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Coastal regions are a resource for societies while being under severe pressure from a variety of factors. They also
showa large diversity of optical characteristics, and the potential to optically classify thesewaters and distinguish
similarities between regions is a fruitful application for satellite ocean color. Recognizing the specificities and
complexity of coastal waters in terms of optical properties, a training data set is assembled for coastal regions
and marginal seas using full resolution SeaWiFS global remote sensing reflectance RRS data that maximize the
geographic coverage and seasonal sampling of the domain. An unsupervised clustering technique is operated
on the training data set to derive a set of 16 classes that cover conditions from very turbid to oligotrophic.
When applied to a global seven-year SeaWiFS data set, this set of optical water types allows an efficient
classification of coastal regions, marginal seas and large inlandwater bodies. Classes associatedwithmore turbid
conditions show relative dominance close to shore and in the mid-latitudes. A geographic partition of the global
coastal ocean serves to distinguish general optical similarities between regions. The local optical variability is
quantified by the number of classes selected as dominant across the period, averaging 5.2 classes if the cases
accounting for 90% of the data days are considered. Optical diversity ismore specifically analyzedwith a Shannon
index computed with the class memberships. Regions with low optical diversity are the most turbid waters as
well as closed seas and inland water bodies. Oligotrophic waters also show a relatively low diversity, while
intermediate regions between coastal domain and open ocean are associated with the highest diversity, which
has interesting connections with ecological features.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As the interface between the oceans and the terrestrial ecosystems
supporting the human population, coastal regions need to be thorough-
ly studied and understood. They harbor a large share of Earth's popula-
tion with high densities (Small & Nicholls, 2003) and represent a
resource for societies, but consequently they are under increasing pres-
sure fromanthropogenic origin. Increasing population in large cities and
economic development, waste water discharge and other localized pol-
lution, and habitat disruptions have already resulted in a degradation of
coastal ecosystems (Halpern et al., 2008; Lotze et al., 2006). Human
activities directly impact the food web structure and biodiversity of
coastal regions through intense fishing (Stewart et al., 2010) and by
favoring the invasion of alien species (e.g., Katsanevakis, Zenetos,
Belchor, & Cardoso, 2013; Molnar, Gamboa, Revenga, & Spalding,
2008). The extension of the network of river impoundments modifies
both the flow of fresh water and the amount of sediments reaching
estuaries (Vörösmarty et al., 2003). Anthropogenic nutrient inputs to
. This is an open access article under
coastal zones also have a strong chemical signature (Galloway et al.,
2008) leading to eutrophication and hypoxia phenomena (Diaz &
Rosenberg, 2008; Voss et al., 2011). These effects can be compounded
by the increase in greenhouse gas concentrations and its associated
warming and acidification. Consequences of climate change for plank-
ton species distribution or for the functioning of upwelling ecosystems
have already been suggested (e.g., Bakun & Weeks, 2004; Beaugrand,
Reid, Ibañez, Lindley, & Edwards, 2002).

In that context, coastal ecosystems and marginal seas need to be
properly monitored to allow an improved understanding of their
dynamics and the detection of changes in their properties, and to follow
the impact of policies aiming at environmental protection. But while a
global observing network is required, the actual sampling is very un-
evenly distributed in space or time: a large part of the coastal regions
have been poorly sampled by optically relevant observations and
some seasons are relatively ignored because of operational constraints.
Remote sensing of ocean color has a role to play as a cost-effective
tool for global and frequent observations that can be interpreted in
terms of surface concentrations of chlorophyll-a (Chla), suspendedma-
terial or chromophoric dissolved organic matter (CDOM). However this
global capability is to some extent questioned by the uneven
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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distribution of field data that are at the basis of empirical algorithms or
that are used for the definition of parameters in semi-analytical bio-
optical algorithms, like the Chla-specific absorption coefficient or the
exponential slope of CDOM absorption. For the same reason, validation
results have a limited coverage particularly for remote sensing reflec-
tance or inherent optical properties. This raises the question of the ap-
plicability of most algorithms as well as the validation statistics. This
issue can be circumvented by the introduction of techniques of optical
classification that use the spectrum of remote sensing reflectance RRS
to quantify how two water bodies are similar from the optical point of
view (e.g., D'Alimonte, Mélin, Zibordi, & Berthon, 2003; Martin
Traykovski & Sosik, 2003; Moore, Campbell, & Feng, 2001). With the
proviso that algorithm definition or validation results obtained for one
optical water type (or class) are applicable to anywater body associated
with that type, optical classification techniques represent a powerful av-
enue for an optimal and truly homogeneous use of ocean color remote
sensing at global scale. This potential has already been exploited for re-
gional or global applications (Lubac & Loisel, 2007; Mélin et al., 2011;
Moore, Campbell, & Dowell, 2009; Moore, Dowell, Bradt, & Ruiz Verdu,
2014; Vantrepotte, Loisel, Dessailly, & Mériaux, 2012) by making use
of in-situ data bases to define the optical water types of reference.
This presents various advantages as field data are usually considered
as having uncertainties lower than those of satellite data, and as the
collection of field RRS data is often accompanied by othermeasurements
needed for the envisioned application (e.g., Chla for the definition of an
associated empirical algorithm). However in that case the optical vari-
ability covered by the classification is restricted to the range of the
field data, which is a limitation for the creation of a set of optical
water types that would evenly represent all regions and seasons.

The objective of this study is to use satellite data available for coastal/
shelf waters and marginal seas to derive a set of optical water types
encompassing the full extent of the optical variability found in these
regions, information as yet not available. The focus on coastal regions
is justified by their importance; often termed optically complex waters,
they also contain a large share of the optical variability of natural waters
in contrast to the fairly constrained variability found in most open-
ocean waters (Morel & Maritorena, 2001). However, as will be seen
below, optical water types typical of oligotrophic to mesotrophic
waters are covered in the analysis. The main application of the
study is to document the optical variability observed at global
scale, to expose the optical similarity between regions, or to assess
the degree of optical stability in a given region. The domain of
study and the creation of the training data set are first presented.
Then clustering and classification approaches are described, and
finally the distribution of optical water types is documented. Finally,
the optical diversity is quantified.

2. Data & methods

2.1. Satellite data and domain of study

All the Sea-viewing Wide Field-of-View Sensor (SeaWiFS, McClain
et al. 1998) Level-1A data have been collected from the Ocean Biology
ProcessingGroup (OBPG) of theNational Aeronautics and SpaceAdmin-
istration (NASA) and processed with the SeaWiFS Data Analysis Soft-
ware (SeaDAS, version 6, Fu, Baith, & McClain, 1998). This imagery is
the so-called MLAC (Merged Local Area Coverage) acquisition with a
resolution of ~1.1 km at nadir. Products were mapped onto a global do-
main with a sinusoidal projection and a spatial resolution of 1/48th-
degree (approximately 2.3 km), and subsequent analyses were made
with daily data. This spatial and temporal sampling is well adapted to
capture the optical variability found in coastal waters, whereas a higher
level of averagingwould tend to smooth out peculiar spectral character-
istics. A drawback of using the SeaWiFS MLAC data is that data acquisi-
tion has been uneven in space and time following the operation of
receiving ground stations.
The focus of thiswork is on coastal regions andmarginal seas. To iso-
late the part of the global ocean that responds to that vague definition, a
set of arbitrary criteria was applied to define the domain of study. First,
grid pointswere excluded if the shortest distance to the coastwas larger
than 200 km or if the bottom depth was deeper than 4000 m (9000 m
for the region along the western coasts of South and Central America).
Bathymetry is defined according to the General Bathymetric Chart
of the Oceans (GEBCO) 1-minute gridded data set. Finally, some
marginal seas, parts of which were excluded by these criteria, were
restored to their full extent in the domain of analysis, e.g., the
Indonesian Archipelago, the Chinese and Japan Seas, the Sea of
Okhotsk, the Mediterranean Sea, the North Sea, the Gulf of Mexico,
and the Hudson Bay. Very large lakes were also included
(e.g., Great American, European and African Lakes, Lake Baikal,
Caspian Sea) but the associated data are not included in the training
process. The final coastal domain amounts to 12% of the Earth surface
(or 17% of the ocean domain).

To retrieve regional statistics, the domain was split into distinct
regions representative of marginal seas or known partitions of the
coastal ocean (Fig. 1). In particular, this regional distribution was
partly inspired by the biogeographic provinces of Longhurst (2006)
and the Large Marine Ecosystems (LMEs) partition (Sherman &
Hempel, 2009). Tables 1 to 7 provide the list of acronyms used to
designate each region. The selected name does not necessarily reflect
the entire geographic domain usually associated with the region but
only the coastal/shelf part considered for the analysis.

The SeaWiFS data were processed for the interval 1998–2004
(7 years) which was a period of unrestricted distribution of LAC
data by NASA for research purposes. Fig. 2 illustrates the total num-
ber of days with valid data that went into the analysis. The average
number is 283 days over the 7-year period (standard deviation,
s.d., 221 days) for the entire domain. This relatively small amount
of days is explained by the use of MLAC imagery as explained
above but is sufficient to conduct a global study. This coverage ap-
pears highly variable, having a maximum of 767 days for the Medi-
terranean Sea (MEDI) and a minimum of 6 days for the Laptev Sea
(LAPT). The regions with the lowest coverage are found in the high
latitudes or associated with frequent cloud or dust cover, such as
the Gulf of Guinea (GUIN, average of 41 days). Some inland water
bodies show a fairly low coverage (down to 12 days for Lake Baikal)
but this is not a general feature (the American Great Lakes, GREL,
count an average of 358 days of valid data). An additional element
modulating the data availability is linked to the operations of the re-
ceiving ground stations.

2.2. Training data set

A training data set is needed to define a set of optical classes. To be
manageable, this data set can only be a subset of the overall satellite
data archive, yet it should be well representative of the optical vari-
ability found in natural coastal waters. The approach followed here
aimed at maximizing the geographic coverage and seasonal sam-
pling of the training data set. For each grid point within the domain,
a list of days with valid RRS spectra was built. Out of that list, five days
were retained optimizing their dispersion along the calendar year. If
a grid point had less than five days with valid data, they were all in-
cluded in the training data set. This approach ensured that a location
or a season with very few data were still represented in the training
data set, or conversely avoided that regions with many valid data or
that seasons with the most favorable atmospheric conditions domi-
nated the training process. The final training data set amounts to
51 million spectra. The full extent of the oceans is not included in
the creation of the training data set because the mesotrophic to oli-
gotrophic waters would account for a large share of the data and
weaken the ability of the clustering step to capture subtle optical
variations in coastal regions.



Fig. 1. Partition of the domain of analysis into regions, the acronyms of which are defined in Tables 1 to 7.
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2.3. Clustering technique

In order to reduce the reflectance first order variability and focus on
the reflectance spectral shape each RRS spectrum was normalized prior
to the data clustering by its integrated value (i.e., the surface below
the spectrum, Lubac & Loisel, 2007; Vantrepotte et al., 2012) following
the formula (for each wavelength λ):

rn λð Þ ¼ RRS λð Þ
Zλ2

λ1

RRS λð Þdλ
ð1Þ

where rn (in units of nm−1) indicates the normalized spectrum obtain-
ed by integration between λ1 (412 nm) and λ2 (670 nm). This formula
was computed by trapezoidal integration.

Normalized reflectance spectra composing the training data set
were then analyzed using the ISODATA (Iterative Self-Organizing Data
Analysis Technique, Jensen, 1996; Memarsadeghi, Mount, Netanyahu,
& Le Moigne, 2007; ISODATA, 2014) clustering method. This
Table 1
Definition of regions' acronyms for high latitude regions. The dominant class (class with
the most frequent occurrence of maximum membership) is indicated for each region, as
well as the average Shannon index (see Eq. 6).

Acronym Description Dominant class Shannon index

ARCT Arctic Ocean 6 2.00
KARA Kara Sea 1 1.36
LAPT Laptev Sea 1 0.98
ESIB East Siberian Sea 1 1.11
WBER West Bering Sea 6 2.15
EBER East Bering Sea 2 1.76
CHUK Chukchi Sea 2 1.88
BFRT Beaufort Sea 1 1.62
HUDS Hudson Bay 7 1.68
WGRE West Greenland Region 7 2.19
EGRE East Greenland Region 8 2.19
ANTA Antarctic Region 11 1.82
unsupervised classification algorithmcorresponds to amodified version
of the k-means clustering. Different from the k-means procedure,
ISODATA allows the number of clusters to be adjusted automatically
during the iterative process which aims at merging similar clusters
and splitting distant ones based on the spectral standard deviation
and distance criteria. At the first iteration, cluster centers are randomly
placed and spectra are assigned to the different clusters based on the
shortest distance to cluster centers. At any subsequent iteration, clusters
are split if the standard deviation is greater than a user-defined thresh-
old (0.001), and are merged if the distance between them is lower than
a user-defined threshold (0.00001). At each step of the procedure clus-
ter distance and standard deviation are computed and iterations end
when the number of spectra in each cluster changes by less than a de-
fined threshold (5%). Theminimum number of spectra composing a de-
fined cluster was set to 1000 in order to avoid the consideration of
unrealistic spectral shapes, in practice assigning outliers data to an un-
classified category. Other parameters were kept at their default value
(ISODATA, 2014). This method which presents a clear heuristic charac-
ter has been shown to be well adapted to treat remote sensing data sets
especially for land cover applications (Castillo Atoche, Carrasco Alvarez,
Ortegón Aguilar, & Vázquez Castillo, 2013; McCullough, Loftin, & Sader,
2012;Walsh et al., 2008). The process returns the number of classes and
Table 2
As Table 1 for European seas and western Atlantic regions.

Acronym Description Dominant class Shannon index

ICES Iceland Shelf 6 2.26
BALT Baltic Sea 1 1.11
NORS North Sea 4 1.95
NWES Northwest European Shelf 4 2.03
MEDI Mediterranean Sea 14 1.92
MARS Marmara Sea 3 1.69
BCKS Black Sea 3 1.65
IBER Iberian Upwelling 10 2.23
NWAF Northwest African Upwelling 14 2.08
GUIN Gulf of Guinea 7 2.16
BENG Benguela Upwelling 4 1.98



Table 3
As Table 1 for eastern Atlantic regions.

Acronym Description Dominant class Shannon index

NLAB Newfoundland-Labrador 7 2.05
NEUS Northeast US Shelf 4 2.03
SEUS Southeast US Shelf 15 1.97
GMEX Gulf of Mexico 14 1.99
CARB Caribbean Sea 15 1.72
NBRZ North Brazil Region 1 1.81
EBRZ East Brazil Region 16 1.53
SBRZ South Brazil Region 1 2.04
SWAS Southwest Atlantic Shelf 4 1.98

Table 5
As Table 1 for western Pacific regions.

Acronym Description Dominant class Shannon index

OKHO Sea of Okhotsk 6 2.12
JAPS Japan Sea 7 2.27
YELS Yellow Sea 1 1.37
ECHI Eastern China Sea 16 1.99
SCHI Southern China Sea 15 1.92
THAI Gulf of Thailand 10 1.91
INDO Indonesian Seas 13 2.15
WPAC Western Pacific 15 1.65
NAUS Northern Australia 7 2.02
EAUS Eastern Australia 15 1.87
NEWZ New Zealand 11 2.16

Table 6
As Table 1 for Indian Ocean regions.
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the distribution of the reflectance spectra that are members of each
class.

2.4. Classification technique

The classification consisted in calculating the classmembership of an
input spectrum for each class defined statistically by its average spec-
trum, μ, and covariance matrix, ∑, from the population of members
that were associated with that class in the clustering process (where
statistics μ and ∑ are calculated with log-transformed rn; D'Alimonte
et al., 2003; Mélin et al., 2011; Vantrepotte et al., 2012). Before classifi-
cation, the reflectance spectrum RRS was normalized by the area below
the spectrum consistently with the training phase to produce rn
(Eq. 1), and was then log-transformed. The distance of the resulting
input x to a given class ic was quantified by the squared Mahalanobis
distance Δic

2:

Δic
2 xð Þ ¼ x−μ icð ÞTΣic

−1 x−μ icð Þ ð2Þ

where T indicates the matrix transpose. The class membership p for
class ic and input x was quantified as:

p ic; xð Þ ¼ 1−P Δic
2 xð Þ;n

� �
ð3Þ

where P is the cumulative χ2 distribution function with n degrees of
freedom (Moore et al., 2001), in that case the number of wavelengths
used for the classification (the 6 SeaWiFS bands). In practice, P was
defined as:

P Δic
2 xð Þ;n

� �
¼

γ n=2;Δic
2 xð Þ=2

� �
Γ n=2ð Þ ð4Þ

with Γ the Gamma function, and γ the lower incomplete Gamma func-
tion (Gallego, Cuevas, Mohedano, & García, 2013). The classification
operates on log-transformed rn in order to be more robust to outliers
and in agreement with the log-normal hypothesis associated with nat-
ural waters (Campbell, 1995). A test supporting the use of log-normal
statistics in the classification was made by computing the Mahalanobis
distance between the log-transformed rn members of each class within
the training data set and the respective class center (auto-classifica-
tion). For each class ic, the proportion of members associated with a
Mahalanobis distance Δic

2 lower than 10.6 with respect to the class
center is remarkably close to 90% (mean of 90.3% ± 0.9%, minimum
Table 4
As Table 1 for eastern Pacific regions.

Acronym Description Dominant class Shannon index

ALSK Gulf of Alaska 4 2.06
CALC California Coastal Current 7 2.18
CAMR Central America Coastal Province 11 2.29
CHIL Peruvian/Chilean/Humboldt Current 8 2.10
88.6%, maximum 91.3%), which is the percentage expected for a
multi-normal distribution of size 6 (the number of bands) (Press,
Teukolsky, Vetterling, & Flannery, 1992).

2.5. Statistics

Once the class membership p was calculated for each day and bin,
the normalized membership p⁎ was expressed for class ic as:

p� icð Þ ¼ p icð Þ
XNC
ic¼1

p icð Þ:
ð5Þ

The classification scheme does not impose a sum of memberships
equal to 1. For instance, a spectrum associated with optical conditions
not well represented in the training data set could have low class
membership for all classes. It is therefore important to illustrate the dis-
tribution of total memberships to assess the degree to which the classi-
fication scheme appropriately covers the optical variability of the
consideredwater body. For each bin, the number of dayswhen different
thresholds of total memberships were reached was also recorded. Nor-
malized memberships were used when comparing and combining data
from different days or locations.

To distinguish the dominant class, the class of maximum member-
ship was recorded for each bin and day, and these occurrences were
accumulated in time over the period 1998–2004. For each bin, the
class most frequently selected as the class of maximum membership,
hereafter termed dominant class, was then determined. It should be
mentioned here that this class may not always be associated with the
highest average class membership (where the average is computed
for each class over the period 1998–2004). Subsequently the occur-
rences of dominant class (number of days when a class was selected
as the class of maximum membership) were averaged for each re-
gion to determine the dominant class for that region, reported in
Tables 1–7. This is a general indicator that should be considered
with caution since there is often a large spatial variability in the
Acronym Description Dominant class Shannon index

EAFR Eastern Africa 14 2.04
SOMU Somalia Upwelling 11 2.33
REDS Red Sea 14 2.03
ARAB Arabian Sea 6 2.35
PERG Persian Gulf 2 1.56
INDW Western India 2 1.94
BBEN Bay of Bengal 12 1.96
WAUS Western Australia 12 2.06
SAUS Southern Australia 10 2.08



Table 7
As Table 1 for inland water bodies.

Acronym Description Dominant class Shannon index

GREL American Great Lakes 3 1.50
EURL European Lakes 1 0.73
CASP Caspian Sea 2 1.35
EAFR African Lakes 3 1.49
BAIK Lake Baikal 2 1.29
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dominant class for many regions. Furthermore, the class of maxi-
mum membership should not be construed as exclusive: other clas-
ses might have a membership value close to the maximum.

For each bin, the number of classes that were selected at least once
as the class of maximummembership was recorded too. As this indica-
tor can be affected by outliers or rare conditions, the number of classes
thatwere selected as the class ofmaximummembershipwhile account-
ing for 90% of the total number of days was also recorded for each bin.

3. Results

3.1. Definition of the optical classes

The clustering analysis applied on the training data set led to the
definition of 16 classeswhich average normalized spectra (rn) are repre-
sented in Figs. 3 and 4 (statistics defining the classes are available upon
request). Fig. 4 also shows the average raw (i.e., without normalization)
spectraRRS. Note that only 0.01% of the 51million spectra composing the
training data set were registered as unclassified; examining these cases
often revealed erratic spectral shapes thatmight result from difficulty in
the atmospheric correction process.

The average rn spectrum for class 1 is characterized by a strong signal
in the green and red parts of the spectrum (with amaximumat 555 nm)
and low rn at the blue wavelengths (Fig. 3a). This spectral shape is typ-
ical of very turbid water masses associated with a large amount of min-
eral particles and dissolved organic matter (Babin & Stramski, 2004;
Vantrepotte et al., 2012). Spectral shapes associated with classes 2 to 7
are also representative of rn spectra usually observed in relatively turbid
Fig. 2. Number of days with valid data fo
environments. Spectra for classes 2 and 3 show high values from 490 to
555 nmwhile rn for classes 4 to 7 are mostly characterized by a peak at
490 nm. Conversely, classes 8 to 16 exhibit a decreasing spectrum from
the blue to the red wavelengths more typical of relatively clear waters.
For all classes, the variationswithin a class are small in terms of normal-
ized spectra rn, while the variations are much higher for the raw spectra
as the amplitude of RRS is influenced by the gradient of concentrations of
optically significant constituents (Fig. 4). In the range of middle wave-
lengths (490 to 555 nm), class 1 is associated with the highest average
amplitude of RRS, followed by class 4. The variations within a class in
terms of RRS amplitude decrease with class number (i.e., for more oligo-
trophic waters) and are very small for classes 15 and 16. The relation
between amplitude and shape is discussed further in Section 4.2.

A comparison exercise was performed between the average rn spec-
tral shapes obtained from the different clusters, i.e., the class centers,
and those derived from the Case-1 reflectance model proposed by
Morel and Maritorena (2001) in which all optical properties depend
on Chla (Morel & Prieur, 1977). For each class the spectrum closest to
the class center (in terms of root-mean-square difference) was deter-
mined by varying the Chla value. Spectra for classes 9 to 16 can be
well represented by the Case-1model (Fig. 3b) considering oligotrophic
to mesotrophic conditions (Chla b 0.4 μg l−1) suggesting that Chla (and
associated degradation products) can be considered as a major descrip-
tor of the variations in the optical conditions of the correspondingwater
masses. Conversely, the spectral shapes from classes 8 to 1 increasingly
depart from the reflectance spectral shapes allowed by the Case-1
model, particularly in the blue (Fig. 3b). This emphasizes the greater op-
tical complexity of thesewaters influenced by varying and independent
proportions of particulate and dissolved material.

3.2. Average spatial distribution of the classes

An important result is that the set of selected optical water types
allows a satisfactory classification of all water bodies in the domain,
i.e., with most regions having a total class membership around 1 (see
map in supplementary material, Fig. S1). The domain average of the
total class membership is 1.14 (s.d., 0.29). It is again highlighted that
the classification scheme does not prevent sums of memberships
r the period of analysis 1998–2004.



a) b)

Fig. 3. a) Average (normalized) spectra for the 16 classes. Colors will be used for all figures illustrating class-dependent results. b) The same spectra with spectra obtained with a Case-1
water model (see text) represented by circles and dashed lines.

Fig. 4.Average (±1 standarddeviation, s.d.) of the reflectance spectra for the 16 classes. Dashed lines (gray envelops) are associatedwith the average (±1 s.d.) raw reflectance spectraRRS,
while lineswith circles (dotted lines) are associatedwith the average (±1 s.d.) normalized spectra. Units are sr−1 for the raw reflectance spectra RRS, and nm−1 for the normalized spectra.
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different from1: input RRS spectra can be found among class centers and
close enough to them to have a cumulative classmembership exceeding
1, while a spectrum very different from any class centers may obtain a
low cumulative class membership. Some regions usually associated
with low data coverage, show total class memberships significantly
lower than 1, approximately 0.55 for the Kara and Laptev Seas, or 0.74
for the Antarctic region. The Mediterranean Sea has also a relatively
low average total class membership (0.75) due to values around 0.5 in
the eastern basin. Waters in this region are ultra-oligotrophic and in
general this basin shows some peculiar optical properties with respect
to other clear waters (e.g., Claustre et al., 2002; Morel & Gentili, 2009),
which might explain why their characteristics have not been fully cap-
tured by the classification scheme. On average globally, 64% of the
days with valid data are associated with a total membership exceeding
0.9, while this percentage is 80% for a total membership of 0.5.

How is the classification affected by the number of classes? The
ISODATA technique was run with parameters of the clustering process
modified so as to obtain 12 and 20 classes (i.e., ±4 with respect to the
reference case), in order to test the impact of a coarser and finer classi-
fication, respectively. The same classification processing was then re-
peated on the SeaWiFS data with the case of 12 and 20 classes: the
total class membership has global averages equal to 1.01 (s.d., 0.25)
and 1.05 (s.d., 0.28), respectively, and shows similar spatial variations
as the reference case (not shown). The total class membership thus ap-
pears relatively stable with respect to the number of classes, at least in
the considered interval. The issue of the number of classes is further
discussed in Section 4.2.

Maps of average class membership were created for each class (see
supplementary material), while the class most frequently selected as
the class of maximum membership (dominant class) is shown in
Fig. 5. This indicator is also provided for each region in Tables 1–7 as
well as illustrated for selected regions in Fig. 6. As anticipated, the
tabulated values are to be treated with caution since they do not reflect
internal spatial variations. For instance, the Baltic Sea appears dominat-
ed by classes 1 and 2 for its northern and southern parts, respectively,
and many shelf regions show a gradient of different dominant classes
when going away from shore (examples in Fig. 6). In Fig. 5, the most
widespread dominant class is class 14, with 10.9% of the domain,
Fig. 5. Class most frequently selected as the class of maximumm
whereas the class least dominant is class 9 (2.2%). Classes 9–16, whose
spectral shape can be reasonably well reproduced by a Case-1 water
model (Section 3.1), account for approximately half of the domain
(48.5%). The corollary is that half of the domain is not well reproduced
by such a model and needs another framework to be treated appropri-
ately. It is anyway stressed that providing these statistics does not entail
a clear-cut separation between Case-1 and Case-2 waters, which in any
case cannot describe all the optical variations expressed by the 16 clas-
ses. The statistics also depend on the boundaries of the domain.

Highmembership for class 1 is found in very coastal waters (Fig. S2)
particularly when influenced by a large river outflow. Indicating in
brackets the related river, high membership is found in the Eastern
Bering Sea (Yukon) and Beaufort Sea (Mackenzie), the Kara Sea (Ob,
Yenisei) and the Eastern Siberian Sea (Kolyma). In North America,
class 1 is noted in James Bay in the southern Hudson Bay, and in the
Lake Erie (but not in the other Great Lakes) and in isolated embayments
such as the Chesapeake and Delaware Bays and Long Island Sound
(Fig. 6c). In the Gulf of Mexico, class 1 is dominant along the northwest-
ern shore, particularly around the Atchafalaya basin and theMississippi
delta, eastward toMobile Bay (Fig. 6b). In South America, the outflow of
major rivers like the Orinoco, the Amazon and the Rio de la Plata are
well detected. In European seas, high values are found prominent in
the Baltic Sea, and detected in the North Sea coastal regions including
the Thames plume (Figs. 6a and 7), the northwest Black Sea (Danube),
theAzov Sea (Don) and the northern Caspian Sea (Volga). Smaller rivers
are also picked up by class 1, such as the Gironde estuary, the Loire,
Seine and Somme rivers along the FrenchAtlantic coast (Fig. 6a). North-
ern Indian Ocean regions affected by large rivers are also seen (Indus,
Narmada, Ganges, Irrawaddy; see Fig. 6d for the latter two). Highmem-
bership also affects the Bohai Sea (Huang He or Yellow River, and Liao
He) and China Sea (Chang Jiang) and is also found in the Mekong
Delta. Class 1 is also found dominant in thin strips along the coasts of
some upwelling regions (Benguela and Peru, Figs. 5 and S2).

The distribution of high membership for class 2 is also found in very
coastal regions, often in common with class 1 but with the clear differ-
ence that the river outflow regions previously cited show a low mem-
bership for class 2 (Fig. S3). On the other hand, the Saint-Lawrence
estuary is associated with high membership values for class 2, as is the
embership (dominant class) over the period 1998–2004.



Fig. 6. Class most frequently selected as the class of maximummembership (dominant class) over the period 1998–2004 for selected regions, a) the Northwest European shelf (latitude
44°N–61°N, longitude 14°W–14°E), b) the Gulf of Mexico (18°N–31°N, 98°W–79°W), c) the Northeast American shelf (36°N–52°N, 77°W–50°W), and d) the Bay of Bengal (10°N–24°N,
79.5°E–99°E).
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coastal Gulf of Maine (Fig. 6b). Class 2 is fairly dominant along the
European Northwest shelf coasts and in the Irish Sea (Figs. 6a and 7).
Baltic and Caspian seas are also affected by class 2 butmore in their cen-
tral and southern parts. High membership is found for class 3 in some
regions of the Canadian archipelago, in the lakes Huron, Michigan and
Superior, and in the Persian Gulf. For the American Great Lakes and
African Lakes as a whole, and for the Black and Caspian seas, this is the
class with the most frequent maximum class membership (Tables 2
and 7). Class 4 shows a strong signal slightly offshore in the Eastern
Bering Sea and the northern part of the East China Sea. As for previous
classes, high membership values are detected in some parts of the
Indonesian archipelago and the northern Australia coastal waters.

High-numbered classes do not show features as distinct as the previ-
ous ones, even though some exceptions can be noticed. For instance,
class 5 appears strongly in the Black Sea and eastern Hudson Bay,
while the western Hudson Bay is dominated by class 7, which is the
class of most frequent maximum membership for the Bay as a whole
(Figs. S6 and S8, Table 1). The Andaman Sea is most clearly associated
with class 12 (Figs. 6d and S13). Otherwise, patterns are less marked
and take often the form of gradients. Class 4 shows patterns of high
membership in the Irish Sea, the English Channel and the southern
North Sea (but detached from the coasts), while classes 5 and 6 appear
more on the Atlantic shelf and the northern North Sea. Finally, class 7 is
found at thenorthernmost part of theNorth Sea and close to theAtlantic
shelf slopewhile class 8 appears in the outer Atlanticwaters (Figs. 7, and
S5 to S9).

The most oligotrophic waters are represented by classes 14, 15 and
16 (Figs. S15 to S17). The Western and Eastern Mediterranean waters
are mostly related to classes 14 and 15, respectively. These two classes
are also important for the central Gulf of Mexico (Fig. 6b) and the
Caribbean archipelago, the eastern Brazilian coast, the Mozambique
Channel and the South China Sea. Finally, class 16 is observed along
the eastern Brazilian coast and the western Pacific edge.

From the multi-annual average distribution, the class memberships
have been associatedwith various intervals of water depth and distance
from the nearest coast, and the resulting histograms are shown in Fig. 8.
Classes 1 to 4 tend to have high membership values close to the coast
and for shallow waters. For a distance to the coast beyond 50–75 km,
the histograms do not show large variations, but beyond 200 km, the
membership to classes 13 to 16 increases markedly. Between 75 and
400-m water depth, the membership for low-numbered classes tends
to decrease while the opposite is seen for high-numbered classes. Be-
yond 450-m depth, there is an increase in membership for classes 14
to 16.

3.3. Similarity between regions

One of the goals of the study is to identify regions that are optically
similar. This can be done by examining the maps of average class mem-
berships for all classes (Figs. S2 to S17) which is cumbersome to reach
synthetic conclusions. To support that process, the average class mem-
bership (16 values) for all regions was input to a hierarchical clustering
(Euclidian distance, Ward's algorithm) to illustrate the respective simi-
larities between regions (see dendrogram in Fig. S18). The aim of this
procedure was merely to help in finding general similarities between
regions and to build Fig. 9. It is also well understood that an analysis
based on regions depends on their boundaries and hides some of the
variations existing within each region.

Regionsmost influenced by oligotrophic waters are grouped togeth-
er (Fig. 9a). The average classmembership, noted bpN, has itsmaximum



Fig. 7. Average (normalized) class membership for classes 1 to 9 associated with the Northwest European shelf (latitude 44°N–61°N, longitude 14°W–14°E).
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between classes 14 and 16 (the East Brazil andWestern Pacific regions).
Before class 9, most bpN values are very low, except for a secondary
peak for class 7. The Mediterranean Sea shows marked secondary
peaks for classes 10 and 12 that can be related with various patterns
within the basin. Oligotrophic waters are dominant for other regions
as well but with a stronger contribution from other water types
(Fig. 9b). For instance, bpN is approximately 0.04–0.05 for the Gulf of
Mexico for the low-numbered classes, indicating the significant impact



a) b)

Fig. 8. Average class membership as a function of a) distance from the coast, and b) water depth.

a) b)

c) d)

e) f)

g) h)

Fig. 9. Average class memberships for all selected regions. The dashed black line represents the global average on each graph.
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of the coastal waters and river outflows in that basin. All the regions in
these two groups (Fig. 9a,b) tend to be associated with fairly low lati-
tudes, the Mediterranean Sea being the most poleward region.

Some regions, most often located in low to mid-latitudes, have
an average class membership distributed across many or all classes
(Fig. 9c,d). Some of the major eastern boundary upwelling regions are
found in these groups, the California Current region (CALC) and the
Iberian upwelling (IBER). In Fig. 9c, regions have a maximum bpN for
classes between 10 and 12 (except CALC with three similar peaks for
classes 7, 9 and 12) with many secondary peaks. For other regions, the
bpN distributions tend to be more shifted towards low-numbered clas-
ses (Fig. 9d) and show various peaks for classes 3, 5, 7 and 10. Following
its position in the dendrogram (Fig. S18), the Antarctic coastal region
(ANTA) is included in Fig. 6d, and show two peaks for classes 8 and 11
and a secondary peak for class 1.

Fig. 9e shows regions, found at various latitudes, with lowmember-
ship beyond class 9 andwith peak bpN values observed between classes
6 and 8, except the Benguela current region (BENG) that shows a high
bp N value for class 4 and class 1, highlighting the importance of turbid
waters along a thin coastal strip. The Peru/Chile (CHIL) upwelling also
shows a (secondary) peak for class 1. Other regions display a further
shift towards low-numbered classes, with bpNmaximamostly between
classes 2 and 4 (Fig. 9f) and lowmemberships beyond class 8. TheNorth
Atlantic continental shelf regions (Northeast US shelf, NEUS; Northwest
European shelf, NWES; and North Sea, NORS) all show peaks for classes
2, 4, 6 and 8. The Black Sea stands outwith a clear bpNmaximum at class
3; included in that region, the Azov Sea is dominated by class 1 (Fig. S2).
High latitude regions, like the Arctic area (ARCT), theWestern Bering Sea
(WBER), the Hudson Bay (HUDS) and the Newfoundland-Labrador
(NLAB) show primary or secondary peaks for classes 5 to 8.

Somemarginal seas and inlandwater bodies are grouped together in
Fig. 9g, displaying low memberships beyond class 5 and maxima found
for classes 2 and 3. Even in these fairly small water bodies, there is a
significant spatial variability. For instance, the Lake Erie part of the
American Great Lakes (GREL) shows a dominance of class 1 (Fig. S2)
which is not visible for the region average. The bpN values for class 1
are fairly low, except for the Caspian Sea (CASP) and Yellow Sea (YELS)
that are found close to each other in the dendrogram (Fig. S18). On the
contrary, class 1 displays the maximum bpN values for all regions
grouped in Fig. 9h while high-numbered classes are associated with
low memberships, except for some secondary peaks for classes 8 or 11.
Besides the Baltic Sea (BALT) and the European Lakes (ELAK), they are
all associated with a large river system (see Section 3.2).

The analysis of Fig. 9 hints at a latitudinal dependence of the average
class membership. This is confirmed by Fig. 10a that shows a clear dom-
inance of classes 9 to 16 (amounting to a cumulated membership of
ba)

Fig. 10. Latitudinal dependence of a) the average class membership, and b) the Shannon index
average while the gray area shows ±1 standard deviation.
approximately 0.7) for latitudes between40°N and 30°S. On the contrary,
the northern mid to high latitudes (40°N to 75°N) are mostly associated
with classes 1 to 8 (amounting to a cumulated membership of approxi-
mately 0.8). This is also true to a lesser extent in the southernhemisphere
(from 30°S to 55°S) that has much less land mass in its latitudinal band.

3.4. Optical diversity

In this section, the local variations of optical conditions or status are
investigated. For any given day and bin, few classes are needed to ex-
plain most of the total class membership: on average globally, 2.2 and
2.5 classes account for 90% and 95% of the (normalized) total member-
ship, respectively. But for any given bin there is a significant variability
in optical properties in time: for instance, on average globally, 10.0 clas-
ses are selected at least once as the class of maximum membership.
Focusing just on the main patterns, considering the dominant classes
accounting for 90% of the days with valid data, 5.2 different classes are
on average selected as dominant. A budget focusing on the occurrence
of the dominant class is however ignoring the role of secondary classes,
albeit theymight concur to a large part of the total membership. Amore
comprehensive indicator of optical diversity is introduced by adopting
the Shannon index (Shannon, 1948) often used in biodiversity studies:

H ¼ −
XNC
ic¼1

p icð Þ ln p icð Þ½ � ð6Þ

whereNC is the number of classes represented for a given bin. Aswe are
interested in the overall diversity manifested in time at a given place,
this calculation is performed from the multi-annual average map of
class memberships. Then regional averages are computed and listed in
Tables 1–7. To give some background to this analysis, it is recalled that
H reaches a maximum value equal to the natural logarithm of NC,
ln(16) = 2.8, if the 16 classes have occurred with the same frequency,
which is the case of maximum diversity. A case with only 2 classes
equally represented leads to H = 0.7.

Fig. 11 shows that H is mostly between 1.5 and 2.8, with a global av-
erage of 1.98 (s.d., 0.48). There are however regions where H is below
1.5. This is particularly the case in the Baltic Sea and the southern
North Sea, and in coastal regions close to river outflows, where class 1
is often dominant (compares Figs. 5 and 11). For instance the Yellow
Sea (YELS) has an overall index of 1.37 (Table 5). Some of the regions
with low H are found in the Arctic: KARA, LAPT, ESIB have an average
H around 1, and CHUK and BFRT's H is approximately 1.6–1.9
(Table 1). The coastal Antarctic waters show a diversity of 1.82.
)

. In a), the colors are those associated with the classes in Fig. 3. In b), the line indicates the



Fig. 11. Shannon index computed from the multi-annual class memberships.
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Other regions with a relatively low diversity are associated with
clear water classes as found in the Caribbean, the East Brazil region
(EBRZ, with an average H of 1.53) and the West Pacific fringe. Closed
seas also tend to have a relatively low average index, approximately
1.6–1.7 for the Black andMarmara Seas or the Persian Gulf, while inland
water bodies have an even lower index (between 0.6 and 1.5, Table 7).

Regions of high diversity are often found in intermediate regions
between coastal domain and open ocean. For instance, H is observed
to increase from less than 0.5 close to the Mississippi river mouth to
more than 2.5 in an offshore strip, to decrease again to less than 2 in
the middle of the Gulf of Mexico (Fig. 11). This is translated in Fig. 8a
by a relative convergence of class memberships in the interval of
distance-to-coast of 50–75 km.

The number of classes has a direct impact on the optical diversity:
the more classes are considered, the higher H is likely to be. The results
shown forH should be interpreted in terms of relative distribution of di-
versity, i.e., describing regions that appearmore or less optically diverse
compared to others. The impact of the number of classes can be verified
with the classification based on 12 and 20 classes. The same calculations
described above lead to amulti-annual global average of 1.75 (s.d., 0.50)
and 2.21 (s.d., 0.60) for the cases of 12 and 20 classes, respectively. But
the spatial distribution of H remains virtually unchanged (not shown)
which lends a general validity to the results on optical diversity
discussed in this paper.

3.5. Illustrations of the temporal dynamics

All statistics presented so far had a focus on spatial variability. Obvi-
ously, themulti-annual averages aremodulated by annual cycles specif-
ic to each region that affect the local optically significant constituents.
These variations in turn are reflected in the distribution of class mem-
berships. A comprehensive description of seasonal variations associated
with the optical classification is not undertaken here for the sake of
space, but representative examples are provided to illustrate how
local annual cycles are captured in terms of relative class memberships.

First, monthly averages of the class memberships are computed,
from which a monthly climatology is derived. The average climatology
is presented for four regions in Fig. 12.
The climatology obtained for the Kara Sea (KARA, Fig. 1) is restricted
to the period May to September (Fig. 12a), as ocean color observations
are limited in this region by ice and cloud cover and low solar zenith an-
gles. Over the year, the dominant class is class 1 (Table 1) but classes 8
and 11 have larger memberships in spring, while classes 1 to 6 account
for a cumulated membership of 0.8 in August–September. Siberian riv-
ers are large providers of dissolved organic matter (Opsahl, Benner, &
Amon, 1999) and secondarily of sediments (Gordeev, 2006). These
fluxes increase from May to July with the thaw (Le Fouest, Babin, &
Tremblay, 2013). Erosion from permafrost coastlines might also con-
tribute an influx of material on the shelf (Lantuit et al., 2012). Added
to this accumulation of dissolved matter and particles, the spring/sum-
mer biological activity contributes to a shift towards turbid conditions
reflected in the shift in dominant classes. For these Arctic regions, a
word of caution is however warranted. The total class membership
found in the Kara sea is fairly low (Fig. S1), which may be partly ex-
plained by a small contribution to the training data set. The RRS values
observed in these absorbing waters (not shown) are often low and
affected by a significant level of noise. Retrieval conditions for the atmo-
spheric correction are as well challenging, with low zenith angles and
the impact of sea ice (e.g., Bélanger, Ehn and Babin, 2007).

A second example is the climatology observed in the northwest
Mediterranean Sea (latitude 41°N–44.5°N, longitude 5.45–9.4°E). In
summer, the area is characterized by mostly oligotrophic waters, with
classes 9 to 16 accounting for almost the entire class membership
(Fig. 12b). The phytoplankton annual cycle in the region shows a strong
bloom in spring (e.g., D'Ortenzio & Ribera d'Alcalà, 2009; Marty,
Chiavérini, Pizay, & Avril, 2002), which is reflected by an increased
class membership by the low-numbered classes; classes 2 to 7 thus
account for more than half of the total membership in March.

In Fig. 12c is shown an example of coastal regions associated with
upwelling conditions, the Iberian region (IBER). The contribution of
the low-numbered classes peaks in March, with a cumulative class
membership for classes 1 to 7 reaching 0.6. Upwelling favorable winds
can occur year-long but are more frequent in summer. Averaged over
the entire region, the annual cycle of classmembership appears affected
by phytoplankton spring bloom conditions found along the western
coast (Joint et al., 2002) or in peripheral areas such as the Gulf of



a) b)

c) d)

Fig. 12. Monthly climatology of the class membership for selected regions, a) the Kara Sea, b) the northwest Mediterranean Sea (latitude 41°N–44.5°N, longitude 5.45°E–9.4°E), c) the
Iberian coastal region and d) the East China Sea. Colors are as in Fig. 3.
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Cádiz (Navarro & Ruiz, 2006) or the Cantabrian shelf (Álvarez, Nogueira,
Acuña, López-Álvarez and Sostres, 2009).

The East China Sea (ECHI, Fig. 1) also displays a clear annual cycle
(Fig. 12d). Classes 1 and 2, dominant in coastal waters (Fig. 5) maintain
a combined membership between 0.1 and 0.2 through the year. Classes
1 to 7 account for a cumulated membership of approximately 0.5 in
winter and early spring, while clearer waters gain more importance at
the end of the summer. A similar phase is observed for the Yellow
Sea/Bohai Sea region (YELS, Fig. 1) even though in that case the low-
numbered classes account for most of the membership (not shown).
Discharge of the major rivers in these areas actually peak in summer
(Ning, Liu, Cai, Fang, & Chai, 1998; Wang, Yang, Saito, Liu, & Sun,
2006) but their direct influence may be limited by damming and may
not extend far offshore, while sediment resuspension by wind is a
strong contributor to the regional turbidity in winter (Shi & Wang,
2012). Phytoplankton blooms in spring/summer (Gong, Wen, Wang, &
Liu, 2003; Zhou, Xuan, Huang, Liu, & Sun, 2013) are another important
element of a complex set of factors affecting optical variability in the
region.

4. Discussion

4.1. Optical classification and remote sensing

A first element of discussion is about the potential and limitations of
remote sensing for optical classification. For global applications, the
potential allowed by remote sensing since 1997 in terms of spatial, tem-
poral and spectral resolution is that of SeaWiFS-like missions, and the
optical variability that can be detected is tied to the spatial resolution
of the sensor. For this study, a grid with a resolution of 1/48th-degree
(approximately 2.3 km) was selected using LAC SeaWiFS data. This is
to our knowledge thefirst time LAC SeaWiFS data are used systematical-
ly at global scale, albeit for coastal applications (see Mélin, Steinich,
Gobron, Pinty and Verstraete, 2002, for terrestrial vegetation science)
and this resolution is at least twice that of standard global products.
SeaWiFS pixel size is approximately 1.1 km at nadir and increasing
away from nadir, so that the selected grid together with the daily
sampling is as close as possible to pixel-size information. In that context,
1-km pixels should be able to capture most reflectance spectral charac-
teristics. Assuming that temporal variations at afixed stationmay repre-
sent small-scale spatial variations around that location, some studies
based on time series suggest that local heterogeneity is not translated
in large variations in optical properties. For instance, variations in RRS
observed at a coastal station in a time interval of 1 to 3 h was approxi-
mately 4% (10% in the red; Mélin & Zibordi, 2007; Zibordi, Mélin, &
Berthon, 2006). On the other hand, significant variations along spatial
scales of tens of meters have been documented for extreme events
such as cyanobacteria blooms (Kutser, 2004). It is therefore acknowl-
edged that fine-scale features with specific spectral signatures might
be blurredwithin a 1-km spatial scale. If these specific features are asso-
ciated onlywith small patches (significantly smaller than1 km)or occur
only rarely in larger dimensions, they are unlikely to be present in the
training data set and are notwell covered by the proposed classification.
Finally, it cannot be excluded that by chance specific water types have
not been included in the training data set, or only in minute amounts,
notwithstanding its size.
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Another limitation of the proposed classification is associated with
its spectral resolution restricted to six bands between 412 and
670 nm. In highly turbid waters found in very coastal or estuarine wa-
ters, optical variability can be pronounced for wavelengths longer
than 670 nm (e.g., Doxaran, Cherukuru, & Lavender, 2006; Lubac &
Loisel, 2007), and cannot be captured by a sensor like SeaWiFS. The ad-
dition of a band at 709 nmsuch as foundwith the European Space Agen-
cy Medium Resolution Imaging Spectrometer (MERIS) or on its
upcoming Ocean and Land Colour Instrument (OLCI) would be precious
in that regard. Eventually, the results presented in this study are to be
interpreted in the context of standard mid-resolution satellite ocean
color imagery.

4.2. Clustering and classification approach

The classification developed here relies on normalized reflectance
spectra, i.e., on the RRS spectral shape, which deserves some comments.
First, in natural waters, RRS shape and amplitude are not independent
(which partly explains the success of band-ratio algorithms) while the
different RRS bands are often well correlated (Lee, Shang, Hu, &
Zibordi, 2014). In the context of a Case-1 water model (Morel &
Maritorena, 2001), shape and amplitude are even equivalent so that
classifications with or without normalization would give similar distri-
butions (note that the dispersion around the mean decreases for the
high-numbered, meso- to oligotrophic, waters with respect to turbid
waters, Fig. 4). This being said, both shape and amplitude bring fruitful
information.While recognizing that all optically significant constituents
have an effect on both amplitude and shape of RRS and that the relation-
ship between the two components may not be unique (e.g., Sydor,
Gould, Arnone, Haltrin, & Goode, 2004), a large part of the variance in
RRS (without normalization) is associated with back-scattering or to
the concentration of (mainly non-chlorophyllous) particles, whereas
absorption terms (by phytoplankton cells, CDOM or detritus) have a
relatively larger impact on the spectral shape (Loisel & Morel, 2001;
Sathyendranath, Prieur, & Morel, 1989). Consequently, by normalizing
the RRS spectra, the choice is made to give preference to the latter in
the classification process, whereas in the absence of normalization, the
resulting distribution of classes is much influenced by a gradient in con-
centrations, particularly of particles, in coastal waters. Taking the exam-
ple of a water type strongly dominated by non-algal particles like
sediments (typically represented by class 1), and assuming that this
dominance is associated with a certain spectral shape, spectra associat-
ed with significantly different concentrations of sediments end up as
members of the same class if the normalization is employed, which is
awelcome feature for the applicationwe envisage. Moreover, the distri-
bution of classes obtained here met our expectations in terms of spatial
and temporal distributions (Figs. 5, 12, and S2 to S17).

The choice of approach is ultimately dependent on the application. To
some extent, amore dynamic range of concentrations is allowedwithin a
class when normalization is employed, whichmight be a positive feature
in the context of bio-optical algorithms development and application. On
the other hand, a class-based approach aiming at detecting thresholds
would not use a prior normalization. Full spectra have also been used
to displaymultispectralfieldmeasurements onto a two-dimensional rep-
resentation (e.g., Zibordi, Berthon, Mélin, & D'Alimonte, 2011) In any
case, more studies are due to fully comprehend the advantages specific
to each approach.

For a given set of parameters, the ISODATA unsupervised clustering
technique yielded 16 classes. The details of the classification results
changewith the number of classes but themain patterns are conserved,
at least if the number of classes allows a sufficient distinction between
different water types (tests were performed with 12 and 20 classes).
In that respect, the number of classes cannot be too low, while it should
not be too high as to become difficult to manage. Metrics exist to deter-
mine the optimal number of classes from a mathematical point of view
(Moore et al., 2009), and are readily applied to cases presenting
clustered distributions associated with specific environments often
seen with collection of field measurements (e.g., Zibordi et al., 2011).
This is less true when considering a continuum of conditions (in the
N-dimension space of reflectance, where N is the number of bands)
such as is found with a global satellite data set. The present selection
of 16 classes (half of which can be interpreted in a Case-1 water frame-
work— Section 3.1) does not pretend to represent amathematical opti-
mum but is rather a heuristic choice that serves our purpose well:
producing a discrimination of the water masses useful to discuss their
respective distributions while achieving a comprehensive classification
of the waters studied. The last point was particularly successful (as
quantified by the total class membership), even though it is recognized
that some areas are still imperfectly classified. This is the case for waters
with very low reflectance values that, being very noisy, likely will be
hard to classify with the current approach regardless of the number of
classes. In operational applications, a specific status for these cases
could be envisioned. The Eastern Mediterranean basin also shows rela-
tively low total class memberships while that area is fairly well repre-
sented in the training data set that has been specifically constructed to
span as well as possible all the optical variability found in natural wa-
ters. It is possible that subtle variations in the associated RRSwith respect
to other oligotrophic regions (Claustre et al., 2002) be blurred in the
overall classification of oligotrophic waters. Therefore, further develop-
ments should include particular attention to some regions in the con-
struction of the training data set and the clustering process.

4.3. Applications

The main objective of this study was to document the optical vari-
ability observed at global scale for the coastal ocean, to assess similari-
ties between regions and the optical variability within a region.
Further applications can be envisioned.

One application is the selection of algorithms for specific regions.
Some areas are not well characterized by optical measurements and
the capacity to relate these to other regions that are much more docu-
mented in terms of optical properties, and for which specific algorithms
or bio-optical parameterizations exist, offers the possibility of amore in-
formed choice in that respect. More generally, optical classification can
be used to define the range of applicability of a specific algorithm
(e.g., D'Alimonte et al., 2003; Mélin et al., 2011) and to better constrain
the related uncertainties (Moore et al., 2009). Similarly it is possible to
test the representativeness of an in-situ data set collected in a specific
region and season with respect to other regions and times of the year.
If algorithms are available for a set of classes, their outputs can be com-
bined seamlessly using the class memberships as weighting factors
(e.g., D'Alimonte et al., 2003; Mélin et al., 2011; Moore et al., 2009,
2014; Vantrepotte et al., 2012).

Other applications can be envisaged in a context broader than ma-
rine optics. The optical classification of coastal waters and marginal
seas, and the analysis of similarities between regions, could usefully be
combined with factors related to the distribution of benthic communi-
ties (e.g., related to light availability, Gattuso et al., 2006) or other clas-
sification schemes applied to coastal areas like typologies of a various
nature (e.g., Buddemeier, Smith, Swaney, Crossland, & Maxwell, 2008;
Dürr et al., 2011). In general, this classification framework could help
refine distributions of biogeographic provinces (Longhurst, 2006;
Reygondeau et al., 2013).

Ecological applications can be further discussed. The general varia-
tions in optical types at any location have been addressed byquantifying
the number of classes selected as dominant during the period and an
index of optical diversity. In turn, the results on optical diversity can
be linked to indices of marine biodiversity. A first general result is that
the optical diversity H tends to decrease as latitude increases beyond
60° (Fig. 10b). The dependence with latitude is otherwise fairly small,
with the exception of local minima in the equatorial and southern trop-
ical regions, associated with areas like northern South America and the
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western Pacific edge (Fig. 11). Even though knowledge onmarine biodi-
versity is still limited, it is interesting to note that the decrease in H at
high latitudes presents similarities with latitudinal patterns of biodiver-
sity estimates for phytoplankton (Barton, Dutkiewicz, Flierl, Bragg, &
Follows, 2010), zooplankton (Rutherford, D'Hondt, & Prell, 1999) and
higher trophic levels (Tittensor et al., 2010; Worm, Sandow, Oschlies,
Lotze, & Myers, 2005), while this does not necessarily apply to benthos
(Brandt et al., 2007). De Monte, Soccodato, Alvain, and d'Ovidio (2013)
presented a similar general behavior for satellite-derived estimates of
optical diversity for the open ocean.

Optical water types seem to coexist more at intermediate distances
from the coast (Fig. 8a) and there are various regions for which H in-
creases away from shore before decreasing again (Fig. 11). Considering
that on average phytoplankton biomass tends to decrease going away
from shore, the distribution of the optical diversity can again be related
to results on biodiversity. Indeed, some studies have suggested that
aquatic biodiversity peaks at intermediate levels of phytoplankton bio-
mass or productivity (Dodson, Arnott, & Cottingham, 2000; Irigoien,
Huisman, & Harris, 2004; Li, 2002; Uusitalo et al., 2013). The multi-
annual averages considered in this work also integrate the effect of sea-
sonal and local variations. Regions like upwelling centers tend to show
high phytoplankton biomass values very close to the coast and low
values far offshore,while the extension of the areawith high valuesfluc-
tuateswith theupwelling regime (Carr &Kearns, 2003; Thomas& Strub,
2001), so that optical diversity integrated over the annual cycle displays
a peak at intermediate distances from the coast. Optical diversity also
tends to increase in some transition zones characterized by frequent
occurrences of filaments or frontal structures.

Links between optical diversity and biodiversity estimates are not
surprising. Lightwith its variations in both quantity and spectral charac-
ter, is a crucial element shaping ecological communities. Irigoien et al.
(2004) underlined a relationship between phytoplankton biodiversity
and a shading index. Pigment assemblages in cyanobacteria might be
an element defining their respective ecological niches (Ting, Rocap,
King, & Chisholm, 2002) and competition for light (Huisman, van
Oostveen, & Weissing, 1999) is one important pressure selecting domi-
nant algal species. In general, the light climate has a strong impact on
phytoplankton communities (e.g., Finkel et al., 2006; Moore et al.,
2006; Ragni & Ribera d'Alcalà, 2004; Sathyendranath & Platt, 2007)
while in turn underwater irradiance is influenced by algal cells. The
light climate exerts pressure on higher trophic levels as well, from zoo-
plankton to fish (Aksnes, Nejstgaard, Soedberg, & Sørnes, 2004; Eiane,
Aksnes, Bagøien, & Kaartvedt, 1999; Wissel, Boeing, & Ramcharan,
2003; Zettler & Carter, 1986). Classification schemes can contribute to
thoroughly integrate optics into ecological studies.

5. Conclusion

This study has presented a classification scheme focused on coastal
regions and marginal seas. By using satellite data and maximizing the
extent of the training data set in terms of spatial coverage and annual
cycle, the scheme is able to perform a satisfactory classification of all
water bodies in the domain. This result holds for regions not included
in the training data like inland water bodies. The classification allows
the quantification of the optical similarity between regions. Some re-
gions have been better sampled than others by optical measurement
programs and, asmentioned as one justification for thework, the ability
to find similarities betweenwater bodies is potentially useful to support
the application of bio-optical relationships and algorithms related to
one region to another region.

The set of 16 classes used in this work covers very turbid waters
found close to river outflow regions (class 1) to oligotrophic waters
(class 16). Logically, high-numbered classes are observed more often
as the distance from the coast increases. This is also true for bathymetry
even if the dependence is less clear. Averaged zonally, mid-latitude re-
gions are more affected by turbid waters (low-numbered classes) than
subtropical or polar regions. Examples of temporal changes in the
class memberships have been shown for specific regions, illustrating
specific variations as the annual cycles of optically significant constitu-
ents proceed. The general variability in optical types at any location
has been addressed by quantifying the number of classes selected as
dominant during the period and an index of optical diversity that has
been linked to indices of marine biodiversity.

Ultimately, themarine reflectance spectrum is an overall manifesta-
tion of ambient conditions in the upper layer of the water column in
terms of phytoplankton abundance and type, biotic detritus, minerals
and chromophoric dissolved organic matter. An optical classification
scheme appears as a powerful diagnostic tool to be applied to aquatic
ecosystems in monitoring strategies and ecological studies. The distri-
bution in optical water types brings more comprehensive information
than single variables, like chlorophyll-a concentration or turbidity, and
as discussed above, has interesting connections with fundamental eco-
logical properties like biodiversity.
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