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Highlights 11 

- Temperature increased respiratory activity until optimum temperature then declined 12 

- More decomposed peat decreased the amount of microbes but not respiratory activity 13 

- Q10 of aerobic respiration increased by 14 % at 35-40 cm than 5-10 cm peat layer 14 

- Depth dependent Q10 in peat profile can be applied in modelling peat decomposition 15 
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Abstract 17 

The effect of climate change on peatlands is of great importance due to their large carbon 18 

stocks. In this study, we examined microbial biomass and effect of temperature and O2 19 

availability on soil respiration of surface and subsurface Sphagnum peat. The interactive 20 

effect of biotic and abiotic factors significantly affects soil respiration. Increasing temperature 21 

enhanced the microbial respiratory activity and thus the soil respiration, while there is a 22 

temperature threshold. The more decomposed subsurface peat showed a lower CO2 23 

production due to less labile carbon and lower microbial biomass, but a higher temperature 24 

sensitivity. Q10 of aerobic respiration increased from 1.93 ± 0.26 in surface to 2.20 ± 0.01 in 25 

subsurface peat. The linear relationship between Q10 and depth in the uppermost 50 cm peat 26 

section can be used to improve the estimation of CO2 production in peat profiles. 27 
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Peatlands play a crucial role in global carbon cycle, with a storage of about 30 % of 29 

global soil carbon (C) in 3 % of the earth’s land surface (Gorham, 1991). However, global 30 

climate change may alter the cold and wet conditions which favorable to their C sink function 31 

(Page and Baird, 2016; Waddington and Roulet, 1996). Soil respiration, being an important 32 

efflux of carbon dioxide (CO2) from peatlands to the atmosphere, is largely controlled by 33 

abiotic factors: temperature, soil moisture and O2 availability (Szafranek-Nakonieczna and 34 

Stepniewska, 2014; Wang et al., 2010). In addition, soil organic matter (OM) quality in terms 35 

of the proportion of labile or complex C compounds (referred to high and poor quality 36 

respectively; Dieleman et al., 2016), also affects respiration and temperature sensitivity. These 37 

factors vary in vertical peat profile with temperature variability, O2 availability and OM 38 

quality decreasing with depth. Thus, in the context of climate change, it is crucial to 39 

understand the response of soil respiration in different depths to realistic and expected 40 

changes in temperature and water table depth (WTD) that determines O2 availability. The 41 

quality of OM is a key factor in the response of ecosystems to increase temperature. 42 

Poor-quality OM decomposes slowly, resulting in lower CO2 production, while it has been 43 

reported to be more sensitive to temperature change (Conant et al., 2008b; Davidson and 44 

Janssens, 2006). Effects of abiotic factors on CO2 production in peat was frequently studied 45 

(e.g. Hilasvuori et al., 2013; Leifeld et al., 2012; Treat et al., 2014), while as the soil 46 

respiration was regulated by the biological processes, the constrains are both abiotic, biotic 47 

and interactive. To address this gap, we conducted a short-term incubation of peat from a site 48 

presenting a sharp decrease of OM quality with depth to examine soil respiration under 49 
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various environmental conditions. Our objectives were to (1) determine the effect of 50 

temperature, O2 availability, OM quality and microbial biomass (MB) in regulating soil 51 

respiration; (2) investigate the temperature sensitivity of peat decomposition at two different 52 

degradation states. 53 

Peat samples were taken from a near soil surface layer (5-10 cm) and a subsurface layer 54 

(35-40 cm) at four different Sphagnum locations about 20 m apart under Sphagnum rubellum 55 

hummocks on April 2019 in La Guette peatland (a Sphagnum acidic fen in France, Gogo et al., 56 

2011). The samples from these four locations were used as replicates. The two layers 57 

corresponded to less and more decomposed peat respectively as the older and deeper litters 58 

has been exposed to decay for longer time (properties described in Table 2; Hilasvuori et al., 59 

2013). Eight collected samples were homogenized separately and stored at 4 oC for two weeks 60 

before incubation. Subsamples of 10g from 5-10 cm depth and 30 g from 35-40 cm depth 61 

were transferred into 250 mL jars, sealed and vacuumed, then flushed with pure nitrogen (N2) 62 

or air for anaerobic and aerobic incubation (16 for each condition including 2 replicates for 63 

each of the 8 collected samples), respectively. The jars were incubated at constant temperature 64 

in FitoClima 1200 incubator (Aralab) for 7 days. Each day, 5 mL gas was collected and CO2 65 

concentration was analyzed by LGR Ultra-Portable Greenhouse Gas Analyzer (Los Gatos 66 

Research, Inc. CA) and replaced by same volume of N2/air to maintain pressure. These 67 

processes were reproduced every week under 7 temperatures between 4 and 28 °C, in 4 °C 68 

step. The CO2 production rate was calculated by the linear regression of CO2 concentration 69 

versus time. Temperature sensitivity (Q10) of CO2 production was determined following Lloyd 70 
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and Taylor, (1994). 71 

Total carbon and nitrogen contents (TC, TN) of the eight collected samples were measured by 72 

an elemental analyzer (Thermo-126 FLASH 2000 CHNS/O Analyzer). Microbial biomass of  73 

the eight collected samples and samples after incubation was determined by the chloroform 74 

fumigation extraction method (Jenkinson and Powlson, 1976). Water extractable organic 75 

carbon (WEOC) corresponded to the organic carbon concentration of non-fumigated samples. 76 

Normality of distribution, homogeneity of variance of data were tested, three-way ANOVA 77 

was used to determine effect of the temperature, O2 availability and OM quality on the CO2 78 

production rate. One-way ANOVA was used to determine the difference of soil properties and 79 

Q10. 80 

CO2 production rate/gram dry peat continuously increased with increasing temperature 81 

(Fig 1a and b). Whereas CO2 production rate/gram MB increased with elevated temperature 82 

until 24 °C, then declined at 28 °C (Fig 1c and d), suggesting an optimum temperature 83 

between these two temperatures. The contrary trend observed at 28 °C could be attributed to 84 

the higher amount of MB at 28 oC than at 24 oC (43.3 % and 197.2 % higher in 5-10 cm, 85 

186.6 % and 99.2 % higher in 35-40 cm under aerobic and anaerobic, respectively). Therefore, 86 

temperature increased the microbial respiratory activity and thus the soil respiration rate, but 87 

there is an optimum temperature between 24 and 28 oC. When above this threshold 88 

temperature, the increasing soil respiration could be attributed to the larger MB amount. 89 

Low O2 availability restricts microbial activities (Yavitt et al., 1997). Our study 90 

confirmed that aerobic condition enhanced soil respiration and this effect depends on 91 
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temperature (Fig. 2; Table 1). At 28 oC, anaerobic incubation reduced CO2 production rate 92 

compared with aerobic conditions (decrease of 25.5 % and 35.5 % for 5-10 and 35-40 cm, 93 

respectively), while significant difference was only observed in 35-40 cm (p<0.001). No 94 

significant effect of O2 availability was found at 4 oC 95 

The decreasing C:N with depth (Table 2) suggested an increased decomposition degree, 96 

as microbes consume C-rich OM while recycle N, resulting in higher relative N concentration 97 

in more decomposed soil (Biester et al., 2014; Broder et al., 2012; Kuhry and Vitt, 1996). 98 

Additionally, WEOC also declined with depth (Table 2), suggesting a decreased availability 99 

of labile substrates (Biester et al., 2006; Kalbitz and Geyer, 2002). These results showed that 100 

the gradient of decomposition degree is steep in our site. CO2 production rate/gram MB was 101 

higher for 35-40 cm than 5-10 cm at 16-24 oC under aerobic, while it was similar under 102 

anaerobic incubation (Fig 1 c and d). This could be related to the decline of fungi to bacteria 103 

ratio with peat depth found by Zocatelli et al (article in preparation) of our samples and in 104 

other studies (Sjögersten et al., 2016). Each unit cell mass of fungi release less CO2 than 105 

bacteria due to the lower surface-to-volume ratio. Thus the lower relative abundance of fungi 106 

in 35-40 cm leads to higher respiration rate/gram MB (Blagodatskaya and Anderson, 1998). 107 

However, a lower MB was observed in 35-40 cm compared to 5-10 cm both before (Table 2; 108 

p=0.08) and after incubation (average of all incubation conditions: 0.80 ± 0.51 vs. 2.70 ± 1.41 109 

mgC g-1dw; p <0.001). Therefore, these results suggested that the decreasing CO2 production 110 

rate with depth (Fig. 1a and b) was linked to the lower available labile C substrate and less 111 

MB, but not the microbial respiratory activity. 112 
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The Q10 increased with depth in aerobic conditions, (Fig 1a and b, p=0.014) but not in 113 

anaerobic condition (p=0.072). These results indicated that the more decomposed OM is more 114 

sensitive to temperature change than labile ones, confirming previously reported results 115 

(Conant et al., 2008b, 2008a; Davidson and Janssens, 2006). These results showed that the 116 

combination of higher temperature and increase frequency of drought would generate most 117 

favorable conditions for CO2 production. This would stimulate soil respiration in subsurface 118 

layer with more decomposed peat, especially this layer was only 40 cm apart from surface. 119 

Such a stimulation of old peat decomposition could significantly increase the CO2 emission to 120 

the atmosphere with an increasing possibility of transforming this ecosystem into a net C 121 

source. 122 

Calculation of Q10 with a limited temperature range or insufficient points affects the 123 

exponential fit and could cause large variations of results (e.g. Chen et al., 2010; McKenzie et 124 

al., 1998; Waddington et al., 2001). In our study, a large temperature range (4-28 oC) with 125 

reduced step (4 oC) was applied to get more reliable results. Our results were in the range of 126 

those from different studies that showed Q10 of CO2 production mostly ranged between 1-2.5 127 

(65.9 %; Table S1 and Fig. S1). A linear increase of Q10 with peat depth was observed (Fig. S2, 128 

R2=0.66; p=0.004 without outliers). This relationship allows Q10 to be more finely adjusted in 129 

models instead of using a constant value. 130 

In conclusion, the effect of temperature, O2 availability, substrate quality and their 131 

interactions on soil respiration were identified (Table 1). Raised temperature, aerobic 132 

condition and high OM quality significantly increased the release of CO2 . These factors 133 
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regulate the respiratory activity or amount of MB with implications for peat decomposition. 134 

Our study emphasized the importance of integrating environmental parameters, substrate 135 

quality, and MB when evaluating the response of soil respiration to climate change. Q10 of 136 

soil respiration was higher in more decomposed peat and showed a vertical variation. As an 137 

important parameter in modeling carbon cycle of peatlands under global warming, the vertical 138 

heterogeneity of Q10 should be taken into account to improve the estimation of CO2 139 

production in peat profiles.  140 
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Tables 227 
Table 1 Effect of the organic matter (OM) quality, temperature, Aerobic/anaerobic condition 228 
and their interactions on CO2 production rate (µgC g-1 dw h-1). Significance levels of 229 
three-way ANOVA are expressed as *: p < 0.05, **: p < 0.01, ***: p < 0.001 (n=8). 230 

 
CO2 production rate 

(µgC g-1 dw h-1) 

OM quality *** 

Temperature *** 

Aerobic/anaerobic condition *** 

OM quality *Temperature *** 

OM quality* Aerobic/anaerobic condition  

Temperature* Aerobic/anaerobic condition * 

OM quality* Temperature* Aerobic/anaerobic condition  

  231 
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Table 2 Physical, chemical and biological properties of peat from 5-10 cm and 35-40 cm 232 
layer (n=4, mean ± SD). Significance levels of one-way ANOVA are expressed as *: p < 0.05, 233 
**: p < 0.01, ***: p < 0.001. 234 

 5-10 cm 35-40 cm p 

Water content (%) 85.17 ± 3.00 86.09 ±3 .10  
C:N 97.44 ± 13.29 21.94 ± 1.29 *** 

WEOC (mg C g-1 dw) 1.02 ± 0.14 0.54 ± 0.09 ** 
Microbial biomass C (mg C g-1 dw) 2.97 ±1 .36 1.39 ± 0.70  

 235 
  236 
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Figures 237 
 238 

 239 
Fig. 1 CO2 production rate (µgC g-1 dw h-1) under (a) aerobic and (b) anaerobic conditions; 240 
and CO2 production per gram microbial biomass (mgC g-1 MB h-1) under (c) aerobic and (d) 241 
anaerobic conditions as a function of temperature for peat from 5-10 cm and 35-40 cm layer. 242 
The lines in panels a and b correspond to the model fitted to the measurements. 243 
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 244 
Fig. 2 CO2 production rate (µgC g-1 dw h-1) of peat from (a) 5-10 cm layer and (b) 35-40 cm 245 
layer incubated at 4 and 28°C during 7 days incubation under anaerobic and aerobic 246 
conditions. Different letters represent significant differences by ANOVA in each panel and 247 
error bars represent the standard error. 248 
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Highlights 

- Temperature increased respiratory activity until optimum temperature then declined 

- More decomposed peat decreased the amount of microbes but not respiratory activity 

- Q10 of aerobic respiration increased by 14 % at 35-40 cm than 5-10 cm peat layer 

- Depth dependent Q10 in peat profile can be applied in modelling peat decomposition 
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