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Fractured rocks are often modeled as multiscale populations of interconnected discrete fractures (discrete
fracture network, DFN). Graph representations of DFNs reduce their complexity to their connectivity structure
by forming an assembly of nodes connected by links (edges) to which physical properties, like a conductance, can
be assigned. In this study, we address the issue of using graphs to predict flow as a fast and relevant substitute to
classical DFNs. We consider two types of graphs, whether the nodes represent the fractures (fracture graph) or the
intersections between fractures (intersection graph). We introduce an edge conductance expression that accounts
for both the portion of the fracture surface that carries flow and fracture transmissivity. We find that including the
fracture size in the expression improves the prediction of flow compared to expressions used in previous studies
that did not. The two graph types yield very different results. The fracture graph systematically underestimates
local flow values. In contrast, the intersection graph overestimates the flow in each fracture because of the
connectivity redundancy in fractures with multiple intersections. We address the latter issue by introducing
a correction factor into the conductances based on the number of intersections on each fracture. We test the
robustness of the proposed conductance model by comparing flow properties of the graph with high-fidelity
DFN simulations over a wide range of network types. The good agreement found between the intersection graph
and test suite indicates that this representation could be useful for predictive purposes.

DOI: 10.1103/PhysRevE.102.053312

I. INTRODUCTION

Graphical representations of complex systems have seen
rapidly growing interest over the last few decades [1]. Graphs
are mathematical structures where a set of discrete entities are
represented as nodes connected by a set of edges based on a
particular rule. This compact mathematical structure enables
the detailed study of the connectivity of an ensemble of con-
nected discrete objects and has been applied to a wide range
of fields including, for example, the World Wide Web [2],
scientific collaboration networks [3], and biologic systems [4].

Recently, graphs have gained attention in the scientific field
of subsurface fracture network modeling [5–7]. In environ-
ments where the matrix permeability is negligible, like in
crystalline rocks, fracture networks define permeability and
flow path organization. These fracture networks are complex
and are composed of intersecting discrete fractures, that are
characterized by a wide distribution of sizes and apertures.
More specifically for crystalline rocks, fracture sizes likely
follow a power-law distribution [8]. The resulting multiscale
structure makes it difficult to define a characteristic length
scale and perform a classic hydraulic characterization with
continuum approaches [9–11]. In contrast to more homoge-
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neous subsurface systems, details of the network structures
are a principal control of the flow of fluids therein [12,13].
The critical role played by the network structure on the
flow stimulates, therefore, the use graphs for investigating
the fracture network’s hydraulic properties. Graphs provide
a compact framework for improved characterization of the
structure of fracture networks, which is critical for numer-
ous applications including the disposal of spent nuclear fuel
[14], hydrogeology [15], and geothermal [16] and petroleum
resources [17,18].

The use of graphs is all the more necessary as the number
of fractures required to describe a geological environment is
huge. Due to the multiscale nature of fracture networks, it
may be necessary to model billions of fractures to understand
which fractures are significant. For instance, a realistic frac-
ture network with conditions described in Davy et al. [19]
(power-law size distribution exponent of −4, dimensionless
density of 3) has 109 fractures with sizes ranging from 1 m (a
size that cannot be considered negligible) to 1 km (a typical
size of domains for most of groundwater applications). This
casual approximation gives an idea of the complexity of the
networks that need to be managed. The discretization of the
full fracture network, as done in discrete fracture network
(DFN) models (see Lei et al. [20] for a review) poses com-
putational problems. This is not the only reason why graphs
are interesting intermediate steps in the modeling of fractured
media, but it is already a strong enough reason.

Several studies have investigated the possibility of using a
graph to decrease the computational burden associated with
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DFN flow and transport simulations. In the past, when tech-
nological progress did not afford the numerical resources
necessary for DFN modeling, pipe networks, analogous to
graphs, were used as an alternative basis [21–24]. A ma-
jor issue was to render the pipe network, composed of
one-dimensional pipes hydraulically equivalent to a DFN.
Therefore, mixed analytical-numerical techniques have been
developed, such as using the boundary element method to
deduce pipe conductances [23], or using the Image theory to
account for impermeable fracture borders on the flow [25].
More recently, graphs have been used as a complement to
DFN flow and transport simulations [26]. They have been
successfully used to identify the DFN backbone, i.e., fractures
participating to shortest travel times or carrying the major
flows [27–31]. They have also been used to directly solve flow
and transport [32] in order to reduce the cost associated with
uncertainty quantifications (e.g., multifidelity Monte Carlo,
O’Malley et al. [33], and multilevel Monte Carlo, Berrone
et al. [34]). In these recent studies, simple analytical defini-
tions were given as edges hydraulic attributes to preserve the
rapidity (quasi-immediate) of the graph computations. A key
element in creating a graph that provides predictions of flow
and transport similar to the higher fidelity DFN is assigning
an edge conductance that is equivalent to the fracture surface
in the DFN. Previous definitions have included the physical
distance between nodes [27] and the intersection sizes [32]
to simplify the flowing regions between fractures. These geo-
metric simplifications resulted in marked differences between
the DFN and graph flow models. To date, few efforts have
been made to include higher-order geometric information in
the graph edge conductance properties.

In the present study, we address the issue of defining an
equivalent conductance for graph edges in the case of disk-
shaped fractures with a constant transmissivity by fracture.
A DFN can be transformed into two graph types: a fracture
graph [21,22,28], in which vertices represent fractures and
edges connect two intersecting fractures, and an intersection
graph [23,32], in which nodes represent intersections and
edges connect two intersections of the same fracture. Another
possible type is the bipartite graph, in which two disjoint
sets of nodes, one representing fractures and the other inter-
sections, are connected and the former two graph types can
be readily obtained [27]. In this study, we focus on the first
two graph representations. We provide analytical formulations
of the equivalent conductance between two fractures (for the
fracture graph edges) and between two intersections (for the
intersection graph edges). The conductance (m2s−1) measures
how effectively the fluid, subjected to a potential difference,
is transported through a medium. It is related to the flow, Q
(m3s−1), and the hydraulic potential (head) difference, �H
(m), with the formulation Q = C�H . By observing that the
fracture flow field is often limited by the fracture impervious
borders, we propose formulations that include fracture sizes
in addition to the physical distances, intersections sizes, and
fracture apertures. Considering the wide range of fracture
sizes in nature, this definition can make large differences
compared to previously presented ones.

Our conductance is verified against classical DFN flow
simulation via comparison with flow on entirely meshed frac-
ture surfaces. It is first verified locally using a single fracture

with two intersections but varying geometries. Next, we con-
sider DFNs composed of hundreds to tens of thousands of
fractures. We transform large DFNs into equivalent fracture
graphs and intersection graphs and resolve the flow on the
graphs and the DFNs. The graph estimations are compared to
the classic DFN flow solving at two scales: at the DFN scale,
by comparing equivalent permeabilities, and at the fracture
scale, by comparing the total flow exchanged by fractures
[35]. The verification at the fracture scale allows us to evaluate
if the internal network flowing structure is being properly
represented by the graphs. As the conductance is originally
defined for ideal cases of fractures having two intersections,
there are biases in the graph due in part to the DFN connec-
tivity, i.e., fractures having more than two intersections and
participating in many structural paths. Therefore, we test the
method on several DFN types with increasing connectivity
complexity: constant fracture size DFN, power-law size dis-
tributed DFN, and genetic networks with small intersections
(UFM, universal fracture model) [19,36].

The remainder of the paper is organized as follows. Sec-
tion II describes the technical aspects of the study: graph
constructions, flow solving, and measurement of the flow met-
rics. Section III presents the developments of the equivalent
conductances for both graph types. Section IV presents and
analyses the results for the different DFN types mentioned
above. Finally, conclusions are drawn in Sec. V.

II. METHODOLOGY

DFN models are explicit representations of fracture
networks and can be used as a support for physical simu-
lations, including flow and transport. The way the fractures,
represented by finite planar objects, intersect in the three-
dimensional volume impacts the hydrological properties of
the network [13,35]. A DFN can be either stochastically
generated with probability distribution derived from the field
(densities, size distribution, set of orientations [37]) or with
models mimicking the geological fracturing process (UFM
[19,36]). In this study, we use the computational suite
DFN.lab [38] to generate DFNs in cubic systems. We gen-
erate DFNs with varying properties, like the fracture size
distribution or the connectivity quantified by the percolation
parameter. More details on the DFNs generated for this study
are given later in Sec. IV.

DFNs lend themselves to the construction of graphs.
Graphs are representations consisting of nodes connected by
edges. One edge connects two nodes if an exchange physically
exists between these nodes. The exchange intensity can be
modulated by assigning attributes to the edges, such as a
conductance. We present in the next section the details of the
construction of two graph types from a DFN, a fracture graph
and an intersection graph, and the notations that we use to
qualify nodes, edges, and their attributes.

A. Graph constructions

1. Fracture graph

Let F = { fi} for i = 1, . . . , n denote a DFN composed
of n fractures. We define a mapping ϕ, that transforms F into
a graph G(U, E ). For every fi ∈ F , there is a unique vertex
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FIG. 1. DFNs and equivalent graphs: (a) fracture graph, (b) in-
tersection graph.

ui ∈ U :

ϕ : F → ui. (1)

If two fractures, fi and f j , intersect ( fi ∩ f j �= ∅), then
there is an edge in E connecting the corresponding vertices,

ϕ : I = ( fi ∩ f j ) �= ∅ → ei j = (ui, u j ). (2)

For every intersection between a fracture fi and a plane
boundary L, there is a unique vertex uiL ∈ V ,

ϕ : ( fi ∩ L) �= ∅ → uiL, (3)

and a unique edge eiL,

ϕ : ( fi ∩ L) �= ∅ → eiL = (ui, uiL ). (4)

For every ( fi, f j ) ∈ F and fi ∩ f j �= ∅, we attribute to each
edge ei j ∈ E an attribute called conductance Ci j . A definition
of Ci j is presented later in Sec. III. An image of the graph
mapping ϕ is presented in Fig. 1(a).

2. Intersection graph

We define a second mapping ψ , that transforms F into a
graph G(V, E ). For every ( fi, f j ) ∈ F , there is a unique vertex
vi j ∈ V ,

ψ : I = ( fi ∩ f j ) �= ∅ → vi j . (5)

If a fracture fi intersects two fractures f j and fk ( fi ∩ f j �=
∅ and fi ∩ fk �= ∅), then there is an edge in E connecting the
corresponding vertices,

ψ : (( fi ∩ f j ) �= ∅ and ( fi ∩ fk ) �= ∅) → ei
jk = (vi j, vik ).

(6)
For every intersection between a fracture fi and a boundary

L, there is a unique vertex viL ∈ V ,

ψ : ( fi ∩ L) �= ∅ → viL, (7)

and a unique edge ei
jL,

ψ : (( fi ∩ L) �= ∅ and ( fi ∩ f j ) �= ∅)) → ei
jL = (vi j, viL ).

(8)
We attribute to each edge ei

jk ∈ E a conductance Ci
jk . A

definition of Ci
jk is presented later in Sec. III. An image of the

graph mapping ψ is presented in Fig. 1(b).

B. Flow and metrics

In this section, we present how we solve flow within the
DFNs and graphs. Once the steady-state flow fields are ob-
tained, we compute the following flow indicators: the bulk
permeability K (m s−1) and the total flow exchanged by frac-
ture Q f (m3 s−1) for comparison [35].

1. Flow solution

Steady-state flow is simulated with permeameter-like
boundary conditions, i.e., two opposite faces of the system are
assigned fixed head boundary conditions, and the remaining
face a zero flow condition. For the reference computation,
the DFNs are entirely meshed and the flow is solved using
a mixed hybrid finite element method. We refer to Pinier et al.
[38] for details about mesh generation and flow solving. The
equivalent graph flow is solved by using the methodology
described in Karra et al. [32]. Below we present an outline of
the method and refer to Karra et al. [32] for more information.
Boundary conditions are first provided, i.e., constant heads are
attributed to the boundary vertices, and vertices corresponding
to a no-flow boundary are deleted from the graph. Heads (m)
are solved in the vertex set by solving the flow conservation at
each vertex. Finally, edge flows (m3s−1) are deduced from the
edge adjacent vertex heads and the edge conductances.

In the remainder of the paper, we use the terminologies
“complete simulation” and “graph simulation” to qualify the
flow solved with respectively the complete meshed DFN and
the equivalent graphs.

2. Flow metrics

In this study, we compare flow between the graph simula-
tions and the complete simulations at two scales. At the larger
of the two, the DFN scale, we compute the bulk permeability
K (m s−1). At the smaller of the two, that of the fracture scale,
we compute the total flow exchanged by fracture, Q f (m3s−1):

Q f = 1

2

∑
j

Qi j, (9)

with Qi j (m3s−1) the flow exchanged through the intersection
between fi and f j . These metrics are provided by the DFN.lab
suite [38].

In the graph simulations, the bulk permeability K is
deduced from the network total flow, QT , and system dimen-
sions. In the following, we give details on how we compute the
fracture flow Q f in the graphs, because the method is different
in each graph type. In the fracture graph, the Q f are deduced
from the edge flows, Q(ei j ), directly equal to the intersection
flows,

ϕ : Qi j = Q(ei j ). (10)

In the intersection graph, the intersection flow Qi j is ob-
tained differently because in this graph type intersections are
represented by a vertex. Besides, a share of the total flow that
moves through the vertex may remain on the same fracture,
so, physically, it does not cross the intersection represented
by this vertex (an example is illustrated in Fig. 2). To compute
Qi j , we select the edges on one side of the intersection belong-
ing either to fracture fi or to fracture f j . Then, we add all the
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FIG. 2. Example of DFN equivalent intersection graph with the
oriented flow edge attribute Q (m3s−1) being indicated. The flow
values in this example do not rely on any physical simulations but
serve to illustrate how, in this graph type, a share of vertex total flows
can remain on the same fracture. Here, from the edge with flow equal
to 10 m3s−1 only 3 m3s−1 cross the intersection represented by the
vertex vi j while 7 m3s−1 remain on the same fracture fi.

edge flows directed toward the vertex and we subtract the ones
directed away from it. Finally, we take the absolute value of
the result. On a fracture fi, the flow Qi j through an intersection
with fracture j is computed in the intersection graph as

ψ : Qi j =
∣∣∣∣∣
∑

k

Q̂
(
ei

jk

)∣∣∣∣∣. (11)

Q̂(ei
jk ) is the edge ei

jk directed flow. The direction of the flow
depends on the adjacent vertex heads, H (vi j ) and H (vik ),

ψ :

{
Q̂

(
ei

jk

) = + Q
(
ei

jk

)
if H (vi j ) > H (vik ),

Q̂
(
ei

jk

) = − Q
(
ei

jk

)
if H (vi j ) < H (vik ),

(12)

where Q(ei
jk ) is the edge ei

jk flow magnitude.
The equivalent permeability K and the total flow by frac-

ture Q f will be used later in Sec. IV to compare the graph
simulations to the complete simulations.

III. EDGE CONDUCTANCE

In this section, we provide new analytical developments
of the graph edge conductance with the aim of them being
equivalent to the fracture flowing surface that the edge repre-
sents. By observing that the fracture flow field is often limited
by the fracture impervious borders, we propose a definition
of the conductance that includes the fracture size. This sec-
tion is organized as follows: after presenting the schematical
representations that support our developments (Sec. III A 1),
we derive the conductance definition, first, for edges in the
fracture graph (Sec. III A 2) and, second, for edges in the
intersection graph (III A 3). Finally, we verify the analytical
developments by comparing them to high-fidelity simulations
of the flow on a fracture with two intersections (Sec. III B).

A. Analytical definitions

1. Schematical representation of the fracture flowing surface

In this study, fractures are modeled by disks. Thus, the
diameter is the appropriate length to include in the mod-
ified definition of conductance. For both graph types, we

FIG. 3. Schematical representation of the fracture(s) flowing
area(s) using trapezoïds. The notations used in the analytical de-
velopments of the conductance are also presented. (a) refers to the
fracture graph and (b) to the intersection graph.

include the fracture diameter in the conductance definitions
by schematically representing the flowing area as a series
association of two trapezoids, presented in Fig. 3(a) for the
fracture graph and Fig. 3(b) for the intersection graph. We
derive an expression of the conductance C (m2s−1) between
the large base and the small base of one trapezoid to be

C = T
lB − lb

xBb [ln (lB) − ln (lb)]
, (13)

where lB, lb, xBb (m) are respectively the larger base size, the
smaller base size, and the height of the trapezoid, and T is the
plane hydraulic transmissivity (m2s−1). The function ln(x) is
the base e logarithm. Additional details on how Eq. (13) is
derived are presented in the Appendix.

Note that the schematic representations in Fig. 3 are ideal
geometrical cases, where intersections are parallel. In reality,
more complex geometries are found in DFNs, as intersections
are often not parallel, possibly crossing, and their positions
can be anywhere on the fracture plane. Later, in Sec. III B,
we verify how the simplification proposed here works for
intersections randomly placed on a fracture. However, this
verification is limited to the case where the two intersections
do not cross on the fracture plane because, in the numeri-
cal setup of Sec. III B, the two intersections have different
boundary conditions and cannot share a common point. As the
conductance is inversely proportional to the distance between
intersections, the equivalent conductance in a configuration
when intersection do cross should be underestimated by the
conductance definition based on parallel and noncrossing in-
tersections.

2. Fracture graph

The equivalent conductance C of two conductances C1 and
C2 in series association is C = ( 1

C1
+ 1

C2
)−1. From Eq. (13), we

derive an expression of the conductance Ci j (m2s−1) attributed
to the edge ei j in the fracture graph,

ϕ : Ci j =
⎛
⎝‖X̄i − X̄i j‖ ln

( li j

Di

)
Ti(li j − Di )

+
‖X̄ j − X̄i j‖ ln

(
li j

D j

)
Tj (li j − Dj )

⎞
⎠

−1

.

(14)
X̄i, Di, and Ti (m2s−1) are respectively the fracture fi center,

size, and transmissivity. X̄i j and li j are respectively the inter-
section ( fi ∩ f j �= ∅) center and size [Fig. 3(a)].
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FIG. 4. Schematical representation of the flowing surface be-
tween two intersections in the case of close intersections.

For every intersection between a fracture fi and boundary
L, if fi ∩ L �= ∅, we attribute to each edge eiL ∈ E a conduc-
tance CiL:

ϕ : CiL =
(‖X̄i − X̄iL‖ ln

( liL
Di

)
Ti(liL − Di )

)−1

(15)

X̄iL and liL are respectively the intersection ( fi ∩ L �= ∅) cen-
ter and size.

3. Intersection graph

Based on the same reasoning as for the fracture graph, we
derive an expression of the conductance Ci

jk attributed to the
edge ei

jk in the intersection graph,

ψ : Ci
jk = 2.Ti

‖X̄ik − X̄i j‖

⎛
⎝ ln

(
Di
li j

)
(Di − li j )

+ ln
(Di

lik

)
(Di − lik )

⎞
⎠

−1

. (16)

Di and Ti (m2s−1) are respectively the fracture fi size, and
transmissivity. X̄i j and li j are respectively the intersection
( fi ∩ f j �= ∅) center and size [Fig. 3(b)].

In this formulation, the position of the fracture center is
not required. We choose to use the direct distance between
the intersections, ‖X̄ik − X̄i j‖, because it better represents the
flowing distances.

Another adjustment is made possible in the intersection
graph by the fact that the two intersections are directly con-
nected. It regards the case where the two intersections are
close enough so that the use of the fracture diameter Di

overestimates the flowing surface and thus the conductance.
In Fig. 4, we have schematically represented the flowing area
between two close intersections. In this case, instead of Di, a
smaller size di is more appropriate to schematize the flowing
surface. Therefore, we replace Di by D̂i in the formulation of
Ci

jk with

D̂i = min (Di, di ). (17)

di is a function of intersection sizes and intersection distance,

di = li j + lik
2

+ B‖X̄i j − X̄ik‖. (18)

FIG. 5. Fracture with four intersections and equivalent fracture
graph (a) and intersection graph (b). The two thick intersections are
the most flowing on the fracture. The edge thicknesses and arrows
represent the intensity and direction of the edge flows.

In Eq. (18) we adjust the coefficient B by comparing our
analytical definition to real numerical simulations of the flow
between two intersections on a fracture, by varying intersec-
tion sizes and distance. It is found to be ∼1.5.

4. Multiple-paths correction in the intersection graph

For fractures with more than two intersections, the inter-
section graph represents the fracture as an n-clique, with n
being equal to the number of intersections on the fractures. An
n-clique is a subset of n vertices such that every two vertices
in the clique are adjacent. The problem is that this specific ar-
chitecture creates a multiplicity of paths from one intersection
vertex to another on the same fracture, thereby artificially in-
creasing the equivalent volume through which the fluid flows.
The effect of multiple paths is illustrated in Fig. 5 where a
fracture with four intersections is represented with the fracture
graph mapping [Fig. 5(a)] and the intersection graph mapping
[Fig. 5(b)], along with edge flow intensities (line widths) and
directions (arrows). In the example, there is one principle flow
path formed by two intersections (thick intersections) among
the four intersections. In the fracture graph (a), a unique path
is possible between the two intersections. In the intersection
graph (b), possible secondary paths are passing through other
vertices in addition to the direct path between the two intersec-
tion vertices, which increases the amount of flow between the
two intersections. To correct for this effect in the intersection
graph, we reduce each edge conductance Ci

jk of a fracture fi by
a factor based on the number of intersections on that fracture,
ni. In the intersection graph, a vertice vi j ( fi ∩ f j �= ∅) has a
degree equal to ni − 1 on the fracture fi,

ψ : d
(
vi j |ei

jk∈ fi

) = ni − 1. (19)

Therefore, for each edge ei
jk ∈ fi, we reduce the conduc-

tance Ci
jk as follows:

ψ : Ĉi
jk = Ci

jk

ni − 1
. (20)

Note that the correction only changes the conductances for
fractures with more than two intersections. Later, in Sec. IV,
we observe the efficiency of this correction for a large DFNs.
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FIG. 6. Flow magnitude (m3s−1) numerically solved (software
DFN.lab) in a single fracture having two intersections. The fracture
diameter (m) and transmissivity (m2s−1) are both equal to 1. Constant
heads (m) are fixed on each intersection and the head difference is
equal to 1. An equivalent intersection graph is also represented (red
vertices).

B. Verification on a fracture with two intersections

The conductance definitions developed in Sec. III A are
verified using a single fracture with two intersections (Fig. 6).
Steady-state flow is resolved on a computational mesh repre-
sentation of that fracture, with head boundary conditions fixed
on the two intersection segments (1 and 0). With this setup,
we only compute the equivalent conductance between two
intersections and not between two fractures. However, as the
two conductance definitions are based on the same reasoning,
the conclusions presented at the end of this section hold for
both graph types.

To vary intersection geometries, we randomize the two in-
tersection positions and orientations on the fracture plane and
we fix their size to 0.1, 0.3, and 0.5 normalized by the fracture
size. For each intersection size, a thousand realizations are
performed to obtain a large dataset covering various distances
between intersections centers. The realizations where the two
intersections cross on the fracture plane are rejected during
generation because different heads cannot be imposed on the
intersections if they share a common point, as previously
discussed. A real estimation of the equivalent conductance
is computed from the numerical simulations as Cnum = Q

�H ,
where Q (m3s−1) is the flow and �H the head difference
between intersections (m), and is compared to the analytical
conductance, Ci

jk , defined in Sec. III A 3 (Fig. 7, solid lines).
In addition, we compare Cnum to the lower-order conduc-

tance definition used in Karra et al. [32] (Fig. 7, dashed lines),
which, unlike our definition depending on fracture size, relies
on the intersection geometry only:

Ci
jk = Ti

li j + lik
2‖X̄i j − X̄ik‖ , (21)

with Ti the fracture transmissivity (m2s−1), and li j , X̄i j the size
and center of the intersection fi ∩ f j �= ∅.

The benefit of the conductance definitions developed in
Sec. III A 3 over the classic definition of Eq. (21) is demon-
strated in Fig. 7. For all the intersection sizes, the presented
conductance definition of Sec. III A 3 performs well (solid
lines), with, however, a slight underestimation, that we

FIG. 7. Ratio between analytical and numerically solved con-
ductances between two intersections on the same fracture plane as
a function of the distance between intersection centers. Intersec-
tion sizes both equal 0.1, 0.3, and 0.5 normalized by the fracture
size. The comparison is presented for the conductance developed in
Sec. III A 3 (solid lines) and for the conductance used by Karra et al.
[32] (dashed lines).

attribute to the geometrical simplification of the flowing area
proposed in Sec. III A 1 (Fig. 3). Larger underestimation and
more variability are observed when intersections get closer,
possibly due to the angle between the intersections. When
the two intersections are close and not parallel, high-pressure
gradients may concentrate on some of their tips, creating a
higher conductance than in the analytical solution. It is worth
noting that the benefit of these developments over the lower
order definition used in Karra et al. [32] is larger for smaller
intersections. We can observe this by comparing, for example,
the results for sizes equal to 0.1 times the fracture diameter
(blues lines), for which the classic definition is underestimated
by a factor ∼5.

These observations are important for natural fracture net-
works, which are characterized by power-law distributions of
fracture sizes [8]. Regarding the intersection sizes, we can
note a lack of information since they are not measurable in
the field. However, in DFN models, they usually also range
over several orders [39,40]. In some models, they can also be
very small compared to the fracture sizes, like in the universal
fracture model (UFM, [19,36]) in which fractures grow and
stop on other fractures, creating small intersections.

IV. ABILITY OF GRAPHS TO ESTIMATE FLOW
IN LARGE DFNs

In this section, we evaluate the ability of graphs using the
conductance defined in Sec. III to estimate flow in a large
DFN. We perform comparisons at both the DFN scale (per-
meability) and at the fracture scale (total flow exchanged by
fracture, Sec. II B 2). In this study, all DFNs have a constant
fracture transmissivity, equal to 1 m2s−1.
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TABLE I. DFN generation parameters.

Poisson, constant size Poisson, power-law size distribution UFM

Cubic system size 50 50 50
Fracture size, l (m) 3 [1,50]
Powerlaw size distribution exponent, a 4
Target percolation parameter, p (−) [3,4,5,6,7] [3,4,5,6,7]
Initial nuclei size (m) 1
Fracture growth stops on system borders yes
Nucleation rate, ṅ (s−1) 0.01
Growth exponent, e 3
Growth rate parameter, C 1
Target growth time t (s) [0.5, 1, 3, 7, 10]
Total number of realizations 20 for each percolation 20 for each percolation 5 for each time
Number of unconnected realizations 0 8 for p = 3 1 for t = 0.5

In Sec. III, we have defined the conductance for the ideal
case of fractures in series, i.e., fractures have two intersections
with other fractures and carry a unique flowing path. In reality,
DFNs are characterized by a complex connectivity. There-
fore, DFN fractures can have more than two intersections and
carry many flowing paths, which could induce biases in the
graph flow estimations. To evaluate these biases, we apply the
methodology defined in Sec. II to different DFN types, that are
characterized by different topologies. Later in this section, we
increase the network topological complexity by looking first
at stochastic DFNs with constant fracture sizes (Sec. IV A),
second at stochastic DFNs with a power-law size distribution
(Sec. IV B), and finally at genetic models, called UFMs, which
are power-law size distributed networks with a specific spatial
organization of the fractures (Sec. IV C).

The stochastic DFNs are generated with a targeted density,
i.e., fractures are placed one by one into the system until
the desired density value is obtained. In this study, we use
the percolation parameter, p, as a dimensionless measure of
density, instead of the classic measure of total fracture surface
per unit volume (P32 (m−1) [41]). The dimensionless density
is defined as [42–44]

p = 1

V

π2

8

∑
i

l3
i , (22)

where V is the system volume and li the fracture size. The
percolation parameter is a good indicator of DFNs connectiv-
ity, regardless of the fracture size distribution [44]. Networks
are connected when the percolation parameter is larger than
the percolation threshold, estimated to be 2.5 by de Dreuzy
et al. [42]. For the stochastic DFNs (Secs. IV A and IV B), we
create twenty realizations of each network at the percolation
parameter values 3, 4, 5, 6, and 7 (Table I).

The UFM networks (Sec. IV C) are generated with frac-
ture nucleation, growth, and arrest protocol described in
[19,35,36]. Their properties will depend on the nucleation rate
relative to the fracture growth rate and on the growth time.
We vary the targeted growth time to have UFM with a certain
range of percolation parameters (Table I). More information
about the generated UFM networks is provided in Sec. IV C.

Before performing the complete and graph flow simula-
tions, DFN backbones are identified and isolated. We defined

the backbone as the part of the network that carries flow.
To this end, we first remove all clusters of fractures that are
not connected to any constant head boundaries, and, second,
we remove all the network dead ends by iteratively removing
fractures having only one intersection with another fracture.

In Table II, we present some characteristics of the sim-
ulated DFNs. In addition to the DFN percolation, we also
measure some topological indicators to characterize the DFN
connectivity, like the average fracture degree, n̄, and the maxi-
mum fracture degree, nmax. The fracture degree is equal to the
number of intersections on the fracture, calculated here after
selecting the DFN backbone. The complete fracture degree
distributions are also presented in the Appendix.

A. Poissonian DFNs with constant fracture size

The DFNs tested in this section have constant fracture
sizes (Table I). They are characterized by a “quasi” regular
structure, with fracture degrees being overall low [Appendix,
Fig. 16(a)].

We represent the averaged ratio of the permeabilities es-
timated from the graph (KG) simulations and the complete
simulations (KDFN) as a function of the DFN percolation pa-
rameter (Fig. 8). The results show that almost no biases are
observed in the graph predictions relative to the complete sim-
ulations. The fracture graph and the intersection graph present
similar results (respectively blue squares and blue triangles).

For the intersection graph, we present the permeability
results with and without the “multiple-paths” correction of
the edge conductance defined in Sec. III A 3 (respectively
full and empty triangles in Fig. 8). Without the correction,
the graph flow predictions overestimate the complete simu-
lation values. The magnitude of the overestimation increases
with the percolation parameter. However, the graphs with the
“multiple-paths” correction are in better agreement with the
complete simulations, regardless of the percolation parameter.

We also compare the fracture total exchanged flow, Q f

(Sec. II B 2), estimated by the complete and graph flow
simulations (Fig. 9). Some very small values of Q f are
measured in the complete and graph simulations (Fig. 9(a),
[10−17, 10−15]), which are below machine precision and thus
numerically zero. In the complete simulations, these values
correspond to nonflowing fractures that remain in the DFN
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TABLE II. Statistics of geometrical and topological metrics of the simulated DFNs. Averages and standard deviations of the different
realizations are presented for the two extreme targeted parameters: p = 3 and 7 for the stochastic DFNs, and t = 0.5 and t = 10 for the UFM.

Poisson, power-law
Poisson, constant size size distribution UFM

p = 3 p = 7 p = 3 p = 7 t = 0.5 t = 10

Measured percolation, p 3.1 ± 0.0 7.1 ± 0.0 3.1 ± 0.1 7.3 ± 0.1 5.0 ± 0.5 15.4 ± 0.8
Total fracture number 11761 ± 10 27448 ± 21 33068 ± 1910 73070 ± 5842 691 ± 17 8381 ± 74
Fracture number in backbone 8042 ± 99 27103 ± 25 2214 ± 750 42946 ± 6819 49 ± 6 5661 ± 96
Average fracture degree in backbone, n̄ 3.7 ± 0.0 7.1 ± 0.0 3.5 ± 0.1 4.2 ± 0.1 3.5 ± 0.1 4.7 ± 0.1
Max fracture degree in backbone, nmax 12 ± 1 21 ± 1 110 ± 34 494 ± 132 12 ± 1 310 ± 76

after the backbone selection, e.g., dead ends finishing with
a loop. In the graph simulations, they can correspond to the
same structures. However, the graphs predict zero flow in
some fractures that do contain flow in the complete simulation
[Fig. 9(a)]. We think that the flow on these fractures enters and
exit through the same intersection, but the fractures are not
part of a structural path. Therefore, the graphs predict zero
flows.

We select the fractures that contain significant flow in both
the complete and graph simulations to estimate the biases
as a function of the fracture flow, Q f ,DFN [Fig. 9(b)]. As
we wish to focus on the structure of the DFN flows rather
than on their magnitudes, the Q f ,DFN are normalized by the
complete simulation total flow [marked by * in Fig. 9(b)].
Over ∼2 orders of magnitude, Q f ,DFN is well estimated by
the graph flow simulation, and the variability remains low.
But, for lower values of Q f ,DFN, the graphs overestimates on
average the results, and the variability gets stronger.

FIG. 8. Averaged ratio between graph and complete simula-
tion permeabilities (resp. KG and KDFN), as a function of network
percolation. The DFNs have constant fracture sizes. Twenty DFN
realizations are performed for each percolation value (3,4,5,6,7). The
results of the fracture graph are presented with squares, and for
the intersection graph with triangles. For the intersection graph, the
results without the “multiple path” correction (Sec. III A 3) are also
represented with empty triangles.

B. Poissonian DFNs with power-law size distribution

The DFNs in this section are characterized by a power-law
density distribution of fracture sizes,

n(l ) = αl−a.

n(l )dl is the number of fractures per unit volume, whose size
is in the range [l, l + dl], a is the exponent, fixed to 4, and
α is the density term. Such DFNs are also characterized by
a power-law distribution of the fracture degree [Appendix,
Fig. 16(b)], which indicates that a few fractures have a very
high connection number [45].

In this complex structure, the permeability from the graph
simulation (KG) is slightly larger than the permeability from
the complete simulation (KDFN), and the difference increases
with the DFN percolation parameter (Fig. 10). In the fracture
graph, the overestimation (quantified by the ratio KG

KDFN
) ranges

on average from ∼1.5 for the lowest percolation to ∼2.1
for the highest percolation (Fig. 10, yellow squares). It is
slightly smaller in the intersection graph, from ∼1.2 to ∼1.8
(Fig. 10, yellow triangles) after applying the “multiple-paths”
correction (Sec. III A 3).

By comparing the fracture total exchanged flow, Q f , we
observe that there are a large number of fractures that do
not have flow within them in the fracture graph [Fig. 11(a),
red dots] but are flowing in the complete simulation. This
difference is not observed in the intersection graph (green
dots). Therefore, this bias results from the fracture graph
architecture. One can explain this by considering the alterna-
tive flowing paths formed by small fractures around a unique
large fracture. The structures formed by these fractures are
not necessarily dead ends. They can also be a loop structure
with their flowing entrance and exit located on a single large
fracture. In this case, the edges formed by fractures nodes
create structures that cannot flow because they are linked to
the same fracture node. This effect is more pronounced in the
DFNs with power-law size distribution because a lot of flow-
ing structures tend to be connected to a unique large fracture.
These differences and discrepancies highlight an important
limitation of using the fracture graph to resolve fracture net-
work flow.

Next, we isolate fractures that have flow both in the
complete and graph simulations, and we plot the graph bi-
ases ( Q f ,G

Q f DFN
) as a function of the real fracture flow, Q f ,DFN

[Fig. 11(b)]. The plots present the same trends as in the
constant sized networks, i.e., good predictions are obtained
for larger flows (Q∗

f ,DFN > 10−3; * means normalized by the
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FIG. 9. Fracture total exchanged flow, Qf (m3s−1), in DFNs with constant fracture sizes. (a) Comparison between graph (Qf ,G) and
complete simulations (Qf ,DFN) in one DFN realization with percolation 5. (b) Fracture with major flows are selected [dashed square in (a)] and
the averaged ratio between Qf ,G and Qf ,DFN is represented as a function of Qf ,DFN.Twenty DFN realizations are performed for each percolation
value (3,7). The results of the fracture graph are presented with squares, and for the intersection graph with triangles. The results are normalized
by the total flow from the complete simulation (marked by *).

DFN total flow) and overestimations for small flow (Q∗
f ,DFN <

10−3).
In the intersection graph, the fracture flow distribution

is improved by the “multiple-paths” correction defined in

FIG. 10. Averaged ratio between graph and complete simulations
permeability (resp. KG and KDFN), as a function of network percola-
tion. The DFNs have a power-law size distribution with exponent
4. Twenty DFN realizations are performed for each percolation
value (3,4,5,6,7). The results of the fracture graph are presented
with squares, and for the intersection graph with triangles. For the
intersection graph, the results without the “multiple path” correction
(Sec. III A 3) are also presented with empty triangles.

Sec. III A 3. Without this correction, major flows present
stronger graph biases than smaller flows [gray dashed lines,
Fig. 11(b)], thereby indicating that this correction is critical
in the intersection graph, not only to estimate properties at
a large scale, like DFN permeability, but also to estimate
properties at a smaller scale, like the correct fracture flow
distribution, Q f .

The overestimations of the graph simulations relative to the
complete simulations can be attributed to the fact that the edge
conductances have been defined for a case of fracture with two
intersections and do not consider that this surface may have to
be shared between several flowing intersections. In this latter
case, the edge conductance should overestimate the flow on
the fracture plane. To check if a positive correlation exists
between the intersection number on the fracture and the graph
biases, we plot the ratio Q f ,G

Q f DFN
as a function of the fracture

degree, ni (Fig. 12). However, even if the fracture degree dis-
tribution is very wide in this DFN type, no positive correlation
is observed: the highest overestimations are observed for the
smallest degrees, similar to the comparison with fracture flow
in Fig. 11(b). A possible explanation for this result is that, in
one realization, major flow biases happening in fractures with
high connectivity influence the rest of the fractures.

C. UFM networks

UFM is a genetic fracture network model, where fractures
are generated with nucleation, growth, and arrest processes
[19,36]. The nucleation consists of generating fracture nuclei
with a Poissonian process for their position and orientations,
at a given rate ṅ (s−1). Then, fracture nuclei grow with at a
rate v (m s−1) that is function of the fracture size l: v(l ) =
Cle, where e is the growth exponent and C the growth rate
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FIG. 11. Fracture total exchanged flow, Qf (m3s−1), in DFNs with powerlaw fracture size distribution. (a) Comparison between graph
(Qf ,G) and complete simulations (Qf ,DFN) in one DFN realization with percolation 5. (b) Fracture with major flows are selected (dashed square
on Figure a)) and the averaged ratio between Qf ,G and Qf ,DFN is represented as a function of Qf ,DFN. Twenty DFN realizations are performed
for each percolation value (3, 7). The results of the fracture graph are presented with squares, and for the intersection graph with triangles. The
results are normalized by the total flow from the complete simulation (marked by *).

parameter. Fractures stop growing if they cross another frac-
ture with a larger size. In this study, ṅ is chosen very small
relative to C (Table I) so that fractures grow and stop one after

FIG. 12. Fracture total exchanged flow, Qf (m3s−1), in DFNs
with power-law fracture size distribution. Fractures with major flows
are selected [dashed square in Fig. 11(a)] and the averaged ratio
between Qf ,G and Qf ,DFN is represented as a function of the fracture
degree. Twenty DFN realizations are performed for each percolation
value (3,7). The results of the fracture graph are presented with
squares, and for the intersection graph with triangles. The results are
normalized by the total flow from the complete simulation (marked
by *).

the other. The process leads to fractures with a power-law size
distribution with an exponent of −4, and a large number of
T intersections (one fracture abutting another) [35]. Regard-
ing the topology, the degree distribution is also power-law
shaped (Appendix, Fig. 16), but fractures present a lower
degree (fewer intersections) than in an equivalent Poissonian
network [35]. The UFM is also characterized by numerous
intersections whose size is much smaller than the fracture size
because of the arrest rule. We take UFM networks as examples
of complex structures with characteristics different from the
Poissonian networks described in the previous section.

As for the Poissonian network with power-law size dis-
tribution, permeabilities from the graph simulations (KG) are
overestimated relative to the complete simulation (KDFN), and
the overestimation increases with the DFN percolation param-
eter [Fig. 13(a)]. However, the comparison with the other DFN
types (Secs. IV A and IV B) indicates that the percolation
parameter does not explain the overestimation because the
evolution of KG

KDFN
with this parameter is different within each

DFN type.
As stated earlier in Sec. IV B, the conductance defined for

a fracture case with two intersections hypothetically overesti-
mates the complete flow simulation in DFNs having fractures
with many flowing intersections. However, there is no cor-
relation between the graph flow biases measured at fracture
scale with the intersection number of the fracture, or fracture
degree (Fig. 12), because the flow is mostly influenced by
the best connected fractures present in the DFN. A better
way to obtain a correlation between the graph biases and the
fracture degree is to observe the effect of these most con-
nected fractures on the graph biases. To this end, we represent

KG
KDFN

as a function of the maximum fracture degree present
in the DFN, nmax, for the three DFN types [Fig. 13(b)]. The
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FIG. 13. Averaged ratio between graph and complete simulations permeability (resp. KG and KDFN), as a function of network percolation
(a), and as a function of the network maximum fracture degree (b). The DFNs are UFM networks (cyan). The results of the fracture graph are
presented with squares, and for the intersection graph with triangles.

results indicate a positive correlation between KG
KDFN

and nmax,
which is common to the three DFN types. This confirms
that the conductance defined in Sec. III overestimates the
flow when fractures have many intersections. However, this
result also indicates that the overestimation is rather slight:
it reaches only values of ∼2.2 and ∼1.8 respectively for the
fracture graph and the intersection graph, for fractures that
are highly connected (ni ∼ 400). The method can thus still
predict correct flow orders, even when the DFNs have some

highly connected fractures. Besides, the correlation can be
quantified by a power-law relationship with exponents ∼0.22
for the fracture graph and ∼0.19 for the intersection graph
(gray dashed lines in [Fig. 13(b)]), which could be used as
an additional correction factor based on the highest fracture
degree measured in the DFN.

Similar to the Poissonian power-law network (Sec. IV B),
a comparison of the total flow exchanged by fracture in-
dicates that some zero-flow artifacts are observed for the

FIG. 14. Fracture total exchanged flow, Qf (m3s−1), in UFM networks. (a) Comparison between graph (Qf ,G) and complete simulations
(Qf ,DFN) in one UFM realization. (b) Fracture with major flows are selected [dashed square in (a)] and the averaged ratio between Qf ,G and
Qf ,DFN is represented as a function of Qf ,DFN. The results of the fracture graph are presented with squares, and for the intersection graph with
triangles. The results are normalized by the total flow from the complete simulation (marked by *).
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fracture graph [red dots, Fig. 14(a)]. After selecting the flow-
ing fractures [Fig. 14(b)], the graph estimations are close to
the complete simulation values over 2 orders of magnitude.
However, as in Poissonian DFNs, both graphs overestimate
the results for lower values of Q f ,DFN.

V. CONCLUSION

We have developed an analytical definition of the edge con-
ductance for use in resolving flow in graphs that are equivalent
to three-dimensional DFNs, in the case where the transmissiv-
ity by fractures is constant. Two graph types were analyzed in
this study: a graph of fractures and a graph of intersections.
In both graph types, we have derived an edge conductance
equivalent to the fracture flowing surface by including the
fracture size in the definition. We have observed, first at a
single fracture scale, that this definition of the conductance is
adapted to predict the flow through one fracture with two in-
tersections across a wide range of intersection configurations.
Besides, this definition is more accurate than previous defini-
tions [32], mostly when the intersections are small compared
to the fracture size.

The fracture graph and the intersection graph are two
possible simplified representations of a DFN; however, the
way they are constructed causes different issues when solving
flow directly with the graph. The intersection graph creates
an n-clique on each fracture having n intersections (a clique
is characterized by every two nodes being connected). This
feature implies that, as soon as the number of intersections
is higher than 2 on a fracture, many graph paths exist from
one intersection node to another on this fracture. In turn, the
equivalent flowing surface artificially increases and produces
strong biases in the graph estimations. Therefore, in the inter-
section graph, the initial conductance definition is completed
by including a correction factor that accounts for the number
of intersections on a fracture (“multiple-paths correction”).
This correction markedly improves the intersection graph flow
estimations in every DFN type that were tested in this study.
In the fracture graph, no such multiple paths exists and a
correction of this type is therefore not needed. However, a
disadvantage of using the fracture graph is that particular
regions of the DFN are no-flow when they should not be. We
have observed that this graph type does not permit solving the
flow in parts of the DFN that are connected to a large unique
fracture, which is often the case in DFNs with power-law
fracture size distribution. In turn, the local flow exchange rates
are incorrect in these regions.

The robustness of the conductance definitions was tested in
a suite of large networks, by comparing both graph flow sim-
ulations to the complete DFN flow simulation. DFNs exhibit
a range of connectivity complexity, which, in turn, can induce
graph flow overestimations because fracture surfaces have to
be partitioned into several flowing paths. We have evaluated
these potential graph biases for DFNs with increasing con-
nectivity complexity: stochastic DFNs with constant fracture
sizes, stochastic DFNs with a power-law size distribution, and
UFM networks. Two scales were evaluated: the DFN scale
and the fracture scale. At the DFN scale, the topology, i.e.,
how fractures relate to each other, explains the measured flow
biases in both graph types. A common positive correlation

between the graph biases and the DFN maximum fracture
degree was observed and quantified. However, these biases
are relatively small in both graph types (× ∼ [1, 2.5]) com-
pared to the range of equivalent permeabilities that have been
computed (on average K ∈ [10−3, 10−1] m s−1), which makes
the method promising for a quick estimate of large DFN
equivalent permeabilities. At the fracture scale, no correlation
could be highlighted between the fracture degree and graph
flow biases.

We have also evaluated the ability of the graph to reproduce
the DFN flowing structure by comparing graph flow and DFN
flow at the fracture scale. In all the DFNs, the flow structure
was respected in the graph over ∼2 magnitude orders. How-
ever, for fractures carrying smaller flows (Q∗

f � 10−2–10−3),
the variability inevitably increases and the graphs on average
overestimate the flow results.

An advantage of the graph is the reduced computational
time required for the graph simulations. For example, the
Poissonian DFNs with power-law size distribution and per-
colation 7 (Sec. IV B) has on average 43 000 fractures. In
the complete flow simulations, each network is meshed with
about 5 × 106 cells, and it takes around 500 s to mesh and
solve the flow. In the equivalent graphs, the complexity is
reduced to average numbers of 44 000 vertices in the fracture
graph and 97 000 in the intersection graph. The CPU times
to generate one graph from the DFN and solve the flow are
reduced to 3 s for the fracture graph, and 40 s for the intersec-
tion graph, which translates to speed-ups of 102 and 10 times
respectively.

If the flow is adequately estimated by the graph-based
models, they can be used to reduce the cost of DFN modeling
with little loss of information, thus making possible the cal-
culation of flow in DFN models with fracture sizes spanning
multiple orders of magnitude. The practical applications with
graph-based models are to simplify the DFN structure before
calculating flow or transport properties (e.g., selecting the net-
work backbone or important paths), or to consider very large
ensembles of DFN models with both high- and low-fidelity
descriptions to quantify the variability and uncertainty in these
systems (O’Malley et al. [33] and Berrone et al. [34]).

FIG. 15. Schema and notations used for the analytical definition
of flow conductance between two parallel lines.
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APPENDIX

1. Analytical definition of conductance between two parallel
lines (trapezoid)

We set x ∈ [0, xBb]. We set constant heads (m), HB at
the base of size lB, and Hb at the base of size lb, and make
the hypothesis that equipotential lines between lb and lB are
parallel (dashed lines in Fig. 15 )

The total flow Q from lb to lB (m3s−1) can be written from
Darcy’s law as

Q = T l (x)
dh

dx
. (A1)

with l (x), the width through which the fluid flows at location
x, defined as

l (x) = lb + x

xBb
(lB − lb). (A2)

T is the fracture transmissivity (m2s−1) and dh
dx the head

gradient along x.

We can write

hB − hb =
∫ xBb

0
dh . (A3)

Combining (A1) and (A3) we obtain

hB − hb = Q

T

∫ xBb

0

dx

l (x)
. (A4)

The equivalent conductance C (m2s−1) between both bases
is defined as

C = Q

hB − hb
. (A5)

Combining (A4), (A4), and (A5) we obtain

1

C
= 1

T

∫ xBb

0

dx

lb + x
xBb

(lB − lb)
. (A6)

Solving the integral leads to the following expression:

C = T
lB − lb

xBb [ln (lB) − ln (lb)]
. (A7)

ln(x) is the base e logarithm.

2. DFN fracture degree distributions

For each DFN type simulated in the present study, we
provide in Fig. 16 the average and standard deviation of the
degree distributions computed in the different realisations.
These representations highlight the different structures of the
simulated DFNs.

FIG. 16. Averaged fracture degree distribution in (a) Poissonian DFNs with constant fracture size, (b) Poissonian DFNs with power-law
size distribution, and (c) UFM. The fracture degree is computed after backbone selection; isolated clusters and dead ends are removed from the
network. Results are presented for different DFN percolations p, except for the UFM, in which results are presented for the different network
growth times we have simulated.
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