there is 

a younger age of 519 Ma that may suggest the possibility of an extension of the Brioverian age until 

the early Cambrian. This possibility cannot be ruled out but must be confirmed further as it has only 

been detected for a single zircon grain. 

In the palaeogeographic and orogenic contexts of the Armorican Massif, the potential source 

areas for the Brioverian sediments include the Cadomian and Pan-African orogenic belts. The 

Tonian <800 Ma to Ediacaran ages are consistent with the age of the Cadomian magmatism in the 

Armorican Massif, from the Eocadomian (750–650 Ma: 2 and 3 in Fig. 4; e.g., Port Morvan 

orthogneiss, boulders in Cesson conglomerate: Guerrot and Peucat, 1990; Egal et al., 1996; Samson 
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et al., 2003) and Cadomian (620–575 Ma; 4 in Fig. 4; e.g., North Trégor Batholith, Lanvollon, 

Erquy, Lézardrieu, and Paimpol formations: Graviou et al., 1988; Egal et al., 1996; Chantraine et 

al., 1999; Chantraine et al., 2001; Cocherie et al., 2001; Nagy et al., 2002) episodes, right up to the 

crustal melting phase around 540 Ma (5 in Fig. 4; e.g., Mancellian Batholith, Vires, and Carolles 

granites: Graviou et al., 1988; Pasteel and Doré, 1982). The Paleoproterozoic ages are consistent 

with the ages found for the Icartian orthogneissic basement in the region (1 in Fig. 4; e.g., Port 

Béni, Trébeurden, and La Hague orthogneiss: Auvray et al., 1980; Inglis et al., 2004; Martin et al., 

2018). Archean rocks have not been documented in the Armorican Massif, but they could represent 

the paragneisses associated with the Icartian complex (e.g., Trébeurden micaschist: Auvray et al., 

1980). 

 

Fig. 7: Map with detrital zircon age spectra for Neoproterozoic (*) and Cambrian (**) samples. 

Zircon age population diagrams are limited to the sectors with the most significant ages, and the 

oldest Mesoproterozoic ages have been excluded (1600 Ma). Age spectrum 1 (upper left) represents 

the present work (Fig. 4), whereas the other diagrams are extracted from the literature, as mentioned 

in the text.  

 

Detrital zircon ages in the upper Brioverian sediments of the Medio Armorican Domain (MAD) 

suggest source areas mainly located in the North Armorican Cadomian Belt, although a Gondwana 

source contribution cannot be completely excluded, especially for the Archean zircon population. 

This hypothesis, already suggested by Denis and Dabard (1988) and Dabard (1990), is in agreement 

with the increased maturity of sediments located southward in the Medio-North Armorican Domain 

(MNAD) (Chantraine et al., 1983; Denis and Dabard, 1988) and with the occurrence of chert 

fragments provided from the lower Brioverian Group of the North Armorican Domain (NAD). The 

MAD, thus, could constitute a retro-arc basin of the Cadomian Belt that was mainly fed by its own 

erosion products.  

A comparison with the Iberian Massif (Fig. 7) shows that the zircon grain distribution in the 

MAD presents similarities to those observed for samples from the Ossa Morena Zone, with a low 
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abundance of Tonian >800 Ma ages and a lack of Stenian ages (4: Fernández-Suárez et al., 2002a; 

14: Linnemann et al., 2008; 22: Pereira et al., 2012b). By contrast, in the Central Iberian, West 

Asturian and Cantabrian zones these populations are abundant (5: Fernández-Suárez et al., 2000; 7: 

Pereira et al., 2012a; 17, 18: Fernández-Suárez et al., 2014; 15: Talavera et al., 2015). 

The detrital zircon age population for the Lower Ordovician sample IRBS (Fig.4) is very similar 

to that of BS, with a prevalence of Cryogenian and Ediacaran ages and the occurrence of some 

Paleoproterozoic and Archean grains. Moreover, the whole-rock Sm–Nd isotopic signatures of 

samples from the Initial Red Beds gave Nd(T) values and model ages (−4.4 to −3.0 and 1.4to −1.5 

Ga, respectively; Table 1) that fall within the range of the Brioverian sedimentary rocks (−1.4–−6.2 

and 1.2–1.6 Ga, respectively). All these data are in agreement with local sources from the 

Armorican basement, i.e., Cadomian magmatic rocks and Brioverian sediments. The origin of 

Furongian (latest Cambrian) and Tremadocian (earliest Ordovician) zircon grains may be related to 

the volcanism associated with episodes of continental rifting (Guerrot et al., 1992; Auvray et al., 

1980; Bonjour et al., 1988; Miller et al., 2001; Ballouard et al., 2018). 

 

  5.3. Grès Armoricain and overlying formations  

There is a marked change in zircon populations from the Grès Armoricain Fm. (GAFS, 1a,b in 

Fig. 8) onwards. This is testified by the emergence of Stenian to Tonian >800 Ma grains (Fig. 4) 

whose Hf(t) values range from −20 to 8 with a predominance of zircon grains with negative Hf(t) 

values (Fig. 6). Moreover, the Hf(t) values of zircon with Tonian <800 Ma to Ediacaran ages are 

mostly negative (about −10 to −20) with Orosirian TDM model ages, whereas the Hf(t) values of the 

underlying sediments are mostly positive with Ectasian and Stenian model ages. The whole-rock 

Sm–Nd isotopic signatures (Fig. 3) support the assumption of a significant change in source areas; 

old model ages (1.7–2.1 Ga versus 1.2–1.6 Ga) attest to a supply of recycled crustal material. 
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The zircon grain age distribution is similar in the Middle–Upper Ordovician sample (PFS+KFS), 

with the only difference from GAFS observed in the amplitudes of the major peaks, with a relative 

decrease in the abundance of Tonian >800 Ma and Ediacaran ages and an increase in grains with 

Cryogenian ages (main peak at 640 Ma). Detrital zircon grains of Tonian >800 Ma ages also appear 

in Normandy (2: Strachan et al., 2014, in Fig. 8) but are less abundant, and no Stenian zircon grains 

were reported from there. 

Since the detrital zircon grains of the Brioverian sample (BS) are of local origin (Fig. 6) and 

represent a provenance older than the Cadomian orogenesis, our U–Pb–Hf isotopic results are 

relevant for the evolution of the Armorican crust in pre-Cadomian times. The Ordovician samples 

show the evolution of the sedimentary flux from respective source areas in more recent times, 

during the rifting that led to the opening of the Rheic Ocean. In Ordovician samples, the 

sedimentary contribution changed as a result of Cadomian orogenesis. The new palaeogeographic 

context provides, on the one hand, new populations (e.g., Stenian and Tonian >800 Ma) and, on the 

other, a contribution of zircons that have the same age population as the Brioverian sample (BS) but 

with different Hf(t) values. In fact, we note that the Hf(t) values of the zircon grains of the BS and 

IRBS samples, which have relatively proximal source areas, are mostly positive, while the younger 

samples (GAFS and PFS+KFS) have zircons with mostly negative values (Fig. 6). 

 

Fig. 8: Map with detrital zircon age spectra for Ordovician samples. Zircon population diagrams are 

limited to the most significant age ranges, and the oldest Mesoproterozoic ages have been excluded 

(>1600 Ma). Age spectra 1a and 1b are from this work (Fig. 4), while the other diagrams are 

extracted from the literature, as noted in the text. 

 

Although the contribution from the Cadomian basement in the Armorican Massif cannot be 

totally excluded for the Grès Armoricain Fm and overlying formations, external contributions must 

be considered. Between the sedimentation of the Initial Red Beds and the sedimentation of the 

Upper Ordovician formations, the environmental context of the MAD evolved from small isolated 

basins developed above tilted blocks related to the Rheic opening, with local inputs, to a wide 
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passive margin setting along the northern Gondwana margin (Dauteuil et al., 1987; Brun et al., 

1991). This resulted in significant supply from terrigenous sediments overlying the Cadomian/Pan-

African basement or the Cambrian formations. According to the palaeocurrents, the origin of these 

sediments could be found in the Gondwana hinterland (Beuf et al., 1971; Noblet and Lefort, 1990; 

Ghienne et al., 2007; Avigad et al., 2012). The source areas of the new zircon populations identified 

in the Grès Armoricain Fm and overlying formations of the MAD must then be investigated 

Gondwana-wide. Within this continent, there are many known Neoproterozoic ages from many 

areas (e.g., Tuareg Shield, Mauritanide fold belt, East African Orogen) related to the Pan-African 

orogenic cycle, from about 850 to 550 Ma (Liégeois et al., 1994, 2003; Abdelsalam et al., 2002; 

Küster et al., 2008). Several areas experienced magmatic events between the late Mesoproterozoic 

and early Neoproterozoic times (cf. maps and compilations in Linnemann et al., 2004, 2011; Pereira 

et al., 2012b; Fernández-Suárez et al., 2014; Shaw et al., 2014), e.g., the Sunsas Belt and Arequipa 

Massif in the southern Amazonian Craton, the Irumide and Kibaran belts (to the south and west of 

the Tanzania Craton), the Namaqua–Natal belt (southern Kaapvaal craton), and the Arabian–Nubian 

Shield. The palaeogeographic affinities of the MAD can be found in these geological domains that 

in the Ordovician time were supplied with a similar sedimentary flux in the Ordovician time, with 

zircon grains of Stenian and Tonian >800 Ma ages. 

The high textural and mineralogical maturity of the sedimentary rocks of the Grès Armoricain 

Fm (Dabard et al., 2007; Pistis et al., 2016) and the abraded and rounded forms of the majority of 

zircon grains in this formation are not in agreement with the rift context, in which this formation 

was laid down. These petrographic characteristics can be explained by the reworking of sandy 

sources that were already mature and available on the Gondwana continent. A compilation of 

detrital zircon ages for North Africa and Western Europe was undertaken (Figs. 7 and 8). This 

shows that, in North Africa, Stenian and Tonian >800 Ma ages are known from Neoproterozoic and 

Cambrian sedimentary rocks (Fig. 7) in the Arabian–Nubian Shield (Avigad et al., 2003; 12: 

Avigad et al., 2007; 13: Morag et al., 2012; 24: Be’eri-Shlevin et al., 2009), the Saharan Metacraton 
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(11: Meinhold et al., 2011; 29: Le Heron et al., 2009), and some Cambrian samples of the West 

African Craton (Bradley et al., 2015; 25: Gärtner et al., 2017; 28: Avigad et al., 2012). Moreover, 

studies of some Neoproterozoic and Cambrian samples from the West African Craton have shown a 

total absence of Tonian and Stenian zircons (19: Abati et al., 2010; 20: Avigad et al., 2012). 

Regarding Ordovician sediments (Fig. 8), these ages are present in the eastern zone, i.e., the 

Arabian–Nubian Shield and Sahara Metacraton (23: Kolodner et al., 2006; 12: Avigad et al., 2007; 

11: Meinhold et al., 2011). By contrast, only rare Tonian >800 Ma zircon grains occur in the 

western zone, i.e., the Tuareg Shield and West African Craton (16: Linnemann et al., 2011; 26: 

Gärtner et al., 2017). In Western Europe, Stenian and Tonian >800 Ma grains are not ubiquitous in 

Ordovician sediments. In the Iberian Massif, they are present with variable abundances in the West 

Asturian, Cantabrian, and Central Iberian Zones (5: Fernández Suárez et al., 2000; 6: Fernández 

Suárez et al., 2002b; 7: Pereira et al., 2012a; 8, 9, 10: Shaw et al., 2014). In the Ossa Morena Zone 

(Iberian Massif; 14; Linnemann et al., 2008) and Saxo-Thuringia (27: Linnemann et al., 2008), only 

a few Tonian >800 Ma zircon grains have been noted. 

Thus, the comparison of detrital zircon populations between the Armorican Massif and other 

areas along the North Gondwana margin shows similarities between, on the one hand, the MAD and 

the Central Iberian, West Asturian, and Cantabrian Zones, the Saharan Metacraton and the 

Arabian–Nubian Shield, and on the other hand, Normandy (2: NAD; Strachan et al., 2014), the 

Ossa Morena Zone, Saxo-Thuringia, the West African Craton, and the Tuareg Shield. 

In palaeogeographic reconstructions, the Armorican Massif is often located to the north of the 

West African Craton (e.g., Linnemann et al., 2008; Avigad et al., 2012; Stephan et al., 2019). 

However, the occurrence of zircon populations of Stenian and late Tonian ages in the Grès 

Armoricain Fm in the MAD excludes derivation from this basement. Moreover, available data on 

zircon populations of sediments laid down during the Ordovician time in the Tuareg Shield 

(Linnemann et al., 2011) and on the West Africa Craton (Gärtner et al., 2016) emphasize the lack of 

zircon grains with Stenian and late Tonian ages. These features exclude the possibility that these 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



zones and the MAD were in close proximity. By contrast, the similarities between detrital zircon 

populations from the MAD and those from the Arabian–Nubian Shield and Saharan Metacraton 

suggest possible relationships between these areas. 

The generally juvenile character of the magmatism in the Arabian–Nubian Shield, demonstrated 

by εNd(t) and εHf(t) values (Hargrove et al., 2006; Morag et al., 2011), excludes this basement as 

the main source area for the zircon population with Stenian and Tonian >800 Ma ages. Considering 

that the sedimentary rocks of the Grès Armoricain Fm. are characterized by negative isotopic Sm–

Nd signatures (Morag et al., 2011), they are possibly derived from reworking of the Cambro–

Ordovician sedimentary cover of the Arabian–Nubian Shield or from the same source area that fed 

it. In this regard, some authors (Squire et al., 2006; Meinhold et al., 2013) proposed that the 

Cambrian–Ordovician sediments (e.g., Libya: Meinhold et al., 2011; Jordan: Kolodner et al., 2006) 

constituted a super-fan system, fed by the erosion of the East African Orogen (also often referred to 

as the Transgondwanan Supermountain). These sediments have probability density plots for age 

distribution that are similar to those of the Armorican sedimentary rocks (two main zircon 

populations, one Pan-African and the other Stenian to late Tonian in age, separated by a gap of 

around 800 Ma; cf. compilation in Meinhold et al., 2013, and Figs. 7 and 8).  

This hypothesis implies that the MAD should be positioned further east along the Gondwana 

margin, likely to the north of the Saharan Metacraton and the Arabian–Nubian Shield. In the same 

way, the analysis of zircon grain populations of some areas of the Iberian Massif (NW Iberia, 

Central Iberian Zone) has already led some authors (Fernández-Suárez et al., 2014; Meinhold et al., 

2013; Shaw et al., 2014; Stephan et al., 2019) to propose a location to the north of the Sahara 

Metacraton. By contrast, the Ordovician sample from Normandy (NAD), characterized by a lack of 

Stenian detrital zircon and a paucity of Tonian grains (Strachan et al., 2014), yields a zircon 

population close to those of Saxo-Thuringia and in the Ossa Morena zone (Fig. 8). These findings 

attest to distinct source areas for the North and Medio Armorican Domains and demonstrate that 

these areas had to be distant from each other during the Lower Ordovician, and that they moved 
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closer to each other until becoming fully connected in more recent times, probably during the 

Variscan orogenesis. 

 

6. Conclusion 

Detrital zircon age analysis of sedimentary rocks from the Medio Armorican Domain reveals a 

variation in source areas for the terrigenous flux between the Ediacaran and Upper Ordovician 

times, highlighted by the addition of new populations of zircon ages to the populations of the 

comparatively older strata. Cryogenian and Ediacaran ages are dominant in the zircon populations 

of Brioverian sedimentary rocks that were mainly fed by the erosion of the Cadomian Belt. The first 

Paleozoic sedimentary strata (Initial Red Beds) have the same zircon populations provided by the 

erosion of the Brioverian rocks. In the Grès Armoricain Fm, zircon grains with Stenian and Tonian 

>800 Ma ages appear, and whole-rock Sm–Nd and zircon Hf isotopic signatures attest to a greater 

contribution of recycled crustal material and to a renewal of source areas. These sediments were 

laid down in a rift setting with high subsidence rates (the environment remained in tidal facies over 

several hundred meters in thickness), which is in contrast to their high compositional and textural 

maturity. This paradox—isofacies deposition versus sediment maturity—can be explained by a 

sedimentary flux from a faraway origin. In the Cambro–Ordovician sediments of North Africa, 

zircon grains of Stenian and late Tonian ages are rare in the western part but are ubiquitous in the 

eastern part (Saharan Metacraton, Arabian–Nubian Shield). Here, whole-rock Sm–Nd and zircon Hf 

isotopic signatures also attest to a supply of recycled crustal material. These sediments, which 

according to Squire et al. (2006) and Meinhold et al. (2013), constitute a super-fan system, could be 

the source of the Ordovician sediments of the MAD. In this case, the MAD had to be positioned 

toward the Saharan Metacraton and the Arabian–Nubian Shield. The lack of Stenian and late 

Tonian ages in the zircon populations of Ordovician sediments of the NAD implies distinct source 

areas that were probably located further to the west.  
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On the basis of the presence or lack of Stenian and Tonian >800 Ma ages, the comparison of 

detrital zircon populations with the Iberian Massif shows, for the Brioverian sediments, similarities 

to the Ossa Morena Zone, and for the Ordovician sediments, similarities to the Central Iberian, 

West Asturian and Cantabrian zones. In contrast to the Armorican Massif, Stenian and Tonian >800 

Ma zircon populations were present in these Iberian zones from the Ediacaran until the Ordovician. 

During the Neoproterozoic, some inputs to the NW Iberian Massif came from the Arabian–Nubian 

Shield (Fernández-Suárez et al., 2014), whereas in the Armorican Massif, the sources were 

constrained to the Cadomian basement. After the closure of the back-arc basin that limited the 

Armorican Massif and the Gondwana continent, the source area of the Ordovician sediments of the 

MAD would have been a super-fan system that developed in eastern Gondwana, from where 

Stenian and Tonian >800 Ma zircon populations are known. 
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Highlights: 

 Medio Armorican Domain positioned near Saharan Metacraton and Arabian-Nubian Shield 

 Ordovician deposits show senile renewed source area with Tonian and Stenian zircon ages 

 Ordovician of North and Medio Armorican Domains have different sedimentary supplies 
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