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Abstract 

Decompression melting of the upper mantle produces magmas and volcanism at the 
Earth‘s surface. Experimental petrology demonstrates that the presence of CO2 and H2O 

enhances peridotite melting anywhere within the upper mantle down to approximately 200-
300 km depth. The presence of mantle melts with compositions ranging from carbonate-rich 

to silicate-rich unavoidably affects the geophysical signals retrieved from Earth‘s mantle. 
Geochemical investigations of erupted intraplate magmas along with geophysical surveys 
allow for constraining the nature and volume of primary melts, and a sound formalism is 

required to integrate these diverse datasets into a realistic model for the upper mantle 
including melting processes. Here, we introduce MAGLAB, a model developed to calculate 

the composition and volume fraction of melts in the upper mantle, together with the 
corresponding electrical conductivity of partially molten mantle peridotites at realistic 
pressure-temperature conditions and volatile contents. We use MAGLAB to show how the 

compositions of intraplate magmas relate to variations in lithosphere thickness. Progressive 
partial melting of a homogeneous peridotitic mantle source can in theory create the diversity 

of compositions observed among the spectrum of intraplate magma types, with kimberlite 
melts beneath thick continental shields, alkaline magmas such as melilitite, nephelinite and 
basanite beneath thinner continents and relatively old plus thick oceanic lithospheres, and 

‗regular‘ basalts beneath the youngest and thinnest oceanic lithospheres as well as beneath 
significantly thinned continental lithospheres. MAGLAB calculations support recent 

experimental findings about the role of H2O in the upper mantle on producing primary 
kimberlitic melts in addition to CO2. We demonstrate the robustness of MAGLAB 
calculations by reproducing the compositions of erupted melts as well as associated mantle 

electrical conductivities beneath the Society hotspot in the Pacific Ocean. A comparison of 
our simulations with magnetotelluric surveys at various oceanic settings shows that the 
heterogeneities in electrical conductivity of Earth‘s upper mantle are related to variations in 

volatile content via the presence of small (generally <<1 wt%) and heterogeneously 
distributed fractions of CO2-H2O-bearing melts.   

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

1. Introduction  

The flux of heat from Earth‘s interior generates upwelling limbs of convective cells, 

such as passive upwelling beneath mid-ocean ridges, or plumes occurring beneath hotspots 
(Ballmer et al., 2011; French and Romanowicz, 2015). Within these convective cells, the 

upper mantle is expected to produce partial melts of variable fractions and compositions. 
Mantle melting is enhanced by the presence of the volatiles CO2 and H2O. The upper mantle 
volatile contents average around 140 wt ppm CO2 and 240 wt ppm H2O (Le Voyer et al., 

2017), but are highly variable with concentrations ranging from some wt ppm to many 
hundreds of wt ppm as reported in geochemical surveys (Marty, 2012; Le Voyer et al., 2017; 

Hirschmann, 2018; Hauri et al. 2019; Shimizu et al., 2019). Experimental petrology provides 
numerous constraints on partial melting properties of peridotite in presence of volatiles within 
the pressure-temperature-composition conditions prevailing in Earth‘s upper mantle. These 

studies emphasize the large effect of CO2 and H2O on mantle melting relations, where these 
volatiles drastically lower the solidus of peridotite to <1000°C (Wallace and Green, 1988; 

Dasgupta and Hirschmann, 2006; Hammouda and Keshav, 2015; Gardés et al., 2020). CO2-
H2O-assisted melting is thus predicted for most of the upper mantle as long as the oxidized 
form of carbon (i.e. carbonate) is stable. The depth at which the transition from oxidized to 

reduced carbon occurs is debated, with options ranging from ~150 km (Stagno et al., 2013) to 
~250 km (Rohrbach and Schmidt, 2011). More recent studies (Gaillard et al., 2015; Eguchi 

and Dasgupta, 2018; Moussallam et al., 2019) argue that the asthenosphere may be much 
more oxidized than previously deduced from depleted peridotite samples of the deep cratonic 
lithosphere (Stagno et al., 2013). Such deep cratonic mantle lithosphere may also have 

experienced various stages of metasomatism and oxidation over time by infiltrating 
carbonate-bearing hydrous silicate melts or by the incorporation of subducted carbonate-

bearing crustal material (Yaxley et al., 2017). The presence and role of volatile-bearing melts 
in both oceanic and continental upper mantle have been emphasized based on petrological 
investigations and geophysical observations. Geochemical studies have deduced their 

existence by observing characteristic metasomatic overprints of rocks as well as the presence 
of fluid/melt-derived inclusions in mantle minerals (Bodinier et al., 1990; Grégoire et al., 

2003; Klein-BenDavid et al., 2007; O’Reilly and Griffin, 2010; Weiss et al., 2011; Tumiati et 
al., 2013; Pilet et al., 2016). Seismic and magnetotelluric surveys have reported geophysical 
anomalies in the upper mantle, such as reduced seismic shear-wave velocities in the Low-

Velocity Zone (LVZ) located between ~50 and 150-200 km depth, and high electrical 
conductivities at similar depths, both enhanced by the presence of low volumes of melt 

potentially containing appreciable amounts of CO2 and H2O (Eggler, 1976; Gaillard et al., 
2008; Kawakatsu et al., 2009; Fischer et al., 2010; Hirschmann, 2010; Ni et al., 2011; 
Schmerr, 2012; Naif et al., 2013; Sifré et al., 2014; Chantel et al., 2016; Holtzmann, 2016; 

Aulbach et al., 2017; Katsura et al., 2017; Kawakatsu and Utada, 2017; Tharimena et al., 
2017a,b; Soltanmohammadi et al., 2018; Selway and O’Donnell, 2019; Selway et al., 2019; 

Rychert et al., 2020; Gardés et al., 2020). Interestingly, reworking, rejuvenation and ultimate 
loss of deep cratonic lithosphere sections (e.g., North Atlantic craton, North China craton, 
Tanzania craton) have been suggested to be an expression of intense metasomatic weakening 

due to repeated passage of volatile-bearing melts (Tappe et al., 2007; Foley, 2008; Aulbach et 
al., 2017; Liu et al., 2019). 

A wide range of magmatic liquids is stable in the upper mantle, ranging from 
carbonatites with low silica content at high pressures (i.e., great depths), to basanites-basalts 
with relatively high silica content at low pressures (Gudfinnsson and Presnall, 2005; 

Dasgupta et al., 2013; Massuyeau et al., 2015). Indeed, near-solidus melts of peridotite in the 
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presence of CO2 and H2O are typically SiO2-poor (Foley et al., 2009), and decreasing 
pressure and increasing temperature increases the SiO2 content of peridotite-derived melts 
(Gudfinnsson and Presnall, 2005; Dasgupta et al., 2007, 2013; Massuyeau et al., 2015). The 

compositional diversity of mantle-derived melts is evidenced by the variability of intraplate 
magma compositions observed at the Earth‘s surface (Fig. 1). Some petrogenetic links have 

been established between the compositional diversity of mantle-derived magmas from oceanic 
(e.g., ocean island basalts (OIB)) to continental (e.g., kimberlite) intraplate settings and 
differences in the pressure of melt extraction from a compositionally similar upwelling mantle 

source (le Roex, 1986; Ringwood et al., 1992; Gudfinnsson and Presnall, 2005; Tappe et al., 
2013, 2018). On the other hand, geochemical studies have defined empirical relationships 

between the composition of basalts and the depth of melt extraction, i.e. the mean extent of 
melting, which is strongly controlled by lithospheric thickness (Ellam, 1992; Haase, 1996; 
Prytulak and Elliott, 2007; Humphreys and Niu, 2009; Dasgupta et al., 2010; Niu et al., 

2011; Davies et al., 2015; Niu and Green, 2018; Guo et al., 2020). Therefore, first-order 
variability in primitive basaltic melt compositions appears to relate to lithospheric thickness. 

However, a unifying model relating melt compositions in diverse tectonic settings, such as 
oceanic and continental intraplate magmatism, to lithospheric thickness is still lacking. Such a 
model requires describing chemical and physical properties of mantle melts by interpolating 

and extrapolating experimental data and comparing them with petrological and geophysical 
datasets for the terrestrial upper mantle. However, models calculating the compositions and 

fractions of melts equilibrated with peridotite in the presence of CO2±H2O are sparse 
(Dasgupta et al., 2007, 2013; Hirschmann, 2010; Ghosh et al., 2014; Ghiorso and Gualda, 
2015; Massuyeau et al., 2015). Importantly, none of the existing models covers the whole 

compositional spectrum of mantle-derived melts equilibrated with peridotite within a large 
pressure-temperature (P-T) window, from carbonatitic to basaltic compositions, or allows for 
the calculation of both (i) composition and fraction of melt and (ii) corresponding geophysical 

response of partially molten mantle peridotite. 

Here, we report on a new modeling platform, called MAGLAB (http://calcul-

isto.cnrs-orleans.fr/apps/maglab/), which allows within a single framework to calculate (i) 
the compositions and fractions of melts equilibrated in the upper mantle as a function of its 
volatile content (CO2 and H2O), and (ii) corresponding electrical conductivities of partially 

molten peridotite under upper mantle conditions. MAGLAB covers most of the pressure-
temperature-volatile conditions of the terrestrial upper mantle and reproduces the full 

spectrum of intraplate mantle-derived melts within their domain of stability, i.e. from 
carbonatitic and kimberlitic through to basanitic and basaltic compositions. This approach 
allows for simulating electrical conductivity profiles within a constrained petrological 

framework under relevant mantle conditions. The first part of this contribution presents the 
structure, formulations, and applicability of MAGLAB (Sections 2 and 3). Melt compositions, 

melt fractions and electrical conductivities of partially molten peridotite as a function of 
geodynamic setting are highlighted in Section 4. Based on our results, we demonstrate in 
Section 5, by using melt SiO2 content as a first-order discriminant, that lithosphere thickness 

controls primary melt compositions. A diversity of intraplate magma compositions can be 
produced as a function of the depth of the lithosphere-asthenosphere boundary (LAB) even if 

only a single volume of upwelling mantle material is involved. The validity of MAGLAB 
model outputs for both melt fractions and compositions along with geophysical responses is 
then illustrated for a well-constrained intraplate setting, the Society hotspot in the Pacific 

Ocean. Section 5 furthermore shows the excellent match between the range of electrical 
conductivity simulated by MAGLAB for the Earth‘s upper mantle with realistic 

heterogeneities in CO2-H2O content and the heterogeneities in electrical conductivity of the 
oceanic upper mantle reported from magnetotelluric surveys.  
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2. The MAGLAB model 

MAGLAB aims at calculating the composition and the fraction of melt in chemical 

equilibrium with mantle peridotite at a given pressure, temperature and bulk rock CO2 and 
H2O content. As detailed in following sections, MAGLAB calculates melt compositions in the 

system SiO2-TiO2-Al2O3-FeO-CaO-MgO-Na2O-K2O-H2O-CO2, based on the silica activity of 
the melt (i.e., how ideal is the mixing between silica and other melt components). Silica 
activity is calculated at given P-T conditions and olivine-orthopyroxene compositions, and 

three compositional end-members (silicate, carbonate, H2O) are mixed in order to determine 
the melt composition that reproduces this activity best. At a given bulk rock CO2 and H2O 

content, the melt fraction is obtained by mass balance using the CO2 and H2O concentrations 
of the melt and volatile partitioning between melt and peridotite. Once melt composition and 
melt fraction have been determined, MAGLAB calculates the electrical conductivity of 

corresponding partially molten mantle peridotite. 

2.1. Calculation of melt composition and fraction at upper mantle conditions  

The MAGLAB model first calculates melt composition and melt fraction at given 
pressure, temperature and bulk rock CO2 and H2O content. The compositions of CO2-H2O-
bearing melts in pressure-temperature-bulk rock composition space are calculated according 

to a thermodynamic model modified after Massuyeau et al. (2015). The melt-mantle rock 
equilibrium is simplified according to the reaction  

 

                               , (1) 

 

where Mg2SiO4 is the forsterite component of olivine, Mg2Si2O6 is the enstatite component of 
orthopyroxene, and SiO2 (melt) is the silica component of melt. Equilibrium implies 

 

         
         

             

     
              

          ,  

 

or      

          (
   

  
) (

         

             

        
       

), (2) 

 

where     is the standard state Gibbs free energy of reaction (1),   
 
 is the activity of 

component i in phase j, R is the gas constant and T the absolute temperature. At given P and 

T,      

       is obtained by calculating     according to the data of Holland and Powell (2011) 

(Section 1 of the Supplementary Information). Mineral activities are given by         

        

   
             

           and          

             
    

                
   
                

, where 

   
           and    

           are the mole fraction of Mg in the M1 site and the M2 site of 

olivine, respectively, and    
                

 and    
                

 are the mole fraction of Mg 

in the M1 site and the M2 site of orthopyroxene, respectively (see more details about 
calculations of mineral activities in Massuyeau et al. (2015)). SiO2 mixing in melt is not 
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considered ideal. Massuyeau et al. (2015) found that the activity coefficient of SiO2 in the 

melt,      

    , which describes the deviation from ideal behavior of the mixing between SiO2 

and other components (DeCapitani and Kirschen, 1998), is well modeled in the SiO2-TiO2-
Al2O3-FeO-CaO-MgO-Na2O-K2O-H2O-CO2 space as: 
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    , (3) 

 

where the pressure P is expressed in bar,   
     is the molar fraction of oxide i in melt and the 

     are the Margules parameters, i.e. the interaction parameters between two melt oxides i 

and j. Noteworthy, Eq. (3) is modified from Massuyeau et al. (2015) by the addition of a 
pressure-dependent Margules parameter          

  for the interaction SiO2-CO2. This term 

was added since it allows for a better reproduction of the progressive transition between 
carbonate-rich to silicate-rich melts with pressure (see details in Section 3; Stagno and Frost, 
2010; Dasgupta et al., 2013; Massuyeau et al., 2015). The activity of SiO2 in the melt can 

then be calculated from Eq. (3) according to 

 

     

            

         

      (4) 

 

The Margules parameters in Eq. (3) are optimized so that      

       calculated from experimental 

melt compositions following Eq. (4) best reproduces      

       calculated from experimental P 

and T following Eq. (2) (Tables S1-S2; more details about the calculations and the 
optimization procedure can be found in Massuyeau et al. (2015)). The optimization was done 

over an extended experimental database covering a large range of pressure, temperature and 
composition conditions relevant to the upper mantle. It regroups 678 melting experiments at 

pressures and temperatures ranging from 1 to 14 GPa and 1020 to 1950°C, and bulk rock CO2 
and H2O contents from 0 to 10 – 20 wt% (Fig. 2A; see also Table S3). This corresponds to 
187 more entries than in Massuyeau et al. (2015). MAGLAB reproduces experimental data to 

within ~15% based on the average relative deviation of MAGLAB calculations for the whole 
database (Fig. 3).  

Once the Margules parameters are optimized over the experimental database, 
MAGLAB can be used to calculate mantle-derived melt compositions at any P and T. First, 

the activity of SiO2 in the melt      

       is calculated from Eq. (2) at P and T of interest, 

assuming a pressure-dependent activity ratio 
         

             

        
        for the upper mantle estimated from 

experimental data (Fig. S1; see details in Section 2 of the Supplementary Information). Then, 

the method consists in finding the composition for which the SiO2 activity      

       calculated 

from Eq. (4) matches the SiO2 activity      

       calculated from Eq. (2) (see Fig. S2). However, 
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instead of searching for a solution in the whole SiO2-TiO2-Al2O3-FeO-CaO-MgO-Na2O-K2O-
H2O-CO2 compositional space, we designed MAGLAB to work in the space of three end-
members: silicate    , carbonate     and H2O    . The melt composition is thus calculated as 

a linear combination of the three end-members, i.e.         , where the coefficients  ,   

and   are optimized for minimizing the difference between      

       and      

       (with  ,   and   

being all positive and such that        ). The use of these three end-members reduces 
the degrees of freedom but their compositions were defined in a way that their combination 

covers most of the compositional range of both experimental and natural melts (Figs 2B-S3). 
This procedure allows for reproducing a wide range of natural volatile-bearing melts 
produced in equilibrium with peridotite, from carbonatites to kimberlites to basanites and 

basalts. Strongly alkaline magmas and intrusive carbonatites, as well as some kimberlites and 
basalts, may require additional differentiation processes or the involvement of other 

lithologies such as eclogite, pyroxenite or hornblendite, which are not treated by the present 
model (Hirschmann et al., 2003; Sobolev et al., 2007; Pilet et al., 2008; Doucelance et al., 
2010; Baudouin et al., 2016; Tappe et al., 2017; Weidendorfer et al., 2017; Lu et al., 2020). 

Note that the compositions of the silicate and carbonate melt end-members are not constant 
but vary as a function of pressure (Fig. S4 and Table S4). Moreover, the pure H2O end-

member allows water content to vary independently from CO2 content, contrary to the model 
of Massuyeau et al. (2015). Details on calculations and compositions of the melt end-
members are provided in Section 3 of the Supplementary Information.  

In addition to melt composition, melt fraction can also be determined using volatile 
partitioning. CO2 is treated as highly incompatible, i.e. entirely residing in the melt (e.g. 

Dasgupta et al., 2013). The H2O content of the melt is constrained using partition coefficients 
for nominally anhydrous minerals/hydrous silicate melt systems from Hirschmann et al. 
(2009) and Novella et al. (2014). Note that H2O solubility does not significantly differ 

between CO2-poor basaltic melts and CO2-rich, low-SiO2 melts (Dasgupta et al., 2013; 
Moussallam et al., 2016). Thus, the mass fraction of melt,   

    , can be calculated either from 

CO2 partitioning 

 

  
       

    
    

    
    , (5) 

 

or from H2O partitioning 

 

  
       

    
    

    
    

      
               

   
   
               . (6) 

 

    

     and     
     are the mass fractions of CO2 and H2O in bulk peridotite rock in wt%, 

respectively.     

     and     
     are the mass fractions of CO2 and H2O in melt in wt%, 

respectively, converted from the molar fractions     

     and     
     calculated above. 

    
               

 is the pressure-dependent partition coefficient of H2O between peridotite and 

melt, calculated as follows: 

    
               

        
       

         
        

         
        

         
        

        
       

, 

(7) 
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where    ,     ,     ,      and     are the modal proportions of olivine, orthopyroxene, 

clinopyroxene, garnet and spinel, respectively, calculated from Hirschmann et al. (2009), and 

    
       

,     
        

,     
        

,     
        

 and     
       

 are the partition coefficients of H2O of 

olivine, orthopyroxene, clinopyroxene, garnet and spinel, respectively, in equilibrium with 
melt, calculated from Hirschmann et al. (2009) and Novella et al. (2014) (see details in 

Section 4 of the Supplementary Information). Hence, two different melt fractions can be 
obtained when varying     

     and     
     independently following Eqs. (5) and (6), which 

should converge to an identical value. The optimizations of melt composition and melt 

fraction are thus performed concomitantly in such a way that (     

            

      )
 
 

    (  
         

      )
 
(8) is minimized (see details about the optimization procedure in 

Section 5 of the Supplementary Information). 

For some pressure-temperature-bulk rock composition conditions, melt composition 
cannot be unequivocally predicted and MAGLAB yields two distinct solutions, carbonate-rich 

and silicate-rich. This numerical feature, which relies on the Margules formalism used to 

calculate      

       in Eq. (2), occurs mainly at low P-T conditions and for H2O-poor peridotite 

systems. It is indicative of the non-ideality in the mixing between silicate and carbonate 
components at these conditions, which ultimately results in immiscibility (Dasgupta et al., 
2013; Massuyeau et al., 2015). However, we expect only one liquid to be stabilized because 

immiscibility is not reported in most of the experimental studies of melting in peridotitic 
compositions (Martin and Schmidt, 2013; Hammouda and Keshav, 2015). Since silicate-rich 

melts are favored at high T and low P and, conversely, carbonate-rich melts are favored at low 
T and high P, we use a pressure-dependent formulation to determine, at a given P, the most 
probable stable melt composition between these two distinct compositional solutions as a 

function of T (Fig. S5).  
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2.2. Calculation of the electrical conductivity for model mantle peridotite 

The second part of MAGLAB calculates the bulk electrical properties of mantle rocks 
with melt composition and melt fraction equilibrated at P, T and bulk rock CO2 and H2O 

content. As volatile-bearing melts interconnect in mantle rocks at any melt fraction (Gardés et 
al., 2020), the bulk electrical conductivity of partially molten mantle peridotite is a 

combination of the conductivity of the rock and the conductivity of the melt weighted by melt 
fraction. 

The electrical conductivity of melt is calculated following the model of Sifré et al. (2014, 

2015) for CO2- and H2O-bearing melts 

  

                  
      (

 (  
                )

  
)   

      (
 (  

                )

  
), (9) 

 

where P is the pressure (bar), and    and    are the pre-exponential factor (S m-1) and the 

activation energy (J mol-1), respectively, for the two Arrhenius laws describing the 

contributions of the hydrous silicate component (    ) and the carbonate component (    ) 

 

  (  
   )              

           with   
             (            

    )      , (10) 

and   (  
   )              

           with   
              (            

    )      . 

(11) 

 

This law is valid for     

     from 0 to ~50 wt% and     
     from 0 to ~10 wt%.  

The electrical conductivity of the solid rock is assumed to be controlled by the conductivity of 
olivine. We use the model of Gardés et al. (2014) which provides conductivity as a function 
of temperature and H2O content 

 

    

         ( 
      

  
)          ( 

      

  
)  

       (          
       )   ( 

           (          
       )

   

  
). (12) 

 

    
       , the mass fraction of water in olivine in wt%, is given by 

    
            

        
       

, (13) 

where     
       

 is the partition coefficient of H2O between olivine and melt (see Section 4 of 

the Supplementary Information).  

Following Sifré et al. (2014), the mixing model for calculating the bulk conductivity of 
partially molten mantle peridotite is taken as a combination of an Hashin-Shtrikman upper 
bound (HS+) mixing model and a tube mixing model (e.g. Schmeling, 1986) 
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          (    
    )   ), (14) 

 

where the volume fraction of melt   
     is given by 

 

  
     

(
  
    

     
)

(
  
    

     
 

(    
    )

        
)

. (15) 

 

Olivine density          is taken as 3.34 (average of values given for olivine in both spinel and 

garnet peridotite in Table 1a of Lee (2003)). Following Sifré et al. (2014), melt density 
      is calculated as  

 

      
    
    

   
     

     
    

   
    

 (  
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3. MAGLAB: comparison with previous models 

In contrast to models developed for dry and hydrous silicate magmatic systems (e.g., 

MELTS family: Ghiorso and Sack (1995), Ghiorso et al. (2002), Gualda et al. (2012); 
COMAGMAT: Ariskin (1999); PerpleX: Connolly (2005)), only a few models allow for 

calculating the composition and fraction of melts derived from peridotite melting in the 
presence of CO2 and H2O, and their range of applicability is limited, especially in terms of 
composition and pressure. The model of Ghiorso and Gualda (2015) addresses silicate melts 

with limited dissolved CO2 and H2O components and is not relevant to investigating 
carbonate-rich melts with CO2 content >~10 wt% or P > 3 GPa. Calculation of melt 

composition is limited to CO2, H2O and SiO2 oxides in the model of Dasgupta et al. (2013), 
CO2 and H2O in the model of Hirschmann (2010), and to CO2 only in the models of Dasgupta 
et al. (2007) and Ghosh et al. (2014). Furthermore, the pressure range of application is ≤5 

GPa for the models of Dasgupta et al. (2007, 2013), Hirschmann (2010) and Ghiorso and 
Gualda (2015), and >10 GPa for the model of Ghosh et al. (2014). Thus, none of these 

models allows calculations at pressures between 5 and 10 GPa. The model of Massuyeau et 
al. (2015) does not allow varying bulk rock CO2 and H2O contents independently. To date, 
MAGLAB is the model simulating the widest ranges of temperature and pressure, from ~900 

to 1700°C and from ~2 to 10 GPa (i.e., from ~60 to 300 km depth). It allows composition 
calculations in SiO2-TiO2-Al2O3-FeO-CaO-MgO-Na2O-K2O-H2O-CO2 space where, notably, 

CO2 and H2O are independent variables. 

A key feature of mantle-relevant melting is the abrupt transition from carbonatitic 
melts (<15 wt% SiO2) to silicate-rich melts (>30 wt% SiO2), as illustrated by experimental 

data at e.g. 3 and 5 GPa where the transition occurs at ~1350°C and ~1450°C respectively 
(Fig. 4A-B). At 3 and 5 GPa, both Dasgupta et al. (2007) and Dasgupta et al. (2013) do not 

reproduce this abrupt transition. At 5 GPa, the model of Dasgupta et al (2013) yields an 
almost linear positive evolution of the SiO2 content with increasing temperature 
corresponding to a near ideal system. At 3 GPa, the model of Dasgupta et al. (2007) fails to 

predict the formation of carbonatite melts at low temperatures (Fig. 4A). On the other hand, 
MAGLAB captures this chemical shift at 3 and 5 GPa, as does the model of Massuyeau et al. 

(2015) (Fig. 4A-B). In contrast, MAGLAB produces a smoother transition from carbonate-
rich melts to silicate-rich melts at higher pressures, as observed experimentally at e.g. 7 and 
10 GPa, which is not well captured in the model of Massuyeau et al. (2015) (Fig. 4C-D). 

Thus, MAGLAB fairly well reproduces the wide range of mantle-relevant, CO2±H2O-
bearing melts. It applies to pressures and temperatures covering most of Earth‘s upper mantle 

regions subject to (CO2+H2O)-assisted melting (Wallace and Green, 1988; Foley et al., 2009) 
which, away from ridges, starts at depths >~60 km beneath mature to old oceanic lithosphere 
(Fig. 5). Moreover, in addition to melt composition, MAGLAB also allows the calculation of 

melt fraction and corresponding bulk rock electrical conductivity. It should be noted, 
however, that MAGLAB calculations are valid as long as oxygen fugacity stabilizes 

carbonates as important carbon species, i.e. in upper mantle regions, estimated between ~60 
km and ~300 km depth (Wallace and Green, 1988; Hirschmann, 2010; Rohrbach and 
Schmidt, 2011; Stagno et al., 2013; Gaillard et al., 2015; Yaxley et al., 2017; Dasgupta, 

2018; Eguchi and Dasgupta, 2018; Moussallam et al., 2019; Gardés et al., 2020). 
Furthermore, calculations are not possible at zero bulk rock CO2 content and in a set of 

extreme P-T-volatile content conditions, e.g. at low P <5 GPa in very hot mantle with 
potential temperature TP >1500-1600°C, or even at higher pressures for bulk rock CO2-H2O 
contents >0.1-0.2 wt% and with H2O/CO2 molar ratio >10-20 (see details in Section 6 of the 
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Supplementary Information; MAGLAB hyperlink: http://calcul-isto.cnrs-
orleans.fr/apps/maglab/).  
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4. MAGLAB simulations of oceanic and cratonic mantle 

We used MAGLAB to calculate melt composition, melt fraction and associated 

electrical conductivity of the upper mantle in oceanic and cratonic settings, with focus on 
three main parameters: lithospheric thickness, mantle potential temperature (TP), and mantle 

CO2-H2O content. It should be noticed that the following results correspond to equilibrium 
melt fractions and compositions, and thus do not consider dynamic phenomena such as melt 
migration, melt accumulation and depletion processes. The position of the base of the 

lithosphere, i.e. LAB depth, can be approximately located within the thermal boundary layer 
where a time-dependent thermal transition from the conductive to fully convecting upper 

mantle occurs (Parsons and McKenzie, 1978; McKenzie and Bickle, 1988; Jaupart and 
Mareschal, 1999; McKenzie et al., 2005; An et al., 2015; Priestley et al., 2019). It is hereafter 
defined at the base of this thermal boundary layer (Jaupart and Mareschal, 1999; An et al., 

2015) as the depth where mantle temperature is lowered by 10°C from the temperature of the 
adiabatic geotherm. Although we acknowledge that our definition for identifying the base of 

the lithosphere is somewhat simplistic in comparison with the complex and diffuse nature of 
the lithosphere-asthenosphere transition, this method provides a reasonable estimation of the 
lithospheric thickness, with the advantage of being consistent when applied to different 

tectonic settings. 

Fig. 5 reports MAGLAB simulations for an ambient oceanic upper mantle with 

average volatile content, i.e. 140 wt ppm CO2 – 240 wt ppm H2O (Le Voyer et al., 2017), and 

a potential temperature TP of 1350°C (thermal model G13R1350 from Grose and Afonso 

(2013)). The most striking result is the contrast in melt composition and melt fraction between 
the asthenosphere and the lithosphere.  

In the asthenosphere, from high to low pressure, both melt SiO2 content and melt 

fraction increase while melt CO2 content and bulk electrical conductivity decrease. The 
evolution of melt composition is consistent with the increase in silica activity with decreasing 

pressure (Carmichael et al., 1970; Massuyeau et al., 2015), as well as with the systematic 
complementarity of melt CO2 content and melt SiO2 content observed experimentally (e.g. 
Gudfinnsson and Presnall, 2005; Dasgupta et al., 2007, 2013; Ghosh et al., 2014). At around 

300 km depth, a fraction of ~0.05 wt% (0.06 vol.%) of carbonatitic melt is produced, with 
SiO2, CO2 and H2O contents of ~11, 31 and 4 wt%, respectively, and mantle electrical 

conductivity       is about 10-0.9 S m-1. At 80 km depth beneath ridges to young lithospheres 
(<~10 Ma), a fraction of 0.24 wt% (0.30 vol%) of silicate-rich melt is produced, with SiO2, 

CO2 and H2O contents of ~42, 6 and 2 wt%, respectively, and       is ~10-1.4 S m-1. 
Noteworthy, for constant volatile content in the source, variations reported in mantle electrical 

conductivity are buffered by the opposite effects of melt composition and melt fraction: for 
example, volatile contents increase      , but smaller melt fractions decrease it. 

The evolution strongly differs beneath mature to old lithospheres (>~50 Ma), where 
both melt SiO2 content and melt fraction drop while melt CO2 content rises in the lithosphere. 

These abrupt changes in melt composition and melt fraction from asthenosphere to 
lithosphere are a direct consequence of the abrupt change in temperature (Fig. 4), and may be 

accompanied by a slight increase in bulk electrical conductivity (e.g., near LAB depth at 120-
125 km in an ambient oceanic upper mantle with average volatile content; see profile 
―Ambient‖ in Fig. 6F). At 80 km depth in 70 Ma oceanic lithosphere, a fraction of 0.03 wt% 

(0.05 vol%) of carbonatitic melt is produced, with SiO2, CO2 and H2O contents of ~2, 42 and 
2.5 wt%, respectively, and       is about 10-1.45 S m-1. Note that melting stops when crossing 

the CO2-H2O-bearing peridotite solidus above 60-70 km depth beneath mature to old 
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lithospheres (P <~2 GPa and T <~930-1100°C; grey areas in Fig. 5, see also Fig. 2). Then, 
mantle electrical conductivity is mainly controlled by olivine, with values <10-2 S m-1 (Gardés 
et al., 2014). 

The base of mature to old lithospheres thus corresponds to a region where melt 
fraction is maximum. At the vicinity of the LAB beneath >~50 Ma lithospheres, i.e. at 120-

125 km depth, a fraction of 0.14 wt% (0.17 vol%) of silicate-rich melt is present, with SiO2, 
CO2 and H2O contents of ~35, 10 and 3 wt%, respectively, and mantle electrical conductivity 
      is about 10-1.2 S m-1. 

Melt composition, melt fraction and mantle electrical conductivity profiles in 70 Ma 
oceanic lithosphere for various TP and volatile contents are reported in Figs 6 and 7, 

respectively. In Fig. 6, we report calculations for a mantle with average volatile content and 
various TP of 1300, 1350, 1400 and 1450°C (G13R1300, G13R1350, G13R1400 and 

G13R1450 models from Grose and Afonso (2013)), corresponding to cold, ambient, hot, and 
hotspot settings, respectively. Near the LAB, at ~115-125 km depth, MAGLAB yields melt 
compositions ranging from ~7 to 40 wt% SiO2, 37 to 5 wt% CO2, and 4 to 3 wt% H2O from 

cold mantle (~1350°C at LAB depth) to hotspot-like mantle (~1500°C at LAB depth), 
respectively (Fig. 6A-D). Melt fraction ranges between 0.04 and 0.26 wt% (0.05-0.32 vol%) 

within the same temperature interval (Fig. 6E), while       slightly increases from 10-1.15 to 
10-1.06 S m-1 approximately (Fig. 6F). Note that most of the variations in composition and melt 

fraction occurs between cold and ambient settings since, e.g., the range of SiO2 content 
reduces to 35-40 wt% from ambient to hotspot settings. The electrical conductivity remains, 

however, rather constant because the large variation in melt composition, changing from 
silicate-rich in hotspot settings to carbonatitic in cold settings, is compensated by a large 
decrease in melt fraction. 

In Fig. 7, mantle CO2 and H2O contents are varied around their average contents in an 
ambient mantle: 50 – 80, 140 – 240 and 420 – 720 wt ppm CO2 – wt ppm H2O, corresponding 

to depleted, average, and enriched mantle source, respectively. Near LAB depth, depleted to 
enriched sources produce silicate-rich melts with an almost constant melt SiO2 content of 
around 35 wt%, a slightly variable melt CO2 content ranging from 11 to 8 wt%, and a more 

variable melt H2O content spanning the range 1-6 wt%, respectively (Fig. 7B-D). On the other 
hand, melt fraction dramatically increases from about 0.04 to 0.54 wt% (~0.05-0.68 vol%) 

from depleted to enriched sources, respectively, illustrating the strong dependence of melt 
fraction on volatile content (Fig. 7E). As a consequence, contrary to temperature variations, 
the large increase in melt fraction together with variations in melt volatile content from 

depleted to enriched volatile content induce a large variation in electrical conductivity, from 
10-1.54 to 10-0.76 S m-1 (Fig. 7F). 

Importantly, at any of the temperature and bulk rock volatile content simulated, no 
transitional melts with intermediate compositions between silicate-rich and carbonatitic melt, 
i.e. carbonated silicate melts with SiO2 content within the range 15-35 wt%, are obtained near 

the LAB in oceanic mantle. In contrast, the asthenosphere beneath extremely thick continental 
lithosphere, such as in undisturbed cratonic regions, can give rise to melts with low to 

intermediate SiO2 contents at realistic pressure-temperature-volatile content conditions (Fig. 
8B). We performed MAGLAB calculations along a typical cratonic geotherm, with TP = 
1350°C and considering various bulk rock volatile contents as previously described (see 

details about geotherm in Figs 8A-S6 and their caption). Near the LAB, at ~210 km depth, 
while depleted to average mantle sources produce carbonatitic melts with <~15 wt% SiO2, 

>~30 wt% CO2 and <~5 wt% H2O, enriched sources produce kimberlitic melt with 
intermediate SiO2 and CO2 contents of ~22 and ~18 wt%, respectively, and an H2O content of 
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about 9 wt% (Fig. 8B-D). Noteworthy, similar kimberlitic, transitional melts are calculated in 
the case of a CO2-average and H2O-enriched mantle (i.e., with 140 wt ppm CO2 – 720 wt ppm 
H2O; Fig. 8B). As with oceanic mantle, melt fraction at LAB depth beneath cratonic settings 

largely increases from depleted to enriched sources, from ~0.01 to 0.24 wt% (0.02-0.31 
vol%), which, coupled with variations in melt volatile content, induces a large increase in 

electrical conductivity, from about 10-1.4 to 10-0.5 S m-1 (Fig. 8E-F). 
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5. Discussion 

5.1. Linking the diversity of mantle-sourced intraplate magmatism to lithosphere thickness 

The composition of intraplate magmas generally relates to the tectonic setting in 
which they were produced, with mid-ocean ridge basalts (MORB) sampled around oceanic 

ridges, OIBs mainly erupted over ocean floors away from plate boundaries, and kimberlites 
quasi-exclusively observed on continental shields, mainly on-craton. These systematics 
indicate that geodynamic context exerts a primary control on the compositional spectrum of 

intraplate magmatism. One of the main features varying between different tectonic settings is 
lithosphere thickness, being thin near oceanic ridges and thick beneath most cratons. It is 

therefore reasonable to assume that variations in lithosphere thickness may generate 
variations in primitive melt composition, without invoking large compositional variations in 
the mantle sources (le Roex, 1986; Ringwood et al., 1992; Gudfinnsson and Presnall, 2005; 

Tappe et al., 2013, 2016, 2018; Grose and Afonso, 2019; Baudouin and Parat, 2020). A 
critical effect of lithosphere thickness on the composition of mantle-derived intraplate 

alkaline basalts and basalts (i.e., melts with >40 wt% SiO2) has been outlined in previous 
geochemical studies: with increasing lithospheric thickness, the final equilibrium pressure 
before melt extraction increases, lowering the degree of melting and thus lowering melt SiO2 

and Al2O3 contents, while increasing MgO and FeO contents (Haase, 1996; Humphreys and 
Niu, 2009; Dasgupta et al., 2010; Niu et al., 2011; Davies et al., 2015; Zhang et al., 2017; 

Guo et al., 2020). Furthermore, a natural example for the continuum of melt composition 
ranging from kimberlitic to OIB-type alkaline basaltic was described in Tappe et al. (2007), 
where changes in magma composition through time are explained as a function of significant 

lithosphere thinning of a single cratonic block. Excluded from this concept are lamproites and 
other highly potassic magma types, as well as intrusive carbonatites, because these intraplate 

magmas have typically experienced variable contributions from strongly metasomatized non-
peridotitic components of the mantle lithosphere, or they can be highly differentiated in nature 
(Becker and le Roex, 2006; Pilet et al., 2008; Doucelance et al., 2010; Weidendorfer et al., 

2017; Tappe et al., 2017). 

Here, we use MAGLAB to simulate the effect of varying lithosphere thickness on 

primitive melt composition by calculating volatile-bearing melt compositions in equilibrium 
with peridotite near the LAB and comparing them with corresponding erupted magmas. We 
performed MAGLAB simulations by varying LAB depth as a function of the tectonic setting 

(see P-T conditions in Fig. S7), and considering a single homogeneous mantle source with 
140 wt ppm CO2 and 240 wt ppm H2O on average (Le Voyer et al., 2017). Using the SiO2 

content as a relevant proxy for the compositional variability of intraplate magmatism in Fig. 
9, the composition of erupted basaltic magmas such as MORBs and OIBs with SiO2 >45 wt% 
are well reproduced by MAGLAB beneath the thinnest and youngest oceanic lithospheres 

with LAB depths <60 km. Primitive alkaline magmas such as melilitites, nephelinites, 
basanites and silica-poor OIBs with 35-45 wt% SiO2 are reproduced by MAGLAB beneath 

the thickest oceanic lithospheres away from modern spreading centers, as well as beneath 
young or rejuvenated continents with LAB depths ranging from around 60 to 125 km (Fig. 9). 
Interestingly, rare occurrences of alnoitic CO2-rich intrusions with SiO2 ~36 wt% have been 

reported at the surface of the ~120-km-thick lithosphere of the Ontong Java Plateau (Neal and 
Davidson, 1989; Simonetti and Neal, 2010; Smart et al., 2019), and this SiO2 content is well 

reproduced in our MAGLAB calculations at such LAB depth (i.e., ~35 wt% SiO2; Figs 5B, 
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9). In addition, MAGLAB predicts mantle-derived melts with a SiO2 content of ~40 wt% 
beneath ~90-km-thick lithosphere, similar to the petit-spot magmas erupted directly from the 
asthenospheric source located beneath the flexed sections of the oceanic lithosphere prior to 

entering subduction zones (Hirano et al., 2006; Matsuno et al., 2010; Machida et al., 2017; 
Sato et al., 2018). Generation of kimberlites also fits well into this hypothesis, with primary 

melts with 15-35 wt% SiO2 being produced at >120 to ~200 km depth beneath continental 
shields including cratons (Fig. 9; Gudfinnsson and Presnall, 2005; Brey et al., 2009; Foley et 
al., 2009; Stamm and Schmidt, 2017; Tappe et al., 2017; Giuliani et al., 2019; Sun and 

Dasgupta, 2019). Such carbonated silicate melt compositions can be equilibrated beneath 
typical LAB depths of undisturbed cratons (i.e., 180-250 km) in warmer thermal conditions, 

with TP >~1350-1400°C, equivalent to the peripheries of modern mantle plumes or Early 
Proterozoic and Archean ambient upper mantle conditions (Korenaga, 2008; Davies, 2009; 
Ganne and Feng, 2017; Aulbach and Arndt, 2019; Sun and Dasgupta, 2020; see also Fig. 

6B). However, many kimberlite occurrences at the Earth‘s surface were emplaced between 
50-250 Ma (Tappe et al., 2018), a period for which the Earth‘s mantle presented a thermal 

regime similar to present-day (difference in TP <40-50°C; Korenaga, 2008; Davies, 2009; 
Ganne and Feng, 2017; Aulbach and Arndt, 2019). Furthermore, genetic connections between 
kimberlite magma generation and mantle plumes are still debated (see for example Tappe et 

al., 2020). Alternatively, primary transitional carbonated silicate melts can also be produced 
beneath such undisturbed cratons with higher H2O content in the bulk peridotite (e.g., 

carbonatitic melts equilibrated near the LAB at 210 km depth in a mantle source with 140 wt 
ppm CO2 – 240 wt ppm H2O versus kimberlitic melts equilibrated in a mantle source with 140 
wt ppm CO2 – 720 wt ppm H2O; see Section 4 and Fig. 8B), as is supported by the 

experimental work of Stamm and Schmidt (2017). Therefore, our simulations indicate that 
presence of kimberlitic melts beneath undisturbed cratons may be related to greater H2O 
enrichment in the mantle source. Similarly, either excess temperatures or H2O enrichments in 

the mantle source would explain generation of basalts with >45 wt% SiO2 beneath strongly 
disturbed cratons with drastically thinned lithospheres (~60-100 km) within our scenario (e.g., 

East African rift, Wyoming, North China; see Aulbach, 2019, and references therein). 

The empirical observation that variations in lithosphere thickness primarily govern the 
compositional diversity of primitive mantle-derived magmatism (Gudfinnsson and Presnall, 

2005; Tappe et al., 2007) is fully supported by MAGLAB modeling. The compositions of 
erupted magmas correspond to those equilibrated at LAB depths (Fig. 9), from where they 

appear to be extracted. This may explain why low-SiO2 melts such as kimberlites and 
aillikites are mainly found under geologically reasonable conditions on continental shields 
including cratons, which are characterized by the deepest known lithosphere-asthenosphere 

boundaries at 150-250 km depths (e.g., Aulbach et al., 2017; Tappe et al., 2018) (Figs 7-9). 
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5.2. Testing of MAGLAB on the petrologically-geophysically constrained Society hotspot  

Mantle geophysical anomalies such as high electrical conductivities and sharp seismic 

shear-wave velocity reductions have been reported at various locations worldwide, beneath 
oceanic and continental settings (Evans et al., 2005; Baba et al., 2006, 2010, 2017a; 

Kawakatsu et al., 2009; Schmerr, 2012; Naif et al., 2013; Tada et al., 2016; Tharimena et al., 
2017a,b; Rychert et al., 2019). The presence and role of volatile-bearing melts is indisputable 
in these regions (Gaillard et al., 2008; Schmerr, 2012; Sifré et al., 2014; Tada et al., 2016; 

Katsura et al., 2017; Tharimena et al., 2017a,b; Rychert et al., 2019; Gardés et al., 2020). 
Among them, the Society hotspot in the Pacific Ocean is a good candidate to test MAGLAB 

since geochemical and geophysical boundary conditions in this ~70 Myr old oceanic 
lithosphere are rather well constrained (Müller et al., 2008). 

The Society hotspot originates from an ascending plume (Adam et al., 2010) which 

supplies more heat and higher volatile contents compared with the ambient convecting mantle 
(Tada et al., 2016). The mantle potential temperature has been estimated within 1450-1500°C 

(Herzberg and Asimow, 2008). The volatile content of the mantle source has been estimated at 
~700 wt ppm CO2 and 720 wt ppm H2O by studying the degassing in submarine lavas from 
the Society hotspot (Aubaud et al., 2005). Average major element compositions of near-

primary OIBs erupted at various volcanic centers in the Society Islands have also been 
assessed, providing an estimation of the major element composition of melts produced from 

the plume beneath the Society hotspot (Dasgupta et al., 2010). Besides, the Society hotspot 
presents an anomalously strong electrical signature, called ―Zone A‖ (Nolasco et al., 1998; 
Suetsugu et al., 2012; Tada et al., 2016). It extends from the lowest part of the upper mantle 

to approximately 50 km below sea level. Electrical conductivities above 10-1 S m-1 are 
recorded below ~90 km depth, with a maximum of 10-0.3 S m-1 at about 130-150 km (Fig. 10, 

and see profile ―Anomaly Zone A‖ in Fig. 11; Tada et al., 2016). This signature is clearly 
distinct from the electrical conductivity of neighbouring mantle, being about 1 to 2 log units 
lower (see profile ―TIARES‖ in Fig. 11; Tada et al., 2016). 

We performed MAGLAB simulations using the pressures, temperatures and volatile 
contents reported for the Society hotspot as inputs, corresponding to the G13R1450 thermal 

model with TP = 1450°C from Grose and Afonso (2013), together with ~700 wt ppm CO2 and 
720 wt ppm H2O. Around the LAB beneath this ~70 Myr old oceanic lithosphere, at 

approximately 120±10 km depth, MAGLAB yields ~1.2 to 1.5 wt% of primary silicate-rich 
melt, bearing about 3.5-3.8 wt% H2O and 4.7-5.6 wt% CO2. The SiO2 content is within the 
range 39.2-40.4 wt%, i.e. 43.1-44.1 wt% on a volatile-free basis, compatible with the 43-48 

wt% estimations of near-primary average SiO2 contents of OIBs reported for the Society 
islands by Dasgupta et al. (2010) (Fig. 10). Good agreement is also observed for other major 

elements, such as Al2O3, FeO, MgO, CaO and alkalis (Fig. 10).  

Simulated electrical conductivities are also in very good agreement (Fig. 10), being 10-

0.59-10-0.48 S m-1 compared to the 10-0.50-10-0.29 S m-1 measured between 110 and 130 km depth 

(Tada et al., 2016). Hence, this case study demonstrates the robustness of MAGLAB in 
reproducing both petrological and geophysical data in a partially molten mantle 

column/volume. The presence of 1.2-1.5 wt% of volatile-bearing silicate melts beneath the 
Society hotspot as inferred by MAGLAB raises the question about mobility relative to host 
mantle rocks. According to Gaillard et al. (2019), such melts should percolate at 10-14 cm yr-

1, whereas mantle plume ascent is estimated at ~20-40 cm yr-1 on the basis of geodynamic 
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simulations (Arnould et al., 2020). Melt ascent via convection thus appears to dominate over 
melt percolation in this oceanic mantle ‗hotspot‘ setting. 
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5.3. Heterogeneous distribution of volatile-bearing melts in the oceanic upper mantle 

Figure 11 reports electrical conductivity profiles derived from magnetotelluric surveys 

on various locations in the Pacific and Atlantic, from very young (<5 Ma) to relatively old 
(130 Ma) seafloors. These profiles illustrate the heterogeneous electrical signature of the 

oceanic upper mantle, spanning the range of 10-3-10-0.3 S m-1, and which must then be 
connected to the heterogeneities in temperature or volatile content in Earth‘s upper mantle. 
Figure 11 also reports the range of electrical conductivities for partially molten mantle 

peridotite calculated by MAGLAB from: (i) old and cold mantle (130 Ma geotherm of 

G13R1300 model with TP = 1300°C from Grose and Afonso (2013)) that is highly depleted in 

volatiles (20 wt ppm CO2 and 50 wt ppm H2O; Dasgupta and Hirschmann, 2010; Shimizu et 

al., 2019) to (ii) young and hot mantle (0 Ma geotherm of G13R1450 model with TP = 1450°C 

from Grose and Afonso (2013)) that is highly enriched in volatiles (700 wt ppm CO2 and 720 
wt ppm H2O; Aubaud et al., 2005). 

MAGLAB simulations cover the range of mantle conductivities observed beneath the 
seafloors of various ages well. The high electrical conductivities of >10-1 S m-1 reported at 
mantle depths of <130 km beneath the outer rise of Cocos plate seafloor (see profile 

―SERPENT‖ in Fig. 11; Naif et al., 2013; Naif, 2018), the Reykjanes Ridge (see profile 
―RAMESSES AVR Centre‖ in Fig. 11; Heinson et al., 2000), or the Society hotspot (see 

profile ―Anomaly Zone A‖ in Fig. 11; Tada et al., 2016) require melt fractions of up to 0.5-1 
wt% resulting from a high degree of volatile enrichment, even when elevated TP are 
accounted for (see Sections 4 and 5.2). Very high mantle electrical conductivities >10-0.5 S m-

1, e.g. beneath the ultraslow-spreading Mohns Ridge, would require even higher melt fractions 
of >>1 wt% (Johansen et al., 2019). On the other hand, the lowest electrical conductivities 
with values of ≤10-2 S m-1 are compatible with the presence of very low melt fractions, i.e. 

<<0.1 wt%, in depleted mantle regions. Within the asthenosphere, at >125 km depth, mantle 
conductivities are typically between 10-2 and 10-1 S m-1 implying melt fractions of <1 wt% in 

all cases (Fig. 11). 

Combined petrological and electrical simulations using MAGLAB confirm that the 
high variability of conductivity profiles in the oceanic upper mantle is related to strong 

heterogeneities in its volatile content (Herzberg and Asimow, 2008; Hirschmann, 2010, 2018; 
Ganne and Feng, 2017; Le Voyer et al., 2017; Clerc et al., 2018). Highly variable amounts of 

interconnected volatile-bearing melts, generally <<1 wt%, may be widespread in the 
uppermost convecting mantle, but their ‗geophysical‘ detection is challenging if very small 
fractions are produced (Gaillard et al., 2019; Gardés et al., 2020). This could explain the 

rarity of a geophysically detected discontinuity near cratonic LABs (Eaton et al., 2009; 
Mancinelli et al., 2017). Alternatively, this reflects that the mantle at 200-250 km is too 

reducing to stabilize carbonated melt (Aulbach, 2019). MAGLAB then allows providing 
bounds on the volatile content for such contexts. Moreover, heterogeneities in mantle volatile 
content question the role of melt migration in redistributing volatiles. For instance, the very 

high electrical conductivities reported in the relatively ambient upper mantle beneath Mohns 
Ridge might be caused by large melt fractions of >>1 wt%, originated from melt migration 

and accumulation processes (Johansen et al., 2019), and shaping high bulk volatile contents 
(>>500 wt ppm CO2-H2O). Volatile and, thus, melt migration plus redistribution can be 
simulated if dynamic processes including mantle convection are combined with a rigorous 

petrological framework for mantle melting as provided here by MAGLAB (see also Keller et 
al., 2016, 2017; Clerc et al., 2018). However, further development of these multi-disciplinary 

modeling techniques is required to continue the quest for better understanding mantle melting 
processes and their implications for crust-mantle evolution. 
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6. Conclusion 

MAGLAB is a new computing platform that models melt compositions, melt fractions 

and electrical conductivity at pressure-temperature conditions and volatile contents relevant to 
the upper mantle (i.e., 2-10 GPa, 900-1700°C, depleted to enriched peridotite compositions, 

up to many thousands of wt ppm of CO2 and H2O). The platform can be accessed free of 
charge online at http://calcul-isto.cnrs-orleans.fr/apps/maglab/. MAGLAB can be used to 
model melting processes in oceanic and continental intraplate settings, including kimberlite 

melt formation beneath cratons. Our modeling results show that erupted intraplate magma 
compositions correspond to the melts equilibrated near LAB depths, and that a diversity of 

magma types can be produced from a homogeneous peridotitic mantle source. For ‗normal‘ 
upper mantle with 1350°C potential temperature and average volatile content of 140 wt ppm 
CO2 and 240 wt ppm H2O, carbonatitic melt compositions with <15 wt% SiO2 are produced 

beneath 200-250 km thick cratonic lithospheres and basanitic-basaltic melt compositions with 
>40 wt% SiO2 beneath mature ocean basins with much thinner lithospheres (i.e., 60-100 km 

thick). Melts with SiO2 contents between 15-35 wt% such as kimberlites form only at high 
pressures corresponding to depths of ≥120 km. Their formation is enhanced in peridotitic 
mantle sources with high H2O contents in addition to CO2. In a test case, our combined 

petrological and geophysical modeling reproduces known compositions of erupted melts and 
the measured mantle electrical conductivity for the Society hotspot. An important finding 

from MAGLAB simulations is that the commonly observed variability of mantle electrical 
conductivity can be linked to the presence and heterogeneous distribution of small volumes 
(generally <<1 wt%) of volatile-bearing melts within Earth‘s upper mantle.   
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Figures

 

Fig. 1. Compositional range of natural intraplate melts, from low-SiO2 carbonatitic 

melts to basaltic melts. Carbonatites (brown dots), nephelinites (green dots), basanites (purple 
dots) and OIBs (red dots) are selected from the GEOROC database (http://georoc.mpch-

mainz.gwdg.de/). Kimberlites (yellow dots) are from the compilation of Tappe et al. (2017; 
see their Supplementary File E and references therein). Lava compositions were selected 
from GEOROC database based on MgO content: carbonatites have MgO contents >12 wt% 

(and SiO2 contents <15wt% to remove anomalous outliers), while nephelinites, basanites and 
OIBs have MgO contents >8 wt% and <16 wt%. 
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Fig. 2. Experimental database of melt compositions used for the calibration of 
MAGLAB. The description of the experimental database (i.e., pressure, temperature and 

composition space of melts) is presented in Table S3. All melts coexist with a typical mantle 
assemblage (i.e., saturated in olivine-opx±cpx±garnet/spinel). (A) Pressure/depth-temperature 

space. The data range from 1 to 14 GPa and from 1020 to 1950°C. Melting curves for 
different bulk peridotite conditions are also reported as a function of temperature and 
pressure/depth conditions (dry solidus from Hirschmann (2000); CO2- and H2O-bearing 

solidus from Wallace and Green (1988) from ~1 to ~4 GPa, and Foley et al. (2009) between 4 
and 6 GPa, with extrapolation up to 10 GPa as shown by the dashed purple curve). (B) CaO-

SiO2 compositional space (see Fig. S3 for other major elements). The compositions of the 
silicate and carbonate melt end-members of our model are shown as red and purple circles, 
respectively. Combining these end-members yields compositions (light maroon shaded areas) 

covering a large proportion of the experimental database (yellow diamonds) as well as the 
chemical diversity of intraplate magmatism, from kimberlites to OIBs (green and light purple 

circles, respectively; see Fig. 1). 
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Fig. 3. Comparison of the molar fraction of SiO2 in melt calculated with MAGLAB to 
that from the experimental database. The relative deviation of MAGLAB calculations, taken 

as 
|     

                    
            |

     
            

, is ~15% on average. 
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Fig. 4: Comparison of melt SiO2 content calculated by MAGLAB with experimental 
data at (A) 3 GPa, (B) 5 GPa, (C) 7 GPa, and (D) 10 GPa. Also compared are the models of 

Dasgupta et al. (2007), Dasgupta et al. (2013) and Massuyeau et al. (2015) in their pressure 
range of applicability (3 GPa, 5 GPa, and from ~2 to 10 GPa, respectively) at a bulk rock CO 2 

content of 140 wt ppm (i.e., average mantle source; Le Voyer et al., 2017). Experimental melts 
reported here are H2O-free, contain at least SiO2, Al2O3, MgO, CaO, FeO and CO2, and match 
pressure within ±0.5 GPa. 
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Fig. 5: Contours of MAGLAB equilibrium melt composition, melt fraction and 

electrical conductivity for oceanic upper mantle with average volatile content (140 wt ppm 
CO2 – 240 wt ppm H2O; Le Voyer et al., 2017) as a function of depth and age. (A) Mantle 

thermal structure with potential temperature TP = 1350°C from Grose and Afonso (2013) 
(G13R1350 model). (B) SiO2, (C) CO2, and (D) H2O contents of melts. (E) Melt fraction. (F) 
Bulk mantle electrical conductivity. The dotted grey areas (i.e., ‗Melt out‘) at the top of each 

panel correspond to the subsolidus region (Wallace and Green, 1988). The dashed white 
curve is an estimation of the LAB depth.  
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Fig. 6: MAGLAB equilibrium melt composition, melt fraction and electrical 

conductivity for oceanic upper mantle at 70 Ma as a function of depth and TP, with average 
volatile content (140 wt ppm CO2 – 240 wt ppm H2O; Le Voyer et al., 2017). (A) Mantle 

thermal structures with potential temperature TP = 1300, 1350, 1400 and 1450°C from Grose 
and Afonso (2013) (G13R1300, G13R1350, G13R1400, and G13R1450 models, respectively). 
(B) SiO2, (C) CO2, and (D) H2O contents of melts. (E) Melt fraction. (F) Bulk mantle 

electrical conductivity. The orange circles in panel (A) provide an estimation of the LAB 
depth.  
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Fig. 7: MAGLAB equilibrium melt composition, melt fraction and electrical 
conductivity for oceanic upper mantle at 70 Ma with various volatile contents (50 wt ppm 

CO2 – 80 wt ppm H2O, 140 wt ppm CO2 – 240 wt ppm H2O, and 420 wt ppm CO2 – 720 wt 
ppm H2O) as a function of depth. (A) Mantle thermal structure with potential temperature TP 

= 1350°C from Grose and Afonso (2013) (G13R1350 model). (B) SiO2, (C) CO2, and (D) 
H2O contents of melts. (E) Melt fraction. (F) Bulk mantle electrical conductivity. The orange 
circle in panel (A) provides an estimation of the LAB depth.  Jo
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Fig. 8: MAGLAB equilibrium melt composition, melt fraction and electrical 
conductivity for cratonic upper mantle with various volatile contents (50 wt ppm CO2 – 80 wt 
ppm H2O, 140 wt ppm CO2 – 240 wt ppm H2O, 420 wt ppm CO2 – 720 wt ppm H2O, and 140 

wt ppm CO2 – 720 wt ppm H2O) as a function of depth. (A) Mantle thermal structure with 
potential temperature TP = 1350°C calculated with the numerical FITPLOT model (McKenzie 

and Bickle, 1988; Mather et al., 2011) by fitting xenolith P-T array from a typical cratonic 
mantle (here, we consider the North Atlantic Craton beneath southern West Greenland; see 
more details in Fig. S6 and its caption). (B) SiO2, (C) CO2, and (D) H2O contents of melts. (E) 

Melt fraction. (F) Bulk mantle electrical conductivity. The orange circle in panel (A) provides 
an estimation of the LAB depth. ―Melt in‖ vs ―Melt out‖ labels denote the depth at which 

mantle geotherm crosses the CO2-H2O-bearing peridotite solidus, and consequently delimits 
the top of the mantle melting zone; while the electrical conductivity calculations are 
performed by MAGLAB only for partially molten peridotite rocks, solid state mechanisms 

govern the mantle electrical conductivity in its shallow subsolidus portions. 
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Fig. 9: Correspondence of the composition of intraplate magmas observed at the 
Earth‘s surface with the composition of primitive melts equilibrated at LAB depth calculated 

with MAGLAB. Different tectonic settings are considered: (i) Young seafloor (i.e., modern 
oceanic plate with age <10 Ma) with a LAB depth <~60 km; (ii) Old seafloor (i.e., modern 
oceanic plate with age >10 Ma) and Young/rejuvenated Continent, with a LAB depth between 

60 and 125 km; (iii) Continental shield and Craton, with a LAB depth between 125 and 250 
km. MAGLAB calculations are performed by varying the depth of the LAB as a function of 

the tectonic setting (see P-T conditions in Fig. S7), and considering a single average mantle 
source with 140 wt ppm CO2 – 240 wt ppm H2O (Le Voyer et al., 2017). Similarly to the TAS 
diagram (e.g. Fig. 1), the melt SiO2 content is here used as a proxy for the compositional 

range of intraplate magmas as found at the Earth‘s surface: 15-35 wt% for kimberlites, a 
progressive transition between 35 to 45 wt% from melilitite to nephelinite to basanite, and 

>45 wt% for regular basalts. Note OIB compositions as reported in Fig. 1 span basanitic to 
basaltic compositions. 
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Fig. 10: Reproducing the petrological and electrical data at the LAB beneath Society 

hotspot (Pacific Ocean) using MAGLAB. Calculations are performed at LAB depth (120±10 

km) according to the P-T conditions and mantle volatile content reported for the hotspot. The 
reported mantle potential temperature TP is 1450°C (Herzberg and Asimow, 2008; mantle 

thermal structure simulated with G13R1450 model from Grose and Afonso 2013), and the 
mantle volatile content is ~700 wt ppm CO2 and 720 wt ppm H2O (Aubaud et al., 2005). The 

average major element compositions of near-primary OIBs reported for the Society Islands 
are from Dasgupta et al. (2010), on a volatile-free basis (also applied to the melt compositions 
from MAGLAB simulations). The high mantle electrical conductivities reported beneath 

Society hotspot are estimated within 110-130 km depth from the averaged 1-D electrical 
conductivities (Tada et al. (2016); see also Fig. 11: ‖Anomaly Zone A, Society Islands‖). 
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Fig. 11: Comparison between electrical profiles observed beneath various ocean floors 

and MAGLAB simulations. MAGLAB conductivities for partially molten peridotite rocks 
(light red area) range from (i) old, cold and highly depleted mantle (130 Ma, with TP = 

1300°C and 20 wt ppm CO2 – 50 wt ppm H2O) to (ii) young, hot and highly enriched mantle 
(0 Ma, with TP = 1450°C and 700 wt ppm CO2 – 720 wt ppm H2O). The mantle thermal 
structures are G13R1300 and G13R1450 models from Grose and Afonso (2013), with TP = 

1300°C and 1450°C, respectively. Electrical conductivity profiles of the oceanic upper mantle 
in dark grey are from various magnetotelluric studies. 1 and 1‘, conductivity profile in the 

northeastern Pacific Ocean between Hawaii and California (Lizarralde et al., 1995). 2, 
Tomographic Investigation by seafloor ARray Experiment for the Society hotspot (TIARES) 
profile representing the ‗background‘ mantle beneath the Society hotspot in the Pacific Ocean 

(Tada et al., 2016). 3 and 3‘, Mantle Electromagnetic and Tomography (MELT) profile in the 
region of the East Pacific Rise (Evans et al., 2005; Baba et al., 2006). 4, conductivity profile 

in the central Pacific Ocean (―NoMelt‖ experiment in Sarafian et al., 2015). 5, conductivity 
profile in the northwestern Pacific Ocean (―Area A‖ in Baba et al., 2013, 2017b). 6, 
conductivity profile beneath the Philippine Sea (Baba et al., 2010). 7, conductivity profile 

beneath the Tristan da Cunha hotspot in the southern Atlantic Ocean (Baba et al., 2017a). 8, 
conductivity profile in the northern East Pacific Rise (Key et al., 2013). 9, Reykjanes Axial 

Melt Experiment: Structural Synthesis from Electromagnetics and Seismics (RAMESSES) 
profile in the northern section of the Mid-Atlantic Ridge, i.e. the Reykjanes Ridge (―AVR 
Centre‖ in Heinson et al., 2000). 10, Serpentinite, Extension, and Regional Porosity 

Experiment across the Nicaragua Trench (SERPENT) profile beneath the outer rise of 22-24 
Ma Cocos plate seafloor in the Pacific Ocean (Naif et al., 2013; Naif, 2018). 11, conductivity 
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profile of a high-conductivity anomaly reported beneath the Society hotspot in the Pacific 
Ocean (―Zone A‖ in Tada et al., 2016). 12, conductivity profile beneath the Mohns Ridge (―3 

Myr W‖ profile in Johansen et al., 2019). 
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Highlights 

 Combined petrology-geophysics inputs to model melting processes in the upper 

mantle 

 Intraplate magma compositions relate to lithosphere thickness 

 Quantification of melt fractions and CO2-H2O contents down to 300 km depth  

 Heterogeneous mantle conductivities related to variable volatile contents 
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