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[1] The intense high-frequency electrostatic waves observed in the terrestrial foreshock
often have a form of a superposition of two monochromatic waves close to the plasma
frequency. We suggest an interpretation of these spectra as signatures of nonlinear decay
of Langmuir waves to electron-sound and ion-sound secondary waves. This decay
instability is known to have different properties in inhomogeneous plasma, namely the
threshold amplitude of this instability is inversely proportional to the scale of the
inhomogeneity. We show that the observed dependence of the wave amplitude on the
modulation scale of the wave packets is consistent with this property and the theory of
absolute decay instability in inhomogeneous plasma can be applied to explain the satellite
observations. In this study we used electric field data from the Wide Band Data instrument
on board Cluster satellites.

Citation: Soucek, J., V. Krasnoselskikh, T. Dudok de Wit, J. Pickett, and C. Kletzing (2005), Nonlinear decay of foreshock Langmuir

waves in the presence of plasma inhomogeneities: Theory and Cluster observations, J. Geophys. Res., 110, A08102,

doi:10.1029/2004JA010977.

1. Introduction

[2] The process of interaction of an electron beam with
a homogeneous Maxwellian plasma is relatively well
understood from the theoretical point of view. The growth
rate of the resultant Langmuir waves is a function of the
plasma and beam parameters: beam velocity, beam den-
sity, spread of the beam distribution in the velocity space,
and a temperature of background plasma. The theory
allows for several possible regimes of development and
saturation of the beam-plasma instability. In the case of a
cold beam, a narrow band wave spectrum is generated
and the growth is saturated by trapping of the beam
particles by the wave field [Shapiro, 1963; Matsiborko et
al., 1972]. On the other hand, if the beam is sufficiently
warm, the instability generates a wide band spectrum and
the action of the wave electric field on particles gives rise
to particle diffusion in the velocity space, which
decreases the growth rate of the instability to zero. This
process is described in the context of quasi-linear theory
proposed by Vedenov et al. [1961], Drummond and Pines
[1962], and Romanov and Filippov [1961]. The current
state of this theory can be found in a recent review by
Shapiro and Sagdeev [1997]. Yet a different scenario will

arise when the wave amplitude overcomes the threshold
of the parametric instability, before it is saturated by
quasi-linear/trapping processes. In this case a new phys-
ical process is involved: the primary Langmuir wave,
generated by the beam, decays to a secondary Langmuir
wave and an ion-sound wave [Cairns and Robinson,
1992]. The decay process transfers the wave energy from
the resonant region in the k space to the nonresonant one
and the interaction of primary and secondary waves with
the particles provides a more efficient dissipation than the
quasi-linear process associated with the beam-generated
Langmuir wave spectrum only.
[3] In these theoretical studies, the electron distribution

function is assumed to be Maxwellian with an additional
beam component (or ‘‘bump on tail’’). In the case of solar
wind, however, the plasma is not strictly Maxwellian but
contains two Maxwellian populations of electrons with
different temperatures: the cold and hot components
[Feldman et al., 1975]. According to recent Ulysses obser-
vations [Maksimovic et al., 2000], typical observed values
of densities and temperatures of the two electron popula-
tions of the solar wind plasma at a distance of 1 AU from
the Sun are nc = 10 cm�3, nh = 0.6–0.8 cm�3, Tc = 10 eV,
Th = 100 eV. This two-temperature plasma allows for
propagation of one additional electrostatic wave mode: the
electron-sound wave [Baumjohann and Treumann, 1996].
This property opens a second channel for the parametric
decay instability, where a Langmuir wave decays into
electron-sound and ion-sound wave. Comparative study of
the two possible channels of the parametric instability can
be found in the work of Hanssen et al. [1994]. The Cluster
observations presented in this paper give a strong evidence
that this nonlinear decay is important in the foreshock
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plasma and we show that the latter case, where an electron-
sound wave is generated, is more consistent with the
observations.

2. Observations

[4] In this paper, we present an analysis of high-frequency
wave observations from the Cluster satellites in the terrestrial
foreshock. The WBD (Wide Band Data) instrument [Gurnett
et al., 1997] of Cluster captures the electric field waveforms
at a sampling frequency of 220 kHz, which is ideally suited
to resolve the solar wind Langmuir waves with frequencies
close to fp (usually in the range from 20 to 40 kHz). All data
presented here were observed on 17 February 2002, when
Cluster was in the foreshock close to the foreshock boundary
given by the interplanetary magnetic field line tangent to the
bow shock (tangential line). This region of foreshock is
appropriate for our study, since Langmuir waves with the
largest amplitudes are observed close to this boundary
[Sigsbee et al., 2004].
[5] On this day, WBD was operating on three Cluster

spacecraft (1, 3, and 4), and on spacecraft 4 the receiver
gain was set to the lowest possible level. In this gain-zero
mode, the instrument can capture all waves with amplitudes
from a few mV/m up to a maximum of 36.9 mV/m, but all
lower amplitudes are ignored, being below the digitization
threshold. The other two spacecraft were in automatic gain
control mode, where the receiver amplification is adjusted
according to previously observed amplitudes. In this mode
the full dynamic range of the instrument is available, but the
probability that the most intense observed waveforms will
be clipped due to receiver saturation is higher. The instru-
ment operates in duty cycling mode, where each captured
snapshot of 2180 data points (10 ms) is followed by a gap of
69.5 ms.
[6] Since the instrument is using only one dipole antenna

placed in the spin plane of the rotating spacecraft, the

measured electric field is a projection of the wave electric
field on the direction given by immediate antenna orientation.
Following the commonly accepted theory of foreshockwaves
[Anderson et al., 1981], we assume that the observed oscil-
lations are electrostatic waves whose k vectors and electric
field vectors are close to parallel to the ambient magnetic field
(the angle between k vector andmagnetic field is typically less
than 15�). This assumption was revised later by Bale et al.
[1998] using double electric field antenna of Wind. They
showed that the intense foreshock waves in fact belong to the
z-mode dispersion branch. However, for the range of wave
numbers relevant to our study (kc/w > 1) the z-mode is
longitudinally polarized electrostatic wave with a dispersion
relation very close to the one of Langmuir waves. In the same
article they also show that a majority of these waves is
polarized almost parallel to the magnetic field.
[7] Therefore for the purpose of our statistics, we correct

the wave amplitude by a factor 1/cos a, where a is the angle
between the antenna and the mean magnetic field vector.
Waveforms captured when this angle was larger than 75�
are excluded from the study.
[8] The data set used in the statistical analysis contained

80,459 waveform snapshots observed by spacecraft 1, 3,
and 4 during the period from 0700 UT to 1013 UT on
17 February 2002. In this data set were only included
waveforms properly represented within the 8-bit digitization
range of the instrument whose peak amplitudes exceeded
0.1 mV/m.
[9] Figure 1a presents a typical snapshot of a high-

frequency electric field waveform observed by WBD in
the foreshock and the corresponding power spectrum. As
shown in this example, the envelope of waves in the
foreshock is generally structured with characteristic modu-
lation scales of the order of milliseconds [Bale et al., 1997].
Spectral analysis of such waveforms shows that the spec-
trum frequently consists of two well-pronounced peaks and
in many cases, the lower-frequency peak is more intense
than the higher-frequency one. We interpret such spectra as
a superposition of the primary Langmuir wave and a
secondary wave generated by the decay instability as was
proposed by Kellogg et al. [1996].
[10] The Doppler shift of the peaks in the spectrum in

Figure 1 can be exploited to deduce some information on
the observed wave modes. The frequency split between the
two high-frequency peaks (equal to the frequency of the
ion-sound wave peak) is Df = 2.9 kHz. Assuming that this
split was caused by a Doppler shift of two Langmuir waves
with oppositely directed k vectors parallel to the magnetic
field, we can calculate the speed of the beam responsible for
excitation of the primary wave vb = 2fpVsw cos q/Df.
Substituting the observed values (vSW = 450 km/s, fp =
30 kHz, q = 50�), we obtain a beam energy of 200 eVor vb �
4 vTc, which is significantly lower than a beam energy
expected to excite such intense Langmuir waves [Bale et al.,
2000]. During our event, the PEACE particle instrument
[Johnstone et al., 1997] of Cluster was operating in a low-
energy mode, in which it registers only electrons with
energies up to 2.6 keV. No beam-like features were ob-
served in this low-energy part of the electron distribution at
the same time intervals as the bursts of intense wave
activity. The beams associated with the observed waves
must therefore lie in the energy range above 2 keV. This is

Figure 1. A typical waveform snapshot observed in the
foreshock. The two peaks in the spectrum are interpreted as
the primary Langmuir wave (larger peak) and a secondary
electron-acoustic wave produced by parametric decay.
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consistent with previous studies [Bale et al., 2000], where
the very intense foreshock waves were found to be corre-
lated with electron fluxes well above 1 keV.
[11] This inconsistency between the magnitude of the

Doppler shift and typical beam energies suggests that in a
significant number of cases the interpretation in terms of a
decay of a Langmuir wave to a Langmuir wave and an ion-
sound wave is not applicable. On the contrary, these spectra
are perfectly consistent with the second form of the decay,
where one of the secondary waves is an electron-acoustic
wave. Electron-acoustic waves have significantly larger k
vectors than Langmuir waves of the same frequency and the
magnitude of the Doppler shift of the secondary wave will
therefore be proportionally larger in this case.
[12] Electrostatic foreshock waves are known to be ex-

cited by beam-plasma instability triggered by beams of
energetic electrons streaming along the background mag-
netic field. The beam features in the electron distribution
were shown to be correlated with the bursts of intense
Langmuir [Anderson et al., 1981] and such beams are also
observed by the Plasma Electron and Current Experiment
(PEACE) instrument of Cluster during the interval studied
in this article. The angle of the k vector of the excited wave
with respect to the magnetic field is determined by the ratio
of the beam thermal velocity to the bulk velocity of the
beam. For the observed beam temperatures this angle is
usually small (less than 20�) [Mikhailovskii, 1974] and the
primary waves can be considered to be field-aligned.
[13] The observed high-frequency electric field waves

usually exhibit significant modulation on timescales of a
few milliseconds. In our analysis, we consider the temporal
modulation pattern to be a consequence of spatial structures
convected across the spacecraft by the solar wind flow.
Assuming that the Langmuir wave under consideration is
generated by a 3 keV beam, the group velocity of the waves
is approximately 250 km/s and the ion-sound velocity for
plasma parameters measured during our event is Cs �
80 km/s. Although the Langmuir group velocity is non-
negligible (but still smaller) with respect to the solar wind
flow velocity (approximately 450 km/s in our case), this
assumption still holds if the modulation pattern is dominat-
ed by the decay process. In such a case, the envelope of the
high-frequency waves is correlated with the ion-sound
density perturbations [Musher et al., 1995] and therefore
propagates with the ion-sound velocity Cs, which is small
compared with the solar wind velocity.
[14] We can thus convert from temporal to spatial scales

simply by multiplying the timescales by a flow velocity.
This estimate yields spatial modulation scales from several
hundred meters to several kilometers. Even though the
fastest envelope modulation is in many cases clearly dom-
inated by interference of multiple waves, the slower mod-
ulation patterns (several milliseconds to several tens of
milliseconds) are representative of the bursty nature of the
waves which appear as wave packets with short coherence
length. Naturally, the wave packets should be correlated
with spatial variations in the electron distribution function
(variation of the growth rate of the instability) and in the
plasma density (by trapping of waves in density depletions).
The plasma inhomogeneities in the free solar wind were
found to be mostly isotropic with no preferred direction of
elongation [Celnikier et al., 1987]. In the foreshock region,

however, the plasma inhomogeneities are associated with
the presence of beams of particles reflected by the shock.
The alignment of beams along the magnetic field lines
implies that the characteristic scale of plasma parameters
variation in the perpendicular direction is smaller than in the
parallel direction. Consequently, we expect the amplitude of
electrostatic waves to be also modulated more rapidly in the
perpendicular direction.
[15] In the context of spacecraft observations, the wave

experiments (like WBD) have the necessary time resolution
to resolve the small scale changes in wave activity
corresponding to the filamentation. Conversely, the sam-
pling rate of the density and plasma composition measure-
ments is usually of the order of seconds, so such a rapid
modulation of plasma density cannot be directly observed
by these experiments.

3. Model and Interpretation

[16] In the previous section we have shown that the
parametric decay of Langmuir waves to electron-sound
and ion-sound waves represents a viable interpretation of
the observed spectra containing two narrow peaks in the
vicinity of the plasma frequency. A minimum threshold
value of the wave amplitude j~E0j must be reached before the
instability can develop. This necessary condition for a
plasma with two electron populations can be written as
follows:

�0 ~kes;~E0

� ���� ���2
4ncMiC2

s k
2
es

>
nsnes
wswes

: ð1Þ

Here and in the rest of the article, nes and ns are
characteristic damping rates of electron-sound and ion-
sound waves respectively, nc, nh, Tc, Th are densities and
temperatures of cold and hot components of plasma, ~kes is
the wave vector of the secondary electron-sound wave and
�0, Mi, m and kB are the permittivity of vacuum, proton
mass, electron mass, and the Boltzmann constant, respec-
tively. The parentheses denote a scalar product of two
vectors here and in the rest of the article. The ion-sound
velocity Cs in plasma with two electron populations is given
by Cs

2 = kB(5/3Ti + Teff)/Mi, where Teff = (nc + nh)TcTh/
(ncTc + nhTc) [Hanssen et al., 1994].
[17] This process is supposed to be the primary mecha-

nism for saturation of growth of large-amplitude Langmuir
waves. Previous studies dedicated to the saturation of wave
amplitudes by the decay instability [Robinson and Cairns,
1995] revealed that the average observed wave amplitudes
are in a good agreement with this interpretation, but they did
not address the problem of dynamics of the decaying waves
in detail. In this article we show that the saturation ampli-
tudes are dependent on the scale of the modulation. This
observation can be explained in two possible ways. The first
interpretation is related to the complex dynamics of the
system of three interacting waves, whose character depends
on the ratio between the increment of the primary wave and
characteristic damping of the secondary waves [Vyshkind
and Rabinovich, 1976; Alterkop et al., 1976; Hughes and
Proctor, 1990]. The saturation can be reached if the growth
rate of the primary wave is smaller than the damping rates
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of the secondary waves. However, the stationary points,
which are conventionally assumed to determine the wave
amplitudes, are in general unstable. This leads to different
regimes of dynamic behavior ranging from simple periodic
motions to chaotic ones. On the other hand, when the
damping of the ion-sound waves becomes large enough,
in particular when the ion temperature is comparable with
the electron temperature, the dynamic of the system
becomes simpler and reduces to quasi-periodic fluctuations
of amplitude [Lefebvre, 2000] that cannot explain the
observed dependence.
[18] Another explanation of the amplitude-scale depen-

dence involves the effect of plasma inhomogeneities on the
dynamics of decay instability. Significant inhomogeneities
are known to exist in solar wind plasmas, the level of
density fluctuations can reach 10% as shown by Kellogg et
al. [1999].
[19] Hereafter in this section we introduce a mathematical

model of growth of Langmuir waves and its saturation due
to the decay instability in the inhomogeneous plasma. For
the sake of simplicity, we assume the plasma inhomogene-
ities to have a form of two-dimensional ‘‘filaments’’ elon-
gated with the background magnetic field. The effect of
filamentation is taken into account by considering the wave
primary wave growth to be confined in these independent
spatially decorrelated slabs. Such an approximation allows
us to describe the dominant effects, such as the escape of
wave energy from the region of growth. The generalization
of such model to a plasma with slowly varying parameters is
straightforward [Bers, 1984]. Let us assume, for simplicity,
that the instability is bounded inside a ‘‘slab’’ of finite
thickness and let us assume that we can neglect the
influence of wave activity that develops around one slab
to the activity in the other slab. This allows to consider
generation of waves and saturation of their amplitude in
each bounded slab independently from the neighboring
ones.
[20] Let us fix the coordinate system with the z coordinate

parallel to the background magnetic field B0
�!

and the x
coordinate perpendicular to it. Let L be the width of the slab
and let the increment G0 of the linear instability be constant
and positive inside the slab 0 < x < L. Furthermore, let us
assume that the saturation of wave amplitudes is completely
due to the decay instability of a primary Langmuir wave
into an electron-sound wave and an ion-sound wave.
[21] The derivation of the system equations describing the

decay instability is described in Appendix A. The resulting
equations can be written as follows:

@�0

@t
� G0�0

� �
¼ �

iwp
~k0;~kes

� �
2k20 nc þ nhð Þ

rs�es ð2Þ

@

@t
þ vesx

@

@x
þ nes

� �
�es ¼ �

iw2
pc

2wes

~kes;~k0

� �
k2es

rs*
nc

�0 ð3Þ

@

@t
þ Csx

@

@x
þ ns

� �
rs ¼ �

iwsw2
p�0

~k;~k0

� �
2weswLMiC2

s

�0�es* : ð4Þ

Here �0 is the complex amplitude of the perturbation of the
electric field potential corresponding to the primarily
generated Langmuir wave and ~k0 is its wave vector which
is parallel to the z axis. Therefore the group velocity of the
primary wave is also parallel to the magnetic field. �es is
the amplitude of the perturbation of the electric field
potential of a secondary electron sound wave, vesx is the
projection of its group velocity to the direction x, and wes,
nes, and~k are its frequency, damping rate, and wave vector.
In the third equation, rs is the density perturbation of a
secondary ion-sound wave, ws and ns its frequency and
damping rate, and Csx = Cs sin q the projection of the ion-
sound group velocity to the x direction. Furthermore, the
frequencies and wave numbers of the interacting waves
must satisfy the resonance conditions

w0 ¼ wes þ ws ; ~k0 ¼~kes þ~ks: ð5Þ

The dispersion relation of electron sound waves
[Baumjohann and Treumann, 1996] reads

w2
es ¼ w2

pc

k2l2
Dh

k2l2
Dh þ 1

1þ 3Tc

Th

nh

nc
þ 3l2

Dck
2

� �
; ð6Þ

where lDh
2 =

�0kBTh
nhe2

, lDc
2 =

�0kBTc
nce2

, wpc
2 =

nce
2

�0m
.

[22] Linear instabilities of Langmuir waves in slab ge-
ometry were studied by many authors [Alekhin et al., 1971;
Le Queau et al., 1981]. When the amplitude of the primary
Langmuir wave exceeds the decay instability threshold, the
wave evolution is determined by the energy transfer from
the primary wave to the secondary waves and their subse-
quent damping. However, in our case, where the wave
activity is confined in the slab, the instability develops
differently than in the homogeneous plasma case described
above. Namely, its development is dependent upon the
relative velocity of secondary waves across the slab. If the
projections of the group velocities to the x axis are oriented
in the same direction, the instability will have convective
nature. On the other hand, if the projections are oppositely
oriented, the instability will become absolute.
[23] An important characteristics of the electron sound

waves is their characteristic wavelength, that is larger than
the Debye length of cold electron population and shorter
than the characteristic Debye length of the hot population.
This gives rise to the relation between k vectors of the
primary wave and secondary waves: the secondary waves
have much larger wave vectors than the Langmuir wave
j~kesj, j~ksj 	 j~k0j and hence ~ks � �~kes. This condition
implies that the group velocities of the secondary waves
have opposite directions and the decay instability that will
develop in the case of the stratified wave activity will be
absolute.
[24] The system of equations (2)–(4) should be completed

by boundary conditions. We assume without loss of gener-
ality, that the wave vector of the x component of the group
velocity of the electron sound wave is positive, while the x
component of the ion-sound wave group velocity is nega-
tive Csx = �jCs sin qj. Here, q is the angle between the k
vector of the secondary ion-sound wave and the magnetic
field. When working with equations (2)–(4), we employed
an approximation wp � wes to simplify the expressions.
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[25] The problem of stability in the slab is formulated
taking the amplitude of the primary wave to be constant
inside the slab, and forcing the secondary waves to satisfy
the following boundary conditions. The amplitude of the
electron sound wave will be equal to zero on the left
boundary of the slab �es(x = 0, t) = 0 and the ion sound
perturbation will be negligible on the right boundary of the
slab ris(x = L, t) = 0. Under these assumptions, we can
obtain an additional threshold condition required for the
decay instability [Pesme et al., 1973; Gorbunov, 1977]:

�0 ~k;~E0

� ���� ���2
4ncMiC2

s k
2

2
64

3
75
1=2

>
p
2L

ffiffiffiffiffiffiffiffiffiffiffiffi
vsxvesx

wesws

r
: ð7Þ

Here vsx = Cs sin q and vesx = Vges sin q are projections of the
group velocities of the ion-sound and electron-sound waves
on the x direction and L is the characteristic perpendicular
scale of the inhomogeneity. Therefore the decay process in a
filamented plasma can only proceed if both the condition (1)
and the condition (7) are satisfied.
[26] This threshold condition can be rewritten as follows:

~E0

�� �� >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncMiC

2
s

�0

s
p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CsVges

wesws

s
sin q
cos q

: ð8Þ

Substituting the observed plasma parameters to the formulas
we obtain a threshold condition

~E0

�� �� > 3:3 
 104 
 tan q
L

mV=m: ð9Þ

[27] The values of plasma parameters used throughout
this paper correspond to the values observed by Cluster on
17 February 2002 in the foreshock: Tc = 1.4 
 105 K, Th � 7 

105 K, Ti = 4 
 105 K, nc = 11 
 106 m�3, nh � 5.5 
 105 m�3.
The density nc was estimated from the local plasma fre-
quency, Tc was inferred from PEACE [Johnstone et al.,
1997] data. Average values obtained by previous observa-
tions [Maksimovic et al., 2000] are taken for the hot
component properties Th and nh.
[28] To understand better the physical meaning of the

threshold, one can use an analogy with optical masers. The
condition for the growth of the wave energy inside the system
is given by the energy balance: the secondary waves must
grow fast enough to compensate the energy lost due to escape
of waves through the system boundaries. This energy loss can
be conveniently characterized by introducing a quality factor
of the resonator. When the amplitude of primary wave
becomes larger than the instability threshold the growing
wave modes are the eigenmodes of the resonator. The
following relations hold for the system (2)–(4):

@

@t
þ 2nes

� �ZL
0

~Ees xð Þ
�� ��2dxþ 2vesx ~Ees Lð Þ

�� ��2

¼ Im
wes

nc

ZL
0

~Ees* xð Þ;~E0 xð Þ
� �

rs* xð Þdx ð10Þ

@

@t
þ 2ns

� �ZL
0

rs xð Þj j2� 2Csx rs 0ð Þj j2

¼ �0ws

2MiC2
s

Im

ZL
0

~Ees* xð Þ;~E0 xð Þ
� �

rs* xð Þ ð11Þ

Let us introduce the escape factors of the resonator for the
electron-sound and the ion-sound waves as follows:

mes ¼
2vesx res Lð Þj j2ZL
0

res xð Þj j2 dx

ms ¼
2Csx rs 0ð Þj j2ZL
0

rs xð Þj j2 dx

:

These coefficients characterize the rate of the energy escape
from the resonator. If the wave amplitude of electron sound
wave has its maximum on the right boundary of the system,
the resonator will quickly lose energy through this
boundary. Conversely, if the wave amplitude on this
boundary is small, the wave mode is trapped inside the
resonator and relatively little energy is lost through the
boundary and the coefficient mes is small. The same holds
for the ion-sound wave on the left boundary of the
resonator.
[29] We can perform some qualitative analysis of the

solutions of the system (2)–(4) using the escape factors
introduced above. Let us rewrite the system of equations
(2)–(4) in the form that includes this effect of the escape of
wave energy through the boundaries as an additional damp-
ing process characterized by the coefficients mes and ms:

@�0

@t
� G0�0 ¼ �i

wp

2

k0
!
; k
!� �

k20

rs
nc þ nh

�es

@

@t
þ mesvesx

L
þ nes

� �
�es ¼ � iwes

2

k
!
; k0
!� �

k2
rs*
nc

�0

@

@t
þ msCsx

L
þ ns

� �
rs ¼ �iws

�0 ~k;~k0

� �
�0�es*

2MiC2
s

:

The stationary solution of this set of equations reads

~E0

�� ��2¼ 4ncMiC
2
s k

2
0k

2

�0 ~k;~k0

� �2
mesvesx

L
þ nes

� � msCsx

L
þ ns

� �
wesws

~Ees

�� ��2¼ 4MiC
2
s

�0
nc þ nhð Þ

G0
msCsx

L
þ ns

� �
wpws

k20k
2

~k0;~k
� �2 :

ð12Þ

If we assume that the total damping of electron-sound mode
is larger than the growth rate of the primary wave
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(mesvesx/L + nes 	 G0), the following condition holds for the
wave amplitudes

~E0

�� ��	 ~Ees

�� ��: ð13Þ

[30] The above stationary solutions can be directly com-
pared with experimental data as they give us the dependence
of wave amplitude j~E0j (approximated by total observed
wave amplitude by virtue of condition (13)) on the size of
the resonator L. This scaling law, given by equation (12),
reflects the relative importance of different possible mech-
anisms of energy dissipation. If the dissipation is mainly
due to the escape of ion sound and electron sound waves
through the boundaries of the resonator, the amplitude-scale
dependence is of the form:

~E0

�� �� � 2 tan q
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncMiC

2
s msmesVgesCs

�0wswes

s
: ð14Þ

[31] Note that this scaling law differs from the instability
threshold formula (9) only by a constant factor 8

ffiffiffiffiffiffiffiffiffiffimsmes
p

/p.
If the escape effect is important only for one of the
secondary wave modes, while for the second wave mode
the damping rate will dominate the dissipation, the wave
amplitude will scale as j~E0j � L�1/2. If the damping of
waves is the dominant effect for both the ion-sound and
electron-sound secondary waves, the saturation amplitude
will be independent of the scale.

4. Comparison of Calculated Threshold With
Experiment

[32] In this section we investigate the relationship be-
tween the characteristic modulation scale of the observed
waves and their amplitudes and we compare the experimen-
tal results with the theoretical threshold (9). As was de-
scribed in previous studies [Kellogg et al., 1999] and as can
be seen in Figure 1, the vast majority of observed foreshock
Langmuir waves is strongly modulated on the timescales of
milliseconds. This modulation and the dependence of its
characteristic time on wave amplitude was previously
studied by Bale et al. [1997]. Our analysis (not presented
here) confirms their conclusion that more intense waves are
more likely to have slowly varying envelopes while the
envelopes of the weaker ones tend to be more patchy and
structured.
[33] In our analysis we used a simple direct method to

measure the characteristic modulation time. First, the enve-
lope of the wave is estimated using Hilbert transform
[Percival and Walden, 1993]. Then we find all minima an
maxima of this envelope and we define a characteristic
modulation time tmod of each wave packet as the distance
between the neighboring minima, under the condition the
maximum lying between the minima is sufficiently
larger than the larger of the two minima. The amplitude
corresponding to this wave packet is defined as the ampli-
tude of the maximum between the minima. In this way, each
waveform is divided into multiple wave packets and each
wave packet is characterized by its amplitude and width in
time. A major experimental limitation for our study is the

short length of the waveform snapshot, which allows to
study only modulation on timescales well below 10 ms,
when the whole wave packet can be captured in the
snapshot.
[34] According to the above considerations discussed in

section 2, we expect the plasma parameters and wave
amplitudes to vary mostly in the direction perpendicular
to the background magnetic field and the temporal wave
modulation is interpreted as a projection of the spatial
perpendicular wave envelope structure convected by the
solar wind flow. The spatial modulation scale projected to
the B-perpendicular direction is calculated using the
formula

Lperp ¼ tmod 
 ~Vp

�� �� 
 sina; ð15Þ

where tmod is the characteristic modulation time of the wave
packet (defined above), ~Vp is the solar wind velocity vector,
and a is the angle between ~Vp and the magnetic field.
[35] To make a direct comparison of data with our model,

we need to estimate the width of the slab L. Since we
assume that the large amplitude waves are trapped inside the
slabs, the width of the slab is equal to the perpendicular
width of the trapped wave packet. In a majority of cases,
only a fraction of the whole wave packet is observed by
WBD because of the 10 ms length of the snapshot.
However, in a few cases, like the ones displayed in
Figure 2, the full packet is captured. We can conclude from
Figure 2 that the eigenmodes trapped inside the slab are
typically not the first modes but more likely higher-order
modes. Therefore we can estimate the width of the packet as
an integer multiple of the characteristic modulation scale
estimated as described above. On the basis of observations,
we set this multiplier to a fixed value of 10.
[36] Figure 3 shows a joint two-dimensional distribution

of the amplitudes of the wave packets versus their perpen-
dicular spatial width. Superimposed on the figure are the
theoretical curves of absolute decay instability threshold as
a function of the inhomogeneity scale (9) and the amplitude
of a stationary solution (14) calculated for a chosen typical
values of the parameter q = 15�.
[37] The comparison of the histogram with the curves

shows that a significant number of waves exceeds the
threshold for the absolute instability and most of the wave-
forms lie below the curve of stationary solution amplitudes.
Furthermore, the shape of the observed distribution is
consistent with the j~E0j � 1/L dependence of saturated
wave amplitudes on the scale. Interpreting this scaling law
in terms of the above theory, we conclude that the escape of
both ion-sound end electron-sound waves from the resona-
tor is the dominant process responsible for damping of the
primary beam-generated wave.

5. Summary and Discussion

[38] In this paper we have shown that the nonlinear decay
of Langmuir waves contributes significantly to the dissipa-
tion of energy of very intense beam-generated waves in the
foreshock. The two-temperature plasma of solar wind
allows for two possible channels of the decay instability.
One is a decay of Langmuir wave to Langmuir and ion
sound waves, the other decay process generates an electron-
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sound wave and an ion-sound wave. The instability thresh-
olds for both decay processes can be written in the form (1),
if the damping rate, frequency, and wave number of the
corresponding wave modes are substituted. In homogeneous
plasma the threshold of the Langmuir ! Langmuir decay is
comparable or even lower than the one of the Langmuir !
electron-sound process because the damping rate of Lang-
muir waves is usually several times smaller than that of
electron-sound waves. We have shown, however, that
spectra consistent with the decay process were observed
by Cluster in the foreshock and in many cases the magni-
tude of the Doppler shift of the secondary waves indicates
that the primary Langmuir wave decays into an electron-
sound wave and an ion-sound wave. This raises the question
of why or under which conditions the electron-sound form
of the decay prevails.
[39] In this paper we put forward the significant influence

of density and beam inhomogeneities on the development of

parametric instabilities. The presence of inhomogeneities
can be responsible for suppression of the Langmuir !
Langmuir decay channel as a consequence of a loss of
coherency of Langmuir waves. If the coherency length in
inhomogeneous plasma becomes comparable with the
wavelength of the secondary Langmuir wave, the insta-
bility changes its character. In the quasi-homogeneous
case, the phases of the waves involved in the decay are
dynamically related and coherent, while in the case where
the coherency length is comparable to the wavelength, the
phases should be considered random. This changes the
dynamics of the instability and results in a strong
decrease in the instability growth rate [Laval et al.,
1976]. Since the electron-sound waves have significantly
smaller wavelengths, the electron-sound channel of the
decay may still keep the properties of coherent wave
interaction, while the Langmuir ! Langmuir channel will
be affected by the phase randomization.
[40] We proposed a model that describes the decay

instability in the presence of plasma inhomogeneities. In
the model, the primary and secondary waves can be
partly trapped inside the inhomogeneities, while some
part of the wave energy can escape through the boundary.
From the model we obtain that the threshold and the
saturation level of the wave amplitudes depends on this
rate of energy escape and the scale of the inhomogeneity.
For the case relevant to our observations the wave
amplitude depends on the inhomogeneity scale as
j~E0j � 1/L. This result was compared with the statistics
of the observations of electrostatic wave amplitudes and
modulation scales provided by WBD instrument of Clus-
ter and the observations were shown to be consistent with
the predicted dependence. The major restrictive factor in
this analysis was the limited length of the waveform

Figure 2. Two examples of waveforms, where the whole
wavepacket is contained within the length of the snapshot.
The modulation suggests, that the standing wave trapped in
the resonator is not the first mode, but has a higher mode
number.

Figure 3. A joint two-dimensional histogram of peak
wave amplitudes and characteristic modulation times
converted to perpendicular spatial scales using formula
(15). Color scale is logarithmic. Superimposed on the
picture are curves of the threshold amplitude (equation (8))
shown by a white line and the amplitude of wave growth
saturation (equation (14)) shown by a red line. All values
were calculated using a value of q = 15�.
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snapshot, which does not allow us to observe the whole
wave packet and its size has to be extrapolated from its
inner structure. Future satellite experiments may provide
the opportunity to overcome this limitation and measure
the packet length directly.

Appendix A: Parametric Instability in Two
Temperature Plasma

[41] In this appendix is briefly presented a theory of
electrostatic waves in two-temperature plasma and their
nonlinear interaction. The theory is then applied to derive
equations (2)–(4) presented in the article.
[42] We consider a two-component plasma consisting of

cold and hot electron populations denoted by indices c and
h. The Langmuir wave dynamics is described by the first
equation from the set of Zakharov equations [Zakharov,
1972], where the effects of low-frequency density perturba-
tions on the high-frequency waves enter through the non-
linear term. Concerning this equation, the only significant
difference for the case of two temperature plasma is the
modification of Langmuir dispersion relation [Buti and Yu,
1981] to

w ¼ wp 1þ 3

2
k2

nc0Tc þ nh0Th

mn0w2
p

 !
:

Here nc0, nh0, Tc, Th are the densities and temperatures of the
cold and hot populations, respectively, n0 = nc0 + nh0 and
wp
2 = n0e

2/�0m.
[43] The most important difference between two temper-

ature plasmas and Maxwellian plasmas is the existence of
the electron-sound wave mode, with a dispersion relation
(6). The phase velocity of this mode vph satisfies the
condition vc  vph  vh, where vc and vh are the hot and
cold thermal velocities. The principal difference from the
Langmuir waves is that the hot electrons can be rapidly
redistributed to satisfy the quasi-neutrality condition, while
the cold population behaves more like a fluid. In this sense,
the electron-sound waves are similar to ion-sound waves,
except the cold electrons play the role of ions. In the
following text, we derive an equation describing the non-
linear behavior of these waves in a similar way as Zakharov
equations.
[44] Let us consider the high-frequency and low-frequency

plasma perturbations separately. This approach will result in
the following representation of density perturbations for the
cold and hot components:

nc ¼ nc0 þ dnes þ dns

nh ¼ nh0 þ dnhes þ dnhs

N ¼ nc0 þ nh0 þ dns þ dnhs:

Here dnes and dns are the density perturbations of cold
electron population corresponding to high-frequency elec-
tron-sound wave and low-frequency ion-sound fluctuations,
respectively. Similarly, dnhes and dnhs are the hot component
perturbations and N is the ion-density obtained from quasi-
neutrality condition. In the hydrodynamic approximation,

the high-frequency fluctuations of the cold plasma electrons
can be described by the following equations:

@ dnes
@t

þ div nc0 þ dnsð Þ~v½ � ¼ 0 ðA1Þ

@~v

@t
¼ e

m
rfes �

3kBTc

mnc0
r dnes: ðA2Þ

Here~v is the bulk velocity of the high-frequency motion of
the cold electron population and fes is the electrostatic
potential corresponding to the electrostatic waves. We keep
only the most important nonlinear term introducing the low-
frequency density perturbations to the high-frequency
equation, analogically with the Zakharov equation. The
hot population is distributed in the electrostatic potential
and, taking into account that its density is small with respect
to the density of cold component nh0  nc0, we can keep
only the terms linear in the perturbations:

dnhes ¼ nh0 exp
efes

kBTh

� �
� nh0 � nh0

efes

kBTh
: ðA3Þ

Substituting this into the Poisson equation, we get

Dfes ¼
e

�0
dnes þ dnhesð Þ ¼ e dnes

�0
þ nh0e

2fes

�0kBTh
: ðA4Þ

and from equations (A1)–(A3) now follows

@2

@t2
Dfes �

1

L2
Dh

fes

 !
þ w2

pc 1þ 3Tc

Th

nh0

nc0

� �
Dfes �

3kBTc

m
D
2fes

¼ �w2
pc 1þ 3Tc

Th

nh0

nc0

� �
div

nS

nc0
rfes

� �
; ðA5Þ

where LDh and wpc are defined in section 3. Similar
equation was obtained by Schriver et al. [2000] using
slightly different approximations. To describe the interac-
tion of the primary Langmuir wave with the electron sound
wave, one should replace in the nonlinear term on the right-
hand side of the equation the electrostatic potential of
electron-sound wave fes by electrostatic potential of the
Langmuir wave fL.
[45] To describe the low-frequency dynamics of plasma,

we assume that electron response to the low-frequency
perturbations corresponds to Boltzmann equilibrium in the
electrostatic field of the two potentials: the potential of low-
frequency wave fs and the ponderomotive potential origi-
nating from the modulated Langmuir and electron-sound
waves [Hanssen et al., 1994]:

dns
nc0

¼ exp
efs

kBTc
�
w2
p�0 rfes;rfLð Þ
kBTcn0wLwes

 !
� 1

� efs

kBTc
�
w2
p�0 rfes;rfLð Þ
kBTcn0wLwes

ðA6Þ

dnhs
nh0

¼ exp
efs

kBTh
�
w2
p�0 rfes;rfLð Þ
kBThn0wLwes

 !
� 1

� efs

kBTh
�
w2
p�0 rfes;rfLð Þ
kBThn0wLwes

: ðA7Þ
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The ion dynamics at the low frequencies can be described in
hydrodynamic approximation by linear equations of similar
form as (A1)–(A2) that can be combined into

@2 dN
@t2

� n0e

Mi

D�S �
5=3kBTi
Min0

D dN ¼ 0; ðA8Þ

where we introduced the total ion density perturbation dN.
Taking into account the quasi-neutrality condition dN =
dns + dnhs, we get

dN ¼ nc0

kBTc
þ nh0

kBTh

� �
efs �

w2
p�0 rfes;rfLð Þ

n0wLwes

 !

and after simplification

e�s ¼
w2
p�0 rfes;rfLð Þ

n0wwes

þ kBTcTh

nc0Th þ nh0Tc
dN :

This results in the following equation for ion density
perturbations:

@2dN
@t2

� C2
sD dN ¼ �

w2
p�0

MiwLwes

D rfL;rfesð Þ; ðA9Þ

where the modified ion-sound speed Cs is defined in section
3.
[46] To obtain the equations describing the parametric

instability, we assume the resonant conditions (5) to be
satisfied and for each wave we decompose the space and
time variations of density and field potentials into fast
harmonic oscillations and a slow modulation component:

fL ¼ �L ~r; tð Þ exp �iwLt þ i~kL~r
� �

fes ¼ �es ~r; tð Þ exp �iwest þ i~kes~r
� �

dN ¼ rs ~r; tð Þ exp �iwst þ i~ks~r
� �

:

ðA10Þ

The factors in front of the exponentials in the above
equations represent the wave modulation that is considered
to be slow with respect to the wave oscillations in the sense

wL�L 	 @�L

@t
; ~k
��� ����L 	 r�Lj j ðA11Þ

for Langmuir wave potential and similarly for the other
quantities. Now we substitute the above representation into
equations (A5), (A9), and the ordinary Zakharov equation
for Langmuir waves, use relations (A11) to eliminate
negligible terms and replace the second time derivatives
with

@2

@t2
� �w2 � 2iw

@

@t

to get

@

@t
þ~vgesr

� �
�es ¼ �i

w2
pc

~kes;~kL

� �
2wes k2es þ L�2

Dh

� � 1þ 3Tc

Th

nh0

nc0

� �
rs*
nc0

�L:

[47] Taking into consideration that kes
2 LDh

2 	 1 and

3Tc

Th

nh0

nc0
 1, we obtain the equation (3) presented in the

text:

@

@t
þ~vgesr

� �
�es ¼ �i

w2
pc

~kes;~kL

� �
2nc0wesk2es

rs*�L:

[48] Applying similar approximations to the other equa-
tions, one gets equation (2) for Langmuir waves and
equation (4) for ion-sound waves. Note that in the main
text, we used index 0 to denote the primary Langmuir
decay, which exactly corresponds to index L used through-
out the appendix.
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