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[1] An entropy regularization algorithm (ERA) has been developed to compute the wave-
energy density from electromagnetic field measurements. It is based on the wave
distribution function (WDF) concept. To assess its suitability and efficiency, the algorithm
is applied to experimental data that has already been analyzed using other inversion
techniques. The FREJA satellite data that is used consists of six spectral matrices
corresponding to six time-frequency points of an ELF hiss-event spectrogram. The WDF
analysis is performed on these six points and the results are compared with those obtained
previously. A statistical stability analysis confirms the stability of the solutions. The WDF
computation is fast and without any prespecified parameters. The regularization parameter
has been chosen in accordance with the Morozov’s discrepancy principle. The Generalized
Cross Validation and L-curve criterions are then tentatively used to provide a fully data-
driven method. However, these criterions fail to determine a suitable value of the
regularization parameter. Although the entropy regularization leads to solutions that agree
fairly well with those already published, some differences are observed, and these are
discussed in detail. The main advantage of the ERA is to return the WDF that exhibits the
largest entropy and to avoid the use of a priori models, which sometimes seem to be more
accurate but without any justification.

Citation: Prot, O., O. Santolı́k, J.-G. Trotignon, and H. Deferaudy (2006), An entropy regularization method applied to the

identification of wave distribution function for an ELF hiss event, J. Geophys. Res., 111, A06213, doi:10.1029/2005JA011006.

1. Introduction

[2] The propagation direction of an electromagnetic wave
in a homogeneous medium can be modeled by the wave
distribution function (WDF). The concept of WDF was
introduced by Storey and Lefeuvre [1974, 1979, 1980] to
study the propagation of electromagnetic waves in plasma. It
is a positive function which represents the directional distri-
bution of the electromagnetic wave energy. TheWDF F(q, f)
is related to the estimated spectral matrix components Vij by
the integral equation over the unit sphere [0, p] � [0, 2p]:

Vij ¼
Z p

0

Z 2p

0

Qij q;fð ÞF q;fð Þ sin qdfdq; ð1Þ

where Qij:[0, p] � [0,2 p] ! C are the integration kernels.
They correspond to the auto- and cross-power spectra of the
electromagnetic components of a plane wave in a given
polarization mode [Lefeuvre and Pinçon, 1992]. The kernels
Qij are known analytical functions that depend on the
ambient plasma parameters. Their algebraic expressions in
the cold plasma case are given by Storey and Lefeuvre
[1980]. The angles q and f are defined in Figure 1.
[3] We want to compute the WDF from the spectral

matrix V through equation (1). This is clearly an ill-posed
inverse problem; hence we must make further assumptions
on F to get a stable solution. There are many methods to
solve this kind of inverse problem, for example the method
of maximum entropy (ME) of Lefeuvre and Delannoy
[1979, 1986] in the cold plasma case. This method was
modified by Santolı́k [1995] and Santolı́k and Parrot [1996]
for a hot plasma, including Doppler effect. Another way to
solve this inversion problem is to choose a parametric
model for the WDF and then to identify the parameters that
best fit the data. This identification is often made using a
least-square minimization, for example, in the Levenberg-
Marquardt algorithm [Press et al., 1986; Bergounioux,
2002]. With this approach, Santolı́k and Parrot [2000] used
a Gaussian peaks (GP) model to solve equation (1). Nev-
ertheless, some problems arise because several parameters
of the WDF models have to be fixed before starting
computations. As a consequence, numerous solutions are
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obtained and there is no way to determine which one is the
best.
[4] The key step of Lefeuvre and Delannoy [1986]

maximum entropy method is to orthogonalize the kernels
Qij and then to make a truncation in order to retain the
dominant linearly independent kernels. The discarded ker-
nels are assumed unimportant for the wave analysis due to
their low eigenvalues. In this process, many components of
the initial spectral matrix are unfortunately lost.
[5] In this paper, we use a new algorithm, called ERA

(entropy regularization algorithm), which is based on the
concept of entropy minimization to find the propagation
direction of an electromagnetic wave. This method was
developed by Prot et al. [2005] for the case of a linear
inverse problem with finite dimensional data and a
positivity constraint. The algorithm is easy to use, the
computations are fast, and the resulting solutions mini-
mize the entropy in the probabilistic sense. Therefore it
partially fixes the nonlinear dependence of the solution
introduced by entropic inversion methods. Prot et al.
[2005] tested the ERA in the case of waves propagating
in vacuum. Satisfactory results have been obtained for
simulated noisy spectral matrices. The ability of the ERA
technique to detect a single plane-wave has also been
studied in the case of a cold plasma model [Prot et al.,
2004].
[6] Regularization methods are widely used to solve ill-

posed problems [Tikhonov and Arsenin, 1977; Kirsch,
1996]. The WDF obtained by using entropy as the regular-
izing functional represents the minimum information re-
quired to fit/explain the data [Shore and Johnson, 1980;
Oscarsson, 1994]. To ensure the stability of the solution, a
regularization parameter has to be fixed, and, unlike in the
ME method, no data of the spectral matrix needs to be
rejected. In our computation, the regularization parameter is

automatically selected in accordance with the Morozov’s
discrepancy principle [Kirsch, 1996].
[7] The objective of the paper is to show the results

obtained with the entropy regularization method, ERA,
applied for the first time to experimental data. The ERA
method, as well as the maximum entropy (ME) and Gauss-
ian peaks (GP) methods are recalled in section 2, for
comparison. Section 3 starts with a brief description of
the FREJA magnetospheric mission which provided the
data used here. Then, a description of the ERA algorithm
is presented at the end of section 3. Finally, before the
discussions and conclusions, the FREJA data-analysis
results are presented in section 4. In particular, the stability
of the resulting ERA solutions is statistically evaluated.

2. Methods

2.1. Description of Two Other WDF Methods

[8] The methods for computing the WDF considered here
[Santolı́k, 1995; Santolı́k and Parrot, 2000] are based on
least squares fit techniques. As parametric models of the
WDF are used, the problem amounts to determining the
parameter values that best fit the data.
[9] In his thesis, Santolı́k [1995] used a model of Gauss-

ian peaks (GP) to compute the WDF. The main advantage of
the GP is that it returns the best solution when the number
of peaks, i.e., the number of wave propagation directions is
known in advance. For each peak, the energy, the beam
width, and the angles (q, f) that describe the propagation
direction are computed. It is worth noting that with many
(>3) peaks, the obtained solution becomes unstable, and
sometimes no solution at all is found. As the expected
number of peaks is usually unknown, the GP can not be
used automatically in statistical analysis.
[10] In the Lefeuvre and Delannoy method (ME) [Lefeuvre,

1977; Lefeuvre and Delannoy, 1979, 1986] the model for
the WDF is chosen to maximize the entropy. The only
parameters to compute are the Lagrange multipliers of the
maximization problem. However, since the integration ker-
nels are not linearly independent, they have to be orthogo-
nalized, and thus many dependent kernels have to be
discarded to obtain a stable solution. In this process, it is
assumed that the discarded kernels are insignificant for the
wave analysis. In practice, the number of discarded kernels
is fixed before the computation, and the geometry of the
solution turns out to depend on it. Storey [1987] has shown
that some spectral matrices cannot be analyzed with this
method because the discarding process leads to WDF
solutions that do not fit the measured spectral matrix. This
limitation has encouraged us to use a regularization tech-
nique that allows the whole initial spectral matrix to be kept,
with the solution regularized for stability.
[11] In the literature, the GP and ME methods have not

been used automatically, mainly because some parameters
have to be fixed before starting the computation. The ERA
method presented here should, in principle, be well-suited
for this kind of analysis. The details of GP and ME methods
are described by Lefeuvre and Delannoy [1986], Santolı́k
[1995], and Santolı́k and Parrot [2000]. We can also
mention the method of Oscarsson et al. [2001], where an
alternative form for the WDF is used and is not comparable
with the one proposed here. The entropy regularization

Figure 1. The polar q and azimuthal f angles in the
spacecraft coordinate system.
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method presented here starts from a different point of view.
The main advantage of this point of view is that we do not
have to choose any model for the WDF or use a least
squares minimization. The solution is computed by solving
an optimization problem via an iterative algorithm.

2.2. Entropy Regularization

[12] The regularization theory, used to solve ill-posed
problems, is based on the use of a family of operators
indexed by a free positive parameter m. When m is small, the
error in the solution is small but the solution becomes
strongly unstable. Conversely, the error increases with
larger m but the stability is assured. So, a compromise
between error and stability must be found. A most often
used method of regularization is the one of Tikhonov
[Tikhonov and Arsenin, 1977; Tikhonov et al., 1995]. For
the sake of simplicity, the spectral matrix V and the
integration kernels are identified as a vector in C

n and a
function Q: [0, p] � [0, 2p] ! C

n, respectively. Tikhonov’s
regularization principle is to solve

min
F

er V ;Fð Þ þ mkFk2 ; F � 0; ð2Þ

where m > 0 is the regularization parameter and er(V, F) is
the error in the data

er V ;Fð Þ :¼ kV 	
Z p

0

Z 2p

0

Q q;fð ÞF q;fð Þ sin qdfdqk2

Cn :

The strict convexity of the functional norm kFk2@
Z p

0

Z 2

0

p

jF(q, f)j2sin qdfdq will ensure the stability of the solution.
Unfortunately, it does not guarantee that the resulting
WDF is positive; therefore it cannot be used for our
purpose.
[13] The entropy regularization principle is quite similar,

but here the entropy, instead of the norm, is used as a
regularizing functional. The entropy is based on the concept
of the relative information content. Shore and Johnson
[1980] have shown that for two probability densities f and
g, the information content I(f, g) of f relative to g can be
quantified by

I f ; gð Þ :¼
Z p

0

Z 2p

0

f q;fð Þ ln f q;fð Þ
g q;fð Þ sin qdfdq: ð3Þ

The entropy of a probability density is then defined by
	H @ 	I(f, �g), where �g is the noninformative probability
density, i.e., �g is the density of the noise in the physical
system. Since isotropy is assumed for the determination of
the wave-energy density, �g is assumed to be constant. Hence
the entropy is defined by

	H Fð Þ :¼ 	
Z p

0

Z 2p

0

F q;fð Þ lnF q;fð Þdfdq ð4Þ

Using H as a regularizing functional has advantages; it leads
to a smooth and positive solution, which is well suited in our
framework. Moreover, the minimization of H flattens the
solution. In fact, when m ! +1 the resulting solution
becomes constant, which means that we have only trivial
information about the variations in the wave-energy density.

[14] The use of the entropy to solve an ill-posed problem
is now a standard method in image restoration [Press et al.,
1986], radio astronomy, seismology, and many other appli-
cations [Smith and Grandy, 1987]. According to Oscarsson
[1994], the minimization of entropy functional can be used
in the WDF computation to reproduce the structures re-
quired by the data in the wave-energy density, with sup-
pressed spurious peaks. Thus we need to solve

min
F

er V ;Fð Þ þ mH Fð Þ ; F � 0: ð5Þ

This optimization problem has a unique solution for all m
[Amato and Hughes, 1991], denoted by Fm. Amato and
Hughes [1991] and Engl and Landl [1993] have shown the
convergence of Fm to the solution of maximum entropy, as m
! 0. In our case, to ensure the stability of solution, the
regularization parameter m cannot be chosen too small. A
fixed-point algorithm has been investigated by Prot et al.
[2005] to solve (5) for large m. This algorithm leads to a
smooth solution.
[15] As already stated, the regularization parameter m > 0

must be chosen sufficiently small to get a low error er(V,
Fm), but it should be chosen large enough for the stability of
the solution Fm. The method used to choose m will be
described in subsection 2.3.
[16] In fact, 	H is not the entropy in the probabilistic

sense since the WDF F is not a probability density on
[0, p] � [0, 2p]. This implies that the solution Fm is not
linearly dependent on the data V. Indeed, for the spectral
matrix V0 = lV, the solution of (5) is not lFm. This is very
annoying since the data are always scaled for numerical
computations. That is why we have modified the optimi-
zation problem to minimize the entropy in the probabilistic
sense. Thus the new optimization problem becomes

min a;fð Þ er V ;afð Þ þ mH fð Þ

f^0;

Z p

0

Z 2p

0

f q;fð Þdfdq ¼ 1;a > 0:

8><
>: ð6Þ

In this problem a represents the power of the electro-
magnetic wave and f the probability distribution of the wave
direction. The function f is a probability density because of
the integral constraint. From this point of view, the WDF of
the wave is actually F = af.
[17] The minimization problem (6) is much more difficult

to solve than (5). We do not have a guaranteed optimality
condition for this problem since the cost function is not
convex and the solution may not be unique. Nevertheless,
Prot et al. [2005] have established an iterative algorithm to
compute a local solution of (6). This entropy regularization
algorithm is as follows.
[18] 1. Initialization. Choose V 2 C

n, l0 2 C
n, m > 0, � >

0, t 2]0, 1].
[19] 2. Iteration k. First, compute

g lk	1ð Þ :¼
Z p

0

Z 2p

0

Q q;fð ÞG lk	1ð Þ q;fð Þdfdq

where G(lk	1) @ exp (	1 + 2
m y*[lk	1] (q, f) ) and y*[l](q,

f) @ Pn
j¼1

ljQj (q, f). Then, compute dk	1 @ RehVgðlk	1Þ n i
hg lk	1ð Þg lk	1ð Þ

Cn i
.

Then, lk = (1 	 t)lk	1 + t(V 	 dk	1g(lk	1)).

C

A06213 PROT ET AL.: ENTROPY REGULARIZATION METHOD APPLICATION

3 of 11

A06213



[20] 3. Stopping criterion. If jlk 	 lk	1j < �, then STOP,
else k @ k + 1 and go to 2.
[21] Suppose that ak ! a and lk ! l then (a*, F*) is a

local solution of (6) [Prot et al., 2005], where

a* ¼ aR
S
G lð Þds

and

F* ¼ G lð ÞR
S
G lð Þds :

The convergence of this algorithm has been proved when
the regularization parameter is chosen large enough [Prot et
al., 2005]. However, we do not know whether it converges
for every values of m > 0, but it does work well numerically.
We need a small parameter t for the convergence of the
algorithm, but it should not be too small to ensure fast
computations. The choice of t does not affect the solution
but small values slow down the computation. In our
algorithm, the parameter t is computed automatically by the
following rule: if ERA diverges, i.e., if klk+1 	 lkk > klk 	
lk	1k, we let tn+1 = rtn where 0 < r < 1 and then restart the
computation until it converges. After this, to refine the value
of t, we use a linear search, choosing the largest parameter
{[(N 	 k)rt + kt]/N; k = 0, . . ., N 	 1} for which ERA
continues to converge.
[22] We must now check if the nonlinearity problem

introduced by the entropy is actually solved. By taking the
data V0 = lV for l > 0, we see from the minimization problem
(6) that the corresponding solution is nothing but (la*, F*)
for the regularization parameter ml2. Prot et al. [2005] have
shown that this remains true for the local solution computed
by the ERA. In the next section, this algorithm will be used to
compute the WDF using the measurements from the FREJA
satellite. However, a rule to find an appropriate regularization
parameter has to be defined.

2.3. Choice of the Regularization Parameter

[23] The choice of the regularization parameter is an
intricate problem, since we must trade off between the error
and stability of the solution. For the stability of the solution,
m must not be too small, whereas for a small error of fit this
parameter must not be too large. In our computation, the
Morozov’s discrepancy principle will be used to automati-
cally choose this parameter. Essentially, solutions whose
errors of fit are smaller than the measured noise level cannot
in any way be considered as valid.
[24] Let m > 0 and denote by (am, Fm) the obtained

solution of (6). Suppose that the noise level in the data is
d > 0, then choose the regularization parameter m > 0 such
that er(V, Fm) = d. However, numerically, an equality is too
restrictive. A m that satisfies er(V, Fm) � d ± 10% is
acceptable. To find such a m, we use the fact that m !
er(V, Fm) is quite linear for small m. More precisely, our rule
will be (1) choose m0 > 0, (2) compute Fmk, (3) if er(V, Fmk) =
d ± 10% STOP, else

mkþ1 ¼ er V ;Fmk

� 	 d
mk

and go to 1.

[25] In fact, d is not exactly the noise level; it is the
estimation of the statistical error in the spectrum values. The
number d is computed when the estimation of the spectral
matrix is done.

2.4. Stability Analysis

[26] In subsection 2.3 we have described how the regu-
larization parameter m in the algorithm is determined. In
fact, m is chosen such that the error in the data is equal to d
±10%. We know that for all m > 0 the solution varies
continuously as a function of the data, but a small pertur-
bation of the spectral matrix could lead to a huge modifi-
cation of the solution. To verify and quantify this, some
statistical tests have to be done.
[27] For this purpose, perturbed spectral matrix VN @ V +

N must be created, where V is the measured spectral matrix,
N is the perturbation matrix (N = bb*), with b a random
Gaussian vector. Then the energy perturbation, C1, and
the variation for each points of the perturbed solution,
C1:[0, p] � [0, 2p] ! R+, can be computed from the
perturbed solution FN. C1 and C1 are given by

C1 :¼
R p
0

R 2p
0
jF q;fð Þ 	 FN q;fð Þj sin qdfdq

k V 	 VN k ; ð7Þ

C1 q;fð Þ :¼ jF q;fð Þ 	 FN q;fð Þj
k V 	 VN k : ð8Þ

The process is then repeated for a large number of random
Gaussian vectors b. From the C1 sample thus obtained, the
expectation, the variance, and the quantity V1(d) that
represents the relative power error of the perturbed solution
are computed. V1(d) is defined as

V1 dð Þ :¼ E C1ð Þ
ffiffi
d

p
R p
0

R 2p
0
jF q;fð Þj sin qdfdq

; ð9Þ

and expressed in percent. In addition, from the expecta-
tion of the C1 sample, a map of the averaged variation
of the perturbed WDF can be plotted on the sphere [0, p] �
[0, 2p].
[28] In the work of Lefeuvre and Delannoy [1986], the

stability of the solution is expressed in terms of the ratio of
the mean-square error in the solution to the mean-square
value of the solution itself. Instead of this stability param-
eter, we have chosen to use C1. The main reason for this
choice is that C1 has the dimension of an energy, while the
stability parameter in the work of Lefeuvre and Delannoy
[1986] is related to the square of the energy, which is less
convenient. The number C1 and the function C1: [0, p] �
[0, 2p] ! R+ allow the stability of the solution, namely the
WDF, to be quantified from two opposite points of view.
Unlike C1, which is a global estimator of the stability, the
function C1 indeed measures the local deviation of the
perturbed WDF compared with the nonperturbed solution. It
is noteworthy that it becomes possible to highlight the place
where the solution is the most unstable from the expectation
of C1, as we will see in section 4.2.
[29] An important point is actually to clarify the stability

of the solutions as a function of the regularization parameter
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m. To do so, the solutions Fm can be computed for a
sufficient number of m values (100) in [md, mu] with 0 <
md < mu. Then, the stability index

S mð Þ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR p
0

R 2p
0

Fm q;fð Þ 	 F* q;fð Þ
�� ��2 sin qdfdqR p
0

R 2p
0

F* q;fð Þj j2 sin qdfdq

vuut : ð10Þ

can be computed. The optimal solution in the Morozov
sense F* is numerically defined by F* = Fm*, with

d	 er V ;Fm*

� �� �2

¼ min
m2 md ;mu½ �

d	 er V ;Fm
� 	� 	2

:

The stability index S allow us to quantify the variation of Fm
with respect to F*, it is also insensitive to the scale of the
optimal solution F* due to the normalization.

3. ERA Implementation on the FREJA Data

[30] FREJA is a low-altitude magnetospheric research
satellite. The F4 onboard wave experiment [Holback et
al., 1994] measured waveforms of three orthogonal mag-
netic components and one electric component received by a
spinning antenna. The F4 experiment has observed an
intense emission of ELF hiss on 8 April 1995, between
1548 and 1558 UT. Santolı́k and Parrot [2000] have made a
plane-wave analysis of this event and a WDF analysis on
six different points of the ELF hiss spectrogram.
[31] For our WDF analysis we use the same data as

Santolı́k and Parrot [2000]; that is, the six spectral matrices
and the six error matrices corresponding to the six points in
the spectrogram. Since FREJA measured three magnetic and
one electric components, the spectral and the error matrices
are 4 � 4. These matrices are identified as vectors in
C

16 and denoted by vk 2 C
16 for the spectral matrices and

by ek 2 C
16 for the measurement-error matrices for points

k = 1, . . ., 6. The measurement-error matrix is needed since
we do not have the same quality of measurement on each of
the antennae. The error matrix is computed using the
statistical standard deviation of the spectral values.
[32] We also use the same integration kernels as in the

work of Santolı́k and Parrot [2000]. These kernels have
been computed according to a assumed plasma model. They
use the cold plasma approximation with the hypothesis of a
collisionless, singly ionized oxygen-hydrogen plasma with
5% fraction for the hydrogen. The composition of the
plasma is rather important, since the frequency of the waves
is lower than 2fH+, where fH+ is the proton gyrofrequency.
The right-hand polarization mode has been used to compute
these kernels for frequencies above fH+ because this mode is
the only one expected in a cold plasma at these frequencies
[Styx, 1992]. We denote by qk:S ! C

16 the computed
integration kernels corresponding to points k = 1, . . ., 6.
[33] To take into account the measurement-error matrix,

the data and the integration kernels are normalized. More
precisely, for all i = 1, . . ., 16, we let

Vk ¼ vki
eki

� �
2 C

16 and �Qk ¼
qki
eki

� �

be the normalized spectral matrix and the normalized
integration kernel. The goal of this normalization is to have
the same order of error in each of the spectral matrix
components. As a consequence, the noise level of the
normalized data becomes d = 16.
[34] As the kernel values often vary over a large range,

for good computational performance it is necessary to scale
them by letting Qk = 10	b �Qk such that 1 � max jQi

kj � 50
for all i = 1, . . ., 16. The b values for each of the six points
are given in Table 1.
[35] The FREJA F4 data is first transformed into the same

coordinate system as used in the work of Santolı́k and
Parrot [2000]; the z axis is parallel to the Earth magnetic
field, and the x axis points toward the direction of decreas-
ing magnetic latitude in the magnetic meridian plane (see
Figure 1). The k wave-normal direction is determined by the
angles q (polar) and f (azimuthal).

4. FREJA Data Analysis Results

[36] As mentioned before, the ERA algorithm has been
applied to the same six time-frequency points as in the work
of Santolı́k and Parrot [2000]. The same graphical repre-
sentation is also used, for easy comparison. An example of
this is given in Figure 2, which is a spherical plot of the
WDF value as a function of 0 � q � p and 0 � f � 2p. In
the northern hemisphere (left plot) q varies from 0 to p/2,
while in the southern one (right plot) it runs over [p/2, p].
[37] In our computations, the parameter � used in the

stopping criterion and the first step of the algorithm are set
at 1e 	 7 and 0. All the computation have been made with
the scientific software MATLAB1 on an Apple ibook G3
700 MHz. The computation times are variable depending on
the integration kernel, the data, and the algorithm parame-
ters. Generally, computations are quite fast and the solutions
are obtained in a few seconds. For example, the stability
computations described in the previous section took ap-
proximately 1 hour for 1000 computed solutions.

4.1. Computed WDF

[38] In Figure 3 are displayed the WDFs for each of the
six FREJA time-frequency points, computed using the
following three methods (from top to bottom): the entropy
regularization algorithm (ERA), the Gaussian peaks method
(GP), and the maximum entropy technique (ME). The level
contours around the WDF peak are superimposed and are
shown as dashed lines in the ERA plots and as solid lines in
the GP and ME plots.
[39] On the whole, the ERA solutions turn out to be more

spread out than both the ME and GP solutions; nevertheless,
there are no large discrepancies among all these solutions. If
we now look at the various solutions in greater detail, there
are actually some significant differences.
[40] For the first point, the plane wave analysis made by

Santolı́k and Parrot [2000] returns a downgoing wave at
q � 30�, f � 45� with a high degree of polarization. As
shown in the top left panel of Figure 3, the GP and ME
solutions exhibit a sharp peak in almost the same position,
which is also in fairly good agreement with the position
obtained by the plane-wave analysis. If we now look at the
ERA solution, it becomes clear that the main peak occurs at
the right place (q � 14�, f � 43�) in the northern
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hemisphere (downgoing waves). However, there is also
another peak in the opposite direction (southern hemi-
sphere) although of much lower power.
[41] For point 2, the plane wave analysis [Santolı́k and

Parrot, 2000] gives a nearly field-aligned downward prop-
agation, with a low degree of polarization. The ERA
predicts a very broad peak in the downgoing direction, at

q � 33�, f � 63�. This peak fits well the primary peak of
the other methods. However, in the GP and ME solutions, a
secondary peak, well defined in the GP and quite question-
able in the ME solution, is observed in the southern
hemisphere. In the ERA, no such peak is predicted, but at
most an increase of the energy occurs almost at the same
place (90� � q � 140�, 30� � f� 120�). Let us note that the

Figure 2. Example of WDF graphical representation. Here q is the polar angle and f is the azimuthal
angle. The left hemisphere is for downgoing waves and the other is for upgoing ones. Contours are
shown with the dashed line, which correspond to the values of {1/6, 2/6, . . ., 5/6}. This example shows
the obtained WDF for point 1 with m = 20.

Table 1. Results Obtained for Each Pointa

Point 1 2 3 4 5 6

Time, UT 1549:15 1552:43 1552:43 1554:59 1554:59 1555:53
Frequency, Hz 688 608 736 576 800 624

WDF
b 13 11 11 12 15 12
Energy 2.98 2.83 0.58 9.90 3.62e-1 9.98e-1
Min 4.61e-2 7.19e-2 3.56e-3 3.01e-1 1.72e-3 6.30e-3
Max 1.38 0.61 3.64e-1 2.35 2.42e-1 8.61e-1

Statistics
E(C1) 1.97e-1 1.14e-1 2.93e-2 5.01e-1 1.97e-2 5.01e-2
Var(C1) 8.76e-4 3.54e-4 2.17e-5 8.92e-3 1.25e-5 1.02e-4
V1d 26.4% 16.1% 20.2% 20.2% 21.7% 20.08%
z 0.0694 0.0695 0.0353 0.0372 0.0332 0.0260

m-Stability
[md, mu] [6, 20] [16, 60] [45, 100] [4, 12] [80, 180] [30, 70]n ad

Std: Error:
	0.0575 	0.0226 	0.0281 	0.0360 	0.0163 	0.0211
5.48e-4 2.84e-4 1.99e-4 2.36e-4 1.45e-3 1.81e-4n au

Std: Error:
0.0387 0.0142 0.0211 0.0282 0.0143 0.0149
2.31e-4 8.56e-5 8.32e-5 8.43e-05 5.54e-05 6.95e-05

aHere 10	b is the scale factor used for the integration kernel. The Power, Min, and Max are the energy, the minimum, and the
maximum of the WDF, respectively. For each point we have the results of the stability analysis: the expectation and the
variance of C1, the relative energy error V1

d, and the factor z between the WDF and the expectation of C1. The value of [md, mu]
used for the S index computation, and the results of linear regression ad, au with their associated standard errors, are given at
the bottom.
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ERA solution reflects the low degree of polarization found
in the plane-wave analysis [Santolik and Parrot, 2000],
which means that the associated electromagnetic wave is
supposed to propagate in many directions.
[42] Point 3 turns out to be quite similar to point 1, and

the results obtained by the three methods confirm this
similarity. Again, a secondary peak is only seen in the
ERA solution in the opposite direction of the main peak.
Point 4 looks like point 2, where the downgoing and
upgoing waves play symmetrical roles. In other words,
the main peak is observed in the southern hemisphere for
point 4, while it is in the northern hemisphere for point 2.

[43] For points 5 and 6, a main peak is predicted by the
three methods (q � 60�, f � 201� for point 5, and q � 108�,
f � 200� for point 6, from the ERA solutions). There are no
major discrepancies among the results obtained from the
ERA, GP, and ME techniques.

4.2. Stability Analysis

[44] The results of stability test described in section 2.4
are as follows. The 1000 computations of perturbed sol-
utions for all the six spectral matrices corresponding to the
six points have been done in order to get a significant
sample without excessive computation time. It took about 1

Figure 3. Results obtained by ERA (top) for the six spectral matrices. The graphical representation is
similar to that in the work of Santolı́k [1995]. The wave-energy density is coded as in Figure 2. The WDF
computed by the Maximum Entropy (bottom) and Gaussian Peaks (middle) methods for the points 1, 2,
and 4. Borrowed from Santolı́k and Parrot [2000].
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hour of computation for each point. In order to have
perturbations of the same order as the noise level, which
is about d = 16 according to the data normalization (see
section 3), the variance of the Gaussian vector b has been
fixed such that E(kV 	 VNk) = E(kbb*k) � 10. Neverthe-
less, as the variance is quite large, perturbations of the order
of 60 instead of 10 are often observed.
[45] For all of the six points, an averaged energy pertur-

bation V1(d) of about 21% is observed (see Table 1), which
is a good result. The least energy perturbation is observed
for point 2, whereas the most intense energy perturbation
arises for point 1. The plots of the expectation of C1 for
each of the six points are given in Figure 4. In this figure,
the WDF and the expectation of C1, called ERROR, are
plotted using the usual spherical representation. In addition,
the scale factor z between the WDF and the ERROR is
given in each of the six panels corresponding to the six
analyzed points. The z values are also given in Table 1.
[46] As seen in Figure 4 as well as in Table 1, the local

stability of the solutions is quite acceptable (z less than 7%)
and the ERROR increases with the WDF value. As shown
in Table 1, the highest value of V1(d) is the one for point 1.
As 26% is not a high value, the solution remains stable. This
is confirmed by choosing a higher value of m and looking at
the solution. Figure 2 shows the WDF for point 1 for a
doubled value of m. The peak is again at the same place and,

as expected, the solution does not differ significantly from
the one in Figure 3 (top left panel).
[47] To study the stability of the computed WDF with

respect to the regularization parameter, the S index defined
by (10) is computed, versus the error in the data, for each of
the six points. The results are displayed in Figure 5. As can
be seen, the S index decreases, almost linearly, as the error
in the data increases whenever the error in the data is lower
than d, then the S index increases (again almost linearly)
with the error in the data beyond d. The slopes ad and au of
the decreasing and increasing parts, respectively, computed
by linear regression, and their associated standard errors are
given in Table 1. The largest S index is for point 1, while the
lowest is for point 5. It means that the WDF is much more
stable with respect to m for point 5 than for point 1. It is
worth noting that for all the points jadj > jauj so that the
greater the m values are the better the stability is. It turns out
that the stability of the ERA solution is quite high, the
stability index S is indeed lower (or much lower) than 0.2
for an error in the data of d 	 20%.

5. Discussion and Conclusions

[48] In a previous paper [Prot et al., 2005], a new
inversion procedure was proposed to determine the wave
energy density of electromagnetic fields. The wave distri-
bution function, WDF, a concept introduced 30 years ago by

Figure 4. Results of the stability analysis. For each point the plots show the WDF and the local error,
which is the expectation of C1. The scale factor between the WDF and the ERROR is given by the
number z.
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Storey and Lefeuvre [1974] was chosen due to its ability to
handle continuum plane-wave distributions. The WDF
determination from field measurements implies that a highly
indeterminate and ill-posed problem has to be solved.
Several inversion techniques have been developed in the
past, but very few of them may be applied generally. Often,
some parameters have to be chosen quite arbitrarily and
some a priori information has to be introduced. The entropy
regularization algorithm, ERA, was therefore developed to
overcome some of these limitations. In this paper the ERA
has been applied to the FREJA F4 experiment electromag-
netic field measurements and the results compared with
those produced by two other techniques, the maximum
entropy, ME, and the Gaussian peak, GP, already published
in the work of Santolı́k and Parrot [2000].
[49] Overall, there is no contradiction between the ERA

solutions and those computed by Santolı́k and Parrot
[2000]. Globally, ERA solutions are more spread out which
is expected for entropy maximization procedures. This is
indeed compatible with the idea of a solution with minimal
information. Let us also note that a solution with high
variations (a very sharp peak) and thus large information
is in contradiction with a problem which is, originally,
highly indeterminate.
[50] As shown in Figure 3, for points 2 and 4, the ERA

solutions exhibit a fairly constant energy in all directions,
while with the two other methods, two better defined and
stronger peaks are found. According to Santolı́k and Parrot
[2000], the polarization degree is rather low, which is in
favor of the ERA solution. Moreover, in the GP method, the
a priori existence of two peaks has been imposed, which
implies a lower entropy of the solution than the one for the
ERA. This is also the case for the ME method. Although the
existence of two peaks is not imposed in the ME, the
entropy increase is due to the fact that the entropy minimi-
zation is done with a higher level of constraints than for the
ERA.
[51] From this we conclude that the ME and GP solutions,

which appear to be more accurate, cannot be considered as
better solutions than the ERAwithout any extra information

about the shape of the wave energy-density. This is because
the ERA maximizes the entropy and therefore minimizes
the information content in the solution. We should also note
that the secondary peak that is observed in the GP and, to a
lesser degree, in the ME methods is also detected by the
ERA as an increase of the energy density. The total energy
of this wave is of the same order as the one given by the ME
and GP, the only difference with the ERA solution is that its
energy density appears as more concentrated.
[52] At this stage of the discussion, it is worth noting that

in regularization theories, a family of operators with a free
parameter, m > 0, is used. For a small m the solution
produced has a small error of fit but is highly unstable.
Conversely with a larger m, the solution will deviate from
the original data, but its stability will be ensured. In other
words, a compromise has to be found between the error of
fit and stability, by selecting a suitable value of m. This is
done automatically in the ERA, according to the Morozov’s
discrepancy principle, which merely requires that a solution
whose error of fit is smaller than the noise level has to be
rejected. As a consequence, it is always possible to choose m
values lower than the one given by the Morozov’s principle
in order to get solutions quite similar to the ones given by
the GP and the ME techniques, knowing that their stability
will be worse.
[53] When using the Morozov’s discrepancy principle, it

is necessary to know an approximate value d of the noise
level. A data-driven criterion could instead be used to
choose m, as in the well-known Generalized Cross Valida-
tion criterion (GCV) [Whaba, 1980] or the L-curve [Hansen,
1992]. The GCV principle is to compute the ERA solutions
Fm
(i) from the data vector V(i), which is obtained by deleting

the ith entry of V. Of course the ith entry of the kernel Q is
also deleted for the inversion. Then m is chosen as the
minimizer of

X16
i¼1

Vi 	
Z p

0

Z 2p

0

Qi q;fð ÞF ið Þ
m q;fð Þ sin qdfdq

� �2

w2
i ð11Þ

Figure 5. Analyses of solution dependences on the regularization parameter. The S stability index is
plotted versus the error in the data for each of the six points. The curves are labelled with reference to the
point number. The curves of points 1, 3, and 6 are shown as plain lines, whereas they are in dashed lines
for points 2, 4, and 6.
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with weights wi. A simplified version of equation (11)
derived by Amato and Hughes [1991] in entropy regular-
ization case have been used for the computations. This
criterion fails to determine the regularization parameter m on
all of the six points. The minimum of (11) is indeed
obtained for a very small value of m (such that er(V, Fm) < 1).
If we take a little larger value of m, for example a m such that
er(V, Fm) � 2, the obtained solution becomes fully instable:
E(C1) � 1. Therefore this criterion does not provide a
suitable m for the six points that are considered. In the case
of classical Tikhonov’s regularization, the L-curve criterion
consists in drawing, for m > 0, the log-log plot of the error
er(V, Fm) versus the norm of Fm. This plot is L-shaped and m
is chosen as the point of maximum curvature of the curve:
the corner of the L. This criterion also fails to provide a
suitable m: the observed curve of the error er(V, Fm) versus
the entropy H(Fm) is not L-shaped, it is convex and
decreases with a quasi-constant curvature. In fact, the
curvature increases as m decreases; therefore this criterion
leads also to a very small value of m, which is not suitable.
The instability of the solution for such a m value is indeed
dramatic. The GCV and L-curve criterions are well-known
methods for choosing the regularization parameter; how-
ever, these criterions seems to not apply for the ERA
method. On the other hand, the small number of available
data vectors (V 2 C

n) may also explain the poor
performance of these methods. The development of a
data-driven method for choosing m actually stays an open
problem.
[54] Although the stability of the solutions obtained to fit

the FREJA data is controlled by the ERA algorithm, a
statistical study has been performed to quantify it as a whole
and point by point. To do this, the spectral matrices have
been perturbed and the resulting energy deviation and the
variation for each points of the WDF have been estimated.
On the average, and for the six events considered in this
study, the energy deviation turns out to be near 20%, while
the variation for each points of the WDF is less than 7%.
The stability of the solution with respect to the parameter m
have been analyzed, and the results have shown the stability
of the computed ERA solutions. It is quite clear that an
increase of stability with respect to the regularization
parameter is theoretically expected, since for large m values
the solution only depends on the penalty function. This
increase of stability is shown in Table 1, by the dissymmetry
of the slope of the S index for all of the six points.
[55] As a final conclusion, we have shown that the

entropy regularization algorithm, ERA, is well suited to
analyze wave characteristics in space plasmas. It allows the
wave distribution function, WDF, to be computed and, in
particular, the wave propagation direction to be determined.
Unlike other methods, such as the maximum entropy, ME,
and Gaussian peaks, GP, the ERA does not need any
assumptions, for example, about the shape of the WDF
and/or the significance of the integration kernels. Therefore
a good strategy in analyzing a large amount of data is first to
apply the ERA to detect the wave events we are interested
in and then to use other techniques, for example the GP and/
or ME, to refine the diagnostics of these waves. Alterna-
tively, the ERA can also be used in the diagnostics refine-
ment step by choosing the appropriate value of the
regularization parameter m.
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(CNRS-LPCE, Orléans, FRANCE) for their very helpful suggestions.
O. Santolı́k acknowledges additional support from ESA PECS contract
98025. Many thanks for the valuable referee’s comments.
[57] Arthur Richmond thanks the reviewers for their assistance in

evaluating this paper.

References
Amato, U., and W. Hughes (1991), Maximum entropy regularization of
Fredholm integral equations of the first kind, Inverse Problems, 7,
739–808.

Bergounioux, M. (2002), Optimisation et Controle des Systémes Linéaires,
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Lefeuvre, F., and J. L. Pinçon (1992), Determination of the wave-vector
spectrum for plasma waves and turbulence observed in space plasmas,
J. Atmos. Terr. Phys., 54, 1227–1235.

Lefeuvre, M., F. Parrot, and C. Delannoy (1981), Wave distribution
function estimation of VLF electromagnetic waves observed on board
GEOS 1, J. Geophys. Res., 86, 2359–2375.

Oscarsson, T. (1994), Dual principles in maximum entropy reconstruction
of the wave distribution function, J. Comput. Phys., 110, 221–233.

Oscarsson, T., G. Stenberg, and O. Santolik (2001), Wave mode identifica-
tion via wave distribution function analysis, Phys. Chem. Earth, 26,
229–235.

Press, W., S. Teutolsky, W. Vetterling, and B. Flannery (1986), Numerical
Recipes, Cambridge Univ. Press, New York.

Prot, O., O. Santolik, and J. Trotignon (2004), Ill-posed problem solving by
an entropy regularization method: Application to the propagation analysis
of electromagnetic waves, in WDS’04 Proceedings of Contributed
Papers: Part III - Physics, edited by J. Safrankova, pp. 593–599,
Matfyzpress, Prague.

Prot, O., M. Bergounioux, and J. G. Trotignon (2005), Determination of a
power density by an entropy regularization method, J. Appl. Math., 2,
127–152.

Santolı́k, O. (1995), Etude de la fonction de distribution des ondes dans un
plasma chaud, Thése, Univ. d’Orléans, Orléans, France.
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