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Instability problem of the electric field antennas 
on the Polar spacecraft 

E. Kolesnikova 1 and C. B•ghin 
Laboratoire de Physique et Chimie de l'Environnement, Centre National de la Recherche Scientifique 
Orltans, France 

Abstract. This paper is an application of the surface charge distribution method to the 
modeling of the electric antennas installed on board the Polar spacecraft in order to 
identify the plasma conditions leading to the instability of the sphere-preamplifier-stub- 
guard system. First we present an analytic approach, which allows us to understand the 
physical mechanism and to define the conditions of the instability. We then show the 
results of the numerical modeling for the more common types of instabilities observed in 
flight. The latter, which we call type-1 oscillations, are observed solely in the low-L 
plasmasphere region. The modeling predicts that the oscillations can occur in a weakly 
magnetized Maxwellian plasma in the upper hybrid range (fp < f < f• ) when the Debye 
length lies between well-defined limits. The frequency modulation of the oscillations in 
this range versus the spin angle of the antennas with respect to the Earth's magnetic field 
is well explained by the model. The type-2 oscillations are observed occasionally and 
occur always in the exterior cusp, at large L values. They are most likely to be associated 
with high-density clouds of solar wind streaming plasma entering into that region. Our 
analytic modeling indeed predicts that the instability conditions can be satisfied when the 
antennas are crossing a 10 eV electron flow, with a density of-100 cm -3 and a bulk 
velocity of the order of 200 km s -•. 

1. Introduction 

The Polar satellite, designed for studying the 
Earth's magnetosphere, was launched on February 24, 
1996. A few months after the launch, the principal 
investigators of Polar's Electric Field Instmment (EFI) 
[Harvey et al., 1995] and Plasma Wave Instmment 
(PWI) [Gurnett et al., 1995] informed their 
coinvestigators that the two electric field antennas Eu 
and E• perpendicular to the spin axis had a tendency to 
oscillate in particular conditions, mainly in high- 
density plasma. The oscillations were unambiguously 
attributed to the electronic bootstrap system 
controlling the ac voltage of each pair of guard stubs 
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surrounding the spherical sensors installed at the tips 
of four perpendicular wire booms. 

The frequency spectrum of the oscillations is 
characterized by a main line assumed to lie near the 
plasma frequency, and occasionally several harmonics 
of this line and a broadband low-frequency noise 
probably generated by saturation of the electronics are 
also seen. This instability was observed nearly every 
orbit as Polar passed through the plasmasphere, at 
low L shell values (D. A. Gumett and J. Pickett, 
unpublished memorandum, 1996). In addition, some 
rare cases have been identified in the magnetosphere 
at a distance of 7-9 Earth radii. In the first case, the 
frequency of the oscillations lies between 150 and 
400 kHz, whereas in the second case the frequency 
remains confined to a fairly narrow range below the 
previous one, extending from 70 to 110 kHz. The 
analyzed data do not reveal any oscillation of the 
on-axis short-dipole antenna E• by itself. However, the 
instability of the other two antennas, which is observed 
on E•, and even on magnetic search coils, is interpreted 
as a mutual induction of the oscillation frequency 
through the plasma. 
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Since a passive antenna system must be stable in 
any plasma conditions; the instability comes indeed 
from the active part of the antenna design. Each half- 
dipole antenna on the Polar satellite [Harvey et al., 
1995] is made of a spherical sensor with nearby stubs 
whose potential relative to that of the sphere is 
controlled by feedback from the preamplifier output 
such that those stubs are used as electric guards. This 
construction was designed to control the flow of 
photoelectrons between the spheres and the other parts 
of the boom during the measurements in the dc and 
very low frequency ranges. Unfortunately, such an 
active device is known to become unstable at higher 
frequency under certain conditions [Fiala, 1970], 
though there are no more reports of this in the 
literature to date. 

In order to check this initial presumption the 
impedance of such a double-sphere dipole has been 
computed using the surface charge distribution (SCD) 
method [Bdghin and Kolesnikova, 1998] with a forced 
following voltage applied on the stubs. The result 
confirmed that in the vicinity of the plasma frequency 
a negative value of the dipole resistance appears for 
certain values of the Debye length [Bdghin and 
Kolesnikova, 1997]. This is due to mutual coupling 
between the spherical sensor and the stubs through the 
plasma, whose strength with respect to free-space 
conditions increases considerably to produce the 
feedback instability. 

We develop here a different approach, based on the 
Nyquist criterion applied to the open-loop transfer 
function between the guard-stubs and the spherical 
sensor, allowing us to perform a preliminary analytic 
evaluation before commencing numerical modeling. In 
order to account for observations of oscillations in 

different geophysical situations and to explain their 
particular features, we will consider three different 
plasma models, i.e., first, an ideal steady and purely 
isotropic Maxwellian distribution, second, a weakly 
magnetized plasma, such that the plasma frequency is 
significantly larger than the electron gyrofrequency 
•, > 3f.), and, finally, a streaming plasma with a ratio 
of bulk over thermal velocities of the order of 10%. 

We present first an analytic demonstration of the 
instability conditions for the general case, which leads 
to the evaluation of the critical plasma parameters for 
each plasma model which we considered. We will then 
compare these results with those of the numerical 
modeling using the SCD method in a quasi-isotropic 
and steady plasma. While the predicted plasma 
parameters satisfying the instability conditions are 
found to be consistent with typical geophysical values 

in the plasmasphere region, where type-1 oscillations 
are observed, these parameters are not realistic for the 
oscillations occumng at large L values in the outer 
cusp region (type 2). In the latter case, a simplified 
analytic approach will show that a relatively weak bulk 
velocity of the plasma may significantly modify the 
critical parameters up to values compatible with those 
reasonably expected in the considered region. 

2. Observations of Instabilities 

The Polar's EFI antenna array [Harvey et al., 1995] 
consists of two sphere pairs (E u and Ev) mounted at the 
ends of wire booms, with a tip-to-tip sphere separation 
of 130 and 100 m, respectively, located in the satellite 
spin plane, and also a third pair (Ez), aligned along the 
spacecraft spin axis with a 13.8 rn tip-to-tip separation 
(Figure 1). Each sphere of 8 cm diameter encloses a 
built-in preamplifier. Basically, the spherical sensors 
are taking an ac voltage V,. resulting from the balance 
between the input current of the preamplifier and the 
current flowing out in the plasma, which is the current 
induced by any external ac electric field. In addition, 
the spheres are electrically insulated over a distance of 
3 rn (for Eu-Ev) or 64.6 cm (for Ez) from the screened 
wire boom through a voltage follower stub. An 
identical stub is mounted in the opposite direction to 
the previous one. The ac follower voltage on the stub 
surfaces V• is controlled by the preamplifier output 
through a capacitance C.•. [Harvey et al., 1995, 
Figure 4]. A simplified equivalent scheme of the 
system and the high-frequency transfer function of the 
preamplifier, as used in our modeling, are given in 
Figures 2 and 3, respectively. 

The best way to unambiguously characterize the 
instability phenomenon is by a comparison of both 
PWI and EFI selected data [J. Pickett, University of 
Iowa, private communication, 1997; Escoubet et al., 
1997], which allows us to identify the instability 
periods and the sensor which is oscillating. The PWI 
wide band spectrograms show the spectral 
characteristics of the oscillations superposed to natural 
signals, while the preamplifiers of the spheres drop to 
dc saturation when the instability occurs (Plate 1). 
Such a data analysis also shows that the current 
induced by the oscillations of a given sensor is strong 
enough to be seen by the other antennas, even by the 
magnetic coils. 

We will consider here, as a case study, a portion of 
the orbit of May 11, 1997, shown in Plate 1. At this 
time the oscillations are observed on the antenna Eu 
and they occur during two different sequences. The 
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Figure 1. Schematic drawing of the Polar electric antennas, (top) Eu-Ev and (bottom) Ez. 
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first one appears between 0100 and 0500 spacecraft 
event time (SCET), in the apogee region beyond 8 
Earth radii and at L values larger than 20. On the PWI 
wide band spectrogram of the Eu antenna the 
oscillation lies between 70 and 110 kHz, and the 
harmonic lines produced by the preamplifier saturation 
are visible up to 500 kHz. The plots of quasi-dc 

voltages of one sensor of each antenna Eu and Ez 
exhibit clearly the disturbance of the Eu preamplifier 
while that of Ez is not disturbed. 

The second sequence is seen almost 7 hours later, 
just before 1200 SCET, in the perigee region at-3 
Earth radii, in the low-latitude conventional 
plasmasphere (L - 3). Here the oscillation frequency 
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Figure 2. Equivalent electric scheme of the sphere-stub coupling in open-loop configuration. 
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Figure 3. Transfer function of the preamplifier above 10kHz, after L. ]khlen (private communication, 
1997). 

is significantly higher than in the previous sequence 
(200-300 kHz), but the features of the preamplifier 
saturation are the same. Since the beginning of the 
mission this phenomenon has been frequently 
observed in the low-latitude perigee region, and the 
oscillation frequency was soon expected to lie near the 
local plasma frequency (D. A. Gumett and J. Pickett, 
unpublished memorendum, 1996). On the contrary, 
the occurrence of oscillations in the high-altitude and 
high-latitude region of the first sequence in Plate 1 is 
rather unusual. Apart from those two well- 
characterized regions, instabilities have never been 
observed elsewhere along the Polar orbit. 

In the following, we call type-1 instabilities those 
occurring frequently at low altitude as during the 
second sequence in Plate 1, and type 2 those observed 
at large distance outside the polar cusp. There are, to 
date, only five well-identified type-2 events, though a 
systematic investigation could reveal more examples. 
For all five events the oscillation frequency lies in the 
range 70-110 kHz, i.e., at least 2 times lower than the 
usual range of type-1 oscillations. The duration of 
type-2 instabilities is extremely variable, from less 
than 2 min up to more than 3 hours, and they appear 
often as broken events, in contrast to type-1 
instabilities, which are always occurring in a regular 
medium. 

For the case of the type-1 events a telemetry mode 
for high-time-resolution spectrograms which was 
occasionally used allows us to emphasize the evolution 
of the oscillation during the spin period. One example 
of this mode is shown as a short portion of the perigee 
pass on April 8, 1996, in Figure 4. The simultaneous 
plotting of the magnetometer data shows, first, that the 
oscillations observed on a given dipole are frequency 
and amplitude modulated at twice the spin period. The 
variations of the oscillation frequency during one 
period never exceed the estimated difference between 

the local plasma frequency and the upper hybrid 
resonance. Moreover, the plots in Figure 4 clearly 
show that the higher frequency is observed while the 
angle between the dipole and the Earth's magnetic 
field B o is minimum and the lower frequency is 
observed when the dipole is perpendicular to B o. 
When the instability is at the point of vanishing (after 
1203 SCET), the oscillation occurs only when the 
dipole becomes aligned with B o. 
Unfortunately, the fine structure of type-2 oscillations 
is much more difficult to determine for two reasons; 
one is due to the turbulent character of the 

phenomenon, and the second is due to its low 
occurrence. This point will be the subject of a further 
analysis, and we will retain here only that the dc 
voltage of individual sensors during type-2 oscillations 
reveals a modulation at the spin period, contrary to 
type-1 oscillations, as the proof of an additional 
vectorial sensitivity in some orientation which is not 
that of magnetic field lines. The main characteristics of 
both types of oscillations and of expected plasma 
conditions in the regions where they occur are given in 
Table 1. 

These remarkable features indicate that the 

instability conditions must be different for each type 
and must also be extremely selective with regard to the 
rarity of the type-2 events. For that reason, we will 
consider in section 3 different models of plasma which 
will be used in our theoretical investigation. 

3. Description of Plasma 
The SCD method makes use of the solution of 

Poisson's equation for the quasi-static potential 
induced in a plasma, at a given distance from a 
pulsating point charge [Bdghin and Kolesnikova, 
1998]. Initially, this method has been developed for an 
isotropic Maxwellian plasma. As a first-order approxi- 
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Figure 4. Silmultaneous plots of high-time resolution spectrogram of Eu' s antenna oscillations and of 
the angle (Eu, B0) for the type-1 instability observed at the perigee pass on April 8, 1996, during two 
different time sequences around 1200 SCET (with permission of PWI experimenters D. Gurnett and 
J. Pickett). 
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mation, we will apply this approach to explain the 
mechanism of type-1 instability. However, in order to 
explain the fine structure of the antenna's oscillations 
we will use the solution given by the hydrodynamic 
approximation [Kolesnikova and Bdghin, 1999a] in a 
weakly magnetized plasma •, / fc >• 3). 

For the type-2 instabilities, occurring in the exterior 
cusp at 7-9 Re, it is necessary to consider a more 
complicated description of the plasma by adding a 
bulk velocity, which is likely to be present in that 
region. We present in sections 3.1-3.3 an overview of 
the plasma dispersion characteristics and of the 
solution to Poisson's equation for each of the 
aforementioned plasma models. 

3.1. Isotropic Thermal Plasma 
The electrostatic dispersion relation, evaluated from 

the kinetic theory for an isotropic Maxwellian plasma, 
is written quite simply as 

g•(g,O) 1 z2 - - Z/(z), (1) 
•2 

where K• is the longitudinal dielectric constant and 
Z'(z) is the first derivative of the dispersion function 
for the complex variable z = •/x/2K. We use here the 
dimensionless wave vector and frequency defined as 
K - k•,z> and • = co/top, respectively. The Debye 
length is defined as •,z> = (s:T• / tne)l/2/O)p, with the 
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Boltzmann constant •. The dispersion characteristics 
of the longitudinal waves are mainly defined by a 
dominant pole, commonly known as a Landau wave, 
which is the solution of (1) using the approximation 
for z -• •o. However, the full solution of (1) reveals in 
reality the existence of an infinity of poles which 
significantly contribute all together, at short distances 
from the source and at frequencies below c%, in the 
form of an electrokinetic mode [Bdghin, 1995]. 

The solution of Poisson's equation for a pulsating 
point charge q exp (ico•, after Fourier-Laplace 
transforms, can be expressed as 

V(p, t, fl) = qeiWt fff e-i'pd3K 
where p is the distance from the source, normalized to 
the Debye length. 

In the vicinity of the plasma frequency the Landau 
wave approximation leads to a good estimation of (2), 
except for the imaginary part when [2 < 1 [B•ghin, 
1995]. In the analytic developments for isotropic 
plasma we will use this approximation, written as 
follows: 

Vr q 1 [1 exp(-ipfl e••/3) • - ] 
4•ZeoJkr• P ec [22 

6-1 for •<1, 6 =0 for •>_ 1, P I•ccl << 3x/•. 
In Figure 5 we show the behavior of the potential 

versus the distance from the source for two frequencies 
_+3% apart from the plasma frequency, as obtained 
with the full dispersion equation [Bdghin, 1995]. The 
additional contribution of the electrokinetic mode in 

the form of a weak amplitude plateau is visible here in 
the imaginary part for [2 = 0.97 and p < 10. 

It is important to emphasize here the different 
behavior of the plasma response between short and 
large distances at frequencies lower than the plasma 
frequency. One of the most important differences, 
which will be shown as the key for the instability 
mechanism, is the sign shift of the real part in the 
Debye region (p < 1) when • < 1 due to the balance 
between the free-space contribution, term 1/p in (4), 
and that of the plasma. 

3.2. Weakly Magnetized Maxwellian Plasma 
The dispersion equation of the longitudinal waves 

in a weakly magnetized warm plasma with %,/co•. >• 3, 
using a hydrodynamic description of the plasma 
[Spitzer, 1962; Quemada, 1968], can be reduced to the 
following approximation: 

•L 2 
q U(fl, p) (3) Kr = 2 

4•:eo)•r) flc IKI 2 
fl c -flp - sin20 - 3 K 2 

fl c - 1 

e c 1 fl-2 r - - ' P--•7' Im(•)_< 0, •o _ to K-kk• fl- P , fl•. , , 
P 0) c 0) c 

where the term exp (ico• is now included in the charge 
q as an initial phase reference and U(f•,p) is known 
hereafter as the plasma response. 

At small distances, and near fl = 1, this expression 
can be simplified again as 

Re U •- 1 /5 p K - q- P • sin200 - sin20 
p x/31cl 6 •3(f1•-1) 

=0 

(5) 

where 0 is the angle between the k vector and the 
magnetic field vector B0. In the range of the upper 
hybrid frequencies, i.e., %, _< to _< to,, the real solutions 
of (5) can be written in the form 

ImU•-(1 -a)[ v/3lc I 18-••-] (4) sin00-•(fl 2- 1)(flc 2- 1) , fl- to % 

•c 
(6) 

Plate 1. Power spectrogram of the dipole Eu's signals and plots of the dc voltage of one of the Eu 
sensors (V 1) and one of Ez sensors (V5), from the apogee region (0000 to 0800 SCET) to the perigee 
(1300 SCET), on May 11, 1997. The power scale ranges from red (10 -8 V m -2 Hz -•) down to violet 
(10 48 V m -2 Hz-•), and the white curve is a superimposed plot off•.; with permission of PWI and EFI 
experimenters D. Gurnett, J. Pickett, and F. Mozer. 
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Table 1. Summary of the Main Characteristics of Type-1 (Typical Case) and Type-2 (Identified Events) Instabilities 

Type Date Duration R e L Expected Standard Instability Frequency f/fc, 
Plasma Parameters f, kHz 

1 - - 1 hour event -3 -3 n, - 10-1000 cm '3 150-400 -4 
T,- 1 eV 

2 May, 29, 1996 broken event, 7-8.5 >50 n,, - 40-100 cm --• 80-110 45-60 
2 hours T e >_ 5 eV 

2 April, 1, 1997 two events, 8 40 n, - 40-100 cm --• 80-110 -60 
<4 min each T, >_ 5 eV 

2 May, 11, 1997 single event, 8-9 40-300 nc - 40-100 cm --• 70-110 50-80 
3 hours 30 min T, 2 5 eV 

2 June, 22, 1997 broken event, -9 >75 n, - 40-100 cm '-• 90-110 -50 
3 hours T, 2 5 eV 

2 June, 27, 1997 three events, 8.8 130 n,, - 40-100 cm --• 90-110 -50 
<2 min each T, >_ 5 eV 

where 00 • [0, x/2] is the half-angle of a resonance 
cone, inside which thermal waves can propagate (real 
K). Substituting the value of K• given by (5) into (2), 
one finds generally that two wave packets might 
significantly contribute to the induced potential at 
large distances by constructive interference, and the 
apparent wavelength depends on the observation angle 
[Kolesnokova and Bgghin, 1999a]. 

As we are concerned here with the instability 
conditions of Polar antennas, which involve only 
frequencies just below top in the isotropic case, we 

look here at frequencies just below the upper hybrid 
resonance to,, which replaces now top as a cut off for 
the electromagnetic X mode. In order to make a 
comparison with the isotropic case in the same 
conditions of plasma density, with a ratio •p- 4, we 
show in Figure 6 the plasma response in two directions 
of observation for • = 1.03, which is now just below 
the upper hybrid (to•/to•, • 1.0308). Notice that we use 
the same characteristic length Zt> for distance 
normalization as in the isotropic case. 

One can see that the real part of the potential 

7 

-1 

1 10 100 1000 1 10 100 1000 

p p 

Figure 5. Real and imaginary parts of the potential versus the distance, induced by a pulsating point 
source in an isotropic Maxwellian plasma, at fl =1.03 (dashed curves) and fl = 0.97 (solid curves). The 
Landau pole wavelength for • > 1 is clearly visible at large distance. 
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Figure 6. Same as Figure 6, but for f2 = 1.03 just below the upper hybrid resonance when the Earth's 
magnetic field is taken into account with a ratio tot,/% = 4, and for both longitudinal and transverse 
directions of observation. 

exhibits a sign shift similar to that of the lsotropic 
case, whereas the frequency is lower than %. Figure 6 
also shows that the direction dependence appears only 
after about 4ZD, i.e., 1 Larmor radius since f•, = 4. In 
summary, the presence of a weak magnetic field in the 
model would lead to a light shift in frequency, which 
satisfies the instability conditions, from below %, up to 
the upper hybrid range, while the anisotropy appears 
only for sizes larger than the Larmor radius. 

3.3. Unmagnetized Streaming Plasma 

We consider here a third possibility of plasma 
response, when the electron density is high enough to 
neglect the Earth's magnetic field, i.e., assuming 
f2p >> 10, but when the plasma has a significant bulk 
velocity, of at least 10% compared to its thermal 
velocity. The plasma response to a pulsating point 
source can be obtained by computing the Laplace 
transform (LT) of the impulse response, as 
summarized here below. At the point source location, 
and at the time t = 0, we drive an impulse charge 
q 6(0, which induces at a distance r a time-varying 
potential V (r, t). In a steady isotropic plasma this 
value is by definition the inverse Laplace transform of 
the plasma response as expressed by (3) in the Landau 
wave approximation. Using the LT tables [Roberts 
and Kaufman, 1976], one finds 

V(r,t) -• q 1 

4roe0 •'D P 6(t)-w sinw t] t<_t o P P ' 

•q 1 2 
V(r,t)- 4•03'D • -t0C0 p 

/Ji(Wp(U2-t•)sinCøp(U-t)du I t>to ' 
(7) 

It is easy to check that the first part of (7) is the cold 
plasma response, i.e., a permanent oscillation at the 
plasma frequency when p tends to infinity (ZD • 0). 
The second part is the thermal contribution, a damped 
oscillation at the same frequency. Once the impulse is 
emitted, the space distribution of the disturbance, as a 
function of time, is defined by (7) and no longer 
depends on the presence of the source. Moreover, if 
there is a relative move between the plasma and the 
two points under consideration, we are free to define 
the system of reference as the steady plasma with the 
observation point moving through it. The observation 
point, located at a given distance P0 from the source, 
moves through the potential disturbance with the 
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Figure 7. Comparison of the plasma responses above and below the plasma frequency between a 
streaming plasma (long-dashed and long-and-short-dashed curves) and a steady plasma (solid curves), 
using the Landau wave approximation. Long-and-short-dashed curves, backward motion, [• = 0.1; 
long-dashed curves, forward motion, [• = -0.1. 

relative plasma drift velocity V, so that the distance 
becomes time dependent as 

i , P-IP0 + I P0[ to V t (8) 

where v, is the thermal velocity. 
In the two-dimensional case, when the plasma is 

streaming in any direction with respect to the antennas, 
the evaluation of the impulse response along the 
antenna would be extremely complicated. We choose 
here to limit the present study to the parallel and anti- 
parallel conditions only, which is a sufficient analysis 
for understanding of the instability mechanism. Then, 
we consider [• as a positive or negative value 

corresponding to backward or forward motion, 
respectively, of the plasma with respect to the vector 
@0. From (7) and (8) it is clear that if [• > 1, the thermal 
contribution will never be seen at the observation 
point. This is the simplest situation since the potential 
is given by the cold plasma contribution only, i.e., the 
LT of the first term in (7) by replacing p by 
P0 (1 + t[3/to). However, we are considering here more 
realistic conditions with a relatively slow bulk 
velocity, such as [• < 1. The computation is then much 
more complex since the thermal wave is seen some 
time after to and the integral in (7) must be computed 
numerically, which will not be commented upon here 
since we have limited the discussion to the results 
applied to our problem of antenna instability only. 
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One of the more interesting differences between the 
plasma responses in a streaming plasma and those in 
a steady one lies below the plasma frequency 
(Figure 7). First, for the real part of the plasma 
response the negative part between 1 and 10 ko is 
much more pronounced than in a steady plasma, and 
second, a significant imaginary part appears, whereas 
it is absent in a steady hydrodynamic plasma. This 
results from a phase shift of the oscillation in the time 
response, which is obvious even in the cold plasma 
contribution of (7) when p is time dependent. The 
effect reduces to spread out the spectrum of the plasma 
response around the plasma resonance. For 
frequencies above the plasma resonance where a real 
Landau wave exists, there is an usual Doppler shift of 
that wave, as shown in Figure 7 and in agreement with 
the results obtained by using a different approach 
[Michel, 1976]. 

4. Instability Mechanism 

4.1. Nyquist Criterion for Stability 

Our approach consists of solving the transfer 
function of the equivalent circuit, sketched in Figure 2. 
We will use here the Nyquist's criterion approach, as 
previously applied to the study of the stability of 
antennas on the FR-1 satellite [Fiala, 1970]. We 
assume a given HF voltage V 0 at the output of the 
preamplifier, and we calculate the transfer function 
V.,./Vo in open loop, in a wide frequency range around 
the plasma frequency. The unknown quantity is the 
sphere potential, which is induced by electrostatic 
coupling with the stubs through the plasma. 

In the open-loop configuration the Nyquist transfer 
function is defined as 

f (to) - A (to) V•/ V o (9) 

where the preamplifier gain is a complex quantity 
defined as A(to) = IAI exp jq0 (Figure 3). 

Since we make use of dimensionless quantifies such 
as the frequency g• normalized to the plasma frequency 
(• = to/top) and we know also that the plasma 
frequency can take any value in the range in which A 
varies significantly, the Nyquist diagram could be 
obtained only if the plasma frequency is fixed. 
Therefore, in order to remain in the general case, it is 
preferable to produce the Nyquist diagram versus the 
dimensionless frequency g•, with the arbitrary value 
A = 1 for the gain of the preamplifier. Once the 
oscillation frequency is known, the actual preamplifier 
contribution can be taken into account to make the 

appropriate corrections in amplitude and phase. In the 

simplified analytic treatment we have assumed, as a 
first approximation, a direct link to the stub 
infinite), knowing that the complementary contribution 
due to the preamplifier response through the high-pass 
filter C•. R•. is negligible in the range of interest (-50- 
500 kHz), so that we have V• = Vo. The problem 
resumes to search for the conditions when the 

amplitude of the transfer function V,./Vo is at least 
equal to 1 for some value of g•; therefore the instability 
Nyquist's point (1, 0) in the complex plane may 
possibly be included inside the contour of the 
complete function f(g•) provided that the phase 
condition is satisfied. 

4.2. Physical Mechanism and Conditions of 
Instability 

In order to understand the physical mechanism of 
the instability we start by writing the basic equations 
for the simplest configuration, describing the balance 
between voltages and charges of the different surfaces, 
according to the SCD method. 

In the analytic approach we use the following first- 
order approximations: (1) The sphere radius r (40 mm) 
is such that r << Xt>; (2) for each half part of the stub 
of length I and radius a (Figure 1) we have a << Xt> 
and l >-•.t>; (3) the surface charge distribution o along 
the stub is uniform, such that o = Qt/2xal, where Qt is 
the charge of each of the half stubs, which are 
assumed identical, and with Qt = Q•/2; (4) the 
preamplifier input capacitance Gin and the leakage 
capacitance C• are neglected with respect to the sphere 
capacitance, so that the sphere is floating, and Q.•. = 0; 
(5) the attenuation due to the high-pass filter made by 
C•., R.,. is neglected, in order that V• = V0; and (6) the 
current i 6 (Figure 2) flowing from the stub through the 
plasma, returning to the long boom and to the 
spacecraft (S/C) structure, is assumed here to be 
collected at a single point located near the S/C center, 
at a distance L > > Xt> by the charge -Q•. 

Under these conditions the potential on half stub 1, 
for example the half stub on the right-hand side of 
Figure 1, near the interface with the sphere, using 
cylindrical coordinates and neglecting the edge effect, 
is given by 

2• l 

(4•%•.D) Vo=aO f f U(fl,p)dOdx 
0 =0 

2•: l+2r 

+ aoffU(fl,p)dOdx-QbU(fl,L), 
0 2r 

(10) 
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where 

P = •/x 2 + 4a 2sin2(0/2) 
and U(•, p) is the plasma response as defined in (3). 
A similar equation is written for the potential induced 
on the sphere. Since the sphere is assumed to be 
floating, with r << ;•r) << I, we use the same usual 
approximation as in the free space, i.e., that the sphere 
takes the space potential at the center of the gap, as if 
it were absent. This reads 

2• l+r 

(4•œ0•D) V s - aoffu(•,p)dOdx 
Or 

2• l+r (l l) 

+ aoffU(,p)dOdx-QU(,L). 
Or 

From section 3 we know that whatever the plasma 
conditions are, the real part of U always contains the 
free-space contribution with the term l/p, which 
dominates at short distances and leads to a real pole in 
the first integral of (10). It is obvious that the 
contribution of the other terms in the development of 
U (p) such as given by (4) will be almost identical for 
each integral in (10) and (11). Then, the real part of 
(V•. - Vo) is controlled only by the free-space 
contribution, which reads 

[l/! +r/ li+2r/ ReQv dp 1 dp 
Re(V'•' - Vø)- X•z•i • --• 

2r / 

2• l ff dOdx ReQb (12) 0 •0 4•zp ;•t> 4•z% l 

ct =lna -•. 
Here and from now on we will make use of the 
dimensionless values l', r', and L' of l, r, and L, 
respectively, normalized with respect to ;•t>. Notice that 
the last integral in (12) is well known as giving the 
free-space capacitance of a long cylinder, as 

C = Q•/V o = 2rCeo//lnl/a 
We take V0 real and positive as a phase reference, so 
that in order to satisfy the first condition of the Nyquist 
criterion for instability the above quantity Re (V,,- V0) 
must be positive. With the actual dimensions of Polar 
antennas, ct is negative (ct = -5.5), and then we get the 

first condition for instability 

Re(V.,.-Vo) > 0 • ReQ• < 0. (13) 
In other words, this condition implies that the stub 
impedance must be inductive since the voltage and the 
charge are out of phase. This condition excludes any 
instability in free space where the stub is a pure 
capacitance. From both real and imaginary parts of 
(10) and (11), using the phase reference condition 
Im V0 = 0 and V0 > 0, we obtain 

X2+y 2 

(4•ze o3,t> ) V o - ReQ• X ' 
ImVo=0, ReQ•<0, and V0>0 • X < 0; 

X2 + y2 +ctX/l / 
(4•eo ;•t>) Re V,• = Re Q• X ' 

cry 
(4•ZeoXt>) ImV,, = - ReQ• •; 

, Xl / 
2• l / 

4vol / 
0 •0 

2• I/+ 2r / 

+ff ReU(p) dOdp -ReU(L/), 
0 2r / 

2• l / 

y= 1 ff ImU(p)dOdp 4vol / 
0 •0 

2• l/+ 2r / 

+ff ImU(p)dOdp -ImU(L/). 
0 2r / 

(14) 

From the first condition (13) and from the above 
expression of V0 we have deduced that X must be 
negative, which is achieved, according to the 
definition of X in (14), from the balance between the 
real parts of the plasma response coming from the 
charges distributed on the stub itself and from the 
return charges located on the S/C structure at the 
distance L'. Looking at the plot of Re U in Figure 5, 
we see immediately that such a condition cannot be 
satisfied for fl = 1.03 whatever the value of the Debye 
length. This remains true for any frequency above the 
plasma frequency. On the contrary, it is easy to 
anticipate the condition to be satisfied for fl = 0.97 
due to the sign shift around p - 0.4. If the Debye 
length is such that L' >> 10, the contribution of rerum 
charges can be neglected, and if the negative branch of 
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the curve involves a significant part of the stub, the 
integration could lead to a negative value for X. 

This is basically the physical mechanism for the 
Polar antennas instability, which can occur only when 
the impedance of the stub becomes inductive. This is 
generally known to be the case for dipole antennas 
below the plasma frequency, in isotropic plasma, and 
when the dipole size is longer than •-10 Debye lengths. 
However, another condition must be satisfied here 
regarding the Nyquist criterion, due to the phase 
response of the preamplifier, which will be introduced 
now as a second constraint. 

Since the preamplifier has a negative phase 
response (Figure 3), the transfer function V,./Vo must 
have exactly the opposite value at the Nyquist point. 

100.00 

10.00 

>• 1.00 

0.10 

0.01 

///• k•=2m 
, , , I , , , I , , , i , , , i , , , 

0 2 4 6 8 10 

-x 

Then, from (14), and knowing that a and X are Figure 8. Relation between X and Y for the antennas Eu 
negative, we obtain the second condition for instability and Ev allowing the phase condition at the Nyquist point for 

two different values of Debye length, and q) = 8 ø to be 
Im V.,, c• Y satisfied. 

tan (q)) - = - > 0, (15) 
Re V.,. c•X + 1/(X2+ y2) 

thus, Y > 0. The immediate consequence of this 
constraint is that the instability below the plasma 
frequency cannot be explained by using the purely 
hydrodynamic approach for the plasma, since Y = 0. 
However, in isotropic Maxwellian plasmas the kinetic 
contribution (Figure 5) is large enough to satisfy (15) 
under certain conditions. The solution of (15) for the 
antennas E u and Ev is plotted in Figure 8 for q) = 8 ø 
and two values of )•D (50 cm and 2 m) corresponding 
to l'= 6 and 1.5 respectively. 

Let us consider now the development of Re U as 
given by (4) for • < 1. Using (14), we get 

X• 

1 / v/3 
1 

+ , œc<0. 

l / 

For • = 0.97, i.e., e c = - 6.28 x 10 -2 corresponding to 
the example plotted in Figure 5, with ;•o = 50 cm, we 
obtain X • - 0.03, which could marginally satisfy the 
first instability condition. Therefore, for the imaginary 
part of U, we take the contribution of the electrokinetic 
mode, as derived from the plot given in Figure 5, i.e., 
Y = 0.5. From (15) we get q) = +59 ø, which also 
satisfies theoretically the second condition. However, 
such a large phase shift can compensate the 
preamplifier's response only at frequencies of 
oscillation of-500 kHz (Figure 3), i.e., with an 

electron density of the order of 3000 cm -3. With 
)•o = 50 cm this leads to an electron temperature of 
14 eV, which could be acceptable in regions of type-2 
instabilities, but there, the oscillations never exceed 
110 kHz, and an electron density of 3000 cm -3 seems 
to be a totally unrealistic value in these regions. 

Let us consider now a more realistic phase shift of 
•-8 ø, corresponding to an average value of oscillations 
lying around 100 kHz (120 cm-3). We keep the same 
value of Y = 0.5, which remains almost constant as 
long as • < 1. Taking again •o = 50 cm, we get 
T• •- 0.6 eV, which is now a reasonable value in the 
dense plasmasphere where type-1 oscillations are 
observed. From Figure 8 we obtain the new instability 
point (Y = 0.5; X = -1). By substituting the values of X 
and l' in (16) we get ec = - 2.8 x 10 -2, i.e., an 

(16) oscillation frequency fl = 0.986, which is, in fact, 
very close to the above value (0.97). This proves that 
the Nyquist contour is very sensitive around the 
plasma frequency, as confirmed by the numerical 
modeling. 

From this simplified analytic approach we 
understand quite well the instability mechanism, which 
requires the general conditions given by (13)-(15), 
whatever the plasma model could be. In the simplest 
case of an isotropic Maxwellian plasma we have found 
that a Debye length of 50 cm satisfies the instability 
conditions for both Eu and Ev antennas. Such a 
simplified approach does not allow a detailed 
evaluation, because of the initial approximations 
made. The real charge distributions on all surfaces, the 
finite value of the preamplifier input capacitance, and 
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the precise evaluation of the plasma response are 
anticipated to produce more complex constraints, 
whose evaluation is the purpose of the numerical 
modeling. However, we will come back to the analytic 
evaluation in section 6. 

5. Numerical Modeling 

A simulation code has been developed, based on the 
SCD method proposed by Bdghin and Kolesnikova 
[1998], producing the sphere-stub transfer function 
V.,./Vo for the antenna Eu, as a function of frequency 
and Debye length. We have used the finite element 
method, which involves division of all surfaces into 
discrete elements (including wire booms and 
spacecraft body when necessary), to determine the 
currents i3 and i 6 flowing from the sphere and the 
stubs, respectively, into the plasma. Independently 
from the general equations of the SCD method 
describing the electrostatic equilibrium of each surface 
element in contact with the plasma, we use the 
following particular interconnection equations 
obtained here from the equivalent scheme in Figure 2: 

VoCb-Vs(Cb +Gin) = -J-- = Qs, (17a) 

V• i 6 
C.,(V 0- V•) + j• = -j-- - Q•, (17b) 

to R s to 

where i• and i 6 are the currents flowing from the 
sphere and the stub surfaces through the plasma, Q.,. 
and Q• are the total charges accumulated at the sphere 
and stub surfaces, and Cin is the input capacitance of 
the preamplifier. 

According to the available information [Harvey et 
al., 1995; L. ,•hlen, Swedish Institute of Space 
Physics, private communication, 1997] we have used 
the following standard values for the passive parts: 

Cin - 2 pF, C• = 2 pF, C.,. - 220 nF, R,. - 100 k•. 

Those values may be subject to a quite inaccurate 
determination, but since they introduce a second-order 
effect, this inaccuracy has been found to have no 
significant consequence on the results. In all cases, we 
assume that both the boom and sphere cross sections 
are much smaller than the Debye length, so that we 
can use the mesh stmcture approximation [Bdghin and 
Kolesnikova, 1998]. Consequently, we ignore the 
presence of a weak ion sheath around the antenna. The 
charge distributions on the wire boom (subcrcipt L), 
the spacecraft body (subscript S/C), the sphere 
(subscript s), and the stub (subscript b) must also 
satisfy the following boundary conditions on every 
surface, i.e., in the simple case of a purely symmetric 
dipole: 

V•. = Vs/c = 0 , V• = const , V• = const. (18) 

In the electrostatic approximation and for mesh-like 
structures the potential of each surface element is the 
sum of the contributions induced through the plasma 
by all charge elements contained in the system. Then, 
the SCD method consists of a solution of a linear 

system involving all unknown surface charge 
elements, by applying the plasma response function to 
each of them and by closing the system with (17a), 
(17b), and (18). 

The previous analytic analysis has shown that the 
hydrodynamic thermal waves in isotropic plasma 
create the conditions for instability at frequencies 
below the plasma frequency and for certain values of 
Debye length, which are determined essentially by the 
length of the stub. This is confirmed by the code. 

For 2,v = 50 cm the code predicts that the modulus 
of V,. / Vo is marginally smaller than 1 (Figure 9), thus 
the antennas are stable at any frequency, independent 
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Figure 9. (left) Amplitude of the transfer function and (right) Nyquist's diagram for the dipole Eu, 
with a perfect preamplifier (A = 1), for Zz) = 50 cm (dashed curves) and Zz) = 30 cm (solid curves). 
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Figure 10. Same as Figure 9, but including the actual transfer function of the preamplifier and the 
actual stub feeding through the stray capacitance C,., for the antenna Eu, with f• = 200 kHz and 
.go = 28 cm (n e = 500 cm -3 and T, = 0.7 eV). 

of the preamplifier response. For shorter values, say 
Zz> = 30 cm, the modulus oversteps the critical value of 
1 in a small frequency range below • = 1. One can see 
in Figure 9 however, that the Nyquist instability point 
(1, 0) lies outside the contour when we consider a 
perfect preamplifier (A = 1). However, since the 
preamplifier response has a negative phase shift of 
-100-20 ø in the usual range of oscillations, it will be 
enough to rotate the contour toward the instability 
point. According to Figure 3, if the plasma frequency 
lies around 200 kHz, such a condition is satisfied and 
the antenna will oscillate for Zz> = 28 cm (Figure 10), 
i.e., for T• - 5200 K (0.7 eV) and n, - 500 cm -3' which 
confirms the first-order values obtained with the 
analytic estimation. 

One of the main differences between the numerical 

code and the analytic estimation concerns the charges 
distributed on the spheres, neglected in the analytic 
approach, and the distribution of rerum charges along 
the booms [Kolesnikova and Bdghin, 1999b]. Large- 
amplitude surface waves are lying along the long 
booms in the worst case, when all return currents are 
supposed to be purely symmetrical, i.e., assuming a 
perfect balance between opposite charges distributed 
symmetrically on each half dipole and a quasi-point 
S/C surface. This is an unrealistic ideal case because 

the oscillations of independent spheres have no reason 
to be correlated. Therefore most of the return charges 
in reality should be distributed at the S/C surface, 
reducing accordingly the contribution of the surface 
wave charges along the booms. Thus the real situation 
would be reduced to an equivalent return current 
located somewhere on the boom close to the S/C 

center, as assumed in the analytic treatment. 
When the antenna oscillates near a given value of 

the plasma frequency, we are able to define a lower 

limit for the Debye length at this time, i.e., an upper 
limit for T•. The immediate consequence of this effect 
is a different threshold of •.• for each antenna. If we 
take into account the preamplifier response, we are 
then able to plot the variations of this threshold in 
terms of the electron temperature T• versus the plasma 
frequency for both antennas (E u and Ez) of different 
lengths. This is shown in Figure 11. 

The data analysis of bias current of different spheres 
and of spacecraft potential over 1 year [Escoubet et 
al., 1997] reveals that the E z antenna probably never 
oscillates. Thus, from the result given by Figure 11, 
we could deduce that the plasma parameters f•, and Te 
(which allow the oscillations in quasi-unmagnetized 
plasma) are lying between the two curves. Considering 
the case of type-1 instabilities occurring in the dense 
plasmasphere at low L shell, the range of the 
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Figure 11. Variation of the instability threshold (T•, f•) for 
the antennas Eu (solid curve) and Ez (dashed curve) in an 
unmagnetized thermal plasma. For each antenna the region 
above the curve is stable, and the region below is unstable. 
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Figure 12. Modulus of the transfer function in the vicinity 
of fit (1.03), for two different orientations of the antenna 
with respect to B0:0 ø (solid curve) and 90 ø (long-and-short- 
dashed curve), with flp = 4 and A = 1. For reference the 
result for isotropic model is plotted with a long-dashed 
curve. 

oscillation frequency (150-400 kHz as given in 
Table 1), i.e., n, - 100-2000 cm --•, and the range of 
T, - 0.3-2 eV, which are both of them bounded by our 
model (Figure 11), are perfectly compatible with 

standard estimations and previous measurements in 
this region [e.g., Ddcrdau et al., 1978]. 

We have checked that the values of capacitances in 
the equivalent circuit given in Figure 2 are not critical, 
so that variations of a factor of 2 around their nominal 

value do not significantly change the final result. In 
particular, the value of C.,. = 220 nF leads to practically 
the same result as a short circuit (V• = V0). 

In order to interpret the modulation of oscillations 
as a function of the dipole's orientation with respect to 
the Earth's magnetic field, as shown in Figure 4, we 
have used in our code the plasma response 
corresponding to the model described in section 3.2, 
for two orientations only, i.e., parallel and 
perpendicular. 

In a typical weakly magnetized plasma where type-1 
oscillations are observed (cop/co•.= 4), the results show 
that the conditions for instability are slightly changed, 
as expected from the behavior of the plasma response 
plotted in Figure 6. The first remark is that the 
conditions of instability are satisfied in the upper 
hybrid range, above the plasma frequency instead of 
below as in the isotropic case. This is explained by the 
analytic treatment as being due to the sign shift of the 
real part of the plasma response in this range 
(Figure 6). 
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Figure 13. Modulus and phase of the transfer function in the upper hybrid range, for two different 
values of Zo, f2p = 4, f2, = 1.0308, and A = 1. The dipole angle with respect to B0 is 0 ø (solid curve) 
or 90 ø (long-and-short-dashed curve). 
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Table 2. Summary of Measured and Predicted Ranges of Parameters for Each Type of Instability 

Type f• (Fundamental) -fp, Re L f/fc, n,, Probable T• Probable Bulk Velocity 
kHz cm :-• eV ' in the Plane u,v, km s 4 

1 150 < f _< 400 2-4 _<4 > 3.5 300-2000 - 1 -0 

2 70 _<fg 110 _>7 >40 >50 60-150 4-12 140-250 

By comparing the values of the transfer function, 
for the two orientations of the antenna shown in Figure 
12, we conclude that just below the upper hybrid 
frequency ([2, = 1.0308) the most favorable conditions 
for instability occur when the antenna is aligned with 
the magnetic field, which is in agreement with the 
observations when the oscillations are just vanishing 
(last part of sequence in Figure 4). More precisely, the 
variations of the transfer function versus the 

frequencies in the upper hybrid range (Figure 13) 
show that the instability can be triggered for 
Zo = 30 cm, at frequencies just below if1, and only in 
the parallel direction with respect to the magnetic 
field. If we refer to the case shown in Figure 4 around 
1203 SCET, the deduced plasma parameters in this 
case can be estimated as fp = 215 kHz, n• = 570 cm -3, 
and T• = 0.9 eV. 

However, for shorter Debye length (Zr• = 20 cm) 
there are two possible frequencies of oscillation, 
namely, ffl -•1.012 and 1.026 (Figure 13), 
corresponding to the antenna orientations 
perpendicular and aligned to the magnetic field, 
respectively. During the spin period the oscillation 
frequency is predicted to be modulated between these 
two values. Such a phenomenon is clearly visible in 
the period between 1200:20 and 1200:50 SCET in 
Figure 4. With now Zr• = 20 cm instead of 30 cm, and 
fp: 225 kHz, i.e., n e • 625 cm '3, we have T• • 0.45 eV, 
which could reveal an important gradient of 
temperature in the boundary region of the 
plasmapause, where the type-1 oscillations suddenly 
vanish. 

If such plasma parameters, deduced from the 
simulation, are compatible with the expected values in 
the region where type-1 oscillations occur, they are 
unlikely to exist in the outer cusp region during high- 
density events, where warmer temperatures are 
expected (Table 1). Here, a more complex plasma 
model as discussed in section 3.3 is needed to account 

for the observations. Unfortunately the existing 
numerical code cannot be easily applied to this plasma 

model. Therefore we will use the analytic approach to 
explain the type-2 instabilities. 

6. Type-2 Instabilities 

For the case study shown in Plate 1, on May 11, 
1997, around 1200 SCET, there is some indication 
that during this event the Polar spacecraft was crossing 
a high-density suprathermal electron cloud of several 
eV, probably in the turbulent boundary layer located 
just outside the magnetopause current layer in the cusp 
(.J. Pickett, private communication, 1997). If we 
assume a steady plasma, such a thermal energy leads 
to a Debye length of the order of at least 1-2 m as a 
threshold value for instability, which is excluded 
according to the results given in section 5. These facts 
suggest that such a plasma cannot be assumed to be 
isotropic and steady with respect to the spacecraft. 

Returning to the analytic approach, we must first 
predict some limit of its validity. The estimation of the 
normalized inductance of the stub (- X) in (16) is valid 
as long as the return charges are located at large 
normalized distance L', so that their contribution is 
that of the cold plasma only (1/L'le•. I). To be valid, 
the thermal contribution term with the exponential in 
(3) must be negligible; thus L' (le c I/3)•2 > 1. If we 
consider now a Debye length of the order of 2 m, 
which could be a reasonable value in the region 
concerned, we find an upper limit of the instability 
frequency such as l e c I > 3 x 10 --• in order that (16) be 
valid. Let us take, for instance, l e•. I= 8.25 x 10 -3, 
which reduces the contribution of the rerum charges to 
less than 20% of that of the stub. From (16) we get 
X = +4.35, a value which is well out of range of the 
first condition for instability and which confirms the 
fact that the largest theoretical Debye length leading to 
instability of the antennas E u or E v in a steady 
Maxwellian plasma is less than 50 cm. Independently 
of geophysical considerations, this result confirms that 
the steady plasma model cannot explain the type-2 
oscillations. 
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Let us consider now a streaming plasma as in 
section 3.3, with a ratio of the order of 12% between 

the drift and the thermal velocities l - 0.1). Still at the same frequency as above (le•. = 8.25 x 10 -3, i.e., 
• = 0.9957), we can deduce from Figure 7 the first- 
order values of Re U and Im U for )•t> = 2 m, l' = 1.5, 
L'= 32.5 and [• = +0.1, i.e., when the plasma flow is 
directed from one of the sensors toward the S/C 

structure, which reads 

ReU(l/) • 1/l/- 8.3, ImU(I/)•2.6, l/<2 
(19) 

ReU(L/):-0.8, ImU(L/):2.42, L/: 32.5. 

Then, from (14), and performing a similar integration 
as for (16), we obtain X = -0.95 and Y = 0.18, which 
is exactly the instability point for )•t> = 2 rn with a 
phase shift of 8 ø , such as can be checked in Figure 8. 
In the opposite direction ([• = -0.1, Re U (L') • - 5.5), 
we obtain X = + 3.75 which is a stable point. Thus the 
instability vanishes somewhere between those two 
directions. 

This result proves that each sensor of the E u or E• 
antennas can reach the instability regime at least once 
per spin period when it is in front of an electron flow 
of 60-150 cm -3 density (70 < ft, < 110 kHz), 4.5-11 eV 
temperature (•t> = 2 m), and 140-250 km s -I bulk 
velocity ([• = 0.1, i.e., 0.07-0.17 eV). It seems, indeed, 
that the high-time-resolution data analysis of the dc 
bias of spheres during the type-2 oscillations reveals 
one spin period symmetry instead of one-half period 
as for type 1, with a shift of 180 ø between the two 
opposite sensors of the same dipole (R. Grard, Space 
Science Division, European Space Agency, private 
communication, 1998). 

A three-dimensional data analysis would allow us 
to check our theoretical model and to use this fact for 

a measurement of the electron bulk velocity, both in 
amplitude and in direction. We could have certainly 
found other values of the above plasma parameters 
within a probable window able to satisfy the type-2 
instability conditions, but this is beyond the purpose 
of the present study and would require the 
development of a new numerical code. At the same 
time, it would be necessary to make a comparison of 
the parameters predicted by our model with data 
obtained by other experiments on board. 

7. Summary and Conclusion 

The investigation of Polar's antenna instability 
based on the general SCD method has allowed us to 
understand the involved physical mechanism after a 

theoretical and simplified analytical study, confirmed 
as far as possible by a numerical code. The critical 
plasma parameters which are necessary to trigger the 
instabilities have been identified, and their predicted 
values from the modeling are found to be reasonable 
with respect to geophysical considerations. The main 
results are as follows: (1) The instability can be 
triggered only when the impedance of the guard-stub 
with respect to the reference structure is inductive, 
which depends essentially on the frequency compared 
to the plasma frequency and on the bulk and the 
thermal electron velocity distributions. (2) The 
instability is most likely to be triggered always in the 
range of frequencies from • 0.9 ft, to ~f for the plasma 
conditions encountered along Polar's spacecraft orbit. 
(3) The instability conditions involve the full transfer 
function of the preamplifier, including the phase 
response which strongly constrains the plasma 
parameters. (4) In a quasi-Maxwellian plasma the 
occurrence of the type-1 instability for the long 
antennas (Eu-Ev), while at the same time the short one 
(Ez) remains stable, leads to a range of Debye lengths 
lying between 10 and -30 cm in the concerned 
regions. The upper limit of oscillations (-400 kHz) 
due to the preamplifier cutoff leads to a maximum 
electron density of-2000 cm -3 for type-1 oscillations 
and, consequently, to a temperature range of 0.3-3 eV. 
(5) In a streaming plasma the upper limit of the Debye 
length for triggering the type-2 instability can increase 
up to about the size of the guard-stub (-2 m), 
depending on the ratio between the bulk and thermal 
velocities. (6) The frequency and the strength of the 
oscillations are attitude dependent with respect to the 
Earth's magnetic field orientation, leading to a 
simultaneous half-spin period modulation for each 
sensor of every dipole antenna in the case of the type- 
1 instabilities. (7) For type-2 instabilities the spin 
modulation is predicted to be dominated by the 
direction of the plasma bulk velocity with respect to 
the spacecraft orientation, leading to one spin period 
modulation and 180 ø phase shift between the sensors 
of the same dipole, with the strongest oscillation 
occurring when the angle between the sensor- 
spacecraft line and the bulk velocity is a 
minimum. The model-predicted plasma parameters (% 
T•, and bulk velocity) which are favored to trigger the 
two different types of oscillations are summarized in 
Table 2, together with the local geophysical 
parameters (Re, L, and fc0. 

Further investigation will be necessary to improve 
our modeling and to compare the above-predicted 
plasma parameters to the available onboard 
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measurements. A positive return from the troubling 
phenomenon of this instability would be to make use 
of it for geophysical diagnostic purposes every time 
the instabilities occur. 
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