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shear flow. Part 2. Numerical simulations.
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We conduct direct numerical simulations of an initially vertical Lamb-Oseen vortex in an
ambient shear flow varying sinusoidally along the vertical in a stratified fluid. The Froude
number F

h

and the Reynolds number Re, based on the circulation � and radius a0 of the
vortex, have been varied in the ranges: 0.1 6 F

h

6 0.5 and 3000 6 Re 6 10000. The shear
flow amplitude Û

S

and vertical wavenumber k̂
z

lie in the ranges: 0.02 6 2⇡a0ÛS

/� 6 0.4
and 0.1 6 k̂

z

a0 6 2⇡. The results are analysed in the light of the asymptotic analyses
performed in part 1.

The vortex is mostly advected in the direction of the shear flow but also in the
perpendicular direction owing to the self-induction. The decay of potential vorticity
is strongly enhanced in the regions of high shear. The long-wavelength analysis for
k̂
z

a0Fh

⌧ 1 predicts very well the deformations of the vortex axis. The evolutions of
the vertical shear of the horizontal velocity of the vortex and of the vertical gradient
of the buoyancy at the location of maximum shear are also in good agreement with the
asymptotic predictions when k̂

z

a0Fh

is su�ciently small. As predicted by the asymptotic
analysis, the minimum Richardson number never goes below the critical value 1/4 when
k̂
z

a0Fh

⌧ 1. The numerical simulations show that the shear instability is triggered only
when k̂

z

a0Fh

& 1.6 for su�ciently high buoyancy Reynolds number ReF 2
h

. There is
also a weak dependence of this threshold on the shear flow amplitude. In agreement
with the numerical simulations, the long-wavelength analysis predicts that the minimum
Richardson number goes below 1/4 when k̂

z

a0Fh

& 1.7 although this is beyond its
expected range of validity.

Key words:

1. Introduction

In this paper, we continue the analysis of the evolution of a vortex embedded in a
vertically sheared flow in a strongly stratified fluid. The main purpose is to determine the
conditions under which the vertical shear can grow su�ciently to lead to the development
of the shear instability.
This instability is thought to be an important process for the generation of small

scales in stratified flows (Riley & deBruynKops 2003; Laval et al. 2003; Lindborg 2006;
Brethouwer et al. 2007). In the case of a columnar counter-rotating vortex pair, Deloncle
et al. (2008) and Waite & Smolarkiewicz (2008) have reported that the vertical shear
generated by the zigzag instability can lead to the development of the shear instability.

† Email address for correspondence: billant@ladhyx.polytechnique.fr
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This occurs when the buoyancy Reynolds number Re
b

= ReF 2
h

(Re is the classical
Reynolds number and F

h

the horizontal Froude number) is above a threshold since the
minimum Richardson number is inversely proportional to Re

b

(Riley & deBruynKops
2003; Deloncle et al. 2008; Augier & Billant 2011). The subsequent destabilization of
the Kelvin-Helmholtz billows leads to small-scale turbulence with spectral characteristics
similar to those of randomly forced stratified turbulence (Augier et al. 2012; Waite 2013).

However, a counter-rotating vortex pair is a very specific flow. Here, we consider the
more generic configuration of a single vortex in an ambient shear flow. Such idealized
flow contains two elementary ingredients often at play in stratified flows: an horizontal
flow with vertical vorticity embedded in a vertical shear flow. In Bonnici & Billant
(2020) (referred to hereinafter as part 1), we have studied such a flow by means of a
long-wavelength analysis for k

z

F
h

⌧ 1, where k
z

= k̂
z

a0 is the dimensionless vertical
wavenumber of the sinusoidal shear flow. This analysis provides a complete description
of the vortex dynamics: the evolution of the vortex axis and angular velocity as well as
secondary flows created as the vortex is bent. From these results, we have shown that the
minimum Richardson number can not go below the critical value 1/4 when k

z

F
h

⌧ 1. In
the present paper, we will conduct DNS of this flow for both small and finite k

z

F
h

and
analyse its dynamics in the light of the asymptotic analysis.

The paper is organized as follows. The initial conditions, control parameters, and
numerical method are described in §2. An overview of two typical simulations is first
given in §3. Then, the long-wavelength analysis is first briefly summarized in §4.1 and
its predictions for the deformations of the vortex axis are compared to the numerical
simulations in §4.2. We then focus on the evolution of the flow at the vortex center and
the mid-vertical level where the vertical shear is maximum (§4.3). Again, the asymptotic
analysis is used to rationalize the numerical results. Finally, section §5 concentrates on the
evolution of the Richardson number for finite k

z

F
h

. Section §6 summarizes and discusses
the results.

2. Formulation of the problem

2.1. Initial conditions and governing equations

As in part 1, the initial flow is chosen as

u(x, t = 0) = U

S

+ u

v

, (2.1)

where U
S

is a sinusoidal shear flow and u

v

a columnar vortex with a Lamb-Oseen profile:

U

S

= U
S

sin(k
z

z)e
x

, u

v

=
1� exp(�r2)

r
e

✓

, (2.2)

where (x, y, z) and (r, ✓, z) are cartesian and cylindrical coordinates, respectively.
(e

x

, e
y

, e
z

) and (e
r

, e
✓

, e
z

) are the associated unit vectors. The horizontal and vertical
velocities in cartesian coordinates are denoted u

h

= (u, v) and w.
In (2.2), the length and time have been non-dimensionalized by the vortex radius a0

and the turnover time 2⇡a20/� of the vortex. The shear amplitude U
S

and wavenumber
k
z

are therefore non-dimensional: U
S

= Û
S

2⇡a0/� , kz = k̂
z

a0, where Û
S

and k̂
z

are the
corresponding dimensional quantities. The governing equations are the incompressible
Navier-Stokes equations under the Boussinesq approximation (see part 1). The Reynolds,
Froude and Schmidt numbers are defined as

Re =
�

2⇡⌫
, F

h

=
�

2⇡a20N
, Sc =

⌫


, (2.3)
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F

h

Re k

z

U

S

l

z

n

x

n

y

n

z

�t

0.1 6000 ⇡ 0.2 2 512 512 256 0.005
0.1 10000 2 0.2 3.142 512 512 256 0.005
0.1 6000 2 0.4 3.142 512 512 256 0.005
0.5 6000 0.3 0.2 20.94 384 384 448 0.01
0.5 6000 ⇡ 0.2 2 832 832 256 0.005
0.5 6000 3⇡/2 0.2 1.333 832 832 448 0.005

Table 1. Overview of the physical and numerical parameters of some typical simulations. For
all simulations, the horizontal dimensions of the domain are l

x

= l

y

= 18.

with ⌫ the viscosity,  the di↵usivity andN the Brunt-Väisälä frequency which is assumed
constant.

2.2. Numerical method

The equations are integrated numerically by means of a pseudo-spectral method with
periodic boundary conditions and a fourth-order Runge-Kutta time advancement scheme
(Deloncle et al. 2008). An elliptic truncation of the top one-third of the modes in each
direction is applied. The viscous and di↵usive terms are integrated exactly. The horizontal
size of the computational domain is taken large l

x

= l
y

= 18 in order to minimize
the e↵ect of the periodic boundary conditions. Periodic boundary conditions are indeed
responsible for the presence of image vortices located in the virtual boxes adjacent to
the computational domain. The strain field due to these image vortices is proportional to
�/(2⇡l2

x

) and �/(2⇡l2
y

). Periodic boundary conditions also imply that the net circulation
over the domain should be zero (Pradeep & Hussain 2004; Otheguy et al. 2006). Since a
single vortex with a non-zero circulation � is simulated here, a small background uniform
vertical vorticity ��/(l

x

l
y

) is therefore artificially present.
Although these two artifacts could be suppressed by implementing the method pro-

posed by Rennich & Lele (1997), we have chosen to minimize them by simply taking
a large box. Several tests with larger boxes (Bonnici 2018) have shown that setting
l
x

= l
y

= 18 gives results almost independent of the box size while being not too
computationally expensive. The vertical size is set to l

z

= 2⇡/k
z

, so that a single
wavelength of the shear flow is simulated.

Table 1 lists the parameters of some typical simulations. The number of grid points in
the x and y directions have been varied from n

x

= n
y

= 384 to n
x

= n
y

= 832 depending
on the values of the Reynolds and Froude numbers. The number of grid points in the
vertical direction ranges from n

z

= 256 to n
z

= 448 depending on the values of k
z

, Re and
F
h

. Typically, a high resolution is required for the parameters where the shear instability
develops because it generates small billows while a moderate resolution is su�cient for
the other cases. When k

z

increases, the horizontal and vertical resolutions have to be
increased also since the vertical gradients are larger. The accuracy of the results has
been checked by increasing the resolution or the domain horizontal sizes in several runs.
The time step varies from �t = 0.0025 to �t = 0.01. All the numerical simulations have
been carried out for Sc = 1. The Froude number has been always kept below unity so
as to remain in the strongly stratified regime. The shear amplitude U

S

is also always
kept below unity meaning that the vortex is stronger than the shear flow. The vertical
wavenumber has been varied in the range 0.1 6 k

z

6 2⇡. The Reynolds number has been
varied from Re = 3000 to Re = 10000.
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3. Overview of the dynamics

3.1. Qualitative description

We first begin by a description of two di↵erent simulations in order to give an overview
of the flow dynamics.
Figures 1 and 2 display the potential vorticity ⇧ = ! ·

⇥
rb+ 1/F 2

h

ez

⇤
, where ! is

the vorticity and b the buoyancy, at di↵erent times for k
z

= ⇡, F
h

= 0.1 and k
z

= 3⇡/2,
F
h

= 0.5, respectively, whereas U
S

and Re are fixed to U
S

= 0.2 and Re = 6000.
The first column shows three-dimensional contours while the second column represents
a corresponding horizontal cross-section at the vertical level z = l

z

/4. The vortex is
mostly displaced in the direction of the shear flow, but also slightly in the perpendicular
direction as seen in the horizontal cross-sections. Hence, the vertical plane containing
the vortex axis is actually oblique relative to the (x, z) plane. The displacement in the y
direction is weaker in figure 1 than in figure 2.

A common feature of both simulations is that the potential vorticity decreases faster
in the regions of high shear z = 0, l

z

/2 than in the regions of weak shear z = l
z

/4, 3l
z

/4
(figures 1e, 2e,g). Thus, the vortex seems to be torn apart into two separate pancake
vortices at large times.

Figure 3 displays the corresponding total vertical shear of the horizontal velocity
p

S
z

=p
(@u/@z)2 + (@v/@z)2 (color) in the vertical cross-section at y = 9, i.e. passing through

the vortex center at t = 0. The superimposed black lines show the total density ⇢
t

=
�(⇢0/g)(b + z/F 2

h

), where ⇢0 is the reference density and g the gravity. For k
z

= ⇡,
F
h

= 0.1 (left column of figure 3), the shear is maximum in the vortex core at the point
x
c

= 9, z
c

= 0, l
z

/2 (note that these coordinates correspond to those of the computational
domain where the vortex center is initially in the middle x = 9, y = 9). As the vortex
is progressively bent,

p

S
z

grows monotonically with time and becomes rapidly much
higher than the maximum ambient shear max (

p
S̄
z

) = k
z

U
S

' 0.6 (figure 3a,c,e,g). The
iso-density lines remain nearly flat since the stratification is strong for this case.
Figure 4a shows that the minimum of the Richardson number (black solid line)

Ri =

1

F 2
h

+
@b

@z

S
z

(3.1)

decreases with time from min(Ri) = 1/(F
h

k
z

U
S

)2 = 253 at t = 0 down to min (Ri) = 3.7
at t = 22 and then slowly re-increases. The quantity min (Ri) thus remains well above
the critical value 1/4 necessary for the development of the shear instability of a steady
parallel inviscid shear flow (Miles 1961; Howard 1961).
For k

z

= 3⇡/2, F
h

= 0.5 (right column of figure 3), the growth of the maximum shear
p

S
z

is not monotonic. There is a first stage where the shear is very weak within the vortex
core (see figure 3b at t = 4), i.e. the response of the vortex tends to cancel the ambient
shear. Then, the vortex becomes tilted as for k

z

= ⇡, F
h

= 0.1, and the maximum shear is
encountered in the vicinity of x

c

= 9, z
c

= 0, l
z

/2 (figure 3d) with values approximately

ten times larger than the ambient maximum shear max (
p

S̄
z

) ' 0.9. The regions of
high shear are remarkably thin. Later on, the flow strongly dissipates in these regions
and the shear becomes maximum at points away from (x

c

, z
c

) (figure 3f,h). During this
evolution, the iso-density lines are strongly deformed in contrast to k

z

= ⇡, F
h

= 0.1.
Some overturns can even be seen at some locations at t = 26 (figure 3f ). As seen in figure
4a, the minimum Richardson number for this simulation (grey solid line) decreases from
min(Ri) = 1/(F

h

h
z

U
S

)2 = 4.5 at t = 0 to a value below Ri
c

= 0.25 for 11 6 t 6 37. The
(y, z) cross-section at x = 9 of the buoyancy at t = 26 (figure 4c) confirms the presence
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Figure 1. (Colour online) Left column: three-dimensional contours of the potential vorticity at
di↵erent times for F

h

= 0.1, k
z

= ⇡, U
S

= 0.2 and Re = 6000. Right column: corresponding
horizontal cross-sections in the plane z = l

z

/4 where the advection is the most intense. The
times shown are (a,b) t = 4, (c,d) t = 13, (e,f ) t = 26. In (a,c,e), the isocontours correspond to
20% (light grey or yellow) and 60% (dark grey or red) of the initial maximum value.

Page 5 of 23

Cambridge University Press

Journal of Fluid Mechanics



For Peer Review

6 P. Billant and J. Bonnici

Figure 2. (Colour online) Same as figure 1 except that F
h

= 0.5, k
z

= 3⇡/2. The times shown
are (a,b) t = 4, (c,d) t = 13, (e,f ) t = 26, (g,h) t = 36.

Page 6 of 23

Cambridge University Press

Journal of Fluid Mechanics



For Peer Review

Evolution of a vortex in a strongly stratified shear flow. Part 2. 7

Figure 3. (Colour online) Vertical cross-sections of the shear
p
S

z

(color) and of the total
density ⇢

t

(black contour lines) in the plane y = 9, for F

h

= 0.1, k
z

= ⇡ (left column) and
F

h

= 0.5, k
z

= 3⇡/2 (right column), for U

S

= 0.2 and Re = 6000. The times shown are (a,b)
t = 4, (c,d) t = 13, (e,f ) t = 26, (g,h) t = 36.

of Kelvin-Helmholtz billows near z
c

= 0, l
z

/2. In contrast, no billows can be seen in
these regions in the corresponding (x, z) cross-section at y = 9 (figure 4b). This means
that the axes of the Kelvin-Helmholtz billows are mostly oriented in the x direction,
i.e. they are parallel to the direction of the ambient shear flow. The black contours in
figure 4 delineate the regions where Ri < 0.25. In addition to the unstable regions near
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0
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m
in

(R
i)

(a)

Figure 4. (Colour online) (a) Minimum Richardson number as a function of time for U
S

= 0.2,
Re = 6000, and F

h

= 0.1, k
z

= ⇡ (black solid line) and F

h

= 0.5, k
z

= 3⇡/2 (grey solid line)
from the DNS. The horizontal black dash-dotted line shows the critical value Ri = 0.25. (b,c)
Vertical cross-sections of the buoyancy b at t = 26 in the planes y = 9 (b) and x = 9 (c) for
F

h

= 0.5, k
z

= 3⇡/2, U
S

= 0.2, and Re = 6000. The black contours represent the lines where
Ri = 0.25.

(x
c

, z
c

), there exist also other unstable regions above and below each pancake vortex at
z = l

z

/4 and z = 3l
z

/4 as seen in the (x, z) cross-section (figure 4b). We can also see
some billows and overturns in these regions (figures 4b and 3f ) but in this case, their
axes are perpendicular to the direction of the ambient shear. When they occur, these
unstable regions appear only in a second stage after those near (x

c

, z
c

).

3.2. Time evolution of the vertical shear at the center

For k
z

= ⇡, F
h

= 0.1, the Richardson number is always minimum at the center
point (x

c

= 9, y
c

= 9, z
c

= l
z

/2) and at the symmetric point (x
c

= 9, y
c

= 9, z
c

= 0).
For k

z

= 3⇡/2, F
h

= 0.5, the Kelvin-Helmholtz instability also develops first at these
points. It is therefore interesting to investigate the evolution of the vertical shear at these
locations.

To this end, we first decompose the flow into a mean flow varying only along the
vertical and with time ū(z, t) and a complementary flow u

⇤:

u = ū+ u

⇤, (3.2)

where the overbar denotes the horizontal average over the computational domain, which
for any quantity q is defined as

q̄ =
1

l
x

l
y

Z
l

y

0

Z
l

x

0
q(x, y, z, t)dxdy. (3.3)

At t = 0, we have ū = U

S

and u

⇤ = u

v

so that ū and u

⇤ will be called ”shear flow” and
”vortex flow”, respectively.

Figure 5a shows the evolution of the di↵erent shear components @ū/@z, @u⇤/@z, and
@v⇤/@z at the center (x

c

= 9, y
c

= 9, z
c

= l
z

/2) for F
h

= 0.1, k
z

= ⇡, U
S

= 0.2 and
Re = 6000. The quantity @v̄/@z is always equal to zero at the center and is not plotted.
More generally, @v̄/@z always remains very small at any vertical position compared to
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Figure 5. Time evolution of @ū/@z (black dash-dotted lines), @u⇤
/@z (black dashed lines), and

@v

⇤
/@z (black solid lines) at the vortex center x

c

= 9, y
c

= 9, z
c

= l

z

/2 for (a) F
h

= 0.1, k
z

= ⇡,
and (b) F

h

= 0.5, k
z

= 3⇡/2 for U

S

= 0.2 and Re = 6000. The straight grey lines represent
the relation k

z

U

S

t. The symbols show the horizontal vorticity components �!

⇤
x

(circles) and !

⇤
y

(squares).

@ū/@z. We see that the mean shear @ū/@z (dash-dotted line) remains almost constant
and equal to �k

z

U
S

= �0.63. In contrast, the shear component @v⇤/@z (solid line) grows
first linearly and then saturates at t ' 22 at the value @v⇤/@z = 6.3, i.e. ten times the
ambient shear |@ū/@z|. The other component @u⇤/@z remains very weak up to t = 10
and then increases up to @u⇤/@z ' 1 at t = 30. This quantity therefore saturates at a
lower value and later than its counterpart @v⇤/@z.
The initial behaviour of the vertical shear of the vortex @u⇤/@z and @v⇤/@z can be

simply understood by considering that the vortex is displaced at the velocity U(z) in the
x direction, i.e. u

v

(x� Ut, y), as assumed by Lilly (1983). This gives:

@u
v

@z
= �

dU

dz
t
@u

v

@x
. (3.4)

Since u

v

= (�⌦y,⌦x), where ⌦(r) is the angular velocity of the vortex, we have
@v

v

/@x = ⌦ = 1 and @u
v

/@x = 0 at the center r = 0. Thus, (3.4) yields

@u
v

@z
= 0,

@v
v

@z
= k

z

U
S

t, (3.5)

at z = l
z

/2. The straight grey line in figure 5a confirms that @v⇤/@z increases initially
at the rate k

z

U
S

t. This also explains why @u⇤/@z remains very small initially. The
subsequent evolutions will be explained later thanks to the asymptotic analysis performed
in part 1.
In figure 5a, we have also plotted with symbols the horizontal vorticity components

�!⇤
x

and !⇤
y

where !

⇤ = r ⇥ u

⇤. They are nearly superposed to @v⇤/@z and @u⇤/@z,
respectively, because the vertical velocity is very small compared to the horizontal
velocity. In other words, !⇤

x

' �@v⇤/@z and !⇤
y

' @u⇤/@z.
Similarly, figure 5b displays the time evolution of @ū/@z, @u⇤/@z, and @v⇤/@z at the

center point for F
h

= 0.5 and k
z

= 3⇡/2, still for U
S

= 0.2 and Re = 6000. In contrast to
the case F

h

= 0.1, k
z

= ⇡ (figure 5a), @v⇤/@z follows the relation (3.5) only at the very
beginning t . 2. Instead, both shear components @u⇤/@z and @v⇤/@z first oscillate with
a phase lag and with a period around 2⇡, i.e. the period corresponding to the angular
velocity on the vortex axis ⌦ = 1. Because of these oscillations, we can notice that
@v⇤/@z goes back to zero around t ' 4 � 5 while @u⇤/@z is approximately opposite to
@ū/@z. Thus, the total shear S

z

is weak at the center as already observed in figure 3b at
t = 4.
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Figure 6. Time evolutions of the global kinetic energy Ē

k

+ E

⇤
kh

+ E

⇤
kz

(black solid line), the
mean flow kinetic energy Ē

k

(black dash-dotted line), the vortex horizontal kinetic energy E

⇤
kh

(black dashed line), the vortex vertical kinetic energy E

⇤
kz

(grey dashed line) and the potential
energy E

p

(grey solid line) for (a) F

h

= 0.1, k
z

= ⇡ and (b) F

h

= 0.5, k
z

= 3⇡/2 for U

S

= 0.2,
Re = 6000.

Then, @u⇤/@z and @v⇤/@z are both abruptly amplified up to an absolute value around
10. Remarkably, @u⇤/@z becomes now negative and saturates earlier than @v⇤/@z. Later
on, |@u⇤/@z| decreases very quickly while |@v⇤/@z| decays more slowly. The vorticity
components �!⇤

x

and !⇤
y

have been also plotted in figure 5b. They are again almost
identical to @v⇤/@z and @u⇤/@z except �!⇤

x

for 21 6 t 6 35. This corresponds to the
time interval when the Kelvin-Helmholtz billows exist. They produce a finite vertical
velocity w⇤, making the term @w⇤/@y in !⇤

x

no longer negligible. In contrast, the term
@w⇤/@x is still negligible in !⇤

y

, most probably because the axes of the Kelvin-Helmholtz
billows are aligned with the x direction.

3.3. Global energy and enstrophy evolutions

Figure 6 presents the evolutions of the energies integrated over the whole computational
domain for the two simulations for k

z

= ⇡, F
h

= 0.1, and k
z

= 3⇡/2, F
h

= 0.5, previously
described. The kinetic energies have been decomposed into a mean part and a vortex part
using the decomposition (3.2):

Ē
k

=
1

l
z

Z

V

ū

2

2
dV , E⇤

kh

=
1

l
z

Z

V

u

⇤
h

2

2
dV , E⇤

kz

=
1

l
z

Z

V

w⇤2

2
dV , (3.6)

where E⇤
kh

and E⇤
kz

are the horizontal and vertical kinetic energies of the vortex part.
The integral over the computational domain V is divided by l

z

in order to enable the
comparisons between simulations carried out with distinct vertical wavelengths (Note
that we do not divide by V in order to be able to compare simulations with di↵erent
horizontal domain sizes). Similarly, the global potential energy per vertical length unit
is:

E
p

=
1

l
z

Z

V

F 2
h

b2

2
dV . (3.7)

The kinetic energy of the mean flow Ē
k

(black dash-dotted lines) remains approximately
constant even if it increases slightly at the beginning for k

z

= 3⇡/2, F
h

= 0.5 (figure 6b).
In contrast, the horizontal kinetic energy of the vortex E⇤

kh

(black dashed lines) decreases
regularly following an approximately linear trend. The vertical kinetic energy E⇤

kz

(grey
dashed lines) and the potential energy E

p

(grey solid lines) remain always very weak
compared to the horizontal kinetic energy.

Likewise, figure 7 displays the evolutions of the global enstrophies per vertical length
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Figure 7. Time evolutions of the global total enstrophy Z̄+Z

⇤
h

+Z

⇤
z

(black solid line), the mean
flow enstrophy Z̄ (black dash-dotted line), the vortex horizontal enstrophy Z

⇤
h

(black dashed
line) and the vortex vertical enstrophy Z

⇤
z

(grey dashed line) for (a) F

h

= 0.1, k
z

= ⇡ and (b)
F

h

= 0.5, k
z

= 3⇡/2 for U
S

= 0.2, Re = 6000.

unit, decomposed using (3.2):

Z̄ =
1

l
z

Z

V

!̄

2

2
dV , Z⇤

h

=
1

l
z

Z

V

!

⇤
h

2

2
dV , Z⇤

z

=
1

l
z

Z

V

⇣⇤2

2
dV , (3.8)

where !̄ is the vorticity of the shear flow and !

⇤
h

and ⇣⇤ the horizontal and vertical
vorticities of the vortex part. The global horizontal enstrophy of the vortex Z⇤

h

(black
dashed lines) increases and then decreases while its vertical counterpart Z⇤

z

(grey dashed
lines) continuously decays. Remarkably, the growth of Z⇤

h

is much more pronounced for
k
z

= ⇡, F
h

= 0.1 than for k
z

= 3⇡/2, F
h

= 0.5 although the vertical wavenumber k
z

is
higher in this second case. The enstrophy of the mean shear Z̄ remains approximately
constant like the mean kinetic energy Ē

k

. Since the mean enstrophy Z̄ for k
z

= 3⇡/2 is
more than twice the one for k

z

= ⇡, the maximum of the total enstrophy (solid lines) is
comparable in the two simulations even if max (Z⇤

h

) is lower for k
z

= 3⇡/2.

4. Comparison to the long-wavelength asymptotic analysis

4.1. Reminder

In part 1, we have performed a long-wavelength asymptotic analysis for k
z

F
h

⌧ 1, i.e.
for small vertical Froude number F

v

= k
z

F
h

= �/(a0lzN). Leading order viscous e↵ects
have been also taken into account. This analysis has provided evolution equations for the
position of the vortex center at each level z:

�x = U(z)t+ �x(z, t), (4.1)

�y = �y(z, t), (4.2)

where

@�x

@t
=


A(z, t)

2

@2�y

@z2
�

✓
#(z, t) +

@C
w

@t
(z, t)

◆
d2U

dz2

�
F 2
h

, (4.3)

@�y

@t
=�


@

@z

✓
A(z, t)

2
t
dU

dz

◆
+

A(z, t)

2

@2�x

@z2
+
@S

w

@t
(z, t)

d2U

dz2

�
F 2
h

. (4.4)

where C
w

and S

w

are the e↵ects of internal waves excited at t = 0 and that decay quickly
afterwards. The parameters A and # correspond to the self-induction of the vortex and
an advection correction, respectively. The expressions of all these parameters are given
in part 1.

Page 11 of 23

Cambridge University Press

Journal of Fluid Mechanics



For Peer Review

12 P. Billant and J. Bonnici

An approximation for the solution of (4.3-4.4) has been found in part 1 in the form

�x = �F 2
h


C

w

(z, t) +

Z
t

0
#(z, �)d�

�
d2U

dz2
, (4.5)

�y = �F 2
h


S

w

(z, t)
d2U

dz2
+

Z
t

0

@

@z

✓
A(z, �)

2

dU

dz

◆
�d�

�
. (4.6)

In addition, the asymptotic analysis has shown that the angular velocity of the vortex
evolves according to

@⌦

@t
=


�F 2

h

t⌦3 +
t2

2Re r̃

@⇣0
@r̃

�✓
dU

dz

◆2

, (4.7)

where ⇣0 = (1/r̃)@r̃2⌦/@r̃ is the vertical vorticity and r̃ is the local radius with respect
to the center of the vortex at the level z: r̃2 = (x � U(z)t � �x)2 + (y � �y)2. The first
term in the right-hand side of (4.7) ensures the conservation of potential vorticity while
the second term describes the leading viscous e↵ect. This e↵ect is proportional to t2

because the vertical shear grows like tdU/dz at leading order. Internal waves have been
neglected in (4.7) since their e↵ects have been shown to be very weak In part 1, the
equation (4.7) has been solved asymptotically. In particular, an analytic expression for
the angular velocity on the vortex axis has been obtained:

⌦(r̃ = 0, z, t) =
1q

(1 + 2�T 3/3)2 + T 2

, (4.8)

where T = F
h

t|dU/dz| and �(z) = 1/
�
ReF 3

h

|dU/dz|
�
. This expression is in very good

agreement with the exact result obtained by numerical integration of (4.7). It will be
therefore used in the following.

In addition, the asymptotic analysis has provided the horizontal velocity at order
O[(k

z

F
h

)2] and the vertical velocity and buoyancy at leading order. They allowed us to
predict the evolution of the vertical shear of the horizontal velocity, the vertical buoyancy
gradient and the Richardson number at the vortex center at z = l

z

/2. These predictions
will be compared to the DNS in section §4.3. Before, we begin by presenting in the next
section a comparison between the location of the vortex center observed in the DNS and
the asymptotic predictions (4.1)-(4.2).

4.2. Deformations of the vortex axis

In order to estimate the position of the vortex center in the numerical simulations,
we have used two methods: one based on the potential vorticity ⇧ and the other on
the vertical vorticity ⇣. In each case, the displacements of the vortex center have been
estimated from vorticity centroids:

�x⇧

c

(z, t) =
hx⇧i

h

h⇧i

h

, �y⇧
c

(z, t) =
hy⇧i

h

h⇧i

h

, (4.9)

or

�x⇣

c

(z, t) =
hx⇣i

h

h⇣i
h

, �y⇣
c

(z, t) =
hy⇣i

h

h⇣i
h

, (4.10)

where the brackets denote

h'i
h

=

Z

'>'

c

'dxdy. (4.11)
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Figure 8. (a,b) Comparison between the vertical vorticity centroids �x

⇣

c

and �y

⇣

c

(grey open
circles), the potential vorticity centroids �x

⇧

c

and �y

⇧

c

(grey crosses) and the asymptotic
predictions for the displacements �x and �y (black solid lines) in the plane z = l

z

/4. (c)
displays a close-up view of the initial evolution of �y

⇣

c

(grey open circles), �y

⇧

c

(grey crosses),
and �y (black solid line). The asymptotic prediction in the absence of internal waves, i.e. by
setting C

w

= S
w

= 0 in (4.5)-(4.6) has been also reported (black dashed line). The short-time
asymptotic prediction for �y has been plotted as well (grey solid line). The parameters are
F

h

= 0.5, k
z

= 0.3, U
S

= 0.2, and Re = 6000.

The horizontal integration is carried out only in the regions where the vorticity is larger
than a critical value ⇧

c

, ⇣
c

. In this way, we exclude the small background vorticity due to
the fact that the total vorticity is zero owing to the use of periodic boundary conditions.
The values ⇧

c

= 0.05max
t=0 (⇧) and ⇣

c

= 0.05max
t=0 (⇣) have been chosen as they

provide results almost independent of the size of the computational domain and the
particular values of the thresholds.

The tracking method based on the potential vorticity seems more natural since it is a
transported quantity in the inviscid limit. However, we shall see that the method based
on the vertical vorticity will enable a closer comparison to the asymptotic results. This
is because the condition used to normalize the streamfunction at first order  1 in the
asymptotic analysis:

⌦
xr2

h

 1

↵
h

= 0,
⌦
yr2

h

 1

↵
h

= 0, implies

�x⇣

c

=
hx⇣i

h

h⇣i
h

=

⌦
x[⇣0 + (k

z

F
h

)2r2
h

 1 + ...]
↵
h

h⇣0 + (k
z

F
h

)2r2
h

 1 + ...i
h

=
hx⇣0(r̃)i

h

h⇣0i
h

= �x, (4.12)

and, similarly �y⇣
c

= �y, where (�x,�y) are the asymptotic displacements (4.1)-(4.2)
and ⇣0 is the leading order vertical vorticity.
In the next sections, we compare the asymptotic and numerical results for di↵erent

parameters.

4.2.1. In-depth analysis of a simulation

Figure 8 compares the total displacements �x = U
S

t + �x and �y as predicted by
the asymptotics to the positions �x

c

and �y
c

of the vortex estimated from the vertical
vorticity and potential vorticity centroids at the level z = l

z

/4 for F
h

= 0.5, k
z

= 0.3,
U
S

= 0.2, and Re = 6000. The agreement is excellent at all times for �x and up to
t ' 15 for �y. The dominant displacement is in the x direction (figure 8a) and given by
U
S

t while the deviations �x and �y are much smaller.
The displacement of the vortex estimated from the vertical vorticity, (�x⇣

c

,�y⇣
c

), and
from the potential vorticity, (�x⇧

c

,�y⇧
c

), are almost equal. However, if we focus on the
initial evolution of�y⇣

c

and�y⇧
c

(figure 8c), we see that they are actually di↵erent for t 6
4. The displacement�y⇣

c

(crosses) is first slightly negative for t 6 2 in excellent agreement
with the asymptotic prediction �y (black solid line). In contrast, the y displacement

Page 13 of 23

Cambridge University Press

Journal of Fluid Mechanics



For Peer Review

14 P. Billant and J. Bonnici

0 5 10 15 20

z

-10

-5

0

5

10

∆
x
ζ c
,∆

x

(a)

0 5 10 15 20

z

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

∆
y
ζ c
,δ
y

(b)

Figure 9. (a,b) Comparison between the vertical vorticity centroids �x

⇣

c

(a) and �y

⇣

c

(b) (grey
dashed lines with open circles) and the asymptotic predictions for the displacements �x and
�y (black solid lines) as a function of z at di↵erents times t = 6, 12, 18, 24, 30, 36 (increasing
amplitudes). The dotted lines represent the exact solution obtained by numerical integration of
(4.3-4.4). The parameters are F

h

= 0.5, k
z

= 0.3, U
S

= 0.2, and Re = 6000.

estimated from the potential vorticity �y⇧
c

(open circles) increases monotonically. As
explained above, the estimation of the vortex center from the vertical vorticity is in
much better agreement with the asymptotics than the estimation from the potential
vorticity because the normalisation condition used in the asymptotic analysis is based
on the vertical vorticity.
Nevertheless, if the e↵ects of the internal waves are neglected in (4.5)-(4.6) (i.e. C

w

=
S

w

= 0), the asymptotic prediction (black dashed line) is then close to �y⇧
c

. This
confirms that internal waves play a key role at the start-up of the flow evolution. Because
of these waves, the initial evolution of �y at z = l

z

/4 is of the form �y = k2
z

U
S

�t4, where
� = �3.826⇥ 10�3 is a constant (part 1), as shown by the grey solid line in figure 8c. In
contrast, when internal waves are neglected, �y evolves initially as �y / t2 (black dashed
line).
Figure 9 shows the vertical profiles of the x and y displacements at di↵erent times.

As can be seen in figure 9a, the agreement between the vertical vorticity centroid �x⇣

c

measured in the simulations (grey dashed lines with open circles) and the asymptotic
prediction �x (black solid lines) is excellent along all the vertical. It follows very well
the sinusoidal profile �x = U

s

t sin(k
z

z) since the correction �x is much smaller. There is
also a good agreement between the numerics and the asymptotics for the y-displacement
(figure 9b) although some departures appear around the extrema for large time, as was
already seen in figure 8b. It is also clearly visible that the y-displacement departs from
a sinusoidal shape as time increases. This non-sinusoidal profile comes from the vertical
variations of the parameter A (in the second term of (4.6)) induced by the modulation of
the angular velocity of the vortex along the vertical. We have also plotted in figure 9 the
exact asymptotic displacements obtained by numerical integration of (4.3-4.4) (dotted
lines). However, these curves are only visible around the maxima of �y at the latest time
shown (figure 9b) because they are almost identical to the approximation (4.5)-(4.6).

We have also compared the vertical velocity field predicted by the asymptotics against
its numerical counterpart. Figure 10 displays horizontal cross-sections of w in the plane
z = l

z

/2 where it is maximum. A very good qualitative and quantitative agreement
is observed even at t = 18 (figures 10c,f ) apart from the existence of small wave-like
disturbances in the DNS that are absent in the asymptotics. The close agreement between
the asymptotic and numerical results can be further seen in the temporal variations of the
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Figure 10. (Colour online) Horizontal cross sections in the plane z = l

z

/2 of (a,b,c) the vertical
velocity calculated asymptotically and (d,e,f ) in the DNS for F

h

= 0.5, k
z

= 0.3, U
S

= 0.2, and
Re = 6000 at t = 2 (a,d), t = 6 (b,e) and t = 18 (c,f ).
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Figure 11. Evolution of the maximum velocity w

m

in the plane z = l

z

/2 in the DNS (grey
dashed lines) and from the asymptotic predictions (black solid lines) for Re = 6000, U

S

= 0.2
for (a) F

h

= 0.5, k
z

= 0.3, (b) F

h

= 0.1, k
z

= 1.5, (c) F

h

= 0.1, k
z

= 0.3. The insets in (b,c)
display a close-up view of the initial evolution.

maximum values of w and b (figures 11a and 12a ). The asymptotic and numerical results
begin to slightly depart from each other as late as t ' 10. The maximum values of w
and b increase initially linearly and then saturate with oscillations superimposed. These
oscillations are due to the internal waves excited at t = 0. Two periods T = 2⇡F

h

= ⇡
and T = 2⇡/⌦(r = 0) = 2⇡ are mixed explaining why the oscillations look somewhat
irregular, especially for w

m

(figure 11a).
Similar agreements have been observed for di↵erent values of U

S

and Re. In the next
subsection, we investigate the e↵ects of varying the Froude number and the wavenumber.

4.2.2. E↵ects of F
h

and k
z

Figures 11b,c and 12b,c show the evolution of the maximum vertical velocity and
buoyancy for a lower Froude number F

h

= 0.1 and two di↵erent wavenumbers. In the
first case (figures 11b and 12b), the wavenumber has been increased to k

z

= 1.5 so that
the product k

z

F
h

= 0.15 is the same as before while, in the second case (figures 11c and
12c), the wavenumber is still k

z

= 0.3. The agreement is good for both wavenumbers
confirming that the relevant small parameter is k

z

F
h

and not k
z

. However, we can notice
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Figure 12. Evolution of the maximum buoyancy b

m

in the plane z = l

z

/2 in the DNS (grey
dashed lines) and from the asymptotic predictions (black solid lines) for Re = 6000, U

S

= 0.2
for (a) F

h

= 0.5, k
z

= 0.3, (b) F
h

= 0.1, k
z

= 1.5, (c) F
h

= 0.1, k
z

= 0.3.

that the oscillations of the maximum buoyancy are strongly reduced when F
h

= 0.1
(figure 12b,c) compared to F

h

= 0.5 (figure 12a). This is because the amplitude of the
internal waves in the buoyancy scales as the Froude number. In contrast, oscillations are
still visible in the evolution of the maximum asymptotic vertical velocity for F

h

= 0.1
(figures 11b,c) since the amplitude of the internal waves in this field does not vanish in
the limit of small Froude number. However, no oscillations are present at large time in
the DNS (dashed lines) for F

h

= 0.1 unlike for F
h

= 0.5 (figure 11). Nevertheless, the
mean evolution of w

m

in the DNS is close to the one predicted by the asymptotics for
F
h

= 0.1. The insets in figures 11b,c show a close-up view of the initial evolution of
w

m

for F
h

= 0.1. We can see that the oscillations are quickly damped in the DNS for
k
z

= 1.5 (figure 11b) and disappears for t & 3. For k
z

= 0.3 (figure 11c), they persist for
a longer time and start to decay only after t ⇠ 10. Before, the agreement between the
asymptotics and the numerics is excellent.

The reason for these discrepancies is the following. As already mentioned, the asymp-
totic problem has been solved in part 1 for long-wavelength by assuming k

z

F
h

⌧ 1.
The reason why k

z

F
h

is the appropriate parameter is that the buoyancy lengthscale is
the natural vertical lengthscale of vortical motions in strongly stratified inviscid flows
(Billant & Chomaz 2001). However, this self-similarity does not apply to the internal
waves that are generated at the start-up of the motion because they evolve on the fast
time scale 1/F

h

and not on the turnover timescale of the vortex. For this reason, the
asymptotic calculation of the internal waves component performed in part 1 is actually
correct only when k

z

is small but not if k
z

is of order unity and F
h

small. For finite k
z

,
the internal waves could be computed only numerically. However, the inset in figure 11b
shows that only few oscillation cycles are present at the beginning. This is because the
internal waves quickly propagate away from the vortex core. Indeed, their radial group
velocity, which is proportional to k2

z

/F
h

, is large for k
z

= O(1) and F
h

⌧ 1. In contrast,
when k

z

is small and F
h

finite, the radial group velocity is small meaning that the internal
waves remain a long time in the vortex core, i.e. are almost purely standing waves as
found in the asymptotic analysis. This is the reason why the oscillation cycles are seen
for a longer time for k

z

= 0.3 (inset in figure 11c) than for k
z

= 1.5 (inset in figure 11b).
Since finite k

z

will be mostly considered in the following, we have chosen to completely
neglect the internal waves for these reasons.

4.3. Evolution of the vertical shear and the Richardson number

We now investigate the evolution of the flow at the vortex center and at the level
z = l

z

/2 where the ambient shear is maximum. As seen in section §3, this is the location
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Figure 13. Evolution of (a) @u

⇤
/@z (dashed line), @v⇤/@z (solid line), (b) @b/@z and (c) Ri

at r̃ = 0, z = l

z

/2 from the DNS (grey lines) and predicted from the asymptotics (black lines).
The parameters are F

h

= 0.1, k
z

= ⇡, U
S

= 0.2, Re = 6000.

(together with the symmetric point z = 0) where the Richardson number reaches its
minimum or where the Kelvin-Helmholtz instability first appears.

Figures 13a,b compare @u⇤/@z, @v⇤/@z and @b/@z at the vortex center at z = l
z

/2
observed in the DNS for F

h

= 0.1, k
z

= ⇡, U
S

= 0.2, and Re = 6000 (grey lines) to
their asymptotic counterparts derived in part 1 (black lines). Apart from @u⇤

c

/@z, the
agreement is very good over the entire time range investigated. Since @v⇤

c

/@z and @b
c

/@z
depend only on the quantity t⌦

c

at leading order in k
z

F
h

(where⌦
c

is the angular velocity
at r̃ = 0, z = l

z

/2), this agreement is an indirect confirmation of the relation (4.8) for
the angular velocity at the vortex center. The magnitude of @u⇤

c

/@z is much lower than
for @v⇤

c

/@z. The beginning of its evolution is well predicted by the asymptotics until
t ' 5� 10 but not later. Several checks led us to the conclusion that this discrepancy is
not due an error in our calculations but is most probably due to higher order e↵ects, not
considered in the asymptotic analysis, that become quickly dominant over the leading
order when k

z

F
h

U
S

t > 1. This is because the asymptotic expansion is not uniformly
asymptotic in time since the long-wavelength assumption is expected to be no longer
valid when k

z

F
h

U
S

t > 1 because vertical gradients grow like k
z

U
S

t. Nevertheless, figures
13a,b show that the asymptotics for @v⇤

c

/@z and @b
c

/@z remain in good agreement even
when t = 60, i.e. k

z

F
h

U
S

t ⇠ 4. Despite this discrepancy on @u⇤
c

/@z, figure 13c shows
that the asymptotic Richardson number Ri

c

is in good agreement with the one computed
from the DNS since @u⇤

c

/@z is one order smaller in (k
z

F
h

)2 than @v⇤
c

/@z and @b
c

/@z.
The main assumption of the long-wavelength asymptotic analysis, i.e. k

z

F
h

⌧ 1, is
reasonably well satisfied for the parameters of figure 13 since k

z

F
h

= 0.31. Figure 14
further compares the evolutions of @u⇤

c

/@z, @v⇤
c

/@z, @b
c

/@z and Ri
c

when F
h

or k
z

are
increased. Surprisingly, the agreement between the asymptotics and numerics for @v⇤

c

/@z
and @b

c

/@z remains satisfactory even if k
z

F
h

has been increased up to unity. Regarding
@u⇤

c

/@z (figure 14a), a large discrepancy is always observed like in figure 13a. When F
h

is increased from F
h

= 0.1 (dashed-dotted lines) to F
h

= 0.5 (solid lines), keeping the
wavenumber constant k

z

= 2, @v⇤
c

/@z and @b
c

/@z decrease (figure 14b,c) while @u⇤
c

/@z
increases (figure 14a). The maxima of @u⇤

c

/@z and @v⇤
c

/@z become even of the same
magnitude for F

h

= 0.5 in sharp contrast to what was observed in figure 13. Large
oscillations are present in the DNS for F

h

= 0.5 (figure 14). We have checked that they
are not due to the internal waves that have been neglected in the asymptotics. They seem
rather related to some vortex waves since @u⇤

c

/@z and @v⇤
c

/@z oscillate out of phase as
also observed in figure 5b.

In contrast, when k
z

is increased from k
z

= 2 (dashed-dotted lines in figure 14) to
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Figure 14. Evolution of (a) @u

⇤
/@z, (b) @v

⇤
/@z, (c) @b/@z and (d) Ri at r̃ = 0, z = l

z

/2, for
U

S

= 0.2, Re = 6000, for (F
h

= 0.1, k
z

= 2) (dash-dotted lines), (F
h

= 0.25, k
z

= 2) (dashed
lines), (F

h

= 0.5, k
z

= 2) (solid lines) and (F
h

= 0.1, k
z

= 5) (dotted lines) from the DNS (grey
lines) and predicted by the asymptotics (black lines).

k
z

= 5 (dotted lines) keeping the Froude number constant F
h

= 0.1, the vertical shear
and the buoyancy vertical gradient saturate earlier and at higher levels.
The minimum of the Richardson number decreases as k

z

or F
h

increases (figure 14d).
The asymptotic and numerical Richardson number remains in rough agreement even for
F
h

= 0.5 (solid lines) despite the large increase of @u⇤
c

/@z as F
h

increases. In particular,
the minimum values are min(Ri

c

) ' 0.95 and min(Ri
c

) ' 0.6, respectively. The minimum
of the asymptotic Richardson number is lower than the bound min(Ri

c

) > 3.43 derived
in part 1 for k

z

F
h

⌧ 1 since k
z

F
h

= O(1). We can notice that the beginning of the
evolution of the Richardson number for (F

h

= 0.25, k
z

= 2) (dashed lines) is similar to
the one for (F

h

= 0.1, k
z

= 5) (dotted lines) (figure 14d) since k
z

F
h

= 0.5 in both cases.
The subsequent evolutions di↵er because the buoyancy Reynolds numbers are di↵erent:
Re

b

= 1500 and Re
b

= 60, respectively.
Similar agreements have been observed for other values of U

S

and Re.

5. Evolution of the Richardson number for finite kzFh

In this section, we now study the regime of finite k
z

F
h

mainly based on the DNS since
the long-wavelength analysis is a priori no longer expected to be valid. Figure 15a displays
the evolution of the Richardson number in the DNS at the vortex center at z = l

z

/2 for
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Figure 15. Evolution of the Richardson number at the vortex center at z = l

z

/2 for U

S

= 0.2
and for (a) k

z

= ⇡/2, F

h

= 0.5, Re = 1500 (solid line), k

z

= ⇡/2, F

h

= 0.5, Re = 6000
(dash-dotted line), k

z

= ⇡, F
h

= 0.25, Re = 6000 (dashed line), k
z

= ⇡, F
h

= 0.5, Re = 6000
(dotted line). (b) Ri

c

as a function of U

S

t for Re = 6000, k
z

= ⇡, F
h

= 0.5 and U

S

= 0.2
(solid line), U

S

= 0.3 (dash-dotted line) and U

S

= 0.4 (dashed line). (c) Ri

c

as a function of t
for k

z

= ⇡, F
h

= 0.5, U
S

= 0.2 and Re = 6000 (solid line), Re = 5000 (dash-dotted line) and
Re = 4000 (dashed line).

four particular combinations of the parameters (k
z

, F
h

, Re). It is interesting to compare
two curves at a time. First, the solid and dashed lines correspond to di↵erent Froude
numbers F

h

= 0.5 and F
h

= 0.25, respectively, but with the same values of the rescaled
wavenumber k

z

F
h

= ⇡/4 and of the buoyancy Reynolds number ReF 2
h

= 375. These two
curves superpose quite well apart from the oscillations. Similarly, the dashed and dashed
dotted lines share the same values of k

z

F
h

= ⇡/4 and of Reynolds number Re = 6000
but have di↵erent buoyancy Reynolds number. In this case, the evolutions of Ri

c

di↵er.
Finally, the dashed and dotted lines have the same wavenumber k

z

= ⇡ and Reynolds
number Re = 6000 but di↵erent Froude numbers. In this case also, the evolution of Ri

c

di↵ers widely as already seen before in figure 14. Altogether, this demonstrates that Ri
c

depends mainly on (k
z

, F
h

, Re) only through the two parameters k
z

F
h

and ReF 2
h

. The
same conclusion can be drawn from other sets of parameters.

Similarly, figure 15b shows the evolution of Ri
c

for di↵erent values of U
S

for k
z

= ⇡,
F
h

= 0.5, Re = 6000. The time has been rescaled by U
S

in this case. The di↵erent curves
are very close to each other, indicating that U

S

has only a weak e↵ect on the Richardson
number. Finally, figure 15c shows that the Reynolds number has only a small influence
on the evolution of Ri

c

when it is su�ciently large and when the other parameters are
kept constant.

The minimum value of the Richardson number min(Ri
c

) reached in most of the DNS
is further summarized in figure 16 as a function of the three main parameters: k

z

F
h

,
U
S

and ReF 2
h

. A filled symbol is used when the shear instability is observed and an
open symbol, otherwise. When the shear instability develops, the minimum Richardson
number is then generally negative owing to the overturnings induced by the instability.
However, this negative value has no particular meaning except the fact that it is below the
threshold 1/4. As seen in figure 16a, min(Ri

c

) decreases with k
z

F
h

and goes below 1/4
when k

z

F
h

& 1.6 for both F
h

= 0.25 (diamonds) and F
h

= 0.5 (circles) for Re = 6000.
However, the shear instability has been observed only for F

h

= 0.5. For F
h

= 0.25,
the minimum Richardson number is just below 1/4: min(Ri

c

) = 0.2 for the highest
wavenumber that has been investigated k

z

F
h

= 1.6. It is likely that the shear instability
would be also triggered for F

h

= 0.25 if a larger value of k
z

F
h

were investigated. As shown
previously, the di↵erences between the minimum Richardson number for F

h

= 0.25 and
F
h

= 0.5 are due to the di↵erence in buoyancy Reynolds number Re
b

= ReF 2
h

. Indeed,
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Figure 16. Minimum Richardson number in numerical simulations (symbols) at the vortex
center at z = l

z

/2) as a function of (a) k
z

F

h

, (b) U
S

and (c) ReF 2
h

. The di↵erent symbols/lines
correspond to, (a): F

h

= 0.5, Re = 6000 (circles), F
h

= 0.25, Re = 6000 (diamonds), F
h

= 0.5,
Re = 1500 (plus sign) for U

S

= 0.2, ; (b): F

h

k

z

= ⇡/4 (downward triangle), F

h

k

z

= ⇡/2
(circles), F

h

k

z

= 3⇡/4 (squares) and F

h

k

z

= ⇡ (upward triangle) for F

h

= 0.5, Re = 6000;
(c): F

h

k

z

= ⇡/4, F
h

= 0.5 (downward triangle), F
h

k

z

= ⇡/4, F
h

= 0.25 (cross), F
h

k

z

= ⇡/2,
F

h

= 0.5 (circles), F
h

k

z

= ⇡/2, F
h

= 0.25 (diamonds) and F

h

k

z

= 3⇡/4, F
h

= 0.5 (squares) for
U

S

= 0.2. Filled and empty symbols correspond to runs where the shear instability develop or
not, respectively. The grey lines in (a) represent the asymptotic predictions for F

h

= 0.5 (solid
line) and F

h

= 0.25 (dashed line) for Re = 6000, U
S

= 0.2 (they are indistinguishable). The
horizontal solid lines indicate the threshold min(Ri

c

) = 1/4.

the symbols plus, corresponding also to F
h

= 0.5 but with the lower Reynolds number
Re = 1500, are almost superposed to those for F

h

= 0.25, Re = 6000 which have the
same buoyancy Reynolds number. Remarkably, the dependence of min(Ri

c

) with k
z

F
h

is
well reproduced by the asymptotics (lines) even if the time evolution of Ri

c

di↵ers in the
numerics and the asymptotics for k

z

F
h

= O(1) (figure 14). In particular, the asymptotic
minimum Richardson number goes below 1/4 when k

z

F
h

& 1.7 almost independently of
F
h

, U
S

and for a wide range of Re.
Figure 16b shows that min(Ri

c

) increases slightly with U
S

for k
z

F
h

= ⇡/2 and k
z

F
h

=
3⇡/4 but decreases when k

z

F
h

= ⇡/4 for F
h

= 0.5 and Re = 6000. For k
z

F
h

= ⇡/2
and F

h

k
z

= 3⇡/4, min(Ri
c

) is always below 1/4 but the shear instability develops only
if min(Ri

c

) is su�ciently smaller than this threshold. It has been observed for U
S

= 0.2
for both k

z

F
h

= ⇡/2 and k
z

F
h

= 3⇡/4. In contrast, for U
S

= 0.3, the shear instability
occurs when k

z

F
h

= 3⇡/4 but not for k
z

F
h

= ⇡/2 while for U
S

= 0.4, no instability has
been observed for both wavenumbers. An additional simulation for U

S

= 0.4, F
h

= 0.5
at higher k

z

F
h

: k
z

F
h

= ⇡, still do not exhibit the shear instability even if min(Ri
c

) is
well below 1/4: min(Ri

c

) = 0.11. The development of the shear instability could be less
favored as U

S

increases because the time interval �t during which min(Ri
c

) is below 1/4
becomes shorter. Indeed, figure 15b shows that the evolution of Ri

c

is almost independent
of U

S

when represented as a function of U
S

t, implying that �t decreases with U
S

. Thus,
the shear instability has less time to develop for large U

S

if its growth rate is assumed
to be independent of U

S

.
The minimum Richardson number also decreases slightly as the buoyancy Reynolds

number increases (figure 16c). Hence, the shear instability develops only for su�ciently
high Reynolds number: when ReF 2

h

> 1500 for k
z

F
h

= ⇡/2 and when ReFh2 > 1250 for
k
z

F
h

= 3⇡/4. In addition to the slight decrease of min(Ri
c

) as the buoyancy Reynolds
number increases, the lower viscous damping should also favor the growth of the shear
instability.
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6. Conclusion

We have performed direct numerical simulations of the evolution of an initially colum-
nar vortex in an ambient shear flow in a strongly stratified fluid. The numerical results
have been compared to the asymptotic analysis carried out in part 1.

The DNS show that the vortex is progressively bent in the direction of the shear flow
but is also deviating in the orthogonal direction. The decay of its potential vorticity is
enhanced in the regions of high shear. For k

z

F
h

& 1.6 and su�ciently high buoyancy
Reynolds number ReF 2

h

, the Kelvin-Helmholtz instability is first triggered in the center
of the vortex at the vertical levels where the ambient vertical shear is maximum, i.e.
z = 0, l

z

/2. For the other parameters for which the shear instability does not develop,
the Richardson number reaches its minimum at the same locations. We have therefore
concentrated our e↵orts on a comparison of the evolution of the flow at this location to
the predictions of the long-wavelength asymptotic analysis performed for k

z

F
h

⌧ 1 in
part 1.

For su�ciently small k
z

F
h

, the long-wavelength asymptotic analysis turns out to
predict accurately the deformations of the vortex axis, as well as the evolution of the
vertical shear of the vortex in the spanwise direction @v⇤

c

/@z and of the vertical gradient
of the buoyancy @b

c

/@z at the vortex center at z = l
z

/2. The prediction for the streamwise
shear of the vortex @u⇤

c

/@z is not accurate but this is not dramatic since it is one order
smaller in (k

z

F
h

)2 than @v⇤
c

/@z and @b
c

/@z. Hence, the Richardson number at the vortex
center and z = l

z

/2 based on these asymptotic expressions is in good agreement with
the DNS provided that k

z

F
h

is small.

From the numerical simulations, we have found that the minimum Richardson number
in the center of the vortex at z = l

z

/2 goes below 1/4 only when k
z

F
h

is finite: k
z

F
h

& 1.6.
Remarkably, this threshold agrees with one predicted by the asymptotics k

z

F
h

& 1.7 even
if it is beyond its range of validity (k

z

F
h

⌧ 1). Nevertheless, the shear instability develops
only if the minimum Richardson number is su�ciently smaller than 1/4. In addition, the
buoyancy Reynolds number has to be su�ciently large. Decreasing the velocity of the
shear flow tends also to favor the shear instability.

In summary, the conditions for the development of the Kelvin-Helmholtz instability
when a 2D vortex is subjected to an external stratified shear flow depend mostly on the
intensity of the vortex itself �/(2⇡a20) and little on the dimensional amplitude Û

S

of the
shear flow. Indeed, the minimum Richardson number of the shear flow Ri

s

= N2/(k̂
z

Û
S

)2

can be arbitrarily large. In this sense, the ambient shear flow can be seen as only a
catalyst. Nevertheless, the dimensional wavenumber k̂

z

of the shear flow has to satisfy
the condition k̂

z

a0Fh

& O(1). This condition ensures that the typical order of magnitude
of the Richardson number when the vortex will be bent over the vertical lengthscale
2⇡/k̂

z

, i.e. Ri ⇠ N2/(k̂
z

�/(2⇡a20))
2 = 1/(k̂

z

a0Fh

)2, will be lower than unity.

We can try to extrapolate these results to stratified turbulence forced two-
dimensionnally in the horizontal plane (Waite & Bartello 2004; Lindborg 2006;
Brethouwer et al. 2007; Augier et al. 2014, 2015). Indeed, in this case, columnar
structures are continuously generated by the forcing within a pre-existing turbulence
with a layered structure. Such structure is likely to contain shear flows with the same
vertical lengthscale. Since the vertical lengthscale of the layers typically scales as the
buoyancy lengthscale L

v

⇠ F
h

L
h

, we should have 2⇡L
h

/L
v

F
h

⇠ O(1), i.e. the condition
k
z

F
h

& O(1) should be met. Therefore, as soon as they are generated by the forcing,
columnar structures may be destabilized into small scales by the shear instability. It
is worth pointing out that this process may occur even if the magnitude of the shear
flow components are small since we have seen that the dynamics in the case of a single
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vortex depends weakly on U
S

. This also suggests that the so-called shear modes often
present in numerical simulations of stratified turbulence (Lindborg 2006; Augier et al.
2015) may have an important e↵ect even if they are weak.

In the future, it would be interesting to consider the additional e↵ect of a Coriolis force
in order to better understand the e↵ect of an ambient shear flow on cyclones and more
generally on geophysical vortices.
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