The effect of S on the glass transition temperature

BRUNO SCAILLET¹, YANN MORIZET², SANDRA ORY³, IDA DI CARLO² AND PATRICK ECHEGUT³

¹Institut des Sciences de la Terre d'Orléans, UMR CNRS 7327, 1a rue de la Férollerie, 45071 Orléans (France).

bscaille@cnrs-orleans.fr, ida.di-carlo@cnrs-orleans.fr
²Laboratoire de Planétologie et Géodynamique de Nantes, UMR CNRS 6112, 2 rue de la Houssinière, 44300 Nantes (France). yann.morizet@univ-nantes.fr

³CNRS, CEMHTI UPR3079, Université d'Orléans, F-45071 Orléans (France). sandra.ory@cnrs-orleans.fr, patrick.echegut@cnrs-orleans.fr

Water is the only volatile species which have been recognized to have a strong effect on glass transition temperature (Tg). The effect of sulfur volatile species (i.e. SO_4^{2-} or HS⁻) on Tg is currently unknown.

We have measured Tg on a series of H₂O- S-bearing anorthite–diopside eutectic silicate glasses. Samples were synthesised under various pressure (100-500 MPa), temperature (1150-1450°C) and fO_2 conditions (NNO+2 to NNO-1). The glass S content goes up to 7519 ppm and H₂O content goes up to 5.3 wt.%. Tg was measured using Differential Scanning Calorimetry with 10-20 K.min⁻¹ as an heating rate.

At the highest H_2O content, the measured Tg is the lowest at $457\pm10^{\circ}C$ whereas under volatile free conditions, the measured Tg is the highest at $758\pm13^{\circ}C$. The decrease in Tg with increasing H_2O content is consistent with previous works. The effect of S on Tg is almost inexistent or towards a slight decrease in Tg with increasing S content. This result appears in contradiction with recent spectroscopic work suggesting that S induced an increase in glass polymerization.

We explain this discrepancy by the fact that spectroscopic investigations on S-bearing silicate glasses might not reflect the true change in the glass network polymerization. Therefore spectroscopic studies on volatile-bearing (other than H_2O) silicate glasses cannot be used unambiguously as a proxy for the glass/melt physical properties.