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In this paper, we investigate the dynamics of an initially vertical vortex embedded in a
shear flow in a stratified fluid by means of a long-wavelength analysis. The main goal is to
determine, whether or not, the Kelvin-Helmholtz instability can develop unconditionally
as speculated by Lilly (1983). The analysis is performed in the case of the Lamb-Oseen
vortex profile and a shear flow uniform in the horizontal and varying sinusoidally along
the vertical using the assumption k̂za0Fh � 1, where k̂z is the vertical wavenumber, a0
the vortex radius and Fh the horizontal Froude number based on the circulation of the
vortex. The results show that the vortex axis is not only advected in the direction of the
shear flow but also in the perpendicular direction owing to the self-induced motion of the
vortex. In addition, internal waves are transiently excited at the beginning, generating an
initial non-hydrostatic regime. Their relative effects on the displacements of the vortex
axis are weak except initially. The angular velocity of the vortex decays owing to a
dynamic effect and viscous effects related to the vertical shear. The former effect is due
to the squeezing of isopycnals in the vortex core which implies a decrease of the vertical
vorticity to satisfy potential vorticity conservation. In addition, a horizontal velocity field
with an azimuthal wavenumber m = 2 is generated meaning that the shape of the vortex
becomes slightly elliptical. We further show that the minimum asymptotic Richardson
number is bounded min(Ri) > 3.43 when k̂za0Fh � 1 and therefore can not go below
the critical value 1/4. This is because the growth of the vertical shear of the horizontal
velocity of the vortex saturates owing to the decay of its angular velocity and because the
squeezing of isopycnals increases the stratification strength. This suggests that the shear
instability can not always develop in strongly stratified flows, contrary to the conjecture
of Lilly (1983). These predictions will be tested against Direct Numerical Simulations
in part 2.

Key words:

1. Introduction

Stratified turbulence is strongly anisotropic with predominantly horizontal motions but
high shear along the vertical (Riley & Lelong 2000). Such layered structure inherently
promotes the shear instability which breaks down the layers into smaller-scale turbulence
(Lilly 1983; Riley & deBruynKops 2003; Lindborg 2006). This is thought to be one of
the main mechanisms that accomplish the direct energy cascade towards small scales in
stratified turbulence (Riley & deBruynKops 2003; Laval et al. 2003; Brethouwer et al.
2007; Deloncle et al. 2008; Augier & Billant 2011; Augier et al. 2012; Waite 2013).

† Email address for correspondence: billant@ladhyx.polytechnique.fr
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In his pioneering paper on strongly stratified flows, Lilly (1983) has conjectured a
simple mechanism for the growth of the vertical shear. He considered a uniform horizontal
flow directed along a given direction, let us say x, and vertically sheared: U = U(z)ex
where z is the vertical coordinate. If a coherent structure with initial horizontal velocity
uh0(x, y, z) is embedded within this shear flow, it will be advected differentially depending
on the vertical position:

∂uh
∂t

= −U ∂uh
∂x

. (1.1)

Lilly has further assumed that the coupling along the vertical is weak in the limit of
strong stratification. When the vertical coupling is zero, the flow consists in a stack
of horizontal two-dimensional flows evolving independently at each level z. Then, the
solution at any time is simply: uh(x, y, z, t) = uh0(x − U(z)t, y, z). This shows that the
vertical shear should grow algebraically with time according to

∂uh
∂z

= −dU

dz
t
∂uh0
∂x

+
∂uh0
∂z

. (1.2)

On this basis, Lilly (1983) argued that the Richardson number should sooner or later
reach the critical value 1/4 for the onset of the shear instability (Miles 1961; Howard
1961). However, a key assumption behind this conjecture is that there is no vertical
coupling. This derives directly from Lilly’s assumption that the vertical Froude number
tends to zero in the limit of strong stratification. It is now acknowledged that the vertical
Froude number remains of order unity because the typical vertical length scale is the
buoyancy length scale in strongly stratified flows (See among others, Herring & Métais
1989; Billant & Chomaz 2000, 2001; Laval et al. 2003; Godeferd & Staquet 2003; Waite
& Bartello 2004; Lindborg 2006).

It is therefore unknown whether or not this mechanism for the growth of the vertical
shear is valid. In order to answer this question, we have considered the particular case of
an initially vertical vortex in an ambient vertically sheared flow in a stratified fluid. This
flow configuration is sketched in figure 1 together with the example of a direct numerical
simulation illustrating the vortex evolution. In the present paper, we shall study the
dynamics of this flow by an asymptotic analysis while direct numerical simulations will
be performed in a second part (Billant & Bonnici 2020).

The dynamics of an isolated vortex in an ambient sheared flow has been studied before
in stratified rotating fluids in order to understand the dynamics of atmospheric tropical
cyclones (Jones 1995, 2000a,b, 2004; Sutyrin & Morel 1997; Frank & Ritchie 1999; Reasor
et al. 2004; Päschke et al. 2012) or oceanic vortices (Vandermeirsch et al. 2001, 2002).
In particular, Jones (1995), using a three-dimensional continuous hydrostatic primitive
equation model, has shown that an initially barotropic vortex in a linear shear flow tilts
in the shear direction but also executes a cyclonic rotation about its mid-level center.
Päschke et al. (2012) have derived asymptotic equations for the motion of the vortex
center in the case of a weak shear flow.

The influence of a vertical shear on an initially aligned vortex has been also investigated
by means of quasigeostrophic two-layer models (Marshall & Parthasarathy 1993; DeMaria
1996; Smith et al. 2000; Vandermeirsch et al. 2001, 2002). Marshall & Parthasarathy
(1993) have reported two distinct evolutions depending on the strength of the vortices
compared to the shear. When the advection by the shear is below a critical value,
the vortices in each layer are offset and rotate about each other. Conversely, when the
advection is sufficiently strong, the two vortices are continuously advected away from each
other. These two regimes have been called non-tearing and tearing regimes, respectively.

In contrast, the dynamics of an isolated vortex subjected to a vertical shear in stratified
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Figure 1. (a) (Colour online) Sketch of the flow configuration studied in this paper. The ambient
shear flow U(z)ex is represented by the black vectors. The dark grey (red) and light grey (yellow)
contours show two levels of the potential vorticity of the vortex at t = 0. (b) Potential vorticity
contours at t = 20 obtained from a direct numerical simulation for the Froude and Reynolds
numbers Fh = 0.1, Re = 6000 and the shear flow U = US sin(kzz) with US = 0.2 and kz = π.
These parameters are defined in §2. See Billant & Bonnici (2020) for the details of the numerical
simulations.

non-rotating fluids has been little investigated so far. Boulanger et al. (2007, 2008)
have considered the dynamics of a vortex slightly tilted with respect to the direction
of stratification. However, the tilt of the vortex is not created by an external shear flow
but by the method of generation of the vortex. Majda & Grote (1997) have studied the
effect of a vertically sheared mean horizontal flow on a vortex pair but only by means
of the reduced equations of Lilly (1983) which are valid in the limits of zero vertical
and horizontal Froude numbers. Here and in part 2 (Billant & Bonnici 2020), we will
study the dynamics of a Lamb-Oseen vortex in a sinusoidally sheared flow using the full
Navier-Stokes equations under the Boussinesq approximation in the aim of testing Lilly’s
conjecture for the growth of vertical shear.

In the present paper, an asymptotic analysis is conducted in §3 for long vertical
wavelength following a similar approach as used by Billant (2010) to describe the zigzag
instability of columnar vortices in stratified-rotating fluids. This analysis provides the
governing equations for the displacements of the vortex center (§3.2.1) and the evolution
of its vertical vorticity (§3.2.2) due to the shear flow. These equations are further analyzed
in §4.2 and §4.1, respectively. The evolution of the Richardson number is then studied in
§4.3. These asymptotic predictions will be compared to Direct Numerical Simulations
(DNS) in part 2.

2. Formulation of the problem

2.1. Governing equations

We consider the incompressible Navier-Stokes equations written within the Boussinesq
approximation

∇ · u = 0, (2.1)

∂u

∂t
+ (u · ∇)u = −∇

(
p

ρ0

)
+ bez + ν∇2u, (2.2)
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∂b

∂t
+ u · ∇b+N2w = κ∇2b, (2.3)

with u = (u, v, w) being the velocity field in cartesian coordinates (x, y, z), p the pressure,
b = −gρ/ρ0 the buoyancy, g the gravity, ez the vertical unit vector oriented upwards,
ν the viscosity, and κ the buoyancy diffusivity. The total density field ρt has been
decomposed as ρt (x, t) = ρ0 + ρ̄(z) + ρ (x, t), ρ0 being a constant reference density,
ρ̄ a linear mean density profile varying with the vertical coordinate z, and ρ (x, t) a
perturbation density. The Brunt-Väisälä frequency measuring the ambient stratification
N =

√
−g/ρ0dρ̄/dz is assumed constant.

2.2. Initial condition

The initial flow is made of a columnar vortex embedded in a sinusoidal shear flow
of the form US = U(z)ex, where U(z) = ÛS sin(k̂zz), ex is the unit vector in the x

direction, ÛS the amplitude and k̂z the vertical wavenumber. The vortex is chosen to
have a Lamb-Oseen profile:

uv =
Γ

2πr

[
1− exp

(
− r

2

a20

)]
eθ, (2.4)

where (r, θ, z) are cylindrical coordinates such that x = r cos(θ) and y = r sin(θ), Γ is
the vortex circulation, a0 its radius, and eθ the unit vector in the azimuthal direction.
Without loss of generality, the vortex circulation will be considered positive in the
following.

The total initial flow is therefore:

u(x, t = 0) = US + uv. (2.5)

2.3. Non-dimensionalization

The equations (2.1-2.3) are non-dimensionalized by the characteristics of the vortex:
the length and time units are taken as the vortex radius a0 and the turnover time scale
2πa20/Γ . Keeping the same notation for the non-dimensional variables, the dimensionless
equations read

∇h · uh +
∂w

∂z
= 0, (2.6)

∂uh
∂t

+ (uh · ∇h)uh + w
∂uh
∂z

= −∇hp+
1

Re
∇2uh, (2.7)

∂w

∂t
+ uh ·∇hw + w

∂w

∂z
= −∂p

∂z
+ b+

1

Re
∇2w, (2.8)

∂b

∂t
+ uh ·∇hb+ w

∂b

∂z
= − w

F 2
h

+
1

ReSc
∇2b, (2.9)

where uh denotes the horizontal velocity. The Reynolds and Froude numbers are defined
as

Re =
Γ

2πν
, Fh =

Γ

2πa20N
, (2.10)

and Sc = ν/κ is the Schmidt number.
In non-dimensional form, the velocities of the shear flow and the vortex become

US = US sin(kzz)ex, uv = uθ(r)eθ =
1− exp(−r2)

r
eθ, (2.11)

where US = ÛS2πa0/Γ and kz = k̂za0. The corresponding wavelength is lz = 2π/kz.
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3. Long-wavelength dynamics of the vortex

The dynamics of the vortex can be described asymptotically for finite time in the limit
of small vertical wavenumber. Indeed, when kz = 0, i.e. in the two-dimensional limit, an
exact solution is

uh = uh0(x− Ut, y) + Uex, (3.1)

which means that the vortex is simply advected at constant speed U . This solution is
expected to remain valid at leading order when ε = kzFh is small, i.e. when the vertical
variations ∂/∂z of U(z) rescaled by the Froude number Fh are weak:

ε = O

(
Fh

∂

∂z

)
� 1. (3.2)

We consider that the small parameter is kzFh instead of kz because of the self-similarity
of strongly stratified fluids (Billant & Chomaz 2001). Indeed, this self-similarity implies
that the horizontal velocity depends on Fh and kz only through their product kzFh when
the fluid is strongly stratified, Fh < 1. This means that the condition ε � 1 can be
fulfilled either by having kz � 1, Fh < 1 or kz � 1, Fh � 1 provided that kzFh � 1.
In order to encompass both cases, the first part of the asymptotic analysis will only
assume Fh < 1. Nevertheless, the second part will assume Fh � 1 in order to simplify
the calculations. Consistently with (3.2), we rescale the vertical coordinate as follows:

z̃ =
ε

Fh
z, (3.3)

so that ∂/∂z̃ = O(1) and the rescaled wavenumber is k̃z = kzFh/ε ≡ 1. Then, we can
express the horizontal velocity in the form of an asymptotic expansion:

uh = uh0(x− U(z̃)t− δx, y − δy, z̃, τ) + U(z̃)ex + ε2uh1(x, y, z̃, t, τ) + O(ε4), (3.4)

where δx(z̃, τ) and δy(z̃, τ) are corrections to the displacements of the vortex center
varying along the vertical and with the slow time scale τ = ε2t. This choice for the
scaling of the slow time scale is explained in details in appendix A. We also define local
horizontal cartesian coordinates (x̃, ỹ) centered on the vortex center at the level z̃:

x̃ = x− U(z̃)t− δx(z̃, τ), ỹ = y − δy(z̃, τ). (3.5)

The cylindrical coordinates associated to these new coordinates are denoted with a
tilde (x̃, ỹ) = (r̃ cos θ̃, r̃ sin θ̃). In addition to the horizontal velocity, the other fields are
expanded in the form:

p = p0(x̃, ỹ, τ) + ε2p1(x̃, ỹ, z̃, t, τ) + O(ε4), (3.6)

w = εFh
[
w0(x̃, ỹ, z̃, t, τ) + ε2w1(x̃, ỹ, z̃, t, τ) + O(ε4)

]
, (3.7)

b =
ε

Fh

[
b0(x̃, ỹ, z̃, t, τ) + ε2b1(x̃, ỹ, z̃, t, τ) + O(ε4)

]
, (3.8)

where the vertical velocity and the buoyancy have been scaled by εFh and ε/Fh,
respectively, for convenience. These scalings are equivalent to those of Billant & Chomaz
(2001) for strongly stratified flows. Weak viscous effects will also be taken into account
by assuming a large buoyancy Reynolds number such that

1

ReF 2
h

=
ε2

R̃eb
, (3.9)

where R̃eb = O(1).
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The expansions (3.4, 3.6, 3.7, 3.8) will be introduced in the governing equations (2.6-
2.9). It will be useful to consider also the equation for the vertical vorticity ζ = ∂v/∂x−
∂u/∂y:

∂ζ

∂t
+ uh ·∇hζ + w

∂ζ

∂z
= ωh ·∇hw + ζ

∂w

∂z
+

1

Re
∇2ζ, (3.10)

where ωh is the horizontal vorticity.

Because of the introduction of the local coordinates (x̃, ỹ) that depend on t, τ and z̃
(see (3.5)), the time and vertical derivatives of any quantity Λ in (2.6-2.9) and (3.10)
become:

∂Λ

∂t
=

(
∂Λ

∂t

)
x̃,ỹ,τ

− U(z̃)
∂Λ

∂x̃
+ ε2

[(
∂Λ

∂τ

)
x̃,ỹ,t

− ∂δx

∂τ

∂Λ

∂x̃
− ∂δy

∂τ

∂Λ

∂ỹ

]
, (3.11)

∂Λ

∂z
=
ε

Fh

[(
∂Λ

∂z̃

)
x̃,ỹ

−
(
t
dU

dz̃
+
∂δx

∂z̃

)
∂Λ

∂x̃
− ∂δy

∂z̃

∂Λ

∂ỹ

]
. (3.12)

It is important to remark the presence of the term tdU/dz̃ in (3.12). Because of this
term, the long-wavelength assumption (3.2) is a priori expected to be no longer valid
when εtdU/dz̃ > 1, i.e. when εt > 1 since the shear flow U = US sin(k̃z z̃) will be
considered of order unity in the following.

Although the present asymptotic analysis is strictly valid only when t� 1/ε, we should
keep in mind that the timescale τ̃ = εt = O(1) is of particular interest even if a rigorous
asymptotic analysis can not be conducted under this assumption. For this reason, we will
keep also the leading order viscous effects that are of order unity when t = O(1/ε), i.e.
τ̃ = O(1). The purpose is to be as general as possible.

We now solve the leading order problem in §3.1 and the first order problem in §3.2.
The reader that is interested only by the resulting equations can directly jump to §§4.1
and 4.2 where the equations for the angular velocity of the vortex and the displacements
(δx, δy) are analyzed, respectively.

3.1. Leading order problem

At leading order, (2.6-2.9) reduce to:

∇h · uh0 = 0, (3.13)

(uh0 · ∇h)uh0 = −∇hp0, (3.14)

F 2
h

[(
∂w0

∂t

)
x̃,ỹ,τ

+ uh0 ·∇hw0

]
= −∂p0

∂z̃
+ b0, (3.15)(

∂b0
∂t

)
x̃,ỹ,τ

+ uh0 ·∇hb0 = −w0, (3.16)

where the operator ∇h is with respect to x̃ and ỹ, or equivalently r̃ and θ̃. Note that the
advection by the shear flow U(z̃)∂/∂x̃ is absent in (3.14-3.16) since it cancels with the
term coming from the time derivative (see (3.11)).

The equations (3.13)-(3.14) are the steady two-dimensional Euler equations. Consis-
tently with the initial conditions chosen in §2.2, we take an axisymmetric vortex at
leading order, namely uh0 = r̃Ω(r̃, z̃, τ)eθ̃. Even if the angular velocity does not depend
on the vertical coordinate z̃ initially, we will see that such dependence appears with time.
In order to simplify the notation, Ω is not denoted with a subscript 0 although it is a
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zeroth-order quantity. Then, (3.14) reduces to:

∂p0
∂r̃

= r̃Ω2, (3.17)

which is the balance between the centrifugal force and the radial pressure gradient as if
the shear flow were absent. This gives

p0 =

∫ r̃

ξΩ2(ξ, z̃, τ)dξ. (3.18)

Therefore, the vertical pressure gradient is given by

∂p0
∂z̃

=

(
∂p0
∂z̃

)
r̃,θ̃

+
∂r̃

∂z̃

∂p0
∂r̃

+
∂θ̃

∂z̃

∂p0

∂θ̃
(3.19)

=

∫ r̃

ξ
∂Ω2

∂z̃
dξ −

[
cos(θ̃)

(
dU

dz̃
t+

∂δx

∂z̃

)
+ sin(θ̃)

∂δy

∂z̃

]
r̃Ω2, (3.20)

since (3.5) implies:

∂r̃

∂z̃
= − cos(θ̃)

(
dU

dz̃
t+

∂δx

∂z̃

)
− sin(θ̃)

∂δy

∂z̃
, (3.21)

∂θ̃

∂z̃
=

sin(θ̃)

r̃

(
dU

dz̃
t+

∂δx

∂z̃

)
− cos(θ̃)

r̃

∂δy

∂z̃
. (3.22)

Equation (3.20) shows that a vertical pressure gradient appears as soon as the vortex
axis is inclined by the ambient shear (second term in the right-hand side) and if the
angular velocity Ω varies with z̃ (first term). This vertical pressure gradient will force
a vertical velocity and a buoyancy fields through (3.15) and (3.16). Since the fluid is
strongly stratified, most of the vertical pressure gradient is balanced by buoyancy (i.e.
the hydrostatic balance) whereas a vertical velocity is generated mainly to satisfy the
buoyancy equation. Using (3.20) and the expression of uh0, they can be found as

w0 = C
dU

dz̃

[
cos(θ̃)F − t sin(θ̃)Ω −F cos(Ωt− θ̃) cos

(
t

Fh

)
− 2G sin(Ωt− θ̃) sin

(
t

Fh

)]
+

[
− sin(θ̃)

∂δx

∂z̃
+ cos(θ̃)

∂δy

∂z̃

]
CΩ, (3.23)

b0 = −FhC
dU

dz̃

[
2 sin(θ̃)G +

t

Fh
cos(θ̃) + 2G sin(Ωt− θ̃) cos

(
t

Fh

)
−F cos(Ωt− θ̃) sin

(
t

Fh

)]
−
[
cos(θ̃)

∂δx

∂z̃
+ sin(θ̃)

∂δy

∂z̃

]
C +

∫ r̃

ξ
∂Ω2

∂z̃
dξ, (3.24)

where the functions

C =
r̃Ω2

1− F 2
hΩ

2
, F =

1 + F 2
hΩ

2

1− F 2
hΩ

2
, G =

FhΩ

1− F 2
hΩ

2
, (3.25)

have no singular point since Ω < 1/Fh for all radius when Fh < 1. We have imposed that
the vertical velocity and the buoyancy are null at t = τ = 0 since the vortex is strictly
vertical and uniform at the start-up of the evolution.

The vertical velocity and buoyancy (3.23)-(3.24) contain four types of terms evolving
on three different time scales:

(i) the first two terms in the right-hand sides that grow linearly with the fast time t
in response to the shear flow U(z̃),
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(ii) internal waves (third and fourth terms) oscillating at the frequency 1/Fh (i.e. the
Brunt-Väisälä frequency in dimensional units) that are generated at the onset of the
motion. Strictly speaking, the coefficients in front of these terms are fixed at τ = 0.
However, it is also legitimate to let these terms evolve on τ like the other terms since the
evolution over the slow time scale τ is a higher order effect.

(iii) the fifth and sixth terms due to the slow evolution of the displacement corrections
δx and δy.

(iv) the buoyancy perturbation (last term of (3.24)) generated by the vertical variation
of the angular velocity through the hydrostatic balance.

In the limit t � 1, τ � 1, (3.23)-(3.24) rescaled by εFh and ε/Fh become at leading
order

w = εFhw0 =
1

2
cos(θ̃)r̃Ω2 dU

dz
t2 + O(t3, τ), (3.26)

b = ε
b0
Fh

= − 1

6F 2
h

cos(θ̃)r̃Ω2 dU

dz
t3 + O(t4, τ), (3.27)

since δx, δy and the vertical variation of Ω are neglible for τ � 1. The vertical velocity
and buoyancy are therefore of the form w ∝ t2 and b ∝ t3 at leading order in time. By
means of an asymptotic expansion for small times, it can be shown that these scaling
laws are in fact valid for any finite vertical wavenumber (Bonnici 2018). Equations (3.26)
and (3.27) imply that the ratio of the vertical acceleration to the buoyancy is

∣∣∣∣1b Dw

Dt

∣∣∣∣ = 6

(
Fh
t

)2

. (3.28)

Therefore, for small times such that t � Fh, the buoyancy is negligible relative to the
vertical acceleration, meaning that the dynamics is initially non-hydrostatic. This comes
from the generation of internal waves of frequency 1/Fh. This transient non-hydrostatic
phase lasts until t = O(Fh). For t� Fh, the amplitude of the waves in (3.23)-(3.24) will
become small relative to the terms that grow linearly with time so that w ∝ F 2

h t and
b ∝ t. The hydrostatic balance will be therefore recovered since w/b = O(F 2

h ).

Although the component of the internal waves have been determined explicitly in (3.23-
3.24), it should be stressed that their asymptotic calculation is actually not uniformly
valid when ε = kzFh is small. It is valid only when kz is small but not if Fh is small
and kz finite. This limitation comes from the fact that internal waves oscillating at the
fast frequency 1/Fh do not depend on kz and Fh only through the self-similar parameter
kzFh unlike advective motions in strongly stratified fluids (Billant & Chomaz 2001).
This can be easily seen by considering the full dispersion relation of internal waves
in a medium at rest in Cartesian coordinates ω = kh/(Fh

√
k2h + k2z), where kh is the

horizontal wavenumber which is assumed of order unity. The frequency ω tends to 1/Fh
if kz � 1 but not if kz = O(1) and Fh � 1. In the latter case, the internal waves
could be computed only numerically. However, we have not attempted such a numerical
computation because we will see in part 2 that the waves actually quickly propagate away
from the vortex core when kz is finite. This is due to the fact that their radial group
velocity, which is proportional to k2z/Fh, is large in this case. Thus, their effect in the
vortex neighbourhood manifests only initially and is weak so that they can be completely
neglected for finite kz.
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3.2. First-order problem

At first order, it is more convenient to consider the divergence equation and the
equation for the vertical vorticity ζ1 = ∂v1/∂x̃− ∂u1/∂ỹ:

∇h · uh1 = −

[
∂w0

∂z̃
+
∂r̃

∂z̃

∂w0

∂r̃
+
∂θ̃

∂z̃

∂w0

∂θ̃

]
, (3.29)

∂ζ1
∂t

+ uh0 ·∇hζ1 + uh1 ·∇hζ0 = −∂ζ0
∂τ

+ cos(θ̃)
∂δx

∂τ

∂ζ0
∂r̃

+ sin(θ̃)
∂δy

∂τ

∂ζ0
∂r̃

+

[
dU

dz̃
+
∂r̃

∂z̃

∂u0
∂r̃

+
∂θ̃

∂z̃

∂u0

∂θ̃
+
∂u0
∂z̃

]
∂w0

∂ỹ
−

[
∂r̃

∂z̃

∂v0
∂r̃

+
∂θ̃

∂z̃

∂v0

∂θ̃
+
∂v0
∂z̃

]
∂w0

∂x̃

+ ζ0

[
∂w0

∂z̃
+
∂r̃

∂z̃

∂w0

∂r̃
+
∂θ̃

∂z̃

∂w0

∂θ̃

]
− w0

[
∂r̃

∂z̃

∂ζ0
∂r̃

+
∂ζ0
∂z̃

]
+
F 2
h∇2ζ0

R̃eb
, (3.30)

where ζ0 = 2Ω+ r̃∂Ω/∂r̃ is the vertical vorticity. In (3.29-3.30), all the time and vertical
derivatives are taken at constant (r̃, θ̃) but this is no longer mentioned to simplify the
notation. Such convention will be always used in the following. We remind also that
(u0, v0, w0) are the velocity components in cartesian coordinates. The equations (3.29-
3.30) show that the leading order vertical velocity w0 forces an horizontal flow at first
order. The forcing terms in the left-hand side of (3.30) correspond to the slow evolution
of ζ0 and the displacements δx, δy (first row), the tilting of horizontal vorticity into
vertical vorticity (second row), the stretching of vertical vorticity, the vertical advection
of vertical vorticity, and viscous effects (last row). Due to the expression of the vertical
derivative (3.12) (or see (3.19)), the latter term reads

F 2
h∇2ζ0 =

1

r̃

∂

∂r̃

(
r̃
∂ζ0
∂r̃

)[
F 2
h +

ε2t2

2

(
dU

dz̃

)2
]

+
ε2t2

2
r̃
∂

∂r̃

(
1

r̃

∂ζ0
∂r̃

)(
dU

dz̃

)2

cos(2θ̃)

− ε2t∂ζ0
∂r̃

d2U

dz̃2
cos(θ̃)− 2ε2t

∂

∂r̃

[
∂ζ0
∂z̃

]
dU

dz̃
cos(θ̃) + ε2

∂2ζ0
∂z̃2

, (3.31)

where we have taken into account only the terms proportional to tdU/dz̃ in (3.21) and
(3.22) and neglected the others. The expression (3.31) suggests that we should neglect all
the terms except the first one in the right-hand side since all the others are proportional
to ε2. However, some of these terms grow like t2 and can thus become of order unity
when εt = O(1). For this reason, we will take into account in the following the first three
terms (first row) which come from the horizontal and vertical dissipative terms and are
of order unity or grow like τ̃2 = ε2t2, while the last three terms (second row) related to
vertical dissipation will be neglected since they are at most of order ε for t = O(1/ε).
Note that for such large time, the terms proportional to tdU/dz̃ in (3.21) and (3.22) are
much larger than the others justifying the approximation made to derive (3.31).

We see in (3.31) that the viscous term contains azimuthal modes m = 0, 1, and 2.
In fact, the other forcing terms in (3.29) and (3.30) can be also decomposed into these
three azimuthal modes. Looking for example at the divergence equation (3.29), the term
∂w0/∂z̃ will produce terms proportional to cos(θ̃) or sin(θ̃) while the two other terms will
give azimuthal modes of the form cos(mθ̃) and sin(mθ̃) with m = 0 or m = 2. The right-
hand side of (3.30) can be decomposed similarly into the azimuthal modes m = 0, 1, 2.
For this reason, (3.29) and (3.30) can be solved by decomposing the horizontal velocity
into three potential and rotational components

uh1 =∇h (Φ10 + Φ11 + Φ12)−∇× (ψ10 + ψ11 + ψ12) ez. (3.32)
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corresponding to the azimuthal modes m = {0, 1, 2}, respectively. Then, (3.29) and (3.30)
each separate into three independent equations

∇2
hΦ1m = δDm (3.33)

L(ψ1m) ≡
[
∂

∂t
+Ω

∂

∂θ̃

]
∇2
hψ1m −

1

r̃

∂ζ0
∂r̃

∂ψ1m

∂θ̃
= δZm −

∂Φ1m

∂r̃

∂ζ0
∂r̃

, (3.34)

for m = {0, 1, 2}, where (δDm, δZm) correspond to the terms of the right-hand side of
(3.29) and (3.30) with azimuthal mode m. We will begin by solving the potential and
streamfunction (Φ11, ψ11) which will provide the governing equations for the displace-
ments (δx, δy). The potential and streamfunction (Φ10, ψ10) will be next determined in
§3.2.2 and will yield an evolution equation for the angular velocity Ω, whereas (Φ12, ψ12)
are solved in appendix D.

3.2.1. Determination of Φ11 and ψ11

We remind the reader that the angular velocity of the vortex is assumed to vary
over τ and z̃. However, these dependencies are unknown at this stage since they will be
determined only in §3.2.2. The equation (3.33) for the potential Φ11 is:

∇2
hΦ11 = −∂w0

∂z̃
. (3.35)

By imposing that Φ11 is not singular at r̃ = 0 and vanishes as r̃ tends to infinity, the
solution can be found by the method of variation of parameters

Φ11 =
1

2

[
sin(θ̃)

∂2δx

∂z̃2
− cos(θ̃)

∂2δy

∂z̃2

]
Φs +

1

2
t sin(θ̃)ΦpΩ

dU

dz̃

+
1

2

[
− cos(θ̃)Φpc + t sin(θ̃)Φps

] d2U

dz̃2
−
[
Φwc cos(θ̃) + Φws sin(θ̃)

] d2U

dz̃2
, (3.36)

where Φs, ΦpΩ , Φps, Φpc, Φwc and Φws are defined in appendix B. The terms associated
to these potentials correspond respectively to the effects of the displacements (Φs), the
vertical variations of the angular velocity (ΦpΩ), the shear flow (Φps, Φpc) and the internal
waves (Φwc, Φws). The vertical derivative of the angular velocity has been taken into
account only in the leading order term of the vertical velocity when t is large in order to
compute the second term in the first row of (3.36). Indeed, since the vertical variations
of Ω are significant only when t is large, at that time the vertical velocity (3.23) can be
approximated by w0 ' −t sin(θ̃)ΩC dU/dz̃.

The equation (3.34) for the streamfunction ψ11 is

L(ψ11) =

[
cos(θ̃)

∂δx

∂τ
+ sin(θ̃)

∂δy

∂τ
− ∂Φ11

∂r̃

]
∂ζ0
∂r̃

+ ζ0
∂w0

∂z̃
− w0

∂ζ0
∂z̃
− r̃ ∂Ω

∂z̃

∂w0

∂r̃
. (3.37)

The first two terms in the left-hand side of (3.37) come from the slow evolution of δx
and δy. The third term is the advection of ζ0 by the first order potential flow. The fourth
term is the stretching of ζ0. The fifth term comes from the vertical advection of ζ0. The
last term corresponds to the tilting of horizontal vorticity due to the vertical variation
of the angular velocity. The solution which is non-singular at r̃ = 0 can be also found by
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the method of variation of parameters

ψ11 =

[
cos(θ̃)

∂δy

∂τ
− sin(θ̃)

∂δx

∂τ

]
(r̃ + µr̃Ω) +

[
cos(θ̃)

∂2δx

∂z̃2
+ sin(θ̃)

∂2δy

∂z̃2

]
(ψs + αr̃Ω)

+ t cos(θ̃)(ψpΩ + λr̃Ω)
dU

dz̃
−
[
sin(θ̃) (λ0r̃Ω + λ1r̃ + ψps) + t cos(θ̃) (λ1r̃Ω + ψpc)

− cos(θ̃)

(
ψwc + r̃ΩCw − r̃

∂Sw

∂t

)
− sin(θ̃)

(
ψws + r̃ΩSw + r̃

∂Cw
∂t

)]
d2U

dz̃2
, (3.38)

where ψs, ψpΩ , ψps, ψpc are given in appendix C while ψwc and ψws will be defined
later. The subscript of these streamfunctions denote the same physical effects as for the
potentials in (3.36). The parameters µ, α, λ, λ0 and λ1 are arbitrary functions of z̃ and τ
while Cw and Sw are arbitrary functions of z̃, τ and t. These functions are free because

ψh = r̃Ω
[
cos(θ̃)f(t) + sin(θ̃)g(t)

]
+ r̃

[
sin(θ̃)f ′(t)− cos(θ̃)g′(t)

]
, (3.39)

is an homogeneous solution of (3.37) for any f and g depending on t. These solutions
derive from the translational invariance (Billant 2010). In order to fix these parameters,
we need to use a normalisation condition. Here, we have chosen to impose that the mean
displacement associated to the first order vorticity ∇2

hψ11 is zero, i.e.∫ 2π

0

∫ +∞

0

x∇2
hψ11r̃dr̃dθ̃ = 0,

∫ 2π

0

∫ +∞

0

y∇2
hψ11r̃dr̃dθ̃ = 0. (3.40)

In this way, only the displacements U(z̃)t + δx and δy of the leading order vorticity ζ0
will contribute to the mean displacement of the vortex. This will ease the comparison
with the numerical simulations performed in part 2 where the vortex displacements will
be computed from vertical vorticity centroids. Hence, to enforce (3.40), we impose that〈

∇2
hψ11, r̃

〉
≡
∫ +∞

0

∇2
hψ11r̃

2dr̃ = 0. (3.41)

In practice, we shall impose that each individual effect in (3.38) satisfies this condition.
This leads to

µ = 0, λ1 = −α =
1

2

〈
∇2
r̃ψpc, r̃

〉
, λ =

1

2

〈
∇2
r̃ψpΩ , r̃

〉
, λ0 =

1

2

〈
∇2
r̃ψps, r̃

〉
, (3.42)

since
〈
∇2
r̃(r̃Ω), r̃

〉
= −2, where the operator ∇2

r̃ is given by

∇2
r̃Λ =

∂2Λ

∂r̃2
+

1

r̃

∂Λ

∂r̃
− Λ

r̃2
, (3.43)

for any function Λ. Finally, the two streamfunctions ψwc and ψws associated to internal
waves satisfy

∂∇2
r̃ψwc
∂t

+Ω∇2
r̃ψws −

1

r̃

∂ζ0
∂r̃

ψws = −∂ζ0
∂r̃

∂Φwc
∂r̃

− ζ0∇2
r̃Φwc, (3.44)

∂∇2
r̃ψws
∂t

−Ω∇2
r̃ψwc +

1

r̃

∂ζ0
∂r̃

ψwc = −∂ζ0
∂r̃

∂Φws
∂r̃

− ζ0∇2
r̃Φws, (3.45)

where the potentials Φwc and Φws are given by (B 2)-(B 3) in appendix B. Because the
time and radial dependencies in Φwc and Φws are not separated, it is not possible to solve
(3.44) and (3.45) analytically. We have therefore implemented a numerical resolution of
(3.44)-(3.45). The time advancement is performed by a forward Euler scheme, spatial
derivatives are computed by centered finite differences, and the Laplacian operator is
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Figure 2. Streamfunctions (a) ψwc and (b) ψws plotted against r̃ at t = 0 (grey solid line),
t = 4 (black dash-dotted line), t = 8 (black dashed line) and t = 16 (black solid line), at
z = lz/4 where Ω =

[
1− exp(−r̃2)

]
/r̃2 regardless of τ . The Froude number is Fh = 0.1. (c)

Streamfunctions ψ̄2b/(β2r̄
2) (solid line), ψ̄2s/(σ2r̄

2) (dashed line), ψ̄2c/(χ2r̄
2) (dash-dotted line)

and ψ̄ν2s/(σ
ν
2 r̄

2) (dotted line) computed in appendix D.

inverted by means of the tridiagonal algorithm. The evolution of Ω and ζ0 over the slow
time is taken into account through the numerical integration of the equation (4.2) that
will be derived later. The imposed boundary conditions are ψws = ψwc = 0 at r̃ = 0
and that ψws and ψwc vanish as r̃ → +∞. Since the total streamfunction ψ11 defined in
(3.38) should be zero at t = τ = 0, the initial condition should be

ψwc = 0, ψws = − [ψps + λ0r̃Ω + λ1r̃ − ϑ(z̃, τ = 0)r̃] , (3.46)

since δx = δy = ∂δx/∂τ = ∂δy/∂τ = 0 at τ = 0. The parameter ϑ(z̃, τ = 0) is set such
that ψws → 0 as r̃ → +∞ initially, as required to integrate (3.44) and (3.45) numerically.
From the expression (C 3) of ψps, we have:

ϑ(z̃, τ) = λ1(z̃, τ)−
∫ +∞

0

C

(
ξ2Ω2FhG −

1

2

)
dξ −

∫ +∞

0

ζ0
η3Ω3

∫ η

0

ξ2Ω2C dξdη, (3.47)

where C and G are defined in (3.25). There is no loss of generality in imposing that ψws
vanishes as r̃ → +∞ initially because ψwh = ϑtr̃Ω cos(θ̃) + ϑr̃ sin(θ̃) is an homogeneous
solution of (3.37). In other words, introducing the term ϑr̃ in ψws is equivalent to
substituting Cw by Cw + ϑt in (3.38). After the numerical integration, we enforce that
the mean displacement associated to the internal waves is zero, yielding:

Cw(t, z̃, τ) =
1

2

〈
∇2
r̃ψwc, r̃

〉
, Sw(t, z̃, τ) =

1

2

〈
∇2
r̃ψws, r̃

〉
. (3.48)

Figure 2 shows the streamfunctions ψwc and ψws plotted against r̃ at different times,
for Fh = 0.1 at z = lz/4. In the next section, we will show that the angular velocity
Ω does not evolve with τ in this plane. Hence, (3.44)-(3.45) have been integrated by
imposing the initial angular velocity profile given by (2.11) for all time. We see that after
an initial transient phase, the streamfunctions globally decay with time in the vortex
core.

We have now fully determined the streamfunction at first order ψ11. It satisfies the
boundary condition at r̃ = 0. However, it can be shown that it behaves for large r̃ as

ψ11 ∼
[
cos(θ̃)

∂δy

∂τ
− sin(θ̃)

∂δx

∂τ

]
r̃ +

A

2

[
cos(θ̃)

∂2δx

∂z̃2
+ sin(θ̃)

∂2δy

∂z̃2

]
r̃ + cos(θ̃)

Bt

2

dU

dz̃
r̃

+

[
− sin(θ̃)ϑ+ cos(θ̃)

A t

2
+ cos(θ̃)

∂Sw

∂t
− sin(θ̃)

∂Cw
∂t

]
d2U

dz̃2
r̃, (3.49)
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Figure 3. (a) Variables A (solid line) and ϑ (dashed line) plotted against Fh, at the vertical
level z = lz/4 where Ω =

[
1− exp(−r̃2)

]
/r̃2 regardless of τ . (b,c) Forcings Cw (grey lines) and

Sw (black lines) for (b) Fh = 0.1 and (c) Fh = 0.5, at z = lz/4.

where A and B are given by:

A (z̃, τ) =

∫ +∞

0

ξ2Ω2C dξ, (3.50)

B(z̃, τ) =

∫ +∞

0

ξ2ΩC (3 + F )
∂Ω

∂z̃
dξ ≡ ∂A

∂z̃
, (3.51)

where C and F are defined in (3.25). Note that we have used the fact that ψwc and ψws
tend to zero as r̃ → +∞.

In order to enforce the boundary condition ψ11 → 0 as r̃ → +∞, we need to impose

∂δx

∂τ
=

[
A (z̃, τ)

2

∂2δy

∂z̃2
−
(
ϑ(z̃, τ) +

∂Cw
∂t

(t, z̃, τ)

)
d2U

dz̃2

]
, (3.52)

∂δy

∂τ
=−

[
∂

∂z̃

(
A (z̃, τ)

2
t
dU

dz̃

)
+

A (z̃, τ)

2

∂2δx

∂z̃2
+
∂Sw

∂t
(t, z̃, τ)

d2U

dz̃2

]
. (3.53)

When U = 0, these equations are identical to those found by Billant (2010) for the
self-induction of an isolated vortex in stratified non-rotating fluids.

Figure 3a shows A and ϑ as functions of Fh at z = lz/4, where the angular velocity
remains the same Ω =

[
1− exp(−r̃2)

]
/r̃2 independent of τ (see §4.1). They are almost

independent of Fh for Fh . 0.5. The wave forcing terms Cw and Sw are also shown in
figure 3b,c for two Froude numbers Fh = 0.1 and Fh = 0.5, at the same location. In
appendix E, it is shown that they behave for small time as

Cw = −ϑt+ O(t3), Sw = −A

4
t2 + O(t4). (3.54)

Therefore, they initially compensate the effect of the shear flow in (3.52)-(3.53). Then,
they go through oscillations as seen in figure 3b,c. These oscillations exhibit two typical
periods: the non-dimensional period of rotation in the vortex core T ∼ 2π and the
buoyancy period T ∼ 2πFh. For Fh = 0.5 (figure 3c), these two periods are comparable
so that Cw and Sw exhibit irregular oscillations while for Fh = 0.1 (figure 3b), fast
oscillations superimposed on slow oscillations can be clearly distinguished. For large
times, Cw and Sw tend to constant values because the waves are increasingly sheared by
the vortex rotation through the terms cos(Ωt− θ̃) and sin(Ωt− θ̃) as seen in (3.23). As
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a result, their contributions ∂Cw/∂t and ∂Sw/∂t to the vortex displacements vanish as
t→ +∞.

In the next two sections, we will determine how the angular velocity evolves on the
slow time τ . Then, (3.52)-(3.53) will be solved in §4.2.
3.2.2. Determination of (Φ10, ψ10)

We now determine (Φ10, ψ10) corresponding to the azimuthal mode m = 0 of the
potential and streamfunction at first order (3.32). In order to keep the calculations
relatively simple, we will assume here that the Froude number is small so that the
hydrostatic approximation is satisfied. The comparison with the DNS in part 2 will show
that this assumption provides accurate predictions at least for Fh 6 0.5. We will therefore
take the limit Fh → 0 of the vertical velocity and buoyancy (3.23)-(3.24). In addition, the
equations (3.52)-(3.53) for the displacement perturbations derived in the previous section
show that (δx, δy) remain of order unity for large time t = O(1/ε) and are therefore small
compared to the terms growing like t. Therefore, these displacements will be neglected
in (3.23)-(3.24) in order to avoid lengthy calculations. Hence, (3.23)-(3.24) are simplified
as follows:

w0 =

[
cos(θ̃)− t sin(θ̃)Ω − cos(Ωt− θ̃) cos

(
t

Fh

)]
r̃Ω2 dU

dz̃
, (3.55)

b0 =− t cos(θ̃)r̃Ω2 dU

dz̃
. (3.56)

The only remaining term due to internal waves is the third term in (3.55). The forcing
terms in (3.33)-(3.34) for m = 0 and m = 2, i.e. (δD0, δD2, δZ0, δZ2), have been derived
using (3.55).

The equation (3.33) for the potential Φ10 reads

∇2
hΦ10 =

[
∂r̃Ω

∂r̃
−
(
∂r̃Ω

∂r̃
cos(Ωt)− t

2
r̃Ω

∂Ω

∂r̃
sin(Ωt)

)
cos

(
t

Fh

)]
Ωt

(
dU

dz̃

)2

, (3.57)

The solution which is not singular at r̃ = 0 and that vanishes at infinity is

Φ10 =
t

2

[∫ r̃

+∞
ξΩ2dξ − cos

(
t

Fh

)∫ r̃

+∞
ξΩ2 cos(Ωt)dξ

](
dU

dz̃

)2

. (3.58)

Using (3.58), the equation (3.34) for the streamfunction ψ10 is:

L(ψ10) = −∂ζ0
∂τ

+ F10, (3.59)

where

F10 =

[
− t
r̃

∂r̃2Ω3

∂r̃
−
[
Ω

(
∂r̃Ω

∂r̃
+
t2

2
r̃Ω2 ∂Ω

∂r̃

)
sin(Ωt)− tΩ2 ∂r̃Ω

∂r̃
cos(Ωt)

]
cos

(
t

Fh

)
+

τ̃2

2R̃eb

1

r̃

∂

∂r̃

(
r̃
∂ζ0
∂r̃

)](
dU

dz̃

)2

, (3.60)

where we remind that τ̃ = εt. Since ψ10 is axisymmetric, the operator L in (3.59) reduces
to ∂∇2

hψ10/∂t. In addition, we should impose that〈
∇2
hψ10, ζ0

〉
= 0 (3.61)

in order that the vertical vorticity at first order is orthogonal to the vertical vorticity at
leading order. Taking the scalar product of (3.59) with ζ0 shows that ∂

〈
∇2
hψ10, ζ0

〉
/∂t =
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0 only if

∂ζ0
∂τ

=F10. (3.62)

This equation describes the evolution of the leading order vertical vorticity of the vortex
(and associated angular velocity) over the slow time. It is analyzed in §4.1. The potential
and streamfunction (Φ12, ψ12) are solved in appendix D.

4. Results

4.1. Evolution of the angular velocity of the vortex

Here, we analyse in details the evolution equation (3.62) of the leading order vertical
vorticity. By rescaling the slow time, the vertical coordinate and the buoyancy Reynolds
number, and by integrating in r̃, (3.62), we can derive an equation for the angular velocity
Ω

∂Ω

∂t
=

[
−F 2

h tΩ
3 +

F 2
hΩ

2

2
(Ωt cos(Ωt)− sin(Ωt)) cos

(
t

Fh

)
+

t2

2Re r̃

∂ζ0
∂r̃

](
dU

dz

)2

.

(4.1)
This equation shows that the angular velocity of the vortex decays because of dynamic
and viscous effects (first and third terms of the right-hand side, respectively). The second
term in the right-hand side corresponds to the effect of internal waves. However, we have
observed that this effect is always weak. To illustrate this point, figure 5c shows that the
angular velocity at the center computed from (4.1) (black solid lines) is very close to the
one computed by neglecting them (red lines), i.e. from

∂Ω

∂t
=

[
−F 2

h tΩ
3 +

t2

2Re r̃

∂ζ0
∂r̃

](
dU

dz

)2

. (4.2)

We will therefore use this simplified equation in the following.
By equating the magnitude of the different terms in (4.2), it can be noticed that the

intrinsic timescale of the equation is τ̃ = εt if the buoyancy Reynolds number scales as
ReF 2

h = O(1/ε). However, it is not possible to perform a rigorous asymptotic analysis
based on this timescale as discussed in appendix §A.

A physical interpretation of the origin of the dynamic effect (first term of the right-hand
side of (4.2)) can be gained by considering the conservation of potential vorticity near
the vortex axis when the vortex becomes tilted. First, let us consider the buoyancy at
leading order b = εb0/Fh = −tx̃Ω2dU/dz, where b0 is given by (3.56) and x̃ = x−U(z)t
(we neglect δx). Figure 4 sketches the lines of constant total buoyancy bt = b + z/F 2

h

near the point x = 0, z = lz/2 at two times: t = 0 (grey dashed lines) and t = t0 (grey
solid lines) where t0 is small. At t = t0, the vortex axis x̃ = 0 (bold solid line) is inclined
towards the left since x = U(z)t0 ' −kzUSt0(z − lz/2) near z = lz/2. The iso-buoyancy
lines are also no longer horizontal but slanted downward towards the positive x direction.
On the vortex axis x̃ = 0, they remain at the same vertical level while on the line x = 0,
they are displaced by

δh = −F 2
hΩ

2ht20

(
dU

dz

)2

(4.3)

where h = z0−lz/2 with z0 the initial vertical level of the iso-buoyancy line. δh is therefore
negative as clearly seen in figure 4. Since the vortex is inclined, the iso-buoyancy lines
are indeed displaced towards the vortex axis where the pressure is minimum. This means
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x

z

z = lz/2

x̃ = 0

hh

x = 0

δh+

Figure 4. Lines of constant total buoyancy bt near the point x = 0, z = lz/2 at t = 0 (grey
dashed lines) and t = t0 (grey solid lines). The bold black solid line represents the vortex axis
at t = t0. δh is the height variation at x = 0 of the iso-buoyancy line located at z = h + lz/2
initially.

that the vortex is squeezed near x = 0, z = lz/2. The conservation of potential vorticity
between the iso-density lines at z = z0 and z = lz/2 (figure 4)

ζ

h
=
ζ + δζ

h+ δh
, (4.4)

implies that the vertical vorticity at t = t0 will decrease by δζ = ζδh/h. The variation
of vertical vorticity between t = 0 and t = t0 is therefore

∂ζ

∂t
=
δζ

t0
= −F 2

hζΩ
2t0

(
dU

dz

)2

. (4.5)

This corresponds exactly to (4.2) for Re =∞ since ζ = 2Ω on the vortex axis. However,
we stress that (4.2) is valid not only on the vortex axis near z = lz/2 but everywhere.

Both the dynamic and viscous decay of Ω are proportional to (dU/dz)2. Hence, the
decay will be maximum at z = 0, lz/2 and will vanish at z = lz/4, 3lz/4 for the sinusoidal
profile U = US sin(kzz). This explains why we have taken the initial angular velocity
profile for computing the quantities at z = lz/4 shown in the figures 2-3.

The equation (4.2) can be solved by a multiple scale analysis. To do so, we introduce
the time t̃ = (Fht|dU/dz|)3. Then, (4.2) becomes

∂Ω

∂t̃
= − Ω3

3t̃1/3
+

γ

6r̃

∂ζ0
∂r̃

, where γ = 1/

(
ReF 3

h

∣∣∣∣dUdz
∣∣∣∣) , (4.6)

is the only remaining control parameter. For a given set of parameters (Fh, Re, kz, US),
γ lies between 1/(ReF 3

hkzUS) and infinity as the vertical coordinate varies. For small γ,
the solution can be found as (Appendix F.1)

Ω =
Ωi√

1 + t̃2/3Ω2
i

− γ

2

(
∂Ωi
∂r̃

)2
3 arctan(Ωit̃

1/3)− 3t̃1/3Ωi + t̃Ω3
i

Ω4
i

(
1 + t̃2/3Ω2

i

)3/2 + O(γ2), (4.7)

with

Ωi =
1

r̃2

[
1− exp

(
− r̃2

1 + 2γt̃/3

)]
. (4.8)

This approximation is only valid in the time range t̃ � 1/γ3. However, there is no
particular interest in studying the solution for t̃ > 1/γ3 when γ � 1 because, as shown
in §4.3 the shear is maximum when t̃ = O(1/γ), i.e. in the first time range t̃ � 1/γ3.
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Figure 5. (Colour online) (a,b) Angular velocity profile Ω as a function of r̃ computed
numerically from (4.6) (black solid lines) and predicted by (4.7) (grey circles) at different times
for (a) γ = 0.1 and (b) γ = 1. The Lamb-Oseen profile (4.11) is also represented by red
dash-dotted lines. The times shown are: (a) t̃ = 0, t̃ = 2.65, t̃ = 7.50, t̃ = 13.8, t̃ = 21.2 and
(b) t̃ = 0, t̃ = 0.265, t̃ = 0.750, t̃ = 1.38, t̃ = 2.12, from top to bottom. (c) Evolution of the

angular velocity at the vortex center Ωc as a function of t̃1/3 = Fht|dU/dz| predicted by (4.10)
(grey circles) and computed numerically from (4.6) (black solid lines) for γ = 0.1, γ = 1, and
γ = 10 (top to bottom). The red dash-dotted lines represent the numerical integration of the
full equation (4.1) for Fh = 0.5, kz = 1, US = 0.2.

Equation (4.7) implies that the angular velocity at the vortex center evolves as

Ωc = 1/

√(
1 + 2γt̃/3

)2
+ t̃2/3 + O(γ2), (4.9)

i.e. in terms of t and the original parameters:

Ωc = 1/

√√√√[1 +
2t3

3Re

(
dU

dz

)2
]2

+ F 2
h t

2

(
dU

dz

)2

. (4.10)

In appendix F.2, we derive an approximation of the solution of (4.6) in the opposite
limit: γ � 1. In this case, the angular velocity at leading order is given by Ω = Ωi where
Ωi is defined in (4.8). However, the expressions (4.9) and (4.10) of Ωc derived for γ � 1
turn out to be valid at leading order also when γ � 1. Therefore, (4.10) will be used in
the following and in part 2 to describe the evolution of Ωc regardless of the value of γ.

Figure 5a,b compares the asymptotic solution (4.7) to the numerical solution of (4.6)
at different times t̃. We see that the agreement is excellent for γ = 0.1 (figure 5a) and
even for γ = 1 (figure 5b). There are only some slight discrepancies in the vortex core
r̃ . 1 when t̃ & 1. In figure 5, the Lamb-Oseen profile

Ωe =
1− exp(−r̃2/ã2e)

r̃2
, (4.11)

with ã2e = 1/Ωc, where Ωc is given by (4.10), has been also plotted with black dash-
dotted lines. This profile is close to the asymptotic solution (4.7). This is the reason why
the empiric profile (4.11) is used in appendix D to ease the numerical resolution of the
streamfunction ψ12.

Figure 5c shows the asymptotic angular velocity at the vortex center (4.10) and the
numerical solution of (4.6) for different values of the control parameter γ. The agreement
is very good not only for γ = 0.1 but also for γ = 1 and for γ = 10, confirming that
(4.10) is a valid approximation of Ωc whatever the magnitude of γ.
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4.2. Analysis of the vortex deformations

Having determined the evolution of Ω, we now come back to the study of the equations
(3.52)-(3.53) for the vortex displacements.

4.2.1. General solution

To solve (3.52)-(3.53), it is first convenient to rescale the slow time τ in terms of the
time t:

∂δx

∂t
=

[
A (z̃, t)

2

∂2δy

∂z̃2
−
(
ϑ(z̃, t) +

∂Cw
∂t

(z̃, t)

)
d2U

dz̃2

]
ε2, (4.12)

∂δy

∂t
=−

[
∂

∂z̃

(
A (z̃, t)

2
t
dU

dz̃

)
+

A (z̃, t)

2

∂2δx

∂z̃2
+
∂Sw

∂t
(z̃, t)

d2U

dz̃2

]
ε2. (4.13)

The solution of (4.12)-(4.13) can be decomposed as

δx = δx∗ − ε2
[
Cw +

∫ t

0

ϑ(z̃, υ)dυ

]
d2U

dz̃2
, (4.14)

δy = δy∗ − ε2
[
Sw

d2U

dz̃2
+

∫ t

0

∂

∂z̃

(
A (z̃, υ)

2

dU

dz̃

)
υdυ

]
, (4.15)

giving

∂δx∗

∂t
=ω̂

∂2δy∗

∂z̃2
+ O

(
ε4
)
, (4.16)

∂δy∗

∂t
=− ω̂ ∂

2δx∗

∂z̃2
+ O

(
ε4
)
. (4.17)

where ω̂ = ε2A /2. Since (4.12)-(4.13) are valid up to order O
(
ε2
)
, it is indeed legitimate

to neglect the terms O
(
ε4
)

in (4.16)-(4.17). Since ω̂ is small, an approximation of the
solution of (4.16)-(4.17) can be found in the form

δx∗ = eik̃z z̃
[
δx∗c cos

(∫ t

0

ω̂(z, υ)dυ

)
+ δx∗s sin

(∫ t

0

ω̂(z, υ)dυ

)]
+ cc, (4.18)

δy∗ = eik̃z z̃
[
−δx∗s cos

(∫ t

0

ω̂(z, υ)dυ

)
+ δx∗c sin

(∫ t

0

ω̂(z, υ)dυ

)]
+ cc, (4.19)

where δxc and δxs are constants. The initial conditions δx = δy = 0 at t = 0 impose
δx∗c = δx∗s = 0. Therefore, a solution of (4.12)-(4.13) valid up to order O

(
ε2
)

is

δx = −ε2
[
Cw +

∫ t

0

ϑ(z̃, υ)dυ

]
d2U

dz̃2
, (4.20)

δy = −ε2
[
Sw

d2U

dz̃2
+

∫ t

0

∂

∂z̃

(
A (z̃, υ)

2

dU

dz̃

)
υdυ

]
, (4.21)

These equations show that the vortex axis evolves because of three different effects in
addition to the advection Utex by the shear flow:

(i) the displacement due to internal waves (first terms in the right-hand side of (4.20)-
(4.21))

(ii) the second term in the right-hand side of (4.20) describes a small delay (since ϑ
is negative as seen in figure 3a) in the advection by the shear flow due to its vertical
variations.

(iii) the self-induction (second term in the right-hand side of (4.21)). The shear flow
bends the vortex in the x direction and, in turn, this creates a self-induced motion in
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the y direction. This effect is modulated along the vertical since A varies via the vertical
variation of the angular velocity of the vortex.

For large time such that τ̃ = εt = O(1), (4.20)-(4.21) reduce at leading order to

δx = −ε
∫ τ̃

0

ϑdυ
d2U

dz̃2
, (4.22)

δy = −
∫ τ̃

0

∂

∂z̃

(
A

2

dU

dz̃

)
υdυ, (4.23)

where we remind that ϑ and A are defined in (3.47) and (3.50). These expressions show
that the displacements are δy = O(1) while δx = O(ε) for t ∼ 1/ε. The effect of internal
waves remains O(ε2) and is thus negligible. This is the reason why we have neglected
(δx, δy) compared to U(z̃)t in §3.2.2.

4.2.2. Behaviour for small time

By substituting Cw and Sw in (4.20)-(4.21) by their asymptotic expressions (E 12)
derived for small time (see appendix E) and by assuming that the angular velocity does
not evolve for small time, we find that the displacements behave for t� 1 as:

δx = k2zςt
3 d2U

dz̃2
+ O(t4), δy = k2zσt

4 d2U

dz̃2
+ O(t5), (4.24)

where ς and σ are constants given in (E 13).
Remarkably, the initial evolution of (δx, δy) is independent of the Froude number at

leading order. At this order, δx and δy vary like t3 and t4 respectively. It is interesting
to compare the predictions (4.24) to those of a heuristic model where the advection by
the shear flow is directly added to the equations of the self-induced motion of the single
vortex, i.e.:

∂∆x

∂t
=ω̂

∂2δy

∂z̃2
+ U(z̃), (4.25)

∂δy

∂t
= − ω̂ ∂

2∆x

∂z̃2
, (4.26)

where ∆x = U(z̃)t+δx is the total displacement of the vortex in the streamwise direction.
Such phenomenological model can be obtained from (4.12)-(4.13) by setting ∂Cw/∂t =
∂Sw/∂t = ϑ = 0 and ∂Ωc/∂z̃ = 0, i.e. by neglecting the effect of the waves, the three-
dimensional correction of the advection by the base flow and by assuming that the angular
velocity remains constant with time. The model (4.25)-(4.26) has been introduced for
example by Marshall & Parthasarathy (1993) for two layer quasi-geostrophic flows. For
small times t� 1, the solution of (4.25)-(4.26) is:

δx = − ω̂
2

6
t3

d4U

dz̃4
+ O(t4), δy = − ω̂

2
t2

d2U

dz̃2
+ O(t3). (4.27)

Thus, δx is initially of order k4zF
4
h t

3 instead of k2zt
3 and δy is of order k2zF

2
h t

2 instead of
k2zt

4. This shows that internal waves have an important effect on the initial dynamics of
the vortex. (Note, however, that such waves should be absent in the quasi-geostrophic
limit considered by Marshall & Parthasarathy (1993)).

4.3. Evolution of the Richardson number

From the asymptotic expressions of the velocity and buoyancy fields, it is now possible
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to predict the evolution of the Richardson number

Ri =

1

F 2
h

+
∂b

∂z(
∂u

∂z

)2

+

(
∂v

∂z

)2 . (4.28)

In the DNS performed in part 2, we will see that the Richardson number reaches its
minimum or the Kelvin-Helmholtz instability first appears at the vortex center r̃ = 0
and at the levels z = 0, lz/2 where the ambient shear is maximum. In the following, we
will therefore focus on the point (r̃ = 0, z = lz/2) (the point (r̃ = 0, z = 0) is equivalent
due to the symmetry of the ambient shear flow).

The vertical shear of the horizontal velocity at this location can be computed by using
the expansion of the velocity field (3.4) and the expression of the total derivative (3.12)
(or 3.19). This leads to

∂uc
∂z

=kzU
3
Sε

2t

[(
3

4
− σ2

)
tΩ2

c −
σν2 t

2Ωc
ReF 2

h

]
+Ωc

∂δyc
∂z

− kzUS + kzε
2US (Dc + λ0cΩc + λ1c − ϑc) , (4.29)

∂vc
∂z

=kzUStΩc − kzU3
Sε

2t

[
β2Ωc +

(
1

4
+ χ2

)
t2Ω3

c

]
−Ωc

∂δxc
∂z

−kzUSt
[
ε2
(
λ1cΩc + DcΩc +

Ac

2

)
− F 2

h

2

∂2Ac

∂z2
− F 2

hΩc

(
3

2

∂2Dc

∂z2
− ∂λc

∂z

)]
,

(4.30)

where the subscript c indicates that the values are computed at (r̃ = 0, z = lz/2) or
z = lz/2 for the quantities independent of r̃. The terms in the first line of the right-hand
sides of (4.29-4.30) come from the horizontal derivatives while those in the second line
originate from the vertical derivative at constant horizontal coordinates (see (3.12)). The
terms of order ε4 have been neglected. In particular, the fact that (δx, δy) are formally
of order ε2 (see (4.20)-(4.21)) has been used. The internal waves have been omitted in
(4.29-4.30) for the reasons explained in §3.1. The coefficients β2, σ2, χ2, σν2 are given
in (D 15). The parameters (λ0, λ1, λ), ϑ and A are defined in (3.42), (3.47) and (3.50),
respectively. The parameter D is

D =

∫ +∞

0

ξΩ2dξ. (4.31)

Similarly, the total vertical derivative of the buoyancy at r̃ = 0, z = lz/2 can be
obtained from the leading order expression of the buoyancy in the hydrostatic limit
(3.56)

∂bc
∂z

=

(
kzUSt−

∂δxc
∂z

)
kzUStΩ

2
c . (4.32)

Figure 6a,b show one example of the evolution of ∂uc/∂z, ∂vc/∂z and ∂bc/∂z predicted
by (4.29), (4.30) and (4.32) (solid lines). They all reach a maximum value at a finite time.
Remarkably, the magnitude of ∂uc/∂z is much lower than ∂vc/∂z. As seen in figure 6c,
the corresponding Richardson number Ric reaches a minimum value approximately equal
to 4. In the inviscid limit, represented by dashed dotted lines, ∂vc/∂z, ∂bc/∂z and Ric
saturate to finite values as t → ∞. The saturation of ∂vc/∂z is intimately linked to the
decay of the angular velocity of the vortex due to the squeezing of the isopycnal surfaces
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Figure 6. Evolution of (a) ∂uc/∂z (grey lines), ∂vc/∂z (black lines), (b) ∂b/∂z and (c) Ric
predicted by (4.29), (4.30) and (4.32) for Fh = 0.1, kz = 2, US = 0.2 and for Re = 6000 (solid
lines) and Re = ∞ (dashed dotted lines). The dashed lines represent the predictions from the
approximations (4.33), (4.34), (4.35) and (4.36).

and potential vorticity conservation. The same effect is responsible for the growth and
saturation of ∂bc/∂z.

To study the extrema of the quantities (4.29), (4.30) and (4.32), it is convenient to
rewrite them as follows

∂uc
∂z

=
εUS
Fh

[
−1 +

(
3

4
− σ2

)
η2 − σν2η

3γc
Ω2
c

+O(ε2)

]
, (4.33)

∂vc
∂z

=
η

Fh

[
1−

(
1

4
+ χ2

)
η2 +O(ε2)

]
, (4.34)

∂bc
∂z

=
η2

F 2
h

[
1 +O(ε2)

]
, (4.35)

where η = εUStΩc and γc = γ(z = lz/2) = 1/(ReF 3
hkzUS). This shows that ∂vc/∂z and

∂bc/∂z depend on time only through η at leading order in ε. We see also that ∂uc/∂z
is one order in ε smaller than ∂vc/∂z and ∂bc/∂z for η = O(1). We can notice that the
last two terms of (4.34) are of order unity when η = O(1). They are therefore of the
same order as the leading order term although they originate from first order terms in
the asymptotic analysis (i.e. O(ε2)). This clearly shows that the asymptotic analysis is
non-uniform in time.

These approximations imply that Ric reads at leading order in ε

Ric =
1 + η2

η2
[
1−

(
1

4
+ χ2

)
η2
]2 . (4.36)

As seen by the dashed lines in figure 6, the approximations (4.33-4.36) are very close to
the full predictions by (4.29-4.32).

The approximations (4.34-4.36) show that the three quantities ∂vc/∂z, ∂bc/∂z and Ric
reach their extrema when dη/dt = 0, giving the time

Tm = εUStm =

(
3

4γc

)1/3

, (4.37)

by using (4.10). This shows that the long-wavelength assumption εUSt < 1 is expected
to be all the more valid at the extremum than γc is large. It is also interesting to remark
that tm is independent of the Froude number: tm = (3Re)1/3(2kzUS)−2/3. However, if
the buoyancy Reynolds number Reb = ReF 2

h is assumed constant, a dependence with Fh
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is recovered since tm = (3Reb)
1/3(2kzFhUS)−2/3. At t = tm, we have

ηm =

(
3

4γc

)1/3

/

√
9

4
+

(
3

4γc

)2/3

. (4.38)

When γc decreases from large values to zero (inviscid limit), ηm varies from ηm ∼ γ−1/3c

to ηm = 1. Hence, for large γc, we have

max

(
∂vc
∂z

)
∼ (kzUSRe)1/3, max

(
∂bc
∂z

)
∼ (kzUSRe)2/3, min (Ric) ∼ γ2/3c . (4.39)

while in the inviscid limit

max

(
∂vc
∂z

)
∝ 1

Fh
, max

(
∂bc
∂z

)
=

1

F 2
h

, min (Ric) =
2(

3

4
− χ2

)2 = 3.46, (4.40)

For arbitrary ηm in the range 0 6 ηm 6 1, it can be shown from (4.36) that min (Ric)
is bounded: min (Ric) > 3.43. This overall minimum is reached when η2m = −(3 +√

9 + 8/(1/4 + χ2))/4 = 0.936, i.e. close to the inviscid limit. This demonstrates that
min(Ric) can not go below the threshold Ri = 0.25 when kzFh � 1.

5. Conclusion

We have carried out an asymptotic analysis of the evolution of a columnar vortex in
an ambient stratified shear flow for long-wavelength. The vortex has initially a Lamb-
Oseen profile while the shear flow is horizontally uniform and varies sinusoidally along
the vertical: U(z) = US sin(kzz). The Froude number Fh has been assumed to be lower
than unity so that there is no critical layer where the angular velocity of the vortex is
equal to the buoyancy frequency. The Reynolds number has been considered large.

An underlying assumption of the analysis is that the rescaled vertical wavenumber
kzFh is small. This particular parameter derives from the self-similarity of strongly
stratified flows according to which the vertical wavenumber always appears multiplied
by the Froude number Fh in the Euler equations under the Boussinesq approximation.

This asymptotic analysis provides governing equations for the displacement of the
vortex axis and for its angular velocity. The vortex axis is advected by the shear flow
at leading order ∆x = U(z)t but three different effects influence its trajectory at order
(kzFh)2 (see (4.20-4.21)). First, the vortex axis deviates perpendicularly to the direction
of the shear flow owing to the self-induction of the vortex when it is bent. Second, internal
waves, which are generated at the start-up of the motion, influence the initial evolution
of the vortex. These waves oscillate at the buoyancy frequency N and make the dynamics
initially non-hydrostatic. Later, their effects on the vortex trajectory quickly decay. It
should be pointed out that these internal waves would be weaker if the shear flow were
added smoothly to the vortex instead of instantaneously as done herein. The third effect
is a three-dimensional effect that slightly reduces the advection in the direction of the
shear flow.

The angular velocity of the vortex decreases with time because of dynamic and viscous
effects (see (4.2) and (4.10)), while internal waves have a negligible effect on its evolution.
The dynamic effect is due to the squeezing of the isopycnal surfaces when the vortex
is inclined. To conserve potential vorticity, the core vertical vorticity therefore has to
decrease. The viscous decay of the angular velocity is also quickly enhanced since the
vertical shear increases algebraically with time. These two effects are not uniform along
the vertical: they are maximum in the regions of high shear and vanish at the vertical
levels where the shear is zero.
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In addition, a horizontal velocity field with an azimuthal wavenumber m = 2 arises at
order (kzFh)2 (see appendix D) implying that the vortex becomes slightly elliptical.

From these asymptotic predictions, we have computed the Richardson number Ric at
the vortex center at the levels where the ambient shear is maximum. In part 2, it will be
shown that these two points are the locations where the Richardson number reaches its
minimum or where the Kelvin-Helmholtz instability is first triggered. The results show
that Ric can not go below the value 3.43 in the limit kzFh → 0. It remains therefore
far from the critical value 1/4, necessary for the development of the shear instability.
This result shows that the mechanism proposed by Lilly (1983), according to which the
vertical shear should grow algebraically with time without bounds, is not valid when
kzFh is small for the flow studied herein. Because of the vertical coupling, neglected
by Lilly (1983), the flow actually decays in the regions of high shear, thereby limiting
the maximum vertical shear attainable. This is due to potential vorticity conservation
and enhanced viscous effects. In addition, the squeezing of the isopycnals enhances the
buoyancy vertical gradient in the regions of high shear.

These predictions will be compared to DNS in part 2.
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Appendix A. Note on the scaling of the slow time

In this appendix, we discuss the particular choice for the scaling of the slow evolution.
A priori, the most appropriate and classical choice for the slow timescale would be τ̃ = εt
together with τ̃ = O(1). Such scaling can be derived by equilibrating the magnitudes of
the dominant terms of the final equation for the angular velocity obtained in section 4.1.
However, the assumption τ̃ = O(1) would violate the condition εUSt < 1 which ensures
the validity of the long-wavelength assumption. To circumvent this difficulty, we consider
in §3 that the fast time is typically of order unity t = O(1) and that the slow evolution
is such that ∂/∂t = ε2∂/∂τ but without assuming τ = O(1). This scaling for ∂/∂t is
required to balance the first order forcing terms, which scale like O(ε2) when t = O(1), so
as to satisfy solvability conditions. It means that the time variation are weak of order ε2

but the corresponding time is not large. However, it implies that the resulting equations
over the slow time τ depend on the fast time t. At first sight, this could seem inconsistent
since fast and slow variables are generally assumed independent in multiscale expansions.
However, this apparent paradox is removed subsequently since we do not use directly the
equations involving t and τ but the rescaled equations expressed back solely in terms of
the fast time t. An advantage of these assumptions is that they allow us to describe at
leading order the initial transient dynamics for t = O(1) which involves internal waves,
as discussed in section 4.2.1.

Appendix B. Potentials

The potentials defined in (3.36) are given by:

Φs = Φps = M(ΩC ), Φpc = M(C F ), ΦpΩ = M

(
C (2 + F )

∂Ω

∂z̃

)
, (B 1)

Φwc = −1

2
cos

(
t

Fh

)
M (C F cos(Ωt))− sin

(
t

Fh

)
M (C G sin(Ωt)) , (B 2)
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Φws = −1

2
cos

(
t

Fh

)
M (C F sin(Ωt)) + sin

(
t

Fh

)
M (C G cos(Ωt)) , (B 3)

where the operator M is defined as

M(χ(r̃, . . .)) = r̃

∫ r̃

+∞
χ(ξ, . . .)dξ − 1

r̃

∫ r̃

0

ξ2χ(ξ, . . .)dξ (B 4)

Appendix C. Streamfunctions

The streamfunctions defined in (3.38) are given by:

ψpΩ = r̃Ω

∫ r̃

0

1

η3Ω2

∫ η

0

ξ2Ω(3 + F )C
∂Ω

∂z̃
dξdη + r̃Ω

∫ r̃

+∞
(2 + F )

C

Ω

∂Ω

∂z̃
dξ

− r̃

2

∂ΦpΩ
∂r̃

. (C 1)

ψpc = −ψs = −r̃Ω
∫ r̃

0

1

η3Ω2

∫ η

0

ξ2Ω2C dξdη − r̃Ω
∫ r̃

+∞
C dξ +

r̃

2

∂Φps
∂r̃

, (C 2)

ψps =
r̃

2

∂Φpc
∂r̃
− r̃

∫ r̃

+∞
C dξ − 2Fhr̃Ω

∫ r̃

0

C G dξ − 2Fhr̃Ω

∫ r̃

0

1

η3Ω2

∫ η

0

ξ2Ω2C G dξdη

+ 2r̃Ω

∫ r̃

0

1

η3Ω3

∫ η

0

ξ2Ω2C dξdη − r̃
∫ r̃

0

1

η3Ω2

∫ η

0

ξ2Ω2C dξdη, (C 3)

Appendix D. Determination of (Φ12, ψ12)

Using the simplification (3.55) for the vertical velocity, the equation (3.33) for the
potential Φ12 reads

∇2
hΦ12 =

[
cos(2θ̃)− 3

2
Ωt sin(2θ̃)

−
(

cos(Ωt− 2θ̃)− t

2
Ω sin(Ωt− 2θ̃)

)
cos

(
t

Fh

)]
tr̃Ω

∂Ω

∂r̃

(
dU

dz̃

)2

. (D 1)

The solution that is not singular at r̃ = 0 and that vanishes at infinity is

Φ12 =
t

2r̃2

[
cos(2θ̃)

∫ r̃

0

ξ3Ω2dξ − t sin(2θ̃)

∫ r̃

0

ξ3Ω3dξ

− cos

(
t

Fh

)∫ r̃

0

ξ3Ω2 cos(Ωt− 2θ̃)dξ

](
dU

dz̃

)2

, (D 2)

We can notice the presence of a term proportional to t2 in the potential (D 2). Hence, the
corresponding horizontal flow ε2∇hΦ12 scales like ε2t2. This implies that the scaled first
order perturbation will be of order unity when εt = O(1), meaning that the expansion
(3.4) is not uniformly asymptotic in time. This is the reason why the present results are
a priori expected to be valid only when εt� 1 as discussed in §3.
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Using (3.55) and (D 2), the equation (3.34) for the streamfunction ψ12 is:

L(ψ12) =

[
cos(2θ̃)

τ̃2

2R̃eb
r̃
∂

∂r̃

(
1

r̃

∂ζ0
∂r̃

)
+ t cos(2θ̃)

(
r̃

3

∂Ω3

∂r̃
+

1

r̃3
∂ζ0
∂r̃

∫ r̃

0

ξ3Ω2dξ

)

+ sin(2θ̃)

(
r̃

2

∂Ω2

∂r̃
+ t2

r̃

4

∂Ω4

∂r̃
− t2

r̃3
∂ζ0
∂r̃

∫ r̃

0

ξ3Ω3dξ

)
+ Fw

](
dU

dz̃

)2

, (D 3)

where Fw gathers the terms due to internal waves

Fw =−

[
t

r̃3
∂ζ0
∂r̃

∫ r̃

0

ξ3Ω2 cos(Ωt− 2θ̃)dξ − r̃

3

∂Ω3

∂r̃
t cos(Ωt− 2θ̃)

− r̃

2

∂Ω2

∂r̃

(
1− t2

2
Ω2

)
sin(Ωt− 2θ̃)

]
cos

(
t

Fh

)
, (D 4)

and we remind that τ̃ = εt. The solution is sought in the form

ψ12 =
1

2

[
− cos(2θ̃)ψ2b + sin(2θ̃)

(
tψ2s +

τ̃2ψν2s
R̃eb

)
− t2 cos(2θ̃)ψ2c + ψw12

](
dU

dz̃

)2

(D 5)

where the streamfunctions ψ2b, ψ2s, ψ2c, ψ
ν
2s and ψw12 are solution of

∇2∗
r̃ ψ2s

2
+Ω∇2∗

r̃ ψ2b −
1

r̃

∂ζ0
∂r̃

ψ2b = r̃Ω
∂Ω

∂r̃
, (D 6)

−∇2∗
r̃ ψ2c +Ω∇2∗

r̃ ψ2s −
1

r̃

∂ζ0
∂r̃

ψ2s = r̃Ω2 ∂Ω

∂r̃
+

1

r̃3
∂ζ0
∂r̃

∫ r̃

0

ξ3Ω2dξ, (D 7)

Ω∇2∗
r̃ ψ2c −

1

r̃

∂ζ0
∂r̃

ψ2c = r̃Ω3 ∂Ω

∂r̃
− 1

r̃3
∂ζ0
∂r̃

∫ r̃

0

ξ3Ω3dξ, (D 8)

Ω∇2∗
r̃ ψ

ν
2s −

1

r̃

∂ζ0
∂r̃

ψν2s =
1

2

[
∂2ζ0
∂r̃2

− 1

r̃

∂ζ0
∂r̃

]
, (D 9)

L(ψw12) = 2Fw, (D 10)

where ∇2∗
r̃ is defined as:

∇2∗
r̃ ϕ =

∂2ϕ

∂r̃2
+

1

r̃

∂ϕ

∂r̃
− 4ϕ

r̃2
. (D 11)

Like for the potential Φ12, the streamfunction (D 5) contains a term scaling like t2 which
implies that the scaled first order perturbation is of order ε2t2, i.e. of order unity when
τ̃ = εt = O(1), making the expansion (3.4) not uniformly asymptotic in time.

In (D 6-D 9), the angular velocity Ω and vertical vorticity ζ0 evolve on the slow time
according to (3.62). In §4.1, it is shown that this evolution can be very well accounted for
by assuming that the vortex keeps a Lamb-Oseen profile but with time varying maximum
angular velocity Ωc(z̃, τ) and radius ãe(z̃, τ):

Ω = Ωc(z̃, τ)Ω̄(r̄), Ω̄ =
1− exp(−r̄2)

r̄2
, (D 12)

where r̄ = r̃/ãe. Then, by writing ψ2b, ψ2s, ψ2c and ψw12 as follows:

ψ2b = ã2eΩcψ̄2b(r̄), ψ2s = ã2eΩ
2
c ψ̄2s(r̄), ψ2c = ã2eΩ

3
c ψ̄2c(r̄), ψν2s = ψ̄ν2s(r̄), (D 13)

the equations for ψ̄2b, ψ̄2s, ψ̄2c and ψ̄ν2s remain identical to (D 6-D 9) excepted the changes
r̃ → r̄, Ω → Ω̄, ζ0 → ζ̄0. This implies that they depend only on r̄ and no longer on (z̃, τ),
meaning that they can be solved once for all. These four equations share the same linear



26 J. Bonnici and P. Billant

operator which admits a homogeneous solution behaving as ψ2h = r̄2 for r̄ → +∞ and
ψ2h = 2.524r̄2 for r̄ → 0 (Moore & Saffman 1975; Le Dizès & Laporte 2002). By using
this homogeneous solution, it is possible to determine numerically the complete solutions
that vanish at infinity and are non-singular at r̄ = 0. As shown in figure 2c, they all
rapidly vanish outside the vortex core. For r̄ � 1, they behave as

ψ̄2b = β2r̄
2, ψ̄2s = σ2r̄

2, ψ̄2c = χ2r̄
2, ψ̄ν2s = σν2 r̄

2, (D 14)

where the neglected terms are O(r̄4) and the coefficients are

β2 = −0.1506, σ2 = 0.3786, χ2 = −9.830× 10−3, σν2 = −1.524, (D 15)

Finally, ψw12 can be computed numerically from (D 10) following a similar approach
as implemented to determine ψwc and ψws in §3.2.1. The initial condition is ψw12 =
ψ2b cos(2θ̃) such that the total streamfunction (D 5) vanishes at t = 0. The evolution of
Ω can be taken into account by directly integrating (4.2) numerically. For r̃ � 1, ψw12 is
also of the form

ψw12 = r̃2 [fc(t, z̃, τ) cos(2θ) + fs(t, z̃, τ) sin(2θ)]

(
dU

dz̃

)2

. (D 16)

By using (D 13), this implies that the streamfunction ψ12 behaves in the vicinity of the
vortex core as

ψ12 =
r̃2

2

[(
σ2Ω

2
c t+

σν2Ωcτ̃
2

R̃eb
+ fs

)
sin(2θ̃)−

(
β2Ωc + χ2Ω

3
c t

2 − fc
)

cos(2θ̃)

](
dU

dz̃

)2

.

(D 17)
In §4.3, this allows us to determine the evolution of the vertical shear of the horizontal
velocity and the Richardson number on the vortex axis. We have also computed the
streamfunctions ψ2b, ψ2s and ψ2c directly from (D 6-D 8) without using the empiric profile
(D 12) but by using the angular velocity obtained from the numerical integration of (3.62).
They turn out to be very close to those plotted in figure 2c confirming the validity of
the assumption (D 12).

Appendix E. Derivation of the streamfunction ψw for small time

In this appendix, we derive analytically the streamfunctions ψwc and ψws associated
to internal waves for small time. This will allow us to obtain the asymptotic expressions
of Cw and Sw for t� 1.

For t� 1, the right-hand sides of (3.44-3.45) can be expanded in power of t giving

∂∇2
r̃ψwc
∂t

+Ω∇2
r̃ψws −

1

r̃

∂ζ0
∂r̃

ψws = f0 + t2
f2

2F 2
h

+ O(t4), (E 1)

∂∇2
r̃ψws
∂t

−Ω∇2
r̃ψwc +

1

r̃

∂ζ0
∂r̃

ψwc = tf1 + t3
f3

6F 2
h

+ O(t4), (E 2)

where f0 = −K(C F ), f1 = K(CΩ), f2 = K(r̃Ω2), f3 = K(r̃Ω3), where the operator K
is defined as

K(χ(r̃, . . .)) = ζ0χ(r̃, . . .) +
1

2

∂ζ0
∂r̃

[∫ r̃

+∞
χ(ξ, . . .)dξ +

1

r̃2

∫ r̃

0

ξ2χ(ξ, . . .)dξ

]
. (E 3)
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Accordingly, the solutions of (E 1-E 2) are expressed as:

ψwc = tψw1 + t3
ψw3

F 2
h

+O(t5), ψws = ψw0 + t2ψw2 + t4
ψw4

F 2
h

+O(t5), (E 4)

Inserting this expansion in (E 1-E 2) yields the sequence of equations:

∇2
r̃ψw1 +Ω∇2

r̃ψw0 −
1

r̃

∂ζ0
∂r̃

ψw0 =− f0, (E 5)

2∇2
r̃ψw2 −Ω∇2

r̃ψw1 +
1

r̃

∂ζ0
∂r̃

ψw1 =− f1, (E 6)

3∇2
r̃ψw3 + F 2

h

(
Ω∇2

r̃ψw2 −
1

r̃

∂ζ0
∂r̃

ψw2

)
=− f2

2
, (E 7)

4∇2
r̃ψw4 −Ω∇2

r̃ψw3 +
1

r̃

∂ζ0
∂r̃

ψw3 =− f3
6
, (E 8)

where the operator ∇2
r̃ is defined in (3.43). Since t � 1, the angular velocity Ω in

(E 5-E 8) can be assumed equal to its initial profile (2.11).
These equations can be solved successively. We first impose

ψw0 = − [ψps + λ0r̃Ω + (λ1 − ϑ)r̃] , (E 9)

where ψps is defined in (C 3), in order to satisfy the same initial condition (3.46) as for
the solution computed numerically. Then, (E 5) gives ψw1 = −ψpc− (λ1−ϑ)r̃Ω−A r̃/2,
where ψpc is defined in (C 2) and where it has been also imposed that ψw1 → 0 as
r̃ → +∞. In turn, (E 6) yields ψw2 = A r̃Ω/4 while (E 7) gives

ψw3 = − 1

12

[
r̃Ω

∫ r̃

+∞
ξΩ2dξ +

Ω

r̃

∫ r̃

0

ξ3Ω2dξ − r̃
∫ r̃

+∞
ξΩ3dξ − 1

r̃

∫ r̃

0

ξ3Ω3dξ

+4r̃

∫ r̃

+∞

Ω

η3

∫ η

0

ξ3Ω2dξ

]
, (E 10)

where the constants of integration have been chosen so that ψw3 vanishes at infinity. At
fourth order, only ∇2

r̃ψw4 will be needed: it is not necessary to derive ψw4. From (E 8),
we have directly:

∇2
r̃ψw4 = − 1

24

(
6

r̃

∂ζ0
∂r̃

ψw3 +Ωf2 + f3

)
, (E 11)

Finally, we impose that the mean displacement associated to the internal waves are
zero, giving from (3.48)

Cw(t) = −ϑt+
ς

F 2
h

t3 + O(t5), Sw(t) = −A

4
t2 +

σ

F 2
h

t4 + O(t5), (E 12)

where (3.42) has been used and where

ς = − 1

12
〈f2, r̃〉 = −3.554× 10−2, σ =

1

2

〈
∇2
r̃ψw4, r̃

〉
= −3.826× 10−3, (E 13)

for the Lamb-Oseen profile.

Appendix F. Asymptotic analysis of the equation (4.6)

In this appendix, we solve the equation (4.6) for the angular velocity when γ � 1 and
γ � 1 by matched asymptotic analyses.
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F.1. Small γ

When γ � 1, the solution of (4.6) can be expanded as

Ω = Ω0 + γΩ1 + O(γ2) (F 1)

and we introduce a slow time scale υ = γt̃. At leading order when t̃1/3 � 1/γ, i.e. in
terms of the original parameters t� ReF 2

h , (4.6) becomes

∂Ω0

∂t̃
= − Ω3

0

3t̃1/3
(F 2)

whose solution is

Ω0 =
Ωi(r̃, υ)√

1 + t̃2/3Ω2
i (r̃, υ)

, (F 3)

where Ωi is the angular velocity profile at t̃ = 0. It can depend also on the slow time υ.
At next order, we obtain:

∂Ω1

∂t̃
+
∂Ω0

∂υ
= −Ω

2
0Ω1

t̃1/3
+

1

6r̃

∂ζ0
∂r̃

. (F 4)

After substituting (F 3) in this equation, its general solution is found to be:

Ω1 =

Θ − ∂Ωi
∂υ

+
1

6r̃

∂ζi
∂r̃
− 1

2

(
∂Ωi
∂r̃

)2 [
3 arctan(Ωit̃

1/3)

Ω4
i

− 3t̃1/3

Ω3
i

+
t̃

Ωi

]
(
1 + t̃2/3Ω2

i

)3/2 , (F 5)

where Θ is an arbitrary constant. This constant should be set to zero to ensure that
Ω1 → 0 as r̃ → +∞. In addition, we have to impose that Ω = Ωi initially, implying that
Ω1 = 0 at t̃ = 0. This leads to an equation for Ωi over the slow time υ:

∂Ωi
∂υ

=
1

6r̃

∂ζi
∂r̃

. (F 6)

Since Ωi(r̃, υ = 0) =
[
1− exp(−r̃2)

]
/r̃2, the solution of (F 6) is:

Ωi =
1− exp(−r̃2/ã2)

r̃2
, (F 7)

with ã2 = 1 + 2υ/3. Gathering the two orders and rescaling the slow time scale υ give
the expression (4.7) of Ω.

F.2. Large γ

When γ � 1, the second term in the right-hand side of (4.6) is dominant provided
that γ � 1/t̃1/3, i.e. when the original time is such that t � ReF 2

h . In this time range,
(4.6) reduces at leading order to

∂Ω

∂t̃
=

γ

6r̃

∂ζ0
∂r̃

. (F 8)

The solution is

Ω =
1− exp(−r̃2/ã2)

r̃2
, (F 9)

with ã2 = a20 + 2γt̃/3, where a0 is an arbitrary constant.
The solution (F 9) is not valid for small time t̃ . 1/γ3. In order to find a solution for
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small time, we rescale the time t̃ = αυ with 0 < α < O(1/γ3) and υ = O(1). Then, (4.6)
becomes

∂Ω

∂υ
= −α2/3 Ω3

3υ1/3
+
αγ

6r̃

∂ζ0
∂r̃

. (F 10)

This equation shows that ∂Ω/∂υ ' 0 at leading order since the magnitude of α2/3 and
αγ are at most O(1/γ2). In other words, the angular velocity remains equal to its initial
profile

Ω =
1− exp(−r̃2)

r̃2
, (F 11)

as long as αγ � 1, i.e t̃� 1/γ.
In the overlap interval 1/γ3 � t̃ � 1/γ, the two solutions (F 9) and (F 11) are both

valid and thus should match. This imposes a0 = 1. Therefore, an approximation of the
solution of (4.6) valid for all time for γ � 1 is (F 9) with ã2 = 1 + 2γt̃/3. This implies
that the angular velocity at the vortex center evolves as Ωc = 1/(1 + 2γt̃/3). Since
t̃1/3 � 1 + 2γt̃/3 whatever t̃ when γ � 1, this approximation is in fact approximately
equal to the one for γ � 1 (see 4.9). Thus, (4.9) and (4.10) can be used not only for
γ � 1 but also for γ � 1.
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Boulanger, N., Meunier, P. & S. Le Dizès 2007 Structure of a stratified tilted vortex.
J. Fluid Mech. 583, 443–458.

Boulanger, N., Meunier, P. & S. Le Dizès 2008 Tilt-induced instability of a stratified
vortex. J. Fluid Mech. 596, 1–20.

Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and
simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343–368.

Deloncle, A., Billant, P. & Chomaz, J.-M. 2008 Nonlinear evolution of the zigzag
instability in stratified fluids : a shortcut on the route to dissipation. J. Fluid Mech.
599, 299–239.

DeMaria, M. 1996 The effect of vertical shear on tropical cyclone intensity change.
J. Atmos. Sci. 53, 2076–2088.

Frank, W. M. & Ritchie, E. A. 1999 Effects of environmental flow upon tropical cyclone
structure. Mon. Wea. Rev. 127, 2044–2061.

Godeferd, F. S. & Staquet, C. 2003 Statistical modelling and direct numerical simulations
of decaying stably stratified turbulence. part 2. large-scale and small-scale anisotropy. J.
Fluid Mech. 486, 115–159.

Herring, J. R. & Métais, O. 1989 Numerical experiments in forced stably stratified
turbulence. J. Fluid Mech. 202, 97–115.

Howard, L. N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10, 509–512.



30 J. Bonnici and P. Billant

Jones, S. C. 1995 The evolution of vortices in vertical shear. I: Initially barotropic vortices.
Quart. J. Roy. Meteor. Soc 121, 821–851.

Jones, S. C. 2000a The evolution of vortices in vertical shear. II: Large-scale asymmetries.
Quart. J. Roy. Meteor. Soc 126, 3137–3159.

Jones, S. C. 2000b The evolution of vortices in vertical shear. III: Baroclinic vortices.
Quart. J. Roy. Meteor. Soc 126, 3161–3185.

Jones, S. C. 2004 On the ability of dry tropical-cyclone-like vortices to withstand vertical shear.
J. Atmos. Sci. 61, 114–119.

Laval, J.-P., McWilliams, J. C. & Dubrulle, B. 2003 Forced stratified turbulence:
Successive transitions with reynolds number. Phys. Rev. E 68 (3), 036308.

Le Dizès, S. & Laporte, F. 2002 Theoretical predictions for the elliptical instability in a
two-vortex flow. J. Fluid Mech. 471, 169–201.

Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere.
J. Atmos. Sci. 40, 749–761.

Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207–
242.

Majda, A. J. & Grote, M. J. 1997 Model dynamics and vertical collapse in decaying strongly
stratified flows. Phys. Fluids 9, 2932–2940.

Marshall, J. S. & Parthasarathy, B. 1993 Tearing of an aligned vortex by a current
difference in two-layer quasi-geostrophic flow. J. Fluid Mech. 255, 157–182.

Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508.
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain

field. Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences 346 (1646), 413–425.
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