

Global, regional and national trends of atmospheric ammonia derived from a decadal (2008-2018) satellite record

Martin van Damme, Lieven Clarisse, Bruno Franco, Mark A. Sutton, Jan Willem Erisman, Roy Wichink Kruit, Margreet van Zanten, Simon Whitburn, Juliette Hadji-Lazaro, Daniel Hurtmans, et al.

▶ To cite this version:

Martin van Damme, Lieven Clarisse, Bruno Franco, Mark A. Sutton, Jan Willem Erisman, et al.. Global, regional and national trends of atmospheric ammonia derived from a decadal (2008-2018) satellite record. Environmental Research Letters, 2021, (in press). 10.1088/1748-9326/abd5e0. insu-03088396v1

HAL Id: insu-03088396 https://insu.hal.science/insu-03088396v1

Submitted on 26 Dec 2020 (v1), last revised 7 May 2021 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

ENVIRONMENTAL RESEARCH LETTERS

ACCEPTED MANUSCRIPT • OPEN ACCESS

Global, regional and national trends of atmospheric ammonia derived from a decadal (2008-2018) satellite record

To cite this article before publication: Martin Van Damme et al 2020 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/abd5e0

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record

Martin Van Damme¹, Lieven Clarisse¹, Bruno Franco¹, Mark A. Sutton², Jan Willem Erisman³, Roy Wichink Kruit⁴, Margreet van Zanten⁴, Simon Whitburn¹, Juliette Hadji-Lazaro⁵, Daniel Hurtmans¹, Cathy Clerbaux^{5,1}, Pierre-François Coheur¹

¹ Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES)

² UK Centre for Ecology and Hydrology, Edinburgh, UK

³ Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands

 4 National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

⁵ LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France

E-mail: martin.van.damme@ulb.ac.be

November 2020

Abstract. Excess atmospheric ammonia (NH₃) leads to deleterious effects on biodiversity, ecosystems, air quality and health, and it is therefore essential to monitor its budget and temporal evolution. Hyperspectral infrared satellite sounders provide daily NH₃ observations at global scale for over a decade. Here we use the version 3 of the Infrared Atmospheric Sounding Interferometer (IASI) NH₃ dataset to derive global, regional and national trends from 2008 to 2018. We find a worldwide increase of 12.8 ± 1.3 % over this 11-year period, driven by large increases in east Asia (5.80 ± 0.61 % increase per year), western and central Africa (2.58 ± 0.23 %.yr⁻¹), North America (2.40 ± 0.45 %.yr⁻¹) and western and southern Europe (1.90 ± 0.43 %.yr⁻¹). These are also seen in the Indo-Gangetic Plain, while the southwestern part of India exhibits decreasing trends. Reported national trends are analyzed in the light of changing anthropogenic and pyrogenic NH₃ emissions, meteorological conditions and the impact of sulfur and nitrogen oxides emissions, which alter the atmospheric lifetime of NH₃. We end with a short case study dedicated to the Netherlands and the "Dutch Nitrogen crisis" of 2019.

Keywords: ammonia (NH₃), trends, emission, agriculture, biomass burning, IASI, satellite

Submitted to: Environ. Res. Lett.

1. Introduction

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 37

38

39

40

41

42

43

44

45

46

47

48

49

Ammonia (NH_3) is the most abundant alkaline component of our atmosphere. Agricultural activities are responsible for the majority of its emissions [1], with volatilization from livestock manure and losses from synthetic fertilizer application accounting for over 80% of the total emissions in, e.g., Europe [2], United States (U.S.) [3] and China [4]. For 2015, the Emission Database for Global Atmospheric Research (EDGAR) v5.0 reports a global emission total of 49.1 Tg NH_3 , with 85.7 % originating from agriculture [5, 6]. Other sources include oceans and soils, waste water treatment, wild animals, human excreta, traffic and biomass burning [1, 7]. The latter was estimated to amount to 4.9 Tg in 2015 by the Global Fire Emissions 15 Database (GFED) v4.1s [8]. Recently, emissions from industry have also been identified as an important and largely underestimated source of atmospheric NH_3 [9].

High NH₃ levels negatively affect ecosystems by depleting biodiversity and degrading soil and water quality [10, 11]. Atmospheric NH₃ has a remarkable short atmospheric lifetime of the order of hours [9, 12]. Once emitted, a large part of NH₃ is rapidly deposited on terrestrial and aquatic ecosystems, resulting in adverse acidifying and eutrophying effects [13, 14]. In combination with nitrogen (NO_x) and sulfur oxides (SO_x) , NH₃ plays a significant role in fine particulate matter $(PM_{2.5})$ formation and related health impacts [15, 16]. Its contribution to $PM_{2.5}$ formation is however still underexposed (e.g., [17, 18, 19]) and, as regulations are mostly geared towards restricting NO_x and SO_x emissions, the world is currently 'ammoniarich' [20]. In Europe, China and the U.S. in particular, reduction in emissions of nitrogen and sulfur oxides have demonstrably resulted in an increased amount 35 of atmospheric gas-phase NH₃ during the last decade [21, 22, 23, 24].Several studies have concluded that reducing NH₃ emissions would be a cost-effective strategy to reduce $PM_{2.5}$ concentrations [17, 25]. It has been estimated that a 50 % reduction of the NH₃ emissions in northwestern Europe would lead to a 24 %reduction in the $PM_{2.5}$ concentration [26]. In China, the same reduction rate on NH₃ emissions, joined with a 15 % reduction on NO_x and SO_x emissions, would reduce $PM_{2.5}$ pollution by 11–17 % and nitrogen 45 deposition by 34 %, but would worsen acid rain [27]. Through its role in aerosol formation and the impact of its deposition on plant productivity and carbon uptake,

 NH_3 also affects climate [28, 29].

For the first decade of the 21^{st} century, the EDGAR emissions model reports a 20 % increase of the global NH₃ emissions, but with large variations at regional and national scales [30]. Countries in Europe have committed to modest reductions of NH₃ emissions in the framework of the Gothenburg Protocol, which is 55 part of the convention on Long-Range Transboundary Air Pollution (LRTAP) and the National Emissions Ceilings (NEC) Directive [31]. The success of this and other ammonia-control initiatives has traditionally been difficult to assess as the uncertainty in NH₃ 60 emissions is the largest among all pollutants [1, 5]. For more than a decade now, satellite missions offer global observations of NH_3 abundance [32, 33, 34, 35]. In particular, satellite-based datasets have already been used to identify and quantify main NH₃ point sources 65 [9, 36, 12], to derive first changes in atmospheric NH_3 [37, 38], to constrain deposition flux estimates [39, 40, 41] and, recently, to perform inverse modelling of NH_3 emissions [42, 43].

The present study uses the reanalyzed NH₃ 70 dataset recently obtained from the Infrared Atmospheric Sounding Interferometer (IASI) satellite over 11 years (2008–2018) to derive decadal trends throughout the world. In the next section, the satellite data are presented along with the method to derive trends 75 and associated uncertainties. In Section 3, these trends are presented, discussed and interpreted at global, regional and national scales. In the last section, a special focus is given to the case of the Netherlands, a country that received a lot of attention end of 2019 due 80 to the "Dutch Nitrogen crisis" which substantially affected the national economy [44].

2. Data and methods

2.1. Satellite measurements

Even though IASI's main goal is to provide temperature and humidity measurements for improved weather forecasts, its instrumental characteristics enable global bi-daily measurements of a series of atmospheric constituents. In particular, its relatively high spatial resolution (12 km at nadir), scanning mode (2100 km swath) and good spectral performance (0.5 cm⁻¹ spectral resolution apodized and low radiometric noise) [45] have proven to be most useful for characterizing the spatiotemporal variability and budget of NH₃

Page 2 of 25

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60 130

Ammonia trends

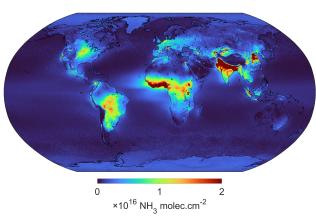


Figure 1. IASI-NH₃ total columns distribution (molec.cm⁻²) averaged from 11 years of IASI/Metop-A measurements (1 September 2008 to 31 December 2018, morning overpasses, ANNI-NH₃-v3R-ERA5 dataset) on a $0.5^{\circ} \times 0.5^{\circ}$ grid.

[9, 32, 46, 47, 48, 49, 50, 51]. The IASI mission consists of a suite of three identical instruments embarked on the Metop-A, -B and -C platforms, launched in 2006, 2012 and 2018, respectively. Together, these provide consistent global satellite measurements, allowing us to derive trends at global, regional and national scale. 100 Eleven years of morning overpass IASI/Metop-A measurements have been considered here for the calculation of the global trends, while merged IASI/Metop-A (2008–2018) and -B (2013–2018) data have been used for the case study over the Netherlands. Only morning 105 observations have been kept as their uncertainties are lower thanks to a more favorable thermal state of the atmosphere for the remote sensing of its lowest layers [46, 47].

We used version 3 of the IASI- NH_3 dataset, 110 which was built using the ANNI (Artificial Neural Network for IASI) retrieval framework. ANNI has been developed to perform global retrievals of NH_3 [52, 53] and was recently expanded to retrieve several other trace gases (e.g., [54, 55, 56]). Two IASI-NH₃ datasets are available: a nearreal time dataset, for which the retrieval relies on meteorological information directly obtained from the IASI measurements [57] and a reanalyzed dataset that is based on data from the European Centre for 120 Medium-Range Weather Forecasts (ECMWF) climate reanalysis [58]. The latter, named ANNI-NH₃-v3R-ERA5, has been developed specifically for trend studies and is the one used here. Its 2008–2018 globally averaged distribution is shown in Figure 1. Note that 125 the satellite NH₃ values are reported as total columns, representing the total number of NH₃ molecules in a column from the ground surface to the top of the atmosphere expressed per unit of surface.

The general NH₃ retrieval algorithm is detailed in

[52, 53, 54]. A description of the changes that were implemented for version 3 is provided in Appendix A. A careful analysis of the initial dataset revealed some spurious trends and offsets in the long-term trends over remote oceans. These included (1) two offsets 135 that coincide with changes to the instrument, (2) a slow decreasing trend most likely due to increasing CO_2 concentrations and (3) a residual dependence on H_2O . Therefore, for the final version of the product, several debiasing procedures were applied (see again 140 Appendix A). The only potential remaining source of temporal inhomogeneity stems from the use of the IASI near real-time cloud detection algorithm, as currently no official reanalyzed cloud product is available. This most notably affects observations over the Southern 145 Ocean and South Pacific Ocean before 2011 [59]. IASI-NH₃ measurements have been compared with ground-based and airborne independent observations in [60, 61]. More recently, a dedicated validation study was performed for version 3 of the product. A good 150 correlation was found between in-situ vertical profiles and IASI-NH₃ total columns for both v3 datasets, with slightly better statistics for the reanalysis than for the near-real time product [62].

2.2. Trend analysis method, figures and tables

To determine the NH_3 trends and their uncertainty, the method developed by [63] has been applied to the IASI observational time series. It relies on least squares regression and bootstrap resampling [64] to fit daily timeseries data to the following function:

$$NH_3(t) = ct + \sum_{n=0}^{3} [a_n \sin(2\pi nt) + b_n \cos(2\pi nt)]$$
(1)

The first term in this equation characterizes the longterm linear trend in the data, with the sought-after annual trend c. The other terms constitute a thirdorder Fourier series representing the periodic seasonal variations. This statistical method provides separate 165 2σ (or p = 0.05) lower and upper bound uncertainties of the trend values, but as the differences between both are very small, we used similarly to [63] the mean uncertainty. Following the nomenclature of that paper too, we call trends 'significant' if the 170 change in NH₃ total columns exceeds their uncertainty (i.e. is significantly different from zero). Trends were computed at grid cell, country, regional and global scales in absolute (in molec. $cm^{-2}.yr^{-1}$) terms. From these, we calculated total relative changes from 175 2008 to 2018 (i.e. the relative decadal NH_3 changes with respect to 2008) and average yearly relative trends assuming compound change rates (in $\%.yr^{-1}$). All uncertainties on the trend numbers, relative or absolute, have been reported with two significant 180 figures.

155

Ammonia trends

The global distribution of the NH_3 trends at 0.5° $\times 0.5^{\circ}$ resolution (56 km \times 56 km at the equator) is shown in Figure 2a in absolute value. Here the trend calculation was applied on each grid cell separately. 185 The same figure is shown (Figure B1) but with stippled cells for non-significant trends. The national trends presented in Tables 1 and B1 and in Figure 2b were computed based on the daily average time series at the national scale. Examples of such daily timeseries 190 are given in Appendix B, Figure B3. These figures also show separately the linear and periodic terms of the fit, together with a standard ordinary least squares regression fit. Trends calculated with the latter were generally found to be in good agreement 195 with the trends calculated with the more robust bootstrapping method. For selected countries we show in Figure 3 yearly normalized NH₃ timeseries which were calculated from daily averages. Global and subcontinental trends (Table 1, Figures 2c and B2) have been calculated based on the national numbers, weighted by the area of each country. In Figures 2b and 2c, countries or subcontinents with non-significant trends in atmospheric NH_3 have been hatched. These thus correspond to regions where either the uncertainty on the trend is too large or where the estimated trend is close to zero. Apart from IASI-derived trends, we also obtained

trends based on yearly emission from the aforementioned EDGAR bottom-up emission inventory (for 210 2008–2015) and the GFED inventory for pyrogenic NH_3 emission (2008–2018). These were calculated using a standard least squares linear regression fit and are shown in Appendix B, Figures B4 and B5.

3. Global, regional and national trends 215

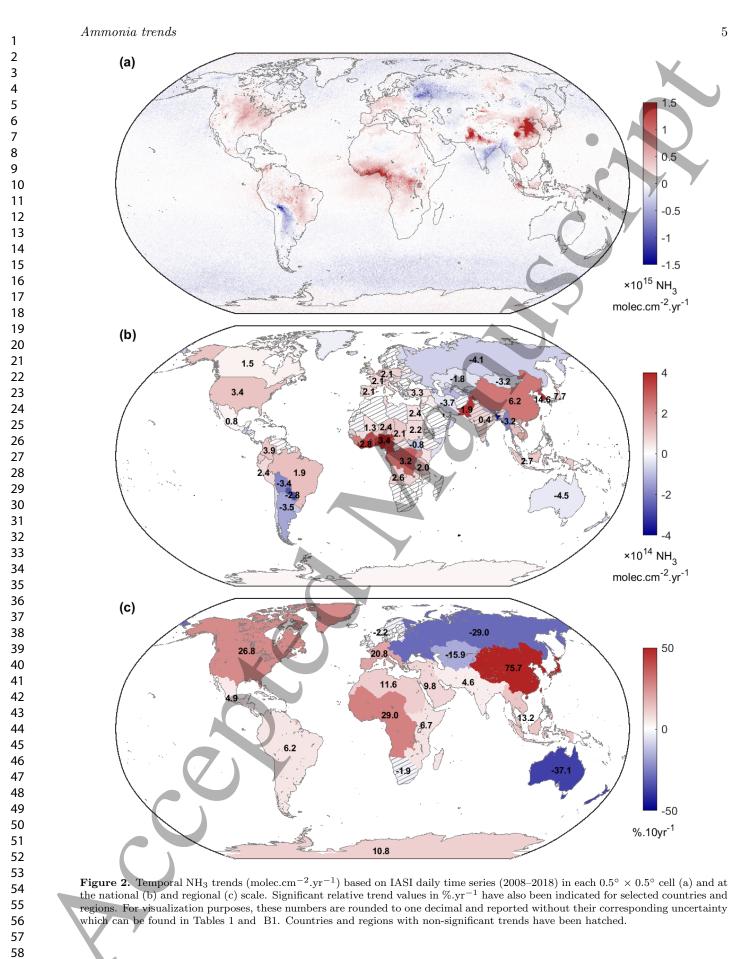
East Asia stands out as the region in the world with the largest increase over 2008–2018 with a decadal increase of 75.7 \pm 6.3 % and an annual growth rate of 5.80 \pm 0.61 %.yr⁻¹, mostly due to increases observed in the North China Plain and the Chengdu (Sichuan, China) area (Figures 2a and B1). For China as a whole, we estimate an annual trend of 6.25 \pm 0.68 % (Figure 2b) and a decadal change of 83.3 \pm 7.0 %. The increased columns are likely driven by a rise in emissions, which [4] and [65] estimated 225 to be 1.9 and 1.7 %.yr⁻¹ over 2000–2015 and 2008– 2016, respectively. While agriculture still contributes to over 80% of the emissions, recent emission-based [65] and satellite-based [9] studies have pointed out the increasing importance of non-agricultural sources, 230 especially of industrial emitters. The contribution of fossil-fuel combustion sources, including traffic, has been lately highlighted especially during severe haze episodes [66, 67, 68]. Surprisingly, as shown in Figure B4, the EDGAR v5.0 global database [6] reports 235 a moderately slow decline in emissions over eastern China during the 2008–2015 period, which appears to be mostly due to a sharp decline in the estimates of the year 2014 and which is not observed in the satellite data. Other studies also reported relative 240 stable emissions during the past decade (e.g., [69]).

 NH_3 columns are affected both by changes in sources and sinks. For China in particular, the large increases observed by IASI after 2013 (Figure 3a) are also likely caused in part by a longer atmospheric 245 lifetime of NH₃, linked to a decrease of emissions of acidifying compounds (mostly SO_x and NO_x ; e.g., [24, 70]) following China's Clean Air Action in 2013 [69]. Despite the decline in the emissions of sulfur and nitrogen oxides, China is still facing major air quality 250 issues and has only recently started to dedicate efforts to mitigate NH_3 emissions [27]. North and South Korea present the largest relative positive growths at the national scale $(14.7 \pm 4.6 \text{ and } 14.6 \pm 3.6 \text{ \%.yr}^{-1},$ respectively) in Asia, followed by Japan $(7.7 \pm$ 255 3.3 %.yr⁻¹). While anthropogenic NH₃ emissions have increased by around $1.5 \ \%.yr^{-1}$ in South Korea according to the OECD [71] and EDGAR database [6], the much larger relative growth estimated for these countries may also be linked in part to an increasing 260 eastward transport of atmospheric NH₃ from China, as previously shown for particulate matter [72, 73] and dust [74]. In excess conditions, NH_3 atmospheric lifetime can be larger than a few hours and up to a few days (e.g. [9] and references therein and [50]). 265

After South Korea, Pakistan exhibits the highest absolute trend of Asia. Agriculture in this country is characterized by low and declining nitrogen use efficiencies due to excessive application of synthetic fertilizers [75]. [76] highlighted how nitrogen use 270 and surplus increased at much faster rates than the production yield during the 1961–2014 period. This overconsumption of synthetic fertilizers in Pakistan leads to a significant increase of NH_3 in the atmosphere [77]. Its neighboring country India is as a whole 275 characterized by a non-significant trend close to zero $(0.39 \pm 0.49 \ \%.yr^{-1})$ but it is important to recognize that this is due to a contrasted pattern with a high upward trend in the Indo-Gangetic Plain and in the northwestern part of the country in general, while 280 the southeastern part shows decreasing NH₃ columns (Figure 2a). Similar results were found with the previous version of the IASI-NH₃ product over the 2008–2016 period [78]. In the last decade, India has undertaken several measures to reduce nitrogen 285 pollution. In 2015 for instance, the government forced urea manufacturers to produce urea coated with neem oil, a natural nitrification inhibitor, to improve nitrogen use efficiency [79]. However, soil pH affects

58 59 60

2


3

4

5

6

7

1.5

0.5

0

-0.5

-1

-1.5

4

2

0

-2

-4

50

0

-50

%.10yr⁻¹

×10¹⁴ NH₃

molec.cm⁻².yr⁻¹

×10¹⁵ NH₃

molec.cm⁻².yr⁻¹

Table 1. Absolute (molec.cm⁻².yr⁻¹), relative (%.yr⁻¹) and decadal NH₃ trends (%.10yr⁻¹) calculated for selected countries and regions based on national daily average time series (2008–2018) measured by IASI/Metop-A. The relative trend is expressed as compound growth rate from 2008. The regions are shown in Figure 2c. Table B1 gives trend values for each country.

	$\begin{array}{c} {\bf Absolute} \\ {\bf (molec.cm^{-2}.yr^{-1})} \end{array}$	$egin{array}{c} {f Relative}\ (\%.{f yr}^{-1}) \end{array}$	$egin{array}{c} { m Decadal} \ { m (\%.10yr^{-1})} \end{array}$
Bolivia	$(-18.1 \pm 6.7) \times 10^{13}$	-3.4 ± 1.0	-29 ± 11
China	$(24.7 \pm 2.1) \times 10^{13}$	6.25 ± 0.68	83.3 ± 7.0
India	$(0.8 \pm 1.0) \times 10^{14}$	0.39 ± 0.49	4.0 ± 5.0
Indonesia	$(10.1 \pm 5.1) \times 10^{13}$	2.7 ± 1.4	30 ± 15
Netherlands	$(2.1 \pm 1.1) \times 10^{14}$	3.6 ± 1.9	42 ± 21
Nigeria	$(49.4 \pm 7.9) \times 10^{13}$	3.38 ± 0.62	39.4 ± 6.3
Russia	$(-7.1 \pm 1.7) \times 10^{13}$	-4.11 ± 0.80	-34.2 ± 8.3
Spain	$(7.6 \pm 2.8) \times 10^{13}$	2.08 ± 0.82	22.9 ± 8.5
Turkey	$(6.0 \pm 1.4) \times 10^{13}$	3.31 ± 0.89	38.5 ± 9.3
United States	$(11.4 \pm 1.7) \times 10^{13}$	3.42 ± 0.59	39.9 ± 6.1
Northern Europe	$(-0.4 \pm 1.4) \times 10^{13}$	-0.22 ± 0.81	-2.2 ± 8.4
Western and southern Europe	$(6.7 \pm 1.4) \times 10^{13}$	1.90 ± 0.43	20.8 ± 4.3
Eastern Europe and Russia	$(-6.3 \pm 1.6) \times 10^{13}$	-3.37 ± 0.70	-29.0 ± 7.3
Northern Africa	$(2.5 \pm 1.0) \times 10^{13}$	1.11 ± 0.47	11.6 ± 4.8
Western and central Africa	$(20.3 \pm 1.6) \times 10^{13}$	2.58 ± 0.23	29.0 ± 2.3
Eastern Africa	$(30.1 \pm 8.8) \times 10^{12}$	0.65 ± 0.19	6.7 ± 1.9
Southern Africa	$(-2.9 \pm 7.6) \times 10^{12}$	-0.19 ± 0.48	-1.9 ± 4.9
Northern America	$(6.1 \pm 1.0) \times 10^{13}$	2.40 ± 0.45	26.8 ± 4.5
Central America	$(1.3 \pm 1.2) \times 10^{13}$	0.48 ± 0.44	4.9 ± 4.5
South America	$(3.0 \pm 1.7) \times 10^{13}$	0.60 ± 0.34	6.2 ± 3.5
Western Asia	$(11.4 \pm 9.6) \times 10^{12}$	0.94 ± 0.80	9.8 ± 8.3
Central Asia	$(-5.4 \pm 1.5) \times 10^{13}$	-1.72 ± 0.44	-15.9 ± 4.5
East Asia	$(20.5 \pm 1.7) \times 10^{13}$	5.80 ± 0.61	75.7 ± 6.3
South Asia	$(6.1 \pm 5.2) \times 10^{13}$	0.45 ± 0.38	4.6 ± 3.9
Southeastern Asia	$(5.3 \pm 2.4) \times 10^{13}$	1.25 ± 0.59	13.2 ± 6.1
Oceania	$(-32.7 \pm 3.8) \times 10^{12}$	-4.54 ± 0.43	-37.1 ± 4.4
Antarctica	$(21.7 \pm 3.2) \times 10^{12}$	1.03 ± 0.16	10.8 ± 1.6
Global	$(45.6 \pm 4.6) \times 10^{12}$	1.21 ± 0.13	12.8 ± 1.3

the efficiency of such inhibitors and their use could also lead to enhanced NH₃ volatilization over alkaline soils [80, 81]. Interestingly, the soil pH map of India presents the same spatial patterns as the calculated trend distribution, with alkaline soils in the northwestern part of the country and more acidic soils in eastern India [82]. Obviously, further analyses are needed to assess the impact of changing nitrogen fertilizer use and consumption on NH₃ volatilization in India.

In southeastern Asia, Myanmar presents a negative trend of $-3.19 \pm 0.70 \ \%.yr^{-1}$. A likely explanation is a decrease in biomass burning activity for the considered time period, as seen from the GFED4.1s trend analysis (see Figure B5). In contrast, the extreme NH₃ emissions from peat fires in 2015 (see Figure 3b) artificially drive the trend distribution in Indonesia towards high positive values over the eastern part of Sumatra [50]. The spatial patterns of the NH₃ trends in Russia can also be explained to some extent by the biomass burning events that occurred during the 2008–2018 period. This is clear from the comparison of Figures 2a with the trends calculated from GFED (Figure B5), as well as from an analysis of the time series over selected regions. The 2014 and 2018 fire episodes in the northeastern parts of Siberia in particular are responsible for the positive trends over this remote region. For example, during the summer of 2018, NH₃ emissions from fires in Russia's Republic of Sakha were so large that they could be tracked down to eastern Canada [83, 84]. The negative trends reported in the western part of the country is partly due to the exceptional amounts of NH₃ released in the atmosphere by the fires around Moscow in 2010 (see Figure 3b) [48, 85]. This single event has a pronounced impact on the downward annual rate calculated for the whole Russia (-4.11 \pm 0.80 %.yr⁻¹), which would however, still be negative $(-2.33 \pm 0.48 \%. yr^{-1})$ if the fire period (27 July - 27 August 2010) is removed from the 11-year timeseries. Conversely, central Asia shows a significant decrease in NH₃ which does not appear to be due to a decrease in biomass burning emissions. From the IASI measurements, we estimate downward trends around - $2 \%.yr^{-1}$ in Tajikistan, Turkmenistan and Kazakhstan. Further information on on-ground activities in this part of the world are needed to confirm and interpret this evolution.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Ammonia trends

In Europe, the increase in the western and southern part is rather homogeneous with countries like Belgium, the Netherlands, France, Germany, Poland, Italy and Spain all increasing between 2 and $4.2 \ \%.yr^{-1}$. As a whole, this region presents a decadal change of 20.8 ± 4.3 %. The exceptional weather conditions of 2018 in terms of temperature and drought [86] likely explain a non-negligeable part of this high trend value, as confirmed for the Netherlands (see Section 4 and [87, 88]). While the EDGAR emission data is not available for 2018, the reported evolution in the 2008–2015 period is not consistent with what IASI observes. In particular, the EDGAR data exhibits heterogeneous trends over Europe, with large decreases in France and Poland, and increases in the other countries, especially in Germany. These are evidently driven by the underlying country-scale data and show the limitation of bottom-up inventories that rely on country-scale statistics, which are not always calculated and reported uniformly. According to the European Environmental Agency (EEA) [89], NH_3 emissions have been decreasing in the EU-28 since 1990 with a total decline of 24 % by 2008. From that year, reported NH₃ emissions were relatively stable, with a decline of 4% in the period 2008-2012, followed by a new increase of 3 % from 2013 to 2017 [89, 90]. In 2018, reported emissions were lower thanks to alleged reductions of emissions in Germany, Italy, Spain, France and Slovakia [2]. This is, however, inconsistent with the substantial increase in NH_3 columns that is observed from space in 2018 (see Figure 3a), underlining the urgent need of taking into account meteorological factors in the current state-ofthe-art bottom-up emissions inventories [1]. Declining emissions of acidifying compounds, as much as 62~%in the 2008–2018 period for SO_x and 28 % for NO_x in EU-28 [89], also increased the atmospheric lifetime of NH_3 and impacted the trend in the region [91, 23].

In the Middle East, Israel, Jordan and Turkey are characterized by relatively large positive trends over 3 %.yr⁻¹, which likely originate from increased For example, Turkey experienced an emissions. important intensification of its agricultural production during the past two decades [92]. During the 2008– 2018 period, agricultural use of nitrogen nutrients 380 in the country grew by 2.8 % yr⁻¹ [93], similarly to Israel, while the total anthropogenic emissions increased sharply by $4.8 \%.yr^{-1}$ [89]. While Syria shows a moderate positive trend, several grid cells around Damascus and South of Homs in Figure 2 385 exhibit a downward trend reflecting the decline of atmospheric emissions due to the civil war that started in 2011 [12]. In northern Africa, only Tunisia and Egypt present significant positive changes in NH_3 columns. The latter, characterized by an upward trend 390

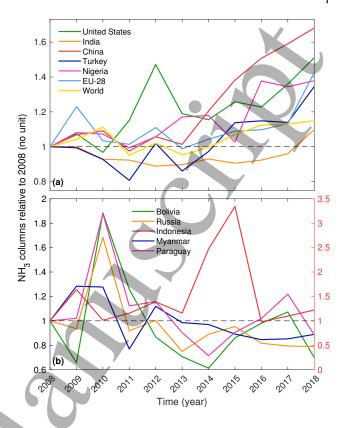


Figure 3. Yearly timeseries expressed in relative terms with respect to 2008 (a) for the world, EU-28, United States, India, China, Turkey and Nigeria and (b) for Bolivia, Russia, Indonesia. Myanmar and Paraguay. The right axis in panel b refers to Indonesia only. Regions from Tables 1 are presented in Figure B2.

of 2.39 \pm 0.82 %.yr⁻¹ due to intensive agriculture in the Nile Delta and River, is known to be the largest fertilizer consumer in Africa and to have one of the highest nitrogen application rates in the world [94]. [94] also discusses the strong increase in gaseous NH_3 emissions in 2014–2016 following the enhanced nitrogen use on croplands in the country. Figure 2a shows that significant increasing trends are also found along the coast of Algeria and especially Morocco, even though for these countries as a whole the trends are not significant.

Western and central Africa are characterized by a strong upward trend in atmospheric NH₃ total columns that is in absolute terms of a similar magnitude than east Asia ((20.3 \pm 1.6) \times 10¹³ molec.cm⁻².yr⁻¹), 405 but lower in relative $(2.58 \pm 0.23 \ \%.yr^{-1})$ (see Table 1). This region is dominated by biomass burning emissions associated with agricultural practices [95]. For example, Nigeria presents an upward trend of 3.38 \pm 0.62 %.yr⁻¹. Using the 2008–2017 data record 410 from a previous version of the IASI-NH₃ dataset, a national increase of 6 %.yr⁻¹ has been reported for the February-March period which was attributed to

Ammonia trends

agricultural preparation in slash-and-burn cropping systems [96]. In addition, it is worth noting that the agricultural use of nitrogen nutrient in the country increased strongly by 12 %.vr⁻¹ during the 2008–2018 period [93]. In eastern Africa, South Sudan stands out with a downward trend of -0.77 ± 0.47 %.yr⁻¹. This is likely related to changes in wetland extent in the Sudd, a vast swamp located in this country The regional conflict that broke out in 2013 [96]. also drastically affected agricultural activities, with a cereal production reduced by 25 % in 2017 and a drop in livestock populations [97, 98]. The entire eastern Africa presents a very slight upward trend likely driven by increased pyrogenic emissions in the northeastern part of Democratic Republic of the Congo and in the southwestern part of Ethiopia.

The relatively small decadal change in NH₃ total 430 columns reported in South America $(6.2 \pm 3.5 \%)$ hides regional and national disparities (Figure 2). The northwestern coastline, extending from Venezuela to Peru, is the region with the largest positive rates. This is also seen in the EDGAR derived trends, for which 435 these increases relate to agricultural emissions. The growing poultry production along the Peruvian coast is for instance well documented [9]. The positive trend in Brazil is the result of more intense pyrogenic emissions in the central part of the country and, according to EDGAR, increases in anthropogenic emissions in the southeastern region around Sao Paulo (see Figure B4). [99] also describes how intensification of the Amazon agriculture worsens nitrogen pollution. Bolivia and Paraguay exhibit negative trends around $-3 \%.yr^{-1}$ related to important biomass burning episodes that occurred in 2010 (Figures 3b and B5).

In the U.S., IASI NH₃ columns rose by 3.42 \pm 0.59 %.yr⁻¹. This result is in line with the trends obtained from the AIRS satellite $(2.6 \%.yr^{-1} over$ 450 2002–2016 [37]) and from ground-based measurements (e.g., [21]). Modelling studies have provided evidence that the upward trend of gas-phase NH_3 in the U.S. is partly due to reduced SO_x and NO_x emissions [100, 101]. However, it has also been shown that changing meteorological factors (e.g., drought, temperature) play a role in the increase of NH₃ concentrations in the region [101, 102]. Reported national emissions decreased from 2008 to 2014 by 3.4 %.yr⁻¹, but showed an upturn in the following years to reach the same level in 2017–2018 as in 2008 [103]. At the state scale, the National Emissions Inventory (NEI) from the Environmental Protection Agency (EPA) reports a generally increasing emission trend in the western states, but a declining trend in the central-eastern 465 states [104]. Satellite observations present nonetheless a positive trend over the entire country (Figure 2ab). The peak in 2012 in Figure 3a could be related to higher temperatures in the summer and a related increase in NH_3 volatilization from soils, as reported for NO_3 soil emissions [101]. At present NH_2 plays a key

 NO_x soil emissions [101]. At present, NH_3 plays a key role in nitrogen deposition in the country (contributing up to 65 % in some places), and these deposition fluxes will be difficult to mitigate without reducing emissions [105]. A significant positive trend of 1.53 475 \pm 0.83 %.yr^{-1} is also measured in Canada (note that [106] recently reported 8.38 \pm 0.77 %.yr⁻¹ at the city scale of Toronto using the same IASI dataset). While the national emission inventory reports more or less constant anthropogenic emissions over the 2008–2018 480 period [107], biomass burning sustains the increasing trend in NH₃ total columns at northern latitudes [108, 109]. EDGAR presents a pronounced discontinuity between the trend reported for the U.S. and Canada (Figure B4). 485

The calculated trends for Australia are in relative terms quite large at -4.53 ± 0.45 %.yr⁻¹. It is however important to note that in absolute terms this decline is almost negligible and artificial. In fact, inspection of Figure 2 shows declines below 0.5×10^{13} 490 $molec.cm^{-2}.yr^{-1}$ in most of the Southern hemisphere at the latitude of Australia. These could be related to the misclassification of clouds during the early 2008– 2018 period (see Section 2.1 and [59]), or due to an imperfect CO_2 trend correction (see Appendix A). 495 For the same reason, trends in Argentina, Chile and South Africa are to be interpreted with caution. The trends over the ice sheets of Antarctica and Greenland are spurious, and exacerbated by the general poorer performance of the NH₃ retrieval over cold surfaces (see 500 again Appendix A).

From the national trends we have calculated a worldwide decadal increase in atmospheric NH₃ total columns of 12.8 ± 1.3 %, which corresponds to a positive growth rate of 1.21 ± 0.13 %.yr⁻¹. Note 505 that these numbers are for land only. Trends over coastal areas follow in general those observed over the nearby land regions located upwind. For example, a significant positive trend in transported NH₃ is clearly identifiable in the Gulf of Guinea (southern coast of 510 western Africa), in the Yellow Sea (east coast of China) and in the Caribbean Sea (northern coast of Colombia). Conversely, following the decline in NH₃ total columns observed in southeastern India, a negative trend is calculated over the Bay of Bengal and the Arabian Sea. 515

4. Case study: the Netherlands

The Netherlands was one of the first countries worldwide to implement NH_3 abatement measures in the 1980s. This included regulation of manure application rates, introducing the mineral accounting system, introduction of emission poor housing systems,

470

520

3

4

5

6

7

8

9

10

11 12

13

14 15

16

17 18

19 20

21

22

23 24

25 26

27 28 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Ammonia trends

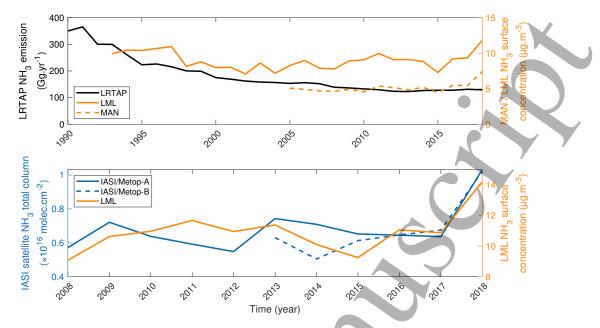


Figure 4. (top) Yearly timeseries of NH₃ emissions reported for the Netherlands in the framework of the Gothenburg Protocol 88, 121, 122, 130, 131, 990) and 8 LML stations (131, 235, 444, 538, 633, 722, 738, 929) have been conisdered. (Bottom) Yearly NH_3 time-series for the Netherlands measured by IASI (molec.cm⁻², blue) and at the surface by ground-based instruments from the Dutch National Air Quality Monitoring Network (LML) (μ g.m⁻³, orange). Only the LML stations with data coverage over the entire 2008–2018 period have been used (stations 131, 444, 538, 633, 738).

manure storage coverage and injection of manure in the soil. Since the early 1990s, NH_3 is measured hourly at eight locations in the country from the ground-based stations of the National Air Quality Monitoring Network (or LML standing for "Landelijk Meetnet Luchtkwaliteit"), which was set up to monitor the Dutch NH_3 emissions abatement policies [110, 22]. In 2005, the LML network was extended by measurements with passive samplers in the Measuring Ammonia in Nature (MAN) network to follow the NH₃ concentrations in nature areas [111, 112].

More than twenty years ago, a discrepancy was observed between these NH₃ measurements and expected levels derived from estimated NH₃ emissions in the Netherlands [113]. Different reasons were found for this mismatch: (i) a changing chemical climate which affected the conversion rate of NH_3 to NH_4^+ ; (ii) a reduction of acidifying compounds such as SO_2 and NO_x both in the atmosphere as well as on the surface leading to more NH_3 in the atmosphere; (iii) less effective abatement measures in practice as compared to measured lab reductions; (iv) fraud with manure transports and (v) the contribution of unknown sources such as the sea and the senescence of leaves [114, 115, 545 [116].

LML NH₃ concentrations measured at the surface show a downward trend of 36~% for the 1993-2004period, while an upward trend of 19 % is reported for 2005–2014 [22]. In contrast, the official NH_3 emissions 550 reported in the framework of the Gothenburg Protocol decreased for the entire period in the Netherlands and are currently 63.1 % lower than in 1990, even though since 2010, these have leveled off [89]. This is illustrated in the top panel of Figure 4 which 555 shows the evolution of the reported emissions (1990-2018, Gg.yr⁻¹, black) as well as yearly NH₃ surface concentrations from the LML (1992–2018, $\mu g.m^{-3}$. orange) and the MAN network (2005–2018, $\mu g.m^{-3}$, dashed orange). [22] have shown that the comparison 560 between the emission and concentration trend improves when the influence of meteorological conditions on the concentrations is taken into account.

Using 11 years (2008–2018) of IASI satellite daily observations of NH₃ columns, we calculate 565 an increasing trend of $3.6 \pm 1.9 \ \%.yr^{-1}$ in the Netherlands. Over the same time-period, the daily ground-based NH₃ concentrations measured at five LML sites exhibit a consistent $2.5 \pm 0.5\%$.vr⁻¹ growth rate. The bottom panel of Figure 4 presents the annual 570 NH_3 time-series for IASI/Metop-A (molec.cm⁻², blue), IASI/Metop-B (molec.cm $^{-2}$, dashed blue) and LML (μ g.m⁻³, orange). A sharp increase in the annual mean is measured in 2018, due to the exceptionally warm, sunny and dry weather conditions during that year, as NH₃ volatilization strongly increases with temperature and as deposition rates are lower when it is drier

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

In 2018, the European Court of Justice advised that the current Dutch legislation was not strict enough to protect Natura 2000 areas from nitrogen deposition [117], as required by the European Habitat Directive (EHD) (directive 92/43/EEG). This led to several rulings by the Dutch Council of State in 2019, putting on hold more than 18.000 projects on building houses and roads and in the agricultural sector and thus leading to the "Dutch Nitrogen crisis". The proposed policy to halve the country's livestock population to reduce nitrogen deposition caused massive demonstrations from farmers [44]. A special commission was put in place, the Commission Remkes, to advice about the long-term policies to reduce nitrogen. They recommended that emissions should be reduced by 50 % in 10 years to protect 75~% of the Natura 2000 against excess nitrogen deposition and that on a local scale, further reductions are necessary.

5. Conclusions

Using the data record from the IASI sounder we have obtained and characterized the evolution of atmospheric NH₃ at global, national and regional scales from 2008 to 2018. We have reported large increases of NH_3 in several subcontinental regions over the last decade, especially in east Asia (75.7 \pm 6.3 %) but also in western and central Africa (29.0 \pm 2.3 %). North America (26.8 \pm 4.5 %) and western and southern Europe (20.8 \pm 4.3 %). The upward trends observed in many countries can be attributed to a combination of increasing emissions and a longer residence time of NH₃ in the atmosphere due to declining emissions of sulfur and nitrogen oxides. Regions dominated by biomass burning emissions exhibit decreasing or increasing trends depending on when the strongest events took place. Apart from declines related to fires, notable declines were also found in the southwestern 615 part of India and central Asia.

In view of the major role of NH_3 for the loss of biodiversity, for air quality and human health, emissions need to be reduced urgently. A series of options exists to control the loss of NH₃ from agricultural activities to the atmosphere (e.g., [118]). Limiting these atmospheric NH₃ losses would also have co-benefits for our climate [119]. Recent studies have shown that the abatement costs to reduce NH_3 emissions is much lower than the economical and 625 societal benefits (see [120] for Europe and [121] for China), which should trigger our willingness for action. Current and planned infrared satellite missions provide the necessary observational means to monitor the effect of implemented policies (e.g., [122, 123]) to support 630

635

Page 10 of 25

the goals of the Sustainable Nitrogen Management resolution (UNEP/EA.4/Res.14) adopted by the United Nations Environment Assembly on 15 March 2019 [124].

Acknowledgments

IASI has been developed and built under the responsibility of the Centre National d'Études Spatiales (CNES, France). It is flown on board the Metop satellites as part of the EUMETSAT Polar System. The IASI L1c data are received through the EUMETCast 640 near real-time data distribution service. National and regional maps have been made with Natural Earth (naturalearthdata.com). The research was funded by the F.R.S.-FNRS and the Belgian State Federal Office for Scientific, Technical and Cultural Affairs (Prodex 645 arrangement IASI.FLOW). M. Van Damme is Postdoctoral Researcher (Chargé de Recherche) and L. Clarisse is Research Associate (Chercheur Qualifié) both supported by the Belgian F.R.S.-FNRS. M. A. Sutton acknowledges support from the Global Environment Fa-650 cility (GEF) through the UN Environment Programme for the Towards INMS project. C. Clerbaux is grateful to CNES for scientific collaboration and financial support.

Data availability

The IASI-NH₃ datasets are available from the Aeris data infrastructure (http://iasi.aeris-data.fr/ NH3). It is also planned to be operationally distributed by EUMETCast under the auspices of the EUMET-SAT Atmospheric Monitoring Satellite Application Facility (AC-SAF; http://ac-saf.eumetsat.int).

References

- [1] Sutton, M. A. et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. London, Ser. B 368 (2013).
- [2] EEA. European Union emission inventory report 1990-2018 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). Tech. Rep., European Environment Agency (2020).
- [3] Bray, C. D. et al. Ammonia emissions from biomass 670 burning in the continental United States. Atmos. Environ. 187, 50 - 61 (2018).
- [4] Zhang, X. et al. Ammonia emissions may be substantially underestimated in China. Environ. Sci. Technol. 51, 12089-12096 (2017).
- [5] Crippa, M. et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth System Science Data 10, 1987–2013 (2018).
- [6] Emissions Database for Global Atmospheric Research (EDGAR). v5.0 Global Air Pollutant Emissions 680 (2020).URL https://edgar.jrc.ec.europa.eu/ overview.php?v=50_AP. (last access: 3/11/2020).
- [7] Behera, S., Sharma, M., Aneja, V. & R., B. Ammonia in the atmosphere: a review on emission sources,

655

660

665

Ammonia trends

- atmospheric chemistry and deposition on terrestrial 685 bodies. Environ Sci Pollut Res Int. 20(11), 8092-131 (2013).
 - [8] Global Fire Emissions Database version 4.1 including small fire burned area (GFED4s) (2020). URL https:// www.geo.vu.nl/~gwerf/GFED/GFED4/. (last access: 22 October 2020).
 - [9] Van Damme, M. et al. Industrial and agricultural ammonia point sources exposed. Nature 564, 99-103 (2018).
- [10] Diaz, R. J. & Rosenberg, R. Spreading dead zones and 695 consequences for marine ecosystems. Science 321, 926-929 (2008).
 - [11] Dise, N. B. et al. The European Nitrogen Assessment: Sources, effects and policy perspectives, chap. Nitrogen as a threat to European terrestrial biodiversity (Cambridge University Press, 2011).
 - [12] Dammers, E. et al. NH₃ emissions from large point sources derived from CrIS and IASI satellite observations. Atmos. Chem. Phys. 19, 12261–12293 (2019).
 - [13] Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20:1, 30-59 (2010).
 - [14] Ellis, R. A. et al. Present and future nitrogen deposition to national parks in the United States: critical load exceedances. Atmos. Chem. Phys. 13, 9083-9095 (2013).
 - [15] Pope, C. A., III, Ezzati, M. & Dockery, D. W. Fineparticulate air pollution and life expectancy in the United States. N. Engl. J. Med. 360, 376-386 (2009).
 - [16] Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367-371 (2015).
 - [17] Erisman, J. W. & Schaap, M. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 129, 159 - 163 (2004).
 - [18] Wang, S. et al. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci. Rep. 5, 15842 (2015).
- [19] Wu, Y. et al. PM_{2.5} pollution is substantially affected by 725 ammonia emissions in China. Environ. Pollut. 218, 86 -94(2016).
 - [20] Sutton, M. A. et al. Alkaline air: changing perspectives on nitrogen and air pollution in an ammonia-rich world. Philos. Trans. R Soc. A: Math. Phys. Eng. Sci. 378, 20190315 (2020).
 - [21] Saylor, R., Myles, L., Sibble, D., Caldwell, J. & Xing, J. Recent trends in gas-phase ammonia and PM2.5 ammonium in the Southeast United States. J. Air Waste Manage. Assoc. 65, 347-357 (2014).
 - [22] van Zanten, M., Wichink Kruit, R., Hoogerbrugge, R., Van der Swaluw, E. & van Pul, W. Trends in ammonia measurements in the Netherlands over the period 1993-2014. Atmos. Environ. 148, 352 - 360 (2017).
 - [23] Tang, Y. S. et al. Drivers for spatial, temporal and longterm trends in atmospheric ammonia and ammonium in the UK. Atmos. Chem. Phys. 18, 705–733 (2018).
 - [24] Lachatre, M. et al. The unintended consequence of SO₂ and NO₂ regulations over China: increase of ammonia levels and impact on $PM_{2.5}$ concentrations. Atmos. Chem. Phys. 19, 6701-6716 (2019).
 - [25] Paulot, F. & Jacob, D. J. Hidden cost of U.S. agricultural exports: Particulate matter from ammonia emissions. Environ. Sci. Technol. 48, 903–908 (2014).
 - [26] Backes, A. M., Aulinger, A., Bieser, J., Matthias, V. & Quante, M. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols. Atmos. Environ. 126, 153 - 161

(2016).

- [27] Liu, M. et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. PNAS 116, 7760-7765 (2019).
- [28] Shindell, D. T. et al. Improved attribution of climate forcing to emissions. Science 326, 716-718 (2009).
- [29] Butterbach-Bahl, K. et al. The European Nitrogen Assessment: Sources, effects and policy perspectives, chap. Nitrogen as a threat to the European greenhouse balance (Cambridge University Press, 2011).
- [30] Reis, S., Pinder, R. W., Zhang, M., Lijie, G. & Sutton, 765 M. A. Reactive nitrogen in atmospheric emission inventories. Atmos. Chem. Phys. 9, 7657-7677 (2009).
- [31] Official Journal of the European Union. Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of 770 national emissions of certain atmospheric pollutants, amending Directive $2003/35/\mathrm{EC}$ and repealing Directive $2003/35/\mathrm{EC}$ tive 2001/81/EC (2016). URL http://data.europa. eu/eli/dir/2016/2284/oj. (last access: 13/11/2020).
- [32] Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D. 775 & Coheur, P.-F. Global ammonia distribution derived from infrared satellite observations. Nat. Geosci. 2, 479-483 (2009).
- [33] Shephard, M. W. & Cady-Pereira, K. E. Crosstrack Infrared Sounder (CrIS) satellite observations of 780 tropospheric ammonia. Atmos. Meas. Tech. 8, 1323-1336 (2015).
- Warner, J. X., Wei, Z., Strow, L. L., Dickerson, R. R. [34]& Nowak, J. B. The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement 785 record. Atmos. Chem. Phys. 16, 5467-5479 (2016).
- [35] Someya, Y., Imasu, R., Shiomi, K. & Saitoh, N. Atmospheric ammonia retrieval from the TANSO-FTS/GOSAT thermal infrared sounder. Atmos. Meas. Tech. 13, 309-321 (2020). URL https://amt. copernicus.org/articles/13/309/2020/.
- [36] Clarisse, L., Van Damme, M., Clerbaux, C. & Coheur, P.-F. Tracking down global NH₃ point sources with wind-adjusted superresolution. Atmos. Meas. Tech. 12, 5457-5473 (2019).
- [37] Warner, J. X. et al. Increased atmospheric ammonia over the world's major agricultural areas detected from space. Geophys. Res. Lett. 44, 2875–2884 (2017). 2016GL072305.
- [38] Liu, L. et al. Estimating global surface ammonia 800 concentrations inferred from satellite retrievals. Atmos. Chem. Phys. 19, 12051-12066 (2019).
- [39] Kharol, S. K. et al. Dry deposition of reactive nitrogen from satellite observations of ammonia and nitrogen dioxide over North America. Geophys. Res. Lett. 45, 805 1157-1166 (2018).
- [40] Liu, L. et al. Global estimates of dry ammonia deposition inferred from space-measurements. Sci. Total Environ. **730**, 139189 (2020).
- [41] Shephard, M. W. et al. Ammonia measurements 810 from space with the Cross-track Infrared Sounder: characteristics and applications. Atmos. Chem. Phys. **20**, 2277–2302 (2020).
- [42] Chen, Y. et al. High-resolution hybrid inversion of IASI ammonia columns to constrain U.S. ammonia emissions 815 using the CMAQ adjoint model. Atmos. Chem. Phys. Discuss. 2020, 1-25 (2020).
- [43] Cao, H. et al. Inverse modeling of NH₃ sources using CrIS remote sensing measurements. Environ. Res. Lett. 15, 104082 (2020).
- [44] Stokstad, E. Nitrogen crisis threatens Dutch environment and economy. Science 366, 1180–1181 (2019).
- [45] Clerbaux, C. et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder.

690

700

705

710

715

720

730

735

740

745

750

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

755

760

820

790

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

825

830

835

840

845

850

860

870

875

885

890

12

910

930

945

Atmos. Chem. Phys. 9, 6041–6054 (2009).

- [46] Clarisse, L. et al. Satellite monitoring of ammonia: A case study of the San Joaquin Valley. J. Geophys. Res. 115, D13302 (2010).
- [47] Van Damme, M. et al. Global distributions, time series and error characterization of atmospheric ammonia (NH₃) from IASI satellite observations. Atmos. Chem. Phys. 14, 2905–2922 (2014).
- [48] Van Damme, M. et al. Evaluating 4 years of atmospheric ammonia (NH₃) over Europe using IASI satellite observations and LOTOS-EUROS model results. J. Geophys. Res.-Atmos. 119, 9549–9566 (2014).
- [49] Van Damme, M. et al. Worldwide spatiotemporal atmospheric ammonia (NH₃) columns variability revealed by satellite. *Geophys. Res. Lett.* 42, 8660–8668 (2015). 2015GL065496.
- [50] Whitburn, S. et al. Doubling of annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño. *Geophys. Res. Lett.* 43, 11,007–11,014 (2016).
- [51] Viatte, C. et al. Atmospheric ammonia variability and link with particulate matter formation: a case study over the Paris area. Atmos. Chem. Phys. 20, 577–596 (2020).
- [52] Whitburn, S. et al. A flexible and robust neural network IASI-NH₃ retrieval algorithm. J. Geophys. Res.-Atmos. 121, 6581–6599 (2016).
- [53] Van Damme, M. et al. Version 2 of the IASI NH₃ neural network retrieval algorithm: near-real-time and reanalysed datasets. Atmos. Meas. Tech. 10, 4905– 4914 (2017).
- [54] Franco, B. et al. A general framework for global retrievals of trace gases from IASI: Application to methanol, formic acid, and PAN. J. Geophys. Res.-Atmos. 123 (2018).
 - [55] Franco, B. et al. Acetone atmospheric distribution retrieved from space. Geophys. Res. Lett. 46, 2884– 2893 (2019).
 - [56] Franco, B. et al. Spaceborne measurements of formic and acetic acids: A global view of the regional sources. *Geophys. Res. Lett.* 47 (2020).
- [57] August, T. et al. IASI on Metop-A: Operational Level 2 retrievals after five years in orbit. J. Quant. Spectrosc. Radiat. Transfer. 113, 1340 – 1371 (2012).
 - [58] Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc. (2020).
 - [59] Clarisse, L. et al. A decadal data set of global atmospheric dust retrieved from IASI satellite measurements. J. Geophys. Res.-Atmos. 124, 1618–1647 (2019).
 - [60] Van Damme, M. et al. Towards validation of ammonia (NH₃) measurements from the IASI satellite. Atmos. Meas. Tech. 8, 1575–1591 (2015).
 - [61] Dammers, E. et al. An evaluation of IASI-NH₃ with ground-based Fourier transform infrared spectroscopy measurements. Atmos. Chem. Phys. 16, 10351–10368 (2016).
- 880 [62] Guo, X. et al. Validation of IASI satellite ammonia observations using in-situ profiles. J. Geophys. Res.-Atmos. (under review).
 - [63] Gardiner, T. et al. Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments. Atmos. Chem. Phys. 8, 6719–6727 (2008).
 - [64] Cox, M. G., Harris, P. M., Milton, M. J. T. & Woods, P. T. Method for evaluating trends in ozone concentration data and its application to data from the UK rural ozone monitoring network. National Physical Laboratory (NPL) Report CMSC 15/02 (2002).
 - [65] Fu, H., Luo, Z. & Hu, S. A temporal-spatial analysis and future trends of ammonia emissions in China. *Sci. Total. Environ.* **731**, 138897 (2020).

- [66] Pan, Y. et al. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15N-stable isotope in sizeresolved aerosol ammonium. Environ. Sci. Technol. 50, 8049–8056 (2016).
- [67] Liu, J. et al. Evidence of rural and suburban sources of urban haze formation in China: A case study from the Pearl River Delta region. J. Geophys. Res.-Atmos. 123, 4712–4726 (2018).
- [68] Chang, Y. et al. Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity. Environ. Sci. Technol. 53, 1822–1833 (2019).
- [69] Zheng, B. et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).
- [70] Liu, M. et al. Rapid SO₂ emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmos. Chem. Phys. 18, 17933– 17943 (2018).
- [71] Organisation for Economic Co-operation and Development (OECD). Agri-environmental Indicators (AEIs) database (2020). URL https://stats.oecd.org/. (last access: 5/11/2020).
- [72] Lee, S., Ho, C.-H., Lee, Y. G., Choi, H.-J. & Song, C.-K. Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October 16–20, 2008. Atmos. Environ. 77, 430–439 (2013).
- [73] Lee, H.-J., Jo, H.-Y., Kim, S.-W., Park, M.-S. & Kim, C.-H. Impacts of atmospheric vertical structures on transboundary aerosol transport from China to South Korea. Sci. Rep. 9 (2019).
- [74] Onishi, K. et al. Atmospheric transport route determines components of Asian dust and health effects in Japan. Atmos. Environ. 49, 94–102 (2012).
- [75] Raza, S. et al. Piling up reactive nitrogen and declining nitrogen use efficiency in Pakistan: a challenge not challenged (1961–2013). Environ. Res. Lett. 13, 034012 (2018).
- [76] Shahzad, A. N., Qureshi, M. K., Wakeel, A. & 935 Misselbrook, T. Crop production in Pakistan and low nitrogen use efficiencies. *Nature Sustainability* 2, 1106– 1114 (2019).
- [77] Xu, R. T. et al. Half-century ammonia emissions from agricultural systems in Southern Asia: Magnitude, 940 spatiotemporal patterns, and implications for human health. GeoHealth 2, 40–53 (2018).
- [78] Kuttippurath, J. et al. Record high levels of atmospheric ammonia over India: Spatial and temporal analyses. *Sci. Total Environ.* **740**, 139986 (2020).
- [79] Sutton, M. et al. The Indian Nitrogen Challenge in a Global Perspective. In The Indian Nitrogen Assessment, 9–28 (Elsevier, 2017).
- [80] Kim, D.-G., Saggar, S. & Roudier, P. The effect of nitrification inhibitors on soil ammonia emissions in nitrogen managed soils: a meta-analysis. *Nutr. Cycling Agroecosyst.* 93, 51–64 (2012).
- [81] Singh, B. Neem coated urea as a source of nitrogen for plants. Journal of Eco-friendly Agriculture 14, 43–54 (2019).
- [82] IGBP-DIS. SoilData(V.0) A program for creating global soil-property databases. IGBP Global Soils Data Task, France (1998). URL https://nelson.wisc.edu/sage/data-andmodels/atlas/maps/soilph/atl_soilph_asi.jpg. (last access: 14/11/2020).
- [83] Yulsman, T. Smoke from Siberian fires blows all the way to Canada — and is seen by a satellite nearly a million miles from Earth (2018). URL

960

985

990

995

1000

1005

1010

1025

1030

58 59 60

2

Ammonia trends

1050

1060

4	
5 6	
6 7	
/	
8	
9	
10	
11	
12	
13	
10 11 12 13 14 15 16	
15	
16	
17 18	
18	
19	
20	
21	
21 22 23 24	
23	
24	
25	
26	
20	
27 27 28 29	
28	
29 30	
30	
31	
32 33	
34	
35	
36	
27	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54	
55	
56	
57	

965 https://www.discovermagazine.com/environment/ smoke-from-siberian-fires-blows-all-the-wayto-canada-and-is-seen-by-a-satellite-nearly-amillion-miles-from-earth. (last acces: 14/11/2020). [84] NASA. Smoke from Siberian fires reaches Canada (2018). URL https://www.nasa.gov/image-feature/goddard/ 2018/smoke-from-siberian-fires-reaches-canada. (last access: 14/11/2020).

- [85] R'Honi, Y. et al. Exceptional emissions of NH₃ and HCOOH in the 2010 Russian wildfires. Atmos. Chem. Phys. 13, 4171–4181 (2013).
- [86] Hari, V., Rakovec, O., Markonis, Y., Hanel, M. & Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. *Sci. Rep.* **10** (2020).
- 980 [87] Hoogerbrugge, R. et al. Grootschalige concentratie- en depositiekaarten Nederland (2019). URL https:// rivm.openrepository.com/handle/10029/623233.
 - [88] KNMI. Jaar 2018 Extreem warm, extreem zonnig en zeer droog (2019). URL https: //knmi.nl/nederland-nu/klimatologie/maanden-seizoensoverzichten/2018/jaar. (last access: 09/12/2020).
 - [89] European Environment Agency (EEA). Air pollutant emissions data viewer (Gothenburg Protocol, LRTAP Convention) 1990-2018 (2020).
 URL https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer-3. (last access: 8/11/2020).
 - [90] European Environment Agency (EEA). The European environment: state and outlook 2020 (2019). URL https: //www.eea.europa.eu/publications/soer-2020.
 - [91] Horvath, L., Fagerli, H. & Sutton, M. A. Atmospheric ammonia, chap. Long-term record (1981–2005) of ammonia and ammonium concentrations at K-Puszta Hungary and the effect of sulphur dioxide emission change on measured and modelled concentrations, 181– 185 (2009).
 - [92] Yeni, O. & Özgür Teoman. The agriculture–environment relationship and environment-based agricultural support instruments in Turkey. *European Review* 1–25 (2020).
 - [93] Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Fertilizers by Nutrient dataset (2020). URL http://www.fao.org/faostat/en/#data/ RFN. (last access: 6/11/2020).
 - [94] Elrys, A. S. et al. Budgeting nitrogen flows and the food nitrogen footprint of Egypt during the past half century: Challenges and opportunities. Environ. Int. 130, 104895 (2019).
- 1015 [95] Whitburn, S. et al. Ammonia emissions in tropical biomass burning regions: Comparison between satellitederived emissions and bottom-up fire inventories. Atmos. Environ. **121**, 42 – 54 (2015).
- [96] Hickman, J. E. *et al.* Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH₃ trends in several African regions. *Atmos. Chem. Phys.* ((submitted)).
 - [97] Food & (FAO), A. O. Crisis in South Sudan. FAO in emergencies (2020). URL http://www.fao.org/ emergencies/crisis/south-sudan/intro/en/. (last access: 8/11/2020).
 - [98] Idris, I. Livestock and conflict in South Sudan. K4D Helpdesk Report 484. Brighton, UK: Institute of Development Studies (5 December 2018). URL https://gsdrc.org/publications/livestock-and-
 - conflict-in-south-sudan/. (last access: 8/11/2020).
 [99] Jankowski, K. et al. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Sci. Rep. 8 (2018).

- [100] Yu, F., Nair, A. A. & Luo, G. Long-term trend of 1035 gaseous ammonia over the United States: Modeling and comparison with observations. J. Geophys. Res.-Atm. 123, 8315–8325 (2018).
- [101] Schiferl, L. D. et al. Interannual variability of ammonia concentrations over the United States: sources and implications. Atmos. Chem. Phys. 16, 12305–12328 (2016).
- [102] Yao, X. & Zhang, L. Causes of large increases in atmospheric ammonia in the last decade across North America. ACS Omega 4, 22133–22142 (2019). 1045
- [103] Environmental Protection Agency (EPA). Air Pollutant Emissions Trends Data (2020). URL https://www.epa.gov/sites/production/files/ 2018-04/national_tier1_caps.xlsx. (last acces: 6/11/2020).
- [104] Environmental Protection Agency (EPA). Air Pollutant Emissions Trends Data (2020). URL https: //www.epa.gov/sites/production/files/2018-07/state_tier1_caps.xlsx. (last acces: 6/11/2020).
- [105] Li, Y. et al. Increasing importance of deposition of reduced nitrogen in the United States. PNAS 113, 5874–5879 (2016).
- [106] Yamanouchi, S. et al. Multiscale observations of NH₃ around Toronto, Canada. Atmos. Meas. Tech. Discuss. 2020, 1–23 (2020).
- [107] Canada. Air Pollutants Emissions Inventory (APEI)
 (2020). URL https://pollution-waste.canada.ca/
 air-emission-inventory. (last access: 6/11/2020).
- [108] Adams, C. et al. Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area. Atmos. Chem. Phys. 19, 2577–2599 (2019).
- [109] Lutsch, E. et al. Unprecedented atmospheric ammonia concentrations detected in the high Arctic from the 2017 Canadian wildfires. J. Geophys. Res.-Atm. 124, 8178– 8202 (2019).
- [110] Buijsman, E., Aben, J. M., Van Elzakker, B. G. & Mennen, M. G. An automatic atmospheric ammonia network in the Netherlands set-up and results. *Atmos. Environ.* 32, 317 – 324 (1998).
- [111] Lolkema, D. E. et al. The Measuring Ammonia in Nature (MAN) network in the Netherlands. Biogeosciences 12, 5133–5142 (2015).
- [112] Noordijk, H. et al. Performance of the MAN ammonia monitoring network in the Netherlands. Atmos. 1080 Environ. 228, 117400 (2020).
- [113] Erisman, J. W., Mosquera, J. & Hensen, A. Two options to explain the ammonia gap in The Netherlands. *Environ. Sci. Policy* 4, 97 – 105 (2001).
- [114] Erisman, J., Bleeker, A. & van Jaarsveld, J. Evaluation 1083 of ammonia emission abatement on the basis of measurements and model calculations. *Environ. Pollut.* 102, 269–274 (1998).
- [115] Erisman, J. & Monteny, G. Consequences of new scientific findings for future abatement of ammonia emissions. 1090 Environ. Pollut. 102, 275–282 (1998).
- [116] Wichink Kruit, R. et al. Modelling trends in ammonia in the Netherlands over the period 1990–2014. Atmos. Environ. 154, 20–30 (2017).
- [117] Official Journal of the European Union. Judgment of 1095 the Court (Second Chamber) of 7 November 2018 (requests for a preliminary ruling from the Raad van State — Netherlands) (2019/C 16/15) (2019). URL https://eur-lex.europa.eu/legal-content/EN/ TXT/PDF/?uri=CELEX:62017CA0293&from=DE. (last access: 10/09/2020).
- Bittman, S., Dedina, M., C.M., H., Oenema, O. & Sutton, M. Options for ammonia mitigation : guidance from the UNECE Task Force on Reactive Nitrogen (Centre

Ammonia trends

- for Ecology & Hydrology, on behalf of Task Force on Reactive Nitrogen, of the UNECE Convention on Long Range transboundary Air Pollution, Edinburgh, 2014).
 [110] Drie S. Humand, C. & Sutter, M. A. (ada.) Casta
 - [119] Reis, S., Howard, C. & Sutton, M. A. (eds.) Costs of Ammonia Abatement and the Climate Co-Benefits (Springer-Verlag GmbH, 2015).
 - [120] Giannakis, E., Kushta, J., Bruggeman, A. & Lelieveld, J. Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations. *Environ. Sci. Eur.* **31** (2019).
- [121] Zhang, X. et al. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nat. Commun. 11 (2020).
 - [122] Sutton, M. A. & Howard, C. M. Satellite pinpoints ammonia sources globally. *Nature* 564, 49–50 (2018).
- 1120 [123] Kanter, D. R. *et al.* Nitrogen pollution policy beyond the farm. *Nature Food* 1, 27–32 (2020).
- [124] United Nations Environment Programme (UNEP). Sustainable nitrogen management. Resolution adopted by the United Nations Environment Assembly (UNEP/EA.4/Res.14) on 15 March (2019). URL https://papersmart.unon.org/resolution/uploads/k1900699.pdf. UNEP/EA.4/Res.14.
- [125] Taylor, I. A. et al. Exploring the Utility of IASI for Monitoring Volcanic SO₂ Emissions. J. Geophys. Res.-1130 Atmos. 123, 5588-5606 (2018).
 - [126] Bouillon, M. et al. Ten-year assessment of IASI radiance and temperature. Remote Sensing 12, 2393 (2020).

Ammonia trends

Appendix A. The version 3 ANNI-NH₃ product

The ANNI-NH₃-v3 IASI product builds on the heritage of version 1 [52], version 2 [53], and recent improvements in the neural network (NN) retrieval setup introduced in [54] for the retrieval of volatile organic compounds (VOCs). We refer to the abovementioned papers for a detailed description of the retrieval methodology. The specific changes from v2.2 to v3 for NH₃ are outlined in detail below.

Appendix A.1. Changes to the HRI and debiasing procedures

The Hyperspectral Range Index (HRI) has been set ¹¹⁴⁵ up following the iterative procedure outlined in [54]. The spectral range has been slightly reduced (812–1126 cm^{-1}) to minimize interferences from other species and/or local variation in surface emissivity. The end result is that the HRI is more sensitive to NH₃ and less ¹¹⁵⁰ affected by interferences.

Analysing the initial time series of the mean HRI over remote oceans, we noticed (i) offsets that coincided with changes to the IASI instrument (ii) a slowly decreasing trend (iii) a residual dependence on H_2O . In the rest of the section we outline the first order

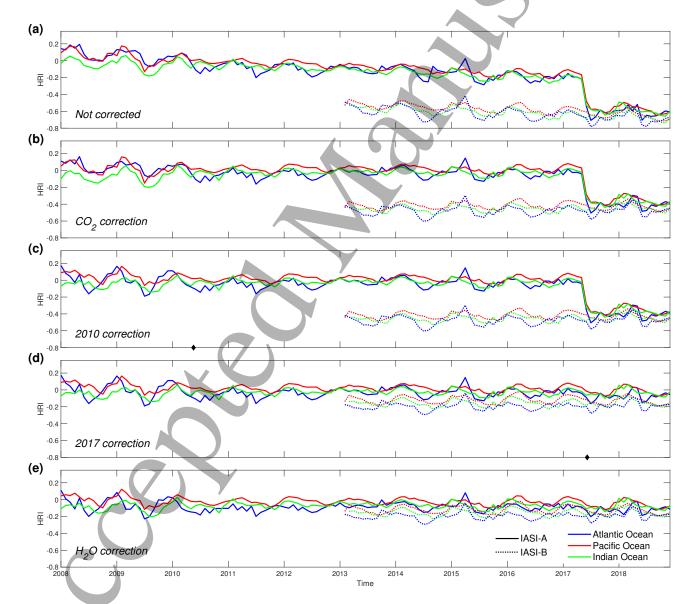


Figure A1. IASI/Metop-A (solid lines) and IASI/Metop-B (dashed lines) NH₃ Hyperspectral Range Index (HRI, no unit) monthly time series over three remote locations: North Atlantic Ocean $(20^{\circ}N-40^{\circ}N; 30^{\circ}W-60^{\circ}W)$, Pacific Ocean $(0^{\circ}S-30^{\circ}S; 125^{\circ}W-175^{\circ}W)$ and Indian Ocean $(5^{\circ}S-25^{\circ}S; 55^{\circ}E-95^{\circ}E)$. From top to bottom: (a) not corrected time series and successive implementation of corrections (b, c, d, e).

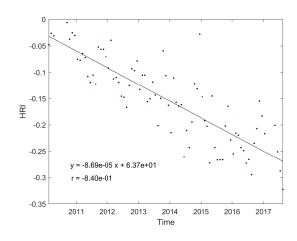


Figure A2. HRI (no unit) monthly time series over a remote location in the Pacific Ocean. The linear regression is indicated in black.

corrections that were introduced to account for all of these.

The declining trend over remote areas that was identified in the HRI of NH_3 is apparent in the top 1160 panel of Figure A1. As the trend is linear, and as there are a couple of weak CO_2 absorption bands in the 812- 1126 cm^{-1} , this trend is most likely due to the ever increasing concentrations of CO_2 . To correct this bias we analysed monthly averaged HRI from IASI spectra 1165 measured over a remote location in the Pacific Ocean $(17^{\circ}N-22^{\circ}N; 153^{\circ}W-158^{\circ}W)$ versus time (Figure A2). The linear regression $(y = -8.69 \times 10^{-5} x + 63.75, r =$ -0.84, with x and y being the time (in months) and the HRI (no unit), respectively) models the relationship 1170 well and was therefore used to apply a first-order correction to the calculated HRI.

On 7 June 2017, a minor change in the configuration parameters for the apodisation function of IASI/Metop-A instrument had a clear impact on the 1175 calculated HRI (Figure A1, panels a, b and c). This recalibration made IASI/Metop-A more in line with IASI/Metop-B instrument. As the HRI is based on a covariance matrix from spectra of the year 2013, the HRI calculated after the recalibration for IASI/Metop-1180 A have to be adjusted, as well as the entire time series of IASI/Metop-B. Comparison of the HRI values on 6 June with the ones from 8 June 2017, revealed a temperature dependence in the offset. A satisfactory correction was obtained using a linear regression (y =1185 $-3.5 \times 10^{-3}x - 0.69$, r = 0.89, with x being the temperature of the baseline (in K) and y the median of the HRI difference between the 6 and the 8 June 2017 (no unit); see Figure A1, panel d).

Another change in the IASI Level 1C occurred on 18 May 2010 [125] and corresponds to an improvement of the spectral calibration [126]. An empirical correction was introduced as a function of latitude and day of the year. The precise offsets were computed as the difference between the median HRI calculated¹¹⁹⁵ before and after the 18 May 2010, the median being calculated in 1° latitude bins from all the HRI with an absolute longitude above 160° and an absolute value below 5. This difference was calculated for each day of the year and applied to the HRI calculated before the¹²⁰⁰ 18 May 2010 (Figure A1, panel c).

Finally, a H_2O correction similar to the one applied in the previous ANNI–NH₃ version (already described in [53]) was implemented. This does not change the behavior of the HRI over time, but helps to de-bias it (i.e. after the correction, the mean HRI over remote oceans is closer to zero). Panel e of Figure A1 presents the corrected monthly time series of HRI over three remote locations. It shows that the corrections allow us to obtain a coherent time series over the IASI operating period, centered around zero and as expected without noticeable jumps or trends.

Appendix A.2. Changes to the neural network architecture and training

The following series of changes have been introduced: 1215

- The size of the network was increased from one computational layer of 15 neurons [52] to two layers of 12 nodes.
- In terms of input variables, similarly to the treatment of VOCs [54], we now use a coarse H₂O ₁₂₂₀ profile as input to the network, as opposed to the total column that was used before. In addition, three extra temperature levels are introduced in the lower troposphere (at 0.5, 1.5 and 2.5 km above the surface). Especially in the evening, ₁₂₂₅ when thermal inversion can occur, it is expected that this change results in a more accurate retrieval. Finally, the surface temperature is kept as an input parameter to the network instead of a baseline temperature used for the VOCs. ₁₂₃₀
- The range of thermal contrast situations in the training set was artificially increased to better train the network. In addition, the total number of samples in the training set increased from 450,000 to close to 500,000 (also because now two networks are trained, as explained in the next point).
- Similarly to the previous versions of the NN retrieval of NH₃, the vertical profile of NH₃ was parameterized with a Gaussian function for the forward simulations. It is now defined as

$$NH_3(vmr) = ScalFact \cdot e^{-\left(\frac{(z-z_0)^2}{2\sigma^2}\right)}.$$
 (A.1)

1240

Two different training sets have been built:

(i) One representative for observations close to emission sources (thus with the peak

3

4

5

6

7 8

9

10

11

12

13

14

15 16

17

18

19

20 21

22

23 24 25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 57

58 59 60 1245

1250

1260

1265

1270

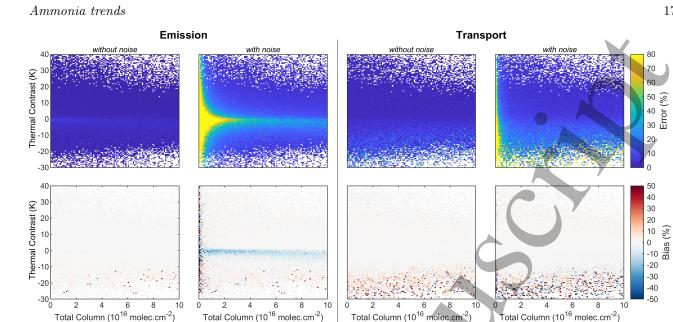


Figure A3. Performance evaluation (top: error, bottom: bias, both in %) of the emission network (left four panels) and transport network (right four panels), with and without adding noise. Note that compared to the evaluation plots in [53], the median value is shown in each grid box, which removes the effect of outliers and allows us to better assess the real performance of the network.

concentration at the surface), where z_0 was fixed to 0 km and where sigma (σ) was assigned a random number between 100 m and 6 km.

- (ii) One representative for transported NH₃, with a peak concentration above the surface. Here z_0 was assigned a random number between 0 and 20 km.
- The training performance is evaluated in Figure A3 and shows similar good performances as in the previous versions.

Appendix A.3. Changes to the input data and post-filtering

- As before, IASI L2 data is used as meteorological inputs to the network, and the resulting nearreal time (NRT) NH₃ product is called ANNI-NH₃-v3. A second reanalysis product, ANNI-NH₃-v3R, is also available. This dataset was produced with the same neural networks, but instead of the IASI L2 data, reanalysed ERA5 data was used as meteorological inputs [58]. Note that ANNI-NH₃-v2R still used the ERA-Interim data. ERA5, compared to ERA-Interim, has much improved meteorology and is available on an hourly timescale with a 0.28125° resolution.
- Observations above land are standard retrieved using the neural network for source areas (emission network), with as σ value the collocated ERA5 boundary layer height for v3R (see [52]). For the NRT product v3, we used as input for σ a monthly

climatology based on over 10 years of ERA5 data (from October 2007 to December 2018). For observations above the ocean, we assume $z_0 = 1.4$ km and $\sigma = 1.28 / \sqrt{2}$ (see again [52]).

The condition on the ratio in the post-filter (see Section 2.2 in [53]) has been returned to keep as much as possible "good observations", while 1280 removing those with a very large uncertainty. In particular, the threshold value on the ratio NH_3/HRI is now 1.5×10^{16} molec.cm⁻² instead of 1.75×10^{16} molec.cm⁻² (so slightly more measurements are retained). 1285

Appendix A.4. Example

Overall and on average, the v3 does not differ significantly from v2, although differences can be large on individual observations: for columns above 4e15 molec.cm⁻², 80% of the data agree to within 20% 1290 [62]. As an illustration, Figure A4 presents the IASI-NH₃ 10-year averaged distributions from the 4 datasets (v2.2, v2.2R, v3 and v3R). The averaged columns are slightly larger in the reanalysed versions, and higher for v3 than for v2. One notable regression in v3 is 1295 the performance over ice sheets at high latitude, which yield a larger mean NH_3 column than in v2.2. This is likely related to the fact that the current post-filter is less stringent and was tuned for the tropics and midlatitudes. 1300

Ammonia trends

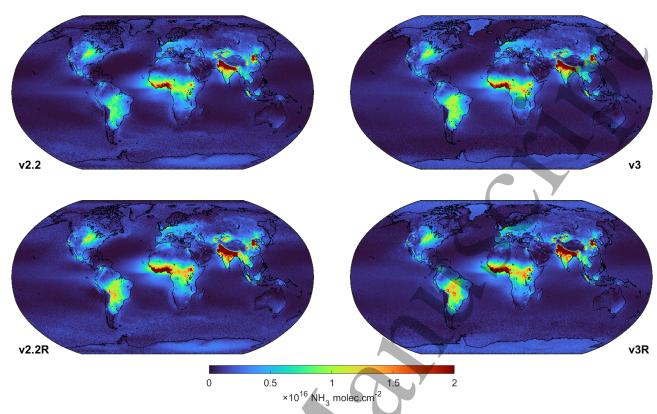


Figure A4. (top to bottom, left to right) v2.2, v2.2R-Interim, v3, v3R-ERA5 10-year averaged NH₃ total columns distributions (molec.cm⁻²) based on IASI/Metop-A measurements from 1 September 2008 to 31 December 2017 (morning overpasses) on a 0.25° \times 0.25° grid.

1	Ammonia trends
2 3 4 5	Appendix B. Figures and Tables
6 7 8	
9 10 11 12	
13 14 15 16	
17 18 19	
20 21 22 23	
24 25 26	
27 28 29 30	
31 32 33	
34 35 36 37	
38 39 40 41	
42 43 44	
45 46 47 48	
49 50 51	
52 53 54 55	
56 57 58	
59 60	

Ammonia trends

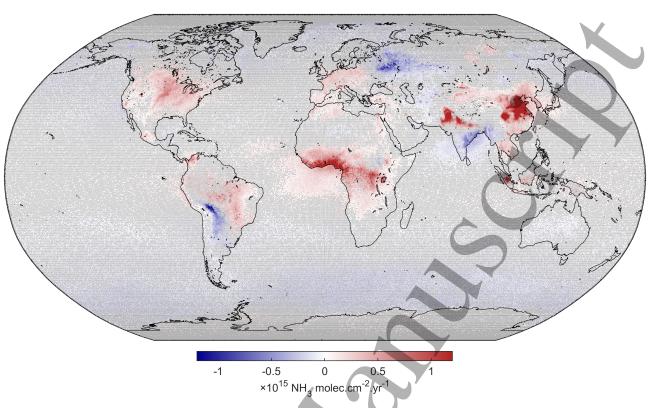


Figure B1. Temporal NH₃ trend (molec.cm⁻².yr⁻¹) calculated from IASI-NH₃ daily time-series (2008–2018) in each $0.5^{\circ} \times 0.5^{\circ}$ cell and based on the bootstrap method. Cells with non-significant trend have been stippled.

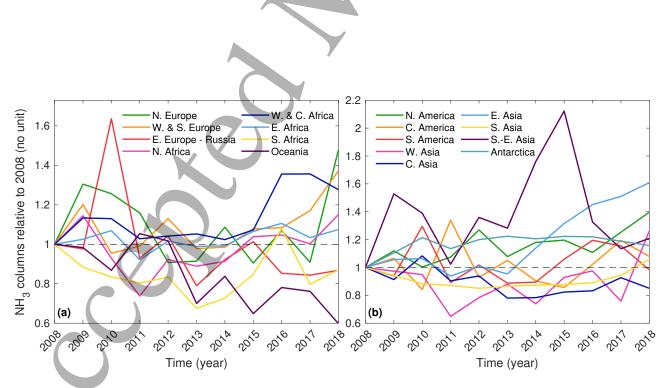


Figure B2. Yearly timeseries expressed in relative terms with respect to 2008 for the regions presented in Table 1. (a) Northern Europe, Western and southern Europe, Eastern Europe and Russia, Northern Africa, Western and central Africa, Eastern Africa, Southern Africa and Oceania. (b) Northern America, Central America, South America, Western Asia, Central Asia, East Asia, South Asia, Southeastern Asia and Antarctica.

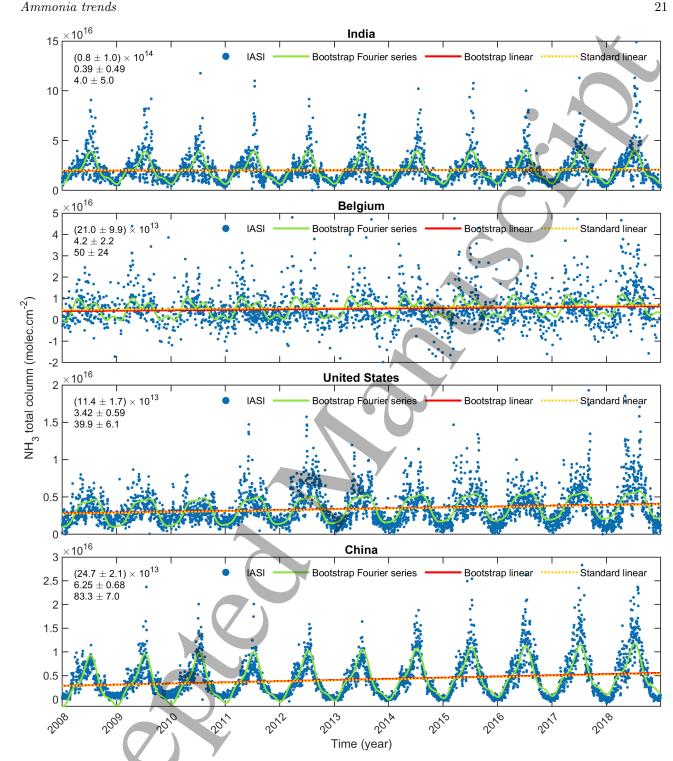
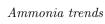



Figure B3. Bootstrap (green and red) and standard least squares linear regression (dashed yellow) fit applied on (daily and yearly, respectively) IASI-NH3 timeseries (blue, molec.cm⁻²). National absolute (molec.cm⁻².yr⁻¹) and relative (%.yr⁻¹) NH3 trend and decadal relative change (%.10yr⁻¹) based on national daily timeseries (2008–2018) measured by IASI/Metop-A are indicated as inset in the top-left corner of each subpanel.

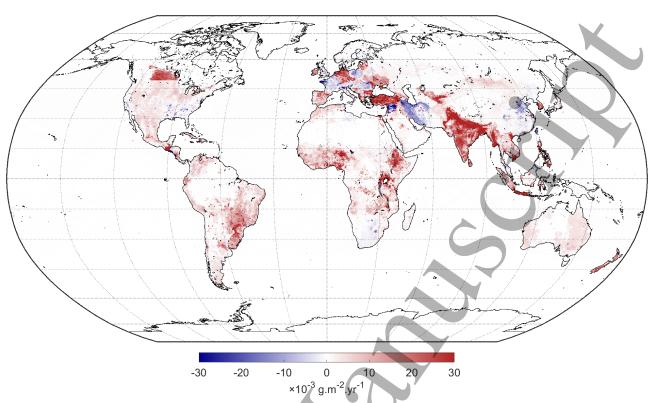
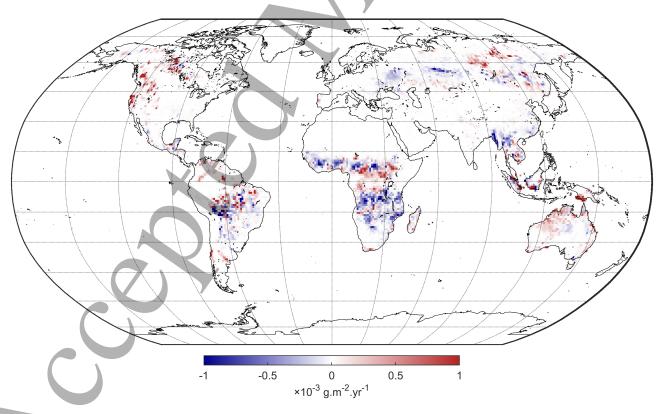
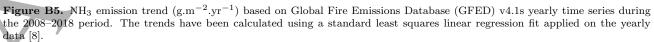




Figure B4. NH_3 emission trend (g.m⁻².yr⁻¹) based on Emission Database for Global Atmospheric Research (EDGAR) v5.0 yearly time series during the 2008–2015 period. The trends have been calculated using a standard least squares linear regression fit applied on the yearly data [6].

Ammonia trends

Alban Algeri Ango Anta Argez Arma Aust: Aust: Aust: Aust: Aust: Aust: Aust: Bahar Belgi Beliz Belgi Beliz Belgi Beliz Belgi Beliz Belgi Beliz Belgi Borni Cabo Coloo Costa Costa Costa Cypr Czech Dem, Dem, Djibo	a la retica mina enia ealia ia baijan mas ladesh is um e n n a a and Herz. ana l ria ina Faso ndi Verde podia eroon	$\begin{array}{r} \textbf{Absolute} \\ \textbf{(molec.cm}^{-2}.\textbf{yr}^{-1} \textbf{)} \\ \hline (-1.3 \pm 2.5) \times 10^{13} \\ (-2.5 \pm 5.5) \times 10^{13} \\ (0.2 \pm 1.9) \times 10^{13} \\ (0.2 \pm 1.9) \times 10^{13} \\ (9.4 \pm 2.3) \times 10^{13} \\ (21.7 \pm 3.2) \times 10^{12} \\ (-13.7 \pm 2.7) \times 10^{13} \\ (-5.6 \pm 3.7) \times 10^{13} \\ (-5.6 \pm 3.7) \times 10^{13} \\ (-31.6 \pm 3.9) \times 10^{12} \\ (3.0 \pm 5.2) \times 10^{13} \\ (-11.0 \pm 4.7) \times 10^{13} \\ (-5.5 \pm 5.6) \times 10^{13} \\ (-4.9 \pm 2.0) \times 10^{14} \\ (3.1 \pm 8.7) \times 10^{13} \\ (21.0 \pm 9.9) \times 10^{13} \\ (-9.0 \pm 8.5) \times 10^{13} \\ (5.9 \pm 1.2) \times 10^{14} \\ (-1.8 \pm 8.0) \times 10^{13} \\ (-18.1 \pm 6.7) \times 10^{13} \\ (12.1 \pm 3.1) \times 10^{13} \\ (0.6 \pm 2.1) \times 10^{13} \\ (0.9 \pm 4.2) \times 10^{13} \\ (34.6 \pm 8.4) \times 10^{13} \\ (23.4 \pm 6.4) \times 10^{13} \\ (-0.7 \pm 7.8) \times 10^{13} \\ \end{array}$	$\begin{array}{c} \textbf{Relative}\\ (\%.\textbf{yr}^{-1})\\ \hline\\ -0.46 \pm 0.85\\ -1.2 \pm 2.4\\ 0.07 \pm 0.84\\ 2.57 \pm 0.69\\ 1.03 \pm 0.16\\ -3.50 \pm 0.58\\ -1.8 \pm 1.1\\ -4.53 \pm 0.45\\ 1.0 \pm 1.7\\ -1.74 \pm 0.67\\ -14.8 \pm 6.0\\ -2.24 \pm 0.80\\ 0.9 \pm 2.3\\ 4.2 \pm 2.2\\ -4.2 \pm 2.9\\ 3.64 \pm 0.85\\ -0.6 \pm 2.3\\ -3.4 \pm 1.0\\ -0.9 \pm 2.2\\ 0.28 \pm 0.90\\ 1.94 \pm 0.53\\ 0.4 \pm 1.8\\ 3.16 \pm 0.85\\ 2.86 \pm 0.85\\ \end{array}$	Decadal $(\%.10yr^{-1})$ -4.5 ± 8.8 -12 ± 26 0.7 ± 8.7 28.9 ± 7.1 10.8 ± 1.6 -30.0 ± 6.0 17 ± 11 -37.1 ± 4.6 10 ± 18 -16.1 ± 6.9 -79 ± 80 -20.3 ± 8.3 9 ± 25 50 ± 24 -35 ± 33 43.0 ± 8.8 -6 ± 26 -29 ± 11 -8 ± 25 2.8 ± 9.4 21.2 ± 5.4 4 ± 20
Alban Algeri Ango Anta Argez Arma Aust: Aust: Aust: Aust: Aust: Aust: Aust: Bahar Belgi Beliz Belgi Beliz Belgi Beliz Belgi Beliz Belgi Beliz Belgi Borni Cabo Coloo Costa Costa Costa Cypr Czech Dem, Dem, Djibo	ia a la rotica ntina mia calia ia baijan nas ladesh is um e n n a and Herz. ana l ria ia a and Herz. ana l Verde bodia eroon	$\begin{array}{c} (-2.5\pm5.5)\times10^{13}\\ (0.2\pm1.9)\times10^{13}\\ (9.4\pm2.3)\times10^{13}\\ (21.7\pm3.2)\times10^{12}\\ (-13.7\pm2.7)\times10^{12}\\ (-13.7\pm2.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{13}\\ (-31.6\pm3.9)\times10^{12}\\ (3.0\pm5.2)\times10^{13}\\ (-11.0\pm4.7)\times10^{13}\\ (-5.5\pm5.6)\times10^{13}\\ (-4.9\pm2.0)\times10^{14}\\ (3.1\pm8.7)\times10^{13}\\ (21.0\pm9.9)\times10^{13}\\ (-9.0\pm8.5)\times10^{13}\\ (-18.1\pm6.7)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (0.9\pm4.2)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-6.7\pm7.8)\times10^{13}\end{array}$	$\begin{array}{c} -1.2 \pm 2.4 \\ 0.07 \pm 0.84 \\ 2.57 \pm 0.69 \\ 1.03 \pm 0.16 \\ -3.50 \pm 0.58 \\ -1.8 \pm 1.1 \\ -4.53 \pm 0.45 \\ 1.0 \pm 1.7 \\ -1.74 \pm 0.67 \\ -14.3 \pm 6.0 \\ -2.24 \pm 0.80 \\ 0.9 \pm 2.3 \\ 4.2 \pm 2.2 \\ -4.2 \pm 2.9 \\ 3.64 \pm 0.85 \\ -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ 0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$\begin{array}{c} -12 \pm 26 \\ 0.7 \pm 8.7 \\ 28.9 \pm 7.1 \\ 10.8 \pm 1.6 \\ -30.0 \pm 6.0 \\ -30.0 \pm 6.0 \\ -37.1 \pm 4.6 \\ 10 \pm 18 \\ -16.1 \pm 6.9 \\ -79 \pm 8.0 \\ -20.3 \pm 8.3 \\ 9 \pm 25 \\ 50 \pm 24 \\ -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Algeri Ango Anta Argo Argo Austr Austr Austr Austr Austr Austr Austr Bahar Beliz Beliz Beliz Beliz Beliz Belar Boliv Bosni Botsw Brazi Bulga Burk Buru Cabo Caml Cama Cana Cana Cana Cana Cota Cota Cota Cota Cota Cota Cota Cot	a la retica mina enia ealia ia baijan mas ladesh is um e n n a a and Herz. ana l ria ina Faso ndi Verde podia eroon	$\begin{array}{c} (0.2\pm1.9)\times10^{13}\\ (9.4\pm2.3)\times10^{13}\\ (21.7\pm3.2)\times10^{12}\\ (-13.7\pm2.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{13}\\ (-31.6\pm3.9)\times10^{12}\\ (3.0\pm5.2)\times10^{13}\\ (-11.0\pm4.7)\times10^{13}\\ (-5.5\pm5.6)\times10^{13}\\ (-4.9\pm2.0)\times10^{14}\\ (3.1\pm8.7)\times10^{13}\\ (21.0\pm9.9)\times10^{13}\\ (-9.0\pm8.5)\times10^{13}\\ (-18.1\pm6.7)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (0.9\pm4.2)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13}\end{array}$	$\begin{array}{c} 0.07\pm 0.84\\ 2.57\pm 0.69\\ 1.03\pm 0.16\\ -3.50\pm 0.58\\ -1.8\pm 1.1\\ -4.53\pm 0.45\\ 1.0\pm 1.7\\ -1.74\pm 0.67\\ -14.8\pm 6.0\\ -2.24\pm 0.80\\ 0.9\pm 2.3\\ 4.2\pm 2.2\\ -4.2\pm 2.9\\ 3.64\pm 0.85\\ -0.6\pm 2.3\\ -3.4\pm 1.0\\ 0.9\pm 2.2\\ 0.28\pm 0.90\\ 1.94\pm 0.53\\ 0.4\pm 1.8\\ 3.16\pm 0.85\\ \end{array}$	$\begin{array}{c} 0.7\pm 8.7\\ 28.9\pm 7.1\\ 10.8\pm 1.6\\ -30.0\pm 6.0\\ -30.0\pm 6.0\\ -37.1\pm 4.6\\ 10\pm 18\\ -16.1\pm 6.9\\ -79\pm 80\\ -20.3\pm 8.3\\ 9\pm 25\\ 50\pm 24\\ -35\pm 33\\ 43.0\pm 8.8\\ -6\pm 26\\ -29\pm 11\\ -8\pm 25\\ 2.8\pm 9.4\\ 21.2\pm 5.4\\ 4\pm 20\end{array}$
Ango Anta Arme Austr Austr Austr Austr Bahar Bahar Belgi Beliz Beliz Beliz Beliz Beliz Beliz Beliz Boliv Bosni Botsw Brazi Bulga Burk Buru Cabo Caml Cama Cana Cana Cana Cana Cota Chile China Cota Cota Cota Cota Cota Cota Cota Cot	la retica mina enia ralia ia baijan mas ladesh is um e n n a a and Herz. ana l ria ina Faso ndi Verde podia eroon	$\begin{array}{c} (9.4\pm2.3)\times10^{13}\\ (21.7\pm3.2)\times10^{12}\\ (-13.7\pm2.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{13}\\ (-31.6\pm3.9)\times10^{12}\\ (3.0\pm5.2)\times10^{13}\\ (-11.0\pm4.7)\times10^{13}\\ (-11.0\pm4.7)\times10^{13}\\ (-5.5\pm5.6)\times10^{13}\\ (-4.9\pm2.0)\times10^{14}\\ (3.1\pm8.7)\times10^{13}\\ (21.0\pm9.9)\times10^{13}\\ (-9.0\pm8.5)\times10^{13}\\ (5.9\pm1.2)\times10^{14}\\ (-1.8\pm8.0)\times10^{13}\\ (-1.8\pm8.0)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (34.6\pm8.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13}\end{array}$	$\begin{array}{c} 2.57 \pm 0.69 \\ 1.03 \pm 0.16 \\ -3.50 \pm 0.58 \\ -1.8 \pm 1.1 \\ -4.53 \pm 0.45 \\ 1.0 \pm 1.7 \\ -1.74 \pm 0.67 \\ -14.3 \pm 6.0 \\ -2.24 \pm 0.80 \\ 0.9 \pm 2.3 \\ 4.2 \pm 2.2 \\ -4.2 \pm 2.9 \\ 3.64 \pm 0.85 \\ -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ 0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$\begin{array}{c} 28.9 \pm 7.1 \\ 10.8 \pm 1.6 \\ -30.0 \pm 6.0 \\ -17 \pm 11 \\ -37.1 \pm 4.6 \\ 10 \pm 18 \\ -16.1 \pm 6.9 \\ -79 \pm 80 \\ -20.3 \pm 8.3 \\ 9 \pm 25 \\ 50 \pm 24 \\ -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Anta Arge Arme Austr Austr Austr Austr Austr Bahar Bahar Belgi Beliz Belgi Beliz Benir Bhuta Boliv Bosni Botsw Brazi Bulga Burk Buru Cabo Caml Cabo Caml Cabo Cama Cana Centr Chad Chile Chin Color Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Dem. Djibo	rctica ntina mia ralia ia paijan nas ladesh um e n ia a and Herz. rana l ria ria ria ina Faso ndi Verde podia eroon	$\begin{array}{c} (21.7\pm3.2)\times10^{12}\\ (-13.7\pm2.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{12}\\ (3.0\pm5.2)\times10^{13}\\ (-11.0\pm4.7)\times10^{13}\\ (-5.5\pm5.6)\times10^{13}\\ (-4.9\pm2.0)\times10^{14}\\ (3.1\pm8.7)\times10^{13}\\ (21.0\pm9.9)\times10^{13}\\ (-9.0\pm8.5)\times10^{13}\\ (5.9\pm1.2)\times10^{14}\\ (-1.8\pm8.0)\times10^{13}\\ (-1.8\pm8.0)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (0.9\pm4.2)\times10^{13}\\ (34.6\pm8.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13}\end{array}$	$\begin{array}{c} 1.03 \pm 0.16 \\ -3.50 \pm 0.58 \\ -1.8 \pm 1.1 \\ -4.53 \pm 0.45 \\ 1.0 \pm 1.7 \\ -1.74 \pm 0.67 \\ -14.8 \pm 6.0 \\ -2.24 \pm 0.80 \\ 0.9 \pm 2.3 \\ 4.2 \pm 2.2 \\ -4.2 \pm 2.9 \\ 3.64 \pm 0.85 \\ -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ 0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$\begin{array}{c} 10.8 \pm 1.6\\ -30.0 \pm 6.0\\ -17 \pm 1.1\\ -37.1 \pm 4.6\\ 10 \pm 18\\ -16.1 \pm 6.9\\ -79 \pm 80\\ -20.3 \pm 8.3\\ 9 \pm 25\\ 50 \pm 24\\ -35 \pm 33\\ 43.0 \pm 8.8\\ -6 \pm 26\\ -29 \pm 11\\ -8 \pm 25\\ 2.8 \pm 9.4\\ 21.2 \pm 5.4\\ 4 \pm 20\end{array}$
Arge: Arma Aust: Aust: Aust: Aust: Aust: Aust: Aust: Aust: Aust: Baha Bela: Beliz Beliz Beliz Beliz Boliv Bosni Botsw Brazi Boliv Bosni Botsw Brazi Bulga Bulga Buta Boliv Bosni Botsw Brazi Bulga Buta Boliv Bosni Botsw Brazi Bulga Buta Boliv Bosni Botsw Brazi Bulga Bulga Buta Boliv Cabo Caml Came Cana Cana Centr Chad Chile China Colo Costa C	ntina enia enia ealia ealia nas ladesh as um e a n ia a and Herz. erana 1 ria ria fia fia fia fia fia condi Verde coodia eroon	$\begin{array}{c} (-13.7\pm2.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{13}\\ (-5.6\pm3.7)\times10^{12}\\ (3.0\pm5.2)\times10^{13}\\ (-11.0\pm4.7)\times10^{13}\\ (-1.0\pm4.7)\times10^{13}\\ (-5.5\pm5.6)\times10^{13}\\ (-4.9\pm2.0)\times10^{14}\\ (3.1\pm8.7)\times10^{13}\\ (21.0\pm9.9)\times10^{13}\\ (-9.0\pm8.5)\times10^{13}\\ (5.9\pm1.2)\times10^{14}\\ (-1.8\pm8.0)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (34.6\pm8.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13}\end{array}$	$\begin{array}{c} -3.50\pm 0.58\\ -1.8\pm 1.1\\ -4.53\pm 0.45\\ 1.0\pm 1.7\\ -1.74\pm 0.67\\ -14.8\pm 6.0\\ -2.24\pm 0.80\\ 0.9\pm 2.3\\ 4.2\pm 2.2\\ -4.2\pm 2.9\\ 3.64\pm 0.85\\ -0.6\pm 2.3\\ -3.4\pm 1.0\\ -0.9\pm 2.2\\ 0.28\pm 0.90\\ 1.94\pm 0.53\\ 0.4\pm 1.8\\ 3.16\pm 0.85\end{array}$	$\begin{array}{c} -30.0 \pm 6.0 \\ -17 \pm 11 \\ -37.1 \pm 4.6 \\ 10 \pm 18 \\ -16.1 \pm 6.9 \\ -79 \pm 80 \\ -20.3 \pm 8.3 \\ 9 \pm 25 \\ 50 \pm 24 \\ -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Aust: Aust: Aust: Azer] Bahar Bang Belar Beliz Beliz Beliz Boliv Bosni. Botsw Brazi Bulga Burk Buru Cabo Cama Cabo Cama Cabo Cama Cabo Cama Cabo Cama Cabo Cama Cabo Cama Cabo Cama Cabo Cama Cota Cota Cota Cota Cota Cota Cota Cot	ralia ia oaijan nas ladesh is um e n a a and Herz. ana 1 ria ina Faso ndi Verde oodia eroon	$\begin{array}{c} (-31.6 \pm 3.9) \times 10^{12} \\ (3.0 \pm 5.2) \times 10^{13} \\ (-11.0 \pm 4.7) \times 10^{13} \\ (-5.5 \pm 5.6) \times 10^{13} \\ (-4.9 \pm 2.0) \times 10^{14} \\ (3.1 \pm 8.7) \times 10^{13} \\ (21.0 \pm 9.9) \times 10^{13} \\ (-9.0 \pm 8.5) \times 10^{13} \\ (5.9 \pm 1.2) \times 10^{14} \\ (-1.8 \pm 8.0) \times 10^{13} \\ (-18.1 \pm 6.7) \times 10^{13} \\ (-18.1 \pm 6.7) \times 10^{13} \\ (12.1 \pm 3.1) \times 10^{13} \\ (12.1 \pm 3.1) \times 10^{13} \\ (0.9 \pm 4.2) \times 10^{13} \\ (23.4 \pm 6.4) \times 10^{13} \\ (23.4 \pm 6.4) \times 10^{13} \\ (-0.7 \pm 7.8) \times 10^{13} \end{array}$	$\begin{array}{c} -4.53 \pm 0.45 \\ 1.0 \pm 1.7 \\ -1.74 \pm 0.67 \\ -14.8 \pm 6.0 \\ -2.24 \pm 0.80 \\ 0.9 \pm 2.3 \\ 4.2 \pm 2.2 \\ -4.2 \pm 2.9 \\ 3.64 \pm 0.85 \\ -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ -0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$\begin{array}{c} -37.1 \pm 4.6 \\ 10 \pm 18 \\ -16.1 \pm 6.9 \\ -79 \pm 80 \\ -20.3 \pm 8.3 \\ 9 \pm 25 \\ 50 \pm 24 \\ -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Austr Azerl Bahar Bang Belar Belgi Beliz Beni Bhuta Boliv Bosni Botsw Brazi Bulga Burk Buru Cabo Caml Cama Cana Cana Cana Cana Cona Cong Costa Colo Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Denm	ia paijan nas ladesh ls um e 1 n a and Herz. ana l ria ria fina Faso ndi Verde podia eroon	$\begin{array}{c} (3.0\pm5.2)\times10^{13}\\ (-11.0\pm4.7)\times10^{13}\\ (-5.5\pm5.6)\times10^{13}\\ (-4.9\pm2.0)\times10^{14}\\ (3.1\pm8.7)\times10^{13}\\ (21.0\pm9.9)\times10^{13}\\ (21.0\pm9.9)\times10^{13}\\ (-9.0\pm8.5)\times10^{13}\\ (5.9\pm1.2)\times10^{14}\\ (-1.8\pm6.7)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (1.8\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (0.9\pm4.2)\times10^{13}\\ (34.6\pm8.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13}\end{array}$	$\begin{array}{c} 1.0\pm1.7\\ -1.74\pm0.67\\ -14.8\pm6.0\\ -2.24\pm0.80\\ 0.9\pm2.3\\ 4.2\pm2.2\\ -4.2\pm2.9\\ 3.64\pm0.85\\ -0.6\pm2.3\\ -3.4\pm1.0\\ -0.9\pm2.2\\ 0.28\pm0.90\\ 1.94\pm0.53\\ 0.4\pm1.8\\ 3.16\pm0.85\end{array}$	$10 \pm 18 \\ -16.1 \pm 6.9 \\ -79 \pm 80 \\ -20.3 \pm 8.3 \\ 9 \pm 25 \\ 50 \pm 24 \\ -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \\ \end{array}$
Azerl Bahar Balar Belgi Beliz Beliz Beliz Beliz Beliz Beliz Boliv Bosni Bosni Bosni Brazi Bulga Burk Buru Cabo Caml Came Cana Cana Cana Cana Cana Cong Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Dem.	baijan nas ladesh Is um e 1 n a and Herz. a and Herz. ana I ria ina Faso ndi Verde bodia eroon	$\begin{array}{c} (-11.0 \pm 4.7) \times 10^{13} \\ (-5.5 \pm 5.6) \times 10^{13} \\ (-4.9 \pm 2.0) \times 10^{14} \\ (3.1 \pm 8.7) \times 10^{13} \\ (-1.0 \pm 9.9) \times 10^{13} \\ (-9.0 \pm 8.5) \times 10^{13} \\ (5.9 \pm 1.2) \times 10^{14} \\ (-1.8 \pm 8.0) \times 10^{13} \\ (-1.8 \pm 5.5) \times 10^{13} \\ (-1.8 \pm 5.5) \times 10^{13} \\ (0.6 \pm 2.1) \times 10^{13} \\ (12.1 \pm 3.1) \times 10^{13} \\ (0.9 \pm 4.2) \times 10^{13} \\ (34.6 \pm 8.4) \times 10^{13} \\ (23.4 \pm 6.4) \times 10^{13} \\ (-0.7 \pm 7.8) \times 10^{13} \end{array}$	$\begin{array}{c} -1.74 \pm 0.67 \\ -14.8 \pm 6.0 \\ -2.24 \pm 0.80 \\ 0.9 \pm 2.3 \\ 4.2 \pm 2.2 \\ -4.2 \pm 2.9 \\ 3.64 \pm 0.85 \\ -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ 0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$\begin{array}{c} -16.1 \pm 6.9 \\ -79 \pm 80 \\ -20.3 \pm 8.3 \\ 9 \pm 25 \\ 50 \pm 24 \\ -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Bahar Bag Belar Belgi Beliz Benii Bhuta Boliv Bosni Botsw Brazi Bulga Burk Buru Cabo Caml Came Cana Cana Centr Chad Chile Chine Color Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo	nas ladesh Is um e 1 n ia a and Herz. aaa I ria iia Faso ndi Verde oodia eroon	$\begin{array}{c} (-5.5\pm5.6)\times10^{13}\\ (-4.9\pm2.0)\times10^{14}\\ (3.1\pm8.7)\times10^{13}\\ (21.0\pm9.9)\times10^{13}\\ (-9.0\pm8.5)\times10^{13}\\ (5.9\pm1.2)\times10^{14}\\ (-1.8\pm8.0)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (34.6\pm8.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13}\end{array}$	$\begin{array}{c} -14.8 \pm 6.0 \\ -2.24 \pm 0.80 \\ 0.9 \pm 2.3 \\ 4.2 \pm 2.2 \\ -4.2 \pm 2.9 \\ 3.64 \pm 0.85 \\ -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ -0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$\begin{array}{c} -79 \pm 80 \\ -20.3 \pm 8.3 \\ 9 \pm 25 \\ 50 \pm 24 \\ -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Bang Belari Beliz Beniz Beniz Beniz Boliv Bosni Botsw Brazi Bulga Bulga Burk Buru Cabo Caml Cabo Cabo Caml Cabo Caml Cabo Caml Cabo Cabo Caml Cabo Caml Cabo Caml Cabo Cabo Caml Cabo Cabo Caml Cabo Cabo Cabo Cabo Cabo Cabo Cabo Cabo	ladesh is um e n ia a and Herz. rana l ria ria Faso ndi Verde podia eroon		$\begin{array}{c} -2.24\pm 0.80\\ 0.9\pm 2.3\\ 4.2\pm 2.2\\ -4.2\pm 2.9\\ 3.64\pm 0.85\\ -0.6\pm 2.3\\ -3.4\pm 1.0\\ -0.9\pm 2.2\\ 0.28\pm 0.90\\ 1.94\pm 0.53\\ 0.4\pm 1.8\\ 3.16\pm 0.85\end{array}$	$\begin{array}{c} -20.3 \pm 8.3 \\ 9 \pm 25 \\ 50 \pm 24 \\ -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Belari Beliz Benii Bhuta Boliv Bosni Botsw Brazi Bulga Burk Cabo Caml Cabo Caml Cabo Cama Cana Centr Chad Chile China Coloo Costa Costa Costa Costa Costa Costa Cuba Costa Dem Costa Costa Costa Dem Dem Disco Dem Dem Disco Dem Dem Disco Disco Dem	ns um e h n ia a and Herz. rana l ria ria Faso ndi Verde podia eroon	$\begin{array}{c} (3.1\pm8.7)\times10^{13}\\ (21.0\pm9.9)\times10^{13}\\ (-9.0\pm8.5)\times10^{13}\\ (-9.0\pm8.5)\times10^{13}\\ (5.9\pm1.2)\times10^{14}\\ (-1.8\pm8.0)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (-1.8\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (0.9\pm4.2)\times10^{13}\\ (34.6\pm8.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13}\end{array}$	$\begin{array}{c} 0.9 \pm 2.3 \\ 4.2 \pm 2.2 \\ -4.2 \pm 2.9 \\ 3.64 \pm 0.85 \\ -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ -0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$9 \pm 25 \\ 50 \pm 24 \\ -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \\ \end{array}$
Beliz Beniz Boliv Bosni Botsw Brazi Bulga Burk Buru Cabo Caml Cama Cana Cana Cana Cana Cana Cote Chile Chile Chile Cota Cota Cota Cota Cota Cota Cota Cota	e n n ia a and Herz. ana l ria faso ndi Verde oodia eroon	$\begin{array}{c} (-9.0 \pm 8.5) \times 10^{13} \\ (5.9 \pm 1.2) \times 10^{14} \\ (-1.8 \pm 8.0) \times 10^{13} \\ (-18.1 \pm 6.7) \times 10^{13} \\ (-1.8 \pm 5.5) \times 10^{13} \\ (0.6 \pm 2.1) \times 10^{13} \\ (12.1 \pm 3.1) \times 10^{13} \\ (0.9 \pm 4.2) \times 10^{13} \\ (23.4 \pm 6.4) \times 10^{13} \\ (-0.7 \pm 7.8) \times 10^{13} \end{array}$	$\begin{array}{c} -4.2 \pm 2.9 \\ 3.64 \pm 0.85 \\ -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ -0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$\begin{array}{c} -35 \pm 33 \\ 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Benin Bhuta Boliv Bosni Botsw Brazi Bulga Burk Buru Cabo Cama Cama Cama Cama Cama Cama Cama Cam	n in a and Herz. ana l ria ina Faso ndi Verde podia eroon	$\begin{array}{c} (5.9\pm1.2)\times10^{14}\\ (-1.8\pm8.0)\times10^{13}\\ (-1.8.\pm6.7)\times10^{13}\\ (-1.8.\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (0.9\pm4.2)\times10^{13}\\ (34.6\pm8.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13} \end{array}$	$\begin{array}{c} 3.64 \pm 0.85 \\ -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ -0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$\begin{array}{c} 43.0 \pm 8.8 \\ -6 \pm 26 \\ -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Bhuta Boliv Bosni Botsw Brazi Bulga Burk Buru Cabo Caml Came Cana Centr Chad Chile Chine Color Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo	n ia a and Herz. ana l ria ina Faso ndi Verde podia eroon	$ \begin{array}{c} (-1.8 \pm 8.0) \times 10^{13} \\ (-18.1 \pm 6.7) \times 10^{13} \\ (-1.8 \pm 5.5) \times 10^{13} \\ (0.6 \pm 2.1) \times 10^{13} \\ (12.1 \pm 3.1) \times 10^{13} \\ (0.9 \pm 4.2) \times 10^{13} \\ (34.6 \pm 8.4) \times 10^{13} \\ (23.4 \pm 6.4) \times 10^{13} \\ (-0.7 \pm 7.8) \times 10^{13} \end{array} $	$\begin{array}{c} -0.6 \pm 2.3 \\ -3.4 \pm 1.0 \\ -0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	-6 ± 26 -29 ± 11 -8 ± 25 2.8 ± 9.4 21.2 ± 5.4 4 ± 20
Boliv Bosni Botsw Brazi Bulga Burk Buru Cabo Caml Came Cana Centr Chad Chile Chine Color Cong Costa Costa Costa Costa Costa Cuba Cypr Czech Dem. Dem. Djibo	ia a and Herz. ana I ria ina Faso ndi Verde podia eroon	$\begin{array}{c} (-18.1\pm 6.7)\times 10^{13}\\ (-1.8\pm 5.5)\times 10^{13}\\ (0.6\pm 2.1)\times 10^{13}\\ (12.1\pm 3.1)\times 10^{13}\\ (0.9\pm 4.2)\times 10^{13}\\ (34.6\pm 8.4)\times 10^{13}\\ (23.4\pm 6.4)\times 10^{13}\\ (-0.7\pm 7.8)\times 10^{13} \end{array}$	$\begin{array}{c} -3.4 \pm 1.0 \\ -0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$\begin{array}{r} -29 \pm 11 \\ -8 \pm 25 \\ 2.8 \pm 9.4 \\ 21.2 \pm 5.4 \\ 4 \pm 20 \end{array}$
Bosni, Botsw Brazi Bulga Burk Cabo Cama Cama Cama Cana Centr Chad Chile China Color Costa Dem Costa Costa Costa Costa Dem Costa Costa Dem Costa Dem Costa Dem Dem Dem Dem Dem Dem Dem Dem	a and Herz. rana l ria ina Faso ndi Verde oodia eroon	$ \begin{array}{c} (-1.8\pm5.5)\times10^{13}\\ (0.6\pm2.1)\times10^{13}\\ (12.1\pm3.1)\times10^{13}\\ (0.9\pm4.2)\times10^{13}\\ (34.6\pm8.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13} \end{array} $	$\begin{array}{c} -0.9 \pm 2.2 \\ 0.28 \pm 0.90 \\ 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	-8 ± 25 2.8 ± 9.4 21.2 ± 5.4 4 ± 20
Brazi Bulga Burk Buru Cabo Cami Cama Cama Cama Cama Cama Cama Cama	l ria ina Faso ndi Verde podia eroon	$\begin{array}{c} (12.1\pm3.1)\times10^{13}\\ (0.9\pm4.2)\times10^{13}\\ (34.6\pm8.4)\times10^{13}\\ (23.4\pm6.4)\times10^{13}\\ (-0.7\pm7.8)\times10^{13} \end{array}$	$\begin{array}{c} 1.94 \pm 0.53 \\ 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	$21.2 \pm 5.4 \\ 4 \pm 20$
Bulga Burk Buru Cabo Cami Cama Cana Centr Chad Chile Chin Color Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo	ria ina Faso ndi Verde podia eroon	$\begin{array}{c} (0.9 \pm 4.2) \times 10^{13} \\ (34.6 \pm 8.4) \times 10^{13} \\ (23.4 \pm 6.4) \times 10^{13} \\ (-0.7 \pm 7.8) \times 10^{13} \end{array}$	$\begin{array}{c} 0.4 \pm 1.8 \\ 3.16 \pm 0.85 \end{array}$	4 ± 20
Burk Buru Cabo Caml Cama Cana Centr Chad Chile Chin Colog Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo	ina Faso ndi Verde podia eroon	$(34.6 \pm 8.4) imes 10^{13} \ (23.4 \pm 6.4) imes 10^{13} \ (-0.7 \pm 7.8) imes 10^{13}$	3.16 ± 0.85	
Buru Cabo Caml Cama Cana Centr Chad Chile Chim Color Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo	ndi Verde oodia eroon	$\begin{array}{c} (23.4 \pm 6.4) \times 10^{13} \\ (-0.7 \pm 7.8) \times 10^{13} \end{array}$		36.5 ± 8.8
Caml Cama Cana Centr Chad Chile China Color Cong Costa Dem. Dem. Dem. Dem. Discor Dem. Dem. Dem. Dem. Dem. Dem. Dem. Dem.	oodia eroon	$(-0.7 \pm 7.8) \times 10^{13}$		32.6 ± 8.9
Came Cana Centr Chad Chile China Color Costa Dosta Costa Dosta Costa Dosta Costa Dosta Dosta Dosta Dosta Dosta Costa Dosta Dosta Dosta Costa Dosta Dosta Dosta Costa Dosta Dosta Dosta Costa Dosta Dosta Dosta Costa Dosta Costa Dosta Costa Dosta Costa Dosta Costa Costa Costa Dosta Cos	eroon		-0.2 ± 2.0	-2 ± 22
Cana Centr Chad Chile Color Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo		$(17.3 \pm 4.8) \times 10^{13}$	4.2 ± 1.3	51 ± 14
Centr Chad Chile Chin Color Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo	1.	$\begin{array}{c} (36.3 \pm 7.8) \times 10^{13} \\ (2.9 \pm 1.5) \times 10^{13} \end{array}$	3.54 ± 0.87	41.6 ± 9.0
Chad Chile Chim Color Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo	da al African Rep.	$(2.9 \pm 1.5) \times 10^{-13}$ $(4.7 \pm 6.4) \times 10^{13}$	$1.53 \pm 0.83 \\ 0.47 \pm 0.64$	16.4 ± 8.6 4.8 ± 6.5
China Color Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo		$(10.4 \pm 4.1) \times 10^{13}$	2.08 ± 0.86	22.8 ± 9.0
Color Costa Costa Cote Croat Cuba Cypr Czech Dem. Dem. Dem. Djibo		$(-60.7 \pm 8.4) \times 10^{12}$	-11.35 ± 0.93	-70.0 ± 9.7
Cong Costa Cote Croat Cuba Cypr Czech Dem. Dem. Dem. Djibo		$(24.7 \pm 2.1) \times 10^{13}$	6.25 ± 0.68	83.3 ± 7.0
Costa Cote Croat Cuba Cypr Czech Dem. Dem. Djibo		$(10.7 \pm 4.0) imes 10^{13} \ (2.9 \pm 1.0) imes 10^{14}$	2.8 ± 1.1 3.8 ± 1.4	$32 \pm 12 \\ 45 \pm 15$
Croat Cuba Cypr Czech Dem. Dem. Djibo		$(2.8 \pm 4.5) \times 10^{13}$ $(2.8 \pm 4.5) \times 10^{13}$	2.6 ± 4.0	40 ± 10 30 ± 47
Cuba Cypr Czech Dem Denn Djibo	d'Ivoire	$(42.5 \pm 9.2) \times 10^{13}$	2.83 ± 0.68	32.2 ± 7.0
Cypr Czech Dem Denn Djibo		$(4.5 \pm 5.5) \times 10^{13}$	1.4 ± 1.7	15 ± 18
Czech Dem Denn Djibo		$(-5.2 \pm 2.0) \times 10^{13}$ $(12.2 \pm 5.7) \times 10^{13}$	-4.8 ± 1.4	-39 ± 15
Dem . Denn Djibo		$(12.2 \pm 5.7) \times 10$ $(3.7 \pm 6.2) \times 10^{13}$	$3.6 \pm 1.9 \\ 1.1 \pm 1.8$	$43 \pm 20 \\ 12 \pm 20$
Djibo	Rep. Congo	$(29.4 \pm 5.8) \times 10^{13}$	3.16 ± 0.70	36.5 ± 7.3
0		$(11.5 \pm 7.7) \times 10^{13}$	3.9 ± 2.7	46 ± 31
Domi		$(0.2 \pm 4.0) \times 10^{13}$	0.1 ± 1.6	1 ± 17
Ecua	nican Rep.	$(0.9 \pm 2.8) \times 10^{13}$ $(9.4 \pm 3.7) \times 10^{13}$	$\begin{array}{c} 0.8 \pm 2.3 \\ 3.9 \pm 1.7 \end{array}$	$8 \pm 25 \\ 47 \pm 18$
Egyp		$(9.4 \pm 3.7) \times 10$ $(5.8 \pm 1.9) \times 10^{13}$	3.9 ± 1.7 2.39 ± 0.82	47 ± 10 26.6 ± 8.6
El Sal		$(3.7 \pm 4.5) \times 10^{13}$	1.5 ± 1.8	16 ± 19
Eritre	a	$(0.7 \pm 2.9) \times 10^{13}$	0.3 ± 1.1	3 ± 11
Eston		$(-3.0 \pm 7.7) \times 10^{13}$	-1.9 ± 3.8	-18 ± 45
Eswa Ethiop		$(-5.8 \pm 4.9) \times 10^{13}$ $(1.8 \pm 2.0) \times 10^{13}$	$-3.3 \pm 2.2 \\ 0.34 \pm 0.38$	-29 ± 25 3.5 ± 3.9
Fiji		$(1.8 \pm 2.0) \times 10^{-1}$ $(-3.1 \pm 6.1) \times 10^{13}$	0.34 ± 0.38 -2.9 ± 4.2	3.5 ± 3.9 -25 ± 51
Finla	nd	$(-5.8 \pm 4.1) \times 10^{13}$	-4.5 ± 2.3	-37 ± 26
Franc		$(7.4 \pm 3.4) \times 10^{13}$	2.1 ± 1.0	24 ± 11
Gabo		$(29.3 \pm 9.7) \times 10^{13}$ $(1.1 \pm 1.3) \times 10^{14}$	4.6 ± 1.7	56 ± 19
Gamb Georg		$(1.1 \pm 1.3) \times 10$ $(-0.9 \pm 4.4) \times 10^{13}$	1.0 ± 1.1 -0.3 ± 1.3	$10 \pm 12 \\ -3 \pm 14$
Gern		$(0.0 \pm 0.1) \times 10^{13}$ $(8.9 \pm 5.1) \times 10^{13}$	2.1 ± 1.2	23 ± 13
Ghan	a	$(5.6 \pm 1.2) \times 10^{14}$	3.28 ± 0.77	38.1 ± 8.0
Greec		$(-2.6 \pm 3.0) \times 10^{13}$	-1.5 ± 1.5	-14 ± 16
	nland	$(-23.0 \pm 7.3) \times 10^{12}$ $(-7.9 \pm 4.5) \times 10^{13}$	-1.11 ± 0.33	-10.5 ± 3.3 25 ± 14
Guat	emala ea	$(-7.9 \pm 4.5) \times 10^{13}$ $(23.8 \pm 7.5) \times 10^{13}$	-2.8 ± 1.3 1.96 ± 0.65	-25 ± 14 21.4 ± 6.7
	a-Bissau	$(-0.1 \pm 1.5) \times 10^{14}$	-0.1 ± 1.1	-1 ± 12
Guyai		$(-0.8 \pm 4.4) \times 10^{13}$	-0.4 ± 2.1	-4 ± 23
Haiti		$(1.5 \pm 3.3) \times 10^{13}$	0.9 ± 1.9	9 ± 21
Hond Hung		$(-5.5 \pm 4.0) \times 10^{13}$ $(7.5 \pm 5.4) \times 10^{13}$	$-3.3 \pm 1.9 \\ 2.0 \pm 1.5$	-28 ± 20 22 ± 16

		24
$(0.8 \pm 1.0) \times 10^{14}$	0.39 ± 0.49	4.0 ± 5.0
		30 ± 15
		-31.5 ± 9.3 28 ± 23
		4 ± 37
$(17.4 \pm 4.9) \times 10^{13}$	4.6 ± 1.5	56 ± 16
	2.26 ± 0.82	25.0 ± 8.5
	-1.6 ± 3.8	-15 ± 45
		110 ± 38
		50 ± 19 -16.2 ± 7.3
		12.0 ± 5.3
$(-1.3 \pm 6.3) \times 10^{13}$	-0.6 ± 2.7	-6 ± 30
$(6.7 \pm 7.2) \times 10^{13}$	5.9 ± 6.2	77 ± 83
$(-4.8 \pm 3.9) \times 10^{13}$		-9.3 ± 7.6
$(2.1 \pm 5.4) \times 10^{-1}$ $(-1.5 \pm 7.9) \times 10^{13}$		$5 \pm 13 \\ -7 \pm 36$
		44 ± 28
$(-0.7 \pm 2.4) \times 10^{13}$	-1.4 ± 3.6	-13 ± 42
	2.7 ± 1.1	30 ± 12
		-7 ± 10 17 ± 30
		$17 \pm 30 \\ -33 \pm 28$
		-6.3 ± 8.4
$(5.2 \pm 3.1) \times 10^{13}$	1.42 ± 0.88	15.2 ± 9.1
$(1.7 \pm 6.1) \times 10^{13}$	0.6 ± 1.9	6 ± 21
$(6.7 \pm 4.5) \times 10^{13}$		13.6 ± 9.0
$(-0.8 \pm 3.9) \times 10^{-5}$ $(2.5 \pm 1.5) \times 10^{13}$		-2 ± 12 8.4 ± 5.2
$(4.1 \pm 5.5) \times 10^{13}$	1.2 ± 1.6	13 ± 17
$(-4.9 \pm 1.6) \times 10^{13}$	-3.22 ± 0.86	-27.9 ± 9.0
$(-6.7 \pm 8.5) \times 10^{13}$	-3.9 ± 3.5	-32 ± 41
		5.3 ± 8.3 2.1 ± 8.7
		2.1 ± 8.7 -27.7 ± 7.3
$(20.2 \pm 5.8) \times 10^{13}$	5.7 ± 1.9	74 ± 21
$(-0.2 \pm 1.6) \times 10^{13}$	-0.10 ± 0.85	-0.9 ± 8.8
		-12.0 ± 9.2
		$42 \pm 21 \\ -77 \pm 70$
$(-6.5 \pm 2.4) \times 10^{13}$	-4.7 ± 1.4	-38 ± 14
$(-0.3 \pm 4.2) \times 10^{13}$	-0.2 ± 2.5	-2 ± 28
	2.4 ± 1.1	26 ± 11
		$\begin{array}{c} 39.4 \pm 6.3 \\ 295 \pm 57 \end{array}$
$(-0.3 \pm 2.0) \times 10^{13}$	-0.2 ± 1.2	-2 ± 13
$(-5.9 \pm 4.0) \times 10^{13}$	-7.3 ± 3.1	-53 ± 36
$(3.8 \pm 1.5) \times 10^{14}$	1.86 ± 0.78	20.2 ± 8.1
$(25.0 \pm 7.0) \times 10^{13}$ $(10.0 \pm 6.0) \times 10^{13}$		60 ± 17 67 ± 40
$(10.0 \pm 6.0) \times 10^{-5}$ $(1.0 \pm 3.7) \times 10^{13}$		$ \begin{array}{r} 67 \pm 40 \\ 6 \pm 24 \end{array} $
$(-2.8 \pm 1.3) \times 10^{14}$	-2.8 ± 1.1	0 ± 24 -25 ± 12
$(7.3 \pm 2.1) \times 10^{13}$	2.44 ± 0.75	27.2 ± 7.8
$(2.7 \pm 3.2) \times 10^{13}$	1.2 ± 1.4	13 ± 15
$(8.6 \pm 4.9) \times 10^{13}$		27 ± 15 22 ± 21
$(0.4 \pm 4.8) \times 10^{-5}$ $(0.7 \pm 5.7) \times 10^{13}$		$23 \pm 21 \\ 8 \pm 66$
$(0.4 \pm 4.2) \times 10^{13}$	0.1 ± 1.3	1 ± 13
$(-7.1 \pm 1.7) \times 10^{13}$	-4.11 ± 0.80	-34.2 ± 8.3
$(32.4 \pm 6.0) \times 10^{13}$	4.04 ± 0.86	48.6 ± 9.0
$(-8.4 \pm 5.5) \times 10^{13}$		-7.4 ± 4.8
$(0.2 \pm 1.8) \times 10^{-5}$ $(9.5 \pm 8.7) \times 10^{13}$		$5 \pm 39 \\ 9.9 \pm 9.1$
$(1.6 \pm 5.1) \times 10^{13}$	0.55 ± 0.61 0.5 ± 1.5	5.5 ± 0.1 5 ± 16
$(2.3 \pm 1.5) \times 10^{14}$	1.40 ± 0.92	14.9 ± 9.6
$(6.2 \pm 5.9) \times 10^{13}$	2.1 ± 2.0	23 ± 22
$(7.9 \pm 7.9) \times 10^{13}$ $(0.1 \pm 0.0) \times 10^{13}$		$\begin{array}{c} 27 \pm 27 \\ 1 \pm 83 \end{array}$
$(0.1 \pm 9.9) \times 10^{-1}$ $(-4.6 \pm 1.8) \times 10^{13}$		1 ± 83 -20.4 ± 8.1
$(-5.2 \pm 2.4) \times 10^{13}$	-2.38 ± 0.93	-20.4 ± 9.7
$(-7.3 \pm 8.0) \times 10^{12}$	-0.70 ± 0.72	-6.8 ± 7.5
$(48.1 \pm 7.0) \times 10^{13}$	14.6 ± 3.6	291 ± 42
$(7.6 \pm 2.8) \times 10^{13}$ $(-12.8 \pm 5.2) \times 10^{13}$		22.9 ± 8.5 -37 + 15
$(-12.8 \pm 0.2) \times 10^{-5}$		-37 ± 15
$(6.9 \pm 3.2) \times 10^{10}$	\underline{Z} , \underline{Z} \pm 1.1	25 ± 11
$(6.9 \pm 3.2) \times 10^{13}$ $(1.2 \pm 5.1) \times 10^{13}$	2.2 ± 1.1 0.5 ± 2.1	$\begin{array}{c} 25 \pm 11 \\ 6 \pm 23 \end{array}$
$\begin{array}{c} (6.9 \pm 3.2) \times 10^{13} \\ (1.2 \pm 5.1) \times 10^{13} \\ (-0.0 \pm 2.7) \times 10^{13} \end{array}$		
	$ \begin{array}{c} (10.1 \pm 5.1) \times 10^{13} \\ (4.1 \pm 1.2) \times 10^{13} \\ (4.5 \pm 3.7) \times 10^{13} \\ (0.6 \pm 5.5) \times 10^{13} \\ (17.4 \pm 4.9) \times 10^{13} \\ (9.5 \pm 3.2) \times 10^{13} \\ (-1.8 \pm 5.6) \times 10^{13} \\ (8.0 \pm 3.1) \times 10^{13} \\ (-4.1 \pm 1.9) \times 10^{13} \\ (-4.8 \pm 3.9) \times 10^{13} \\ (-1.5 \pm 7.9) \times 10^{13} \\ (-2.5 \pm 4.6) \times 10^{13} \\ (-2.5 \pm 4.6) \times 10^{13} \\ (-2.5 \pm 4.6) \times 10^{13} \\ (-1.0 \pm 1.4) \times 10^{13} \\ (-5.5 \pm 4.6) \times 10^{13} \\ (-1.0 \pm 1.4) \times 10^{13} \\ (-5.5 \pm 4.6) \times 10^{13} \\ (-6.7 \pm 8.5) \times 10^{13} \\ (-1.4 \pm 1.1) \times 10^{14} \\ (22.9 \pm 5.8) \times 10^{13} \\ (-2.2 \pm 1.6) \times 10^{13} \\ (-0.3 \pm 2.0) \times 10^{13} \\ (-0.3 \pm 2.0) \times 10^{13} \\ (-3.3 \pm 2.0) \times 10^{13} \\ (-3.4 \pm 2.0) \times 10^{13} \\ (-3.4 \pm 2.0) \times 10^{13} \\ (10.1 \pm 4.4) \times 10^{13} \\ (-3.4 \pm 2.0) \times 10^{13} \\ (-7.1 \pm 1.7) \times 10^{13} \\ (-7.1 \pm 1.7) \times 10^{13} \\ (-7.4 \pm 8.5) \times 10^$	

1	Ammonia trends			
י ר				
2	Switzerland	$(4.9 \pm 5.5) \times 10^{13}$	1.7 ± 1.8	18 ± 20
3	Syria	$(3.9 \pm 3.2) \times 10^{13}$	1.6 ± 1.3	17 ± 14
4	Taiwan	$(20.8 \pm 7.0) \times 10^{13}$	4.0 ± 1.5	49 ± 16
	Tajikistan	$(-12.9 \pm 4.0) \times 10^{13}$	-2.74 ± 0.73	-24.3 ± 7.6
5	Tanzania	$(11.2 \pm 3.1) \times 10^{13}$	1.98 ± 0.59	21.7 ± 6.1
6	Thailand	$(12.3 \pm 4.5) \times 10^{13}$	2.15 ± 0.84	23.8 ± 8.7
7	Timor-Leste	$(-1.3 \pm 5.1) \times 10^{13}$	-1.0 ± 3.3	-10 ± 38
	Togo	$(5.9 \pm 1.3) \times 10^{14}$	3.41 ± 0.87	39.9 ± 9.1
8	Tunisia	$(7.6 \pm 3.8) \times 10^{13}$	1.74 ± 0.90	18.8 ± 9.4
9	Turkey	$(6.0 \pm 1.4) \times 10^{13}$	3.31 ± 0.89	38.5 ± 9.3
10	Turkmenistan	$(-11.0 \pm 3.7) \times 10^{13}$	-2.55 ± 0.74	-22.8 ± 7.6
	Uganda	$(21.2 \pm 4.5) \times 10^{13}$	2.18 ± 0.50	24.0 ± 5.1
11	Ukraine United Arab Emirates	$(-3.6 \pm 4.2) \times 10^{13}$	-1.2 ± 1.2	-11 ± 13
12	United Kingdom	$\begin{array}{l} (-4.9 \pm 4.6) \times 10^{13} \\ (6.1 \pm 4.5) \times 10^{13} \end{array}$	-6.5 ± 3.9 2.9 ± 2.2	$-49 \pm 46 \\ 33 \pm 24$
13	United States of America	$(0.1 \pm 4.5) \times 10^{10}$ $(11.4 \pm 1.7) \times 10^{13}$	2.9 ± 2.2 3.42 ± 0.59	33 ± 24 39.9 ± 6.1
	Uruguay	$(11.4 \pm 1.7) \times 10$ $(-8.0 \pm 7.3) \times 10^{13}$	3.42 ± 0.59 -1.7 ± 1.4	-16 ± 14
14	Uzbekistan	$(-5.4 \pm 6.0) \times 10^{13}$	-0.96 ± 0.98	-10 ± 14 -9 ± 10
15	Vanuatu	$(6.9 \pm 9.5) \times 10^{13}$		$(2.3 \pm 3.1) \times 10^2$
16	Venezuela	$(1.2 \pm 2.6) \times 10^{13}$	0.42 ± 0.86	4.3 ± 9.0
	Vietnam	$(17.9 \pm 4.3) \times 10^{13}$	4.4 ± 1.2	54 ± 13
17	W. Sahara	$(0.5 \pm 3.7) \times 10^{13}$	0.5 ± 3.5	6 ± 41
18	Yemen	$(-2.0 \pm 2.1) \times 10^{13}$	-2.8 ± 2.3	-25 ± 26
19	Zambia	$(7.9 \pm 2.2) \times 10^{13}$	2.20 ± 0.66	24.3 ± 6.8
	Zimbabwe	$(1.4 \pm 2.7) \times 10^{13}$	0.51 ± 0.99	5 ± 10
20				