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Abstract: 

Few global syntheses of oxygen and carbon isotope composition of pedogenic 

carbonates have been attempted, unlike marine carbonates. Pedogenic carbonates 

represent in-situ indicators of the climate conditions prevailing on land. The 18O and 

13C values of pedogenic carbonates are controlled by local and global factors, many of 

them not affecting the marine carbonates largely used to probe global climate changes. 

We compile pedogenic oxygen and carbon isotopic data (N= 12167) from Cretaceous to 

Quaternary-aged paleosols to identify potential trends through time and tie them to 

possible controlling factors. While discrete events such as the Paleocene-Eocene 

Thermal Maximum are clearly evidenced, our analysis reveals an increasing complexity 

in the distribution of the 18O vs 13C values through the Cenozoic. As could be expected, 

the rise of C4 plants induces a shift towards higher 13C values during the Neogene and 

Quaternary. We also show that the increase in global hypsometry during the Neogene 

plays a major role in controlling the 18O and 13C values of pedogenic carbonates by 

increasing aridity downwind of orographic barriers. Finally, during the Quaternary, an 

increase of 3‰ in 18O values is recorded both by the pedogenic carbonates and the 

marine foraminifera suggesting that both indicators may be used to track global climate 

signal. 
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1 Introduction 

The oxygen and carbon isotope compositions of pedogenic carbonates represent 

archives of past climate and environmental changes (Cerling, 1984, 1991; Fox and Koch, 

2004; Dworkin et al., 2005; Garzione et al., 2008). The 18O and 13C values of pedogenic 

carbonates are controlled by a number of factors that can be grouped in two broad 

categories: local factors (evaporation, nature of the vegetation, soil respiration, soil 

depth, hydrology and elevation of the area, latitude, distance from the marine water 

source…) and global factors such as atmospheric CO2 pressure or atmospheric CO2 

isotopic composition (Jenny, 1980; Allison et al., 1984; Cerling, 1991; Körner et al., 1991; 

Cerling and Quade, 1993). Based on this, paleosol stable isotope data are used to 

constrain the paleoenvironmental conditions for specific areas and periods of time. 

More global climate signals are generally probed using the isotopic composition of 

marine carbonates or of marine and continental fossil records (Zachos et al., 2001; 

Zeebe, 2001; Pucéat et al., 2003; Amiot et al., 2004; Yongdong Wang et al., 2014). These 

are used as input data in global-scale climate models in order to derive parameters such 

as atmospheric pCO2 values, oceanic water temperatures or wind patterns (Licht et al., 

2014; Caves et al., 2015; Ladant and Donnadieu, 2016). Whereas long-term, global or at 

least very large scale trends in isotopic compositions of marine carbonate fossils or 

continental vertebrates have been described (Pucéat et al., 2003; Amiot et al., 2004), 

only a limited number of global analysis of pedogenic carbonates have been attempted 

to date (e.g. Ekart et al., 1999; Sheldon and Tabor, 2009), despite these carbonates 

represent in-situ indicators of the climate conditions prevailing on-land. 
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A growing dataset of oxygen and carbon isotope compositions is available from 

carbonate-bearing paleosols worldwide, unevenly covering a long period of time from 

the Paleozoic to the Quaternary. From this dataset we selected the isotopic values 

obtained from Cretaceous to Quaternary paleosols. Analyzing those data from a global 

perspective, over large periods of time, we show that the isotopic signal reflects local 

and global conditions at a given, relatively short period of time, and that long-term 

trends in the isotopic data also exist that can be correlated to biological, topographic or 

climatic conditions. 

2 Data collection 

In this study we use the data from 103 publications, corresponding to geological sites in 

both hemispheres covering large latitude ranges and distributed on the 5 continents (Fig. 

1 and Supplementary Table S1). Only data that were provided as numbers in tables were 

selected, avoiding collecting data from graphs. In order to get a homogeneous dataset, 

we selected oxygen and carbon isotope compositions solely from samples that could be 

assigned with high confidence to pedogenic carbonates (nodules, rhizocretions and 

pedogenic calcretes), and for which the formation age and the present-day geographic 

position are indicated. Those samples for which diagenetic alteration has been 

demonstrated or suspected by the authors of the original publication have been rejected 

as well as those developed in sediment hosting inherited carbonate grains when this is 

indicated in the publication. In each individual study, when outliers exist but are not 

directly explained by factors such as diagenesis, inherited carbonate or potential 

analytical errors, they have been included in the dataset. 

Soil CO2 is generally a two-components mixture between atmospheric CO2 and CO2 

derived from in situ oxidation of organic carbon (referred as soil respiration). Both soil 
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pCO2 and 13C values thus vary with depth from atmospheric values at the surface to a 

constant soil value at depth, leading to a spread in individual isotopic ratios. Except for 

very low soil respiration rates, both parameters should be constant below depths of 

about 50 cm (Cerling, 1984; Sheldon and Tabor, 2009). For studies dealing with 

Quaternary paleosols and indicating the sampling depth, the values from samples 

collected above a depth of 50 cm have not been selected. The sampling depth for older 

paleosols is generally not constrained and all values have been considered. A total 

number of 12167 data have been isolated. Sheldon (2018) recently proposed to use the 

difference between the carbon isotope composition of soil carbonate and that of soil 

organic matter 13C = 13Ccarb – 13Corg to screen corresponding oxygen isotope values 

and reject those that do not correspond to soils in oxygen isotope equilibrium. However, 

most of the studies we used in this compilation do not include 13Corg values. To 

preserve the homogeneity of our dataset we were thus unable to use this approach and 

did not screen the oxygen isotope values even when 13Corg was available. 

The 13C values are given relative to the Pee Dee Belemnite (PDB or VPDB for the 

equivalent Vienna standard). All 18O values are given relative to the Vienna Standard 

Mean Ocean Water (VSMOW) and data initially provided using VPDB scale were 

converted using 

18OVSMOW = 1.03091 × 18OVPDB + 30.91 (Coplen et al., 1983) 

 In order to investigate the existence of trends in the data over large time-scales, data 

have been compiled in five age groups using the ages indicated in the original papers 

(Fig. 2): Lower Cretaceous, Upper Cretaceous, Paleogene, Neogene and Quaternary. The 

paleo-location of the samples is reported on the paleogeographic maps of the 

PALEOMAP project (Scotese, 2014a, b, c, d) (Fig. 1). When not provided in the original 
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publication, the original paleolatitude of the samples has been estimated using these 

maps or paleotectonic maps of the Tethyan region (Dercourt et al., 2000; Barrier et al., 

2018). 

Trends in 18O values through time are also compared to the evolution of global 

hypsometry notably to assess the role of orographic barriers. The Cretaceous 

topography was obtained from the 2.8° latitude × 2.8° longitude paleogeographic 

reconstructions of Sewall et al. (2007), based on the 1°× 1° paleo Digital Elevation Model 

(DEM) of the PALEOMAP project (http://www.scotese.com/Default.htm, Scotese and 

Golonka, 1992) modified using data from the literature and from the Deep Time Maps 

project of R. Blakey (https://deeptimemaps.com). The early Eocene paleo DEM is from 

Herold et al. (2014) and has a 2° × 2° grid resolution. The middle Miocene paleo DEM 

was taken from Frigola et al. (2018). This model is based on a previous 2° × 2° grid 

resolution reconstruction by Herold et al. (2008) that the authors modified to take into 

account recently published paleo-topography information. 

Details on the method used to reconstruct each paleo DEM can be found in the 

corresponding publications and here we only provide a summary of the method. 

Generally speaking, paleo DEMs are constructed by estimating the topographic resultant 

of past tectonic settings based on comparison with their modern equivalent (Ziegler et 

al., 1985). The elevation is defined along contour lines and each grid cell corresponds to 

a range of elevation and not to a definite value. Each paleo DEM is further corrected 

using the position of known shorelines or any independent paleo-altitude estimates 

(paleo-flora, geochemistry, etc.) (Markwick and Valdes, 2004; Markwick, 2007). Finally, 

a gridded, discrete DEM is obtained through interpolation of the contour lines (Herold et 

al., 2014). The uncertainty associated to these models are difficult to estimate and vary 

due to the amount of paleo-elevation data available for each period and to the method 
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use to integrate those data in the models and interpolate them (Markwick and Valdes, 

2004). For example, Herold et al. (2008) published a compilation of paleo-altitude 

estimates and their uncertainty for the Tibetan plateau and the Andes during the 

Miocene and Pliocene. Those error margins are generally higher than 500 m and up to 

2000 m for the Andes. However, in this study, paleo-elevation data are not used to 

establish the exact altitude of ranges rather to derive trends in the evolution of the 

global hypsometry which likely correspond to trends in the complexity of the global 

topography. 

3 Results 

3.1. Oxygen 

The oxygen isotope composition of paleosols is reported as frequency diagrams along 

the stratigraphy column (Fig. 2). Diagrams were build using the DensityPlotter program 

(Vermeesch, 2012) and a Gaussian kernel distribution function. Peaks in the distribution 

of data are derived from the kernel analysis. 

The major peak in the Lower Cretaceous, Upper Cretaceous and Paleogene 18O 

distributions is near identical centered on (+22 ± 0.5)‰, although the low number of 

Lower Cretaceous data makes for less robust statistics. The Cretaceous data possibly 

display a bimodal distribution with a sub-peak around +10‰ in the Lower Cretaceous 

and a sub-peak around +16.7‰ in the Upper Cretaceous. Actually, the Lower 

Cretaceous minor peak corresponds to data obtained from samples collected in 

southern Australia at a very high paleolatitude of 75°S (Gregory et al., 1989). 

The Paleogene distribution contains a minor peak at (+17.1 ± 0.5)‰ corresponding to a 

series of samples collected in the Oligocene Upper John Day Formation in Oregon 
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(Retallack et al., 2004). The authors correlate the low 18O values to cyclic cold periods. 

Such low values are also reported from the Eocene of Wyoming (USA), and again 

interpreted as cyclic shifts in seasonal distribution of precipitations inducing increases 

in soil water content and correlative decrease in 18O values (Clyde et al., 2001). Finally, 

a few low 18O values are reported from the Eocene of Tibet, interpreted as associated to 

low temperature, high altitude environments (Hoke et al., 2014b). The proportion of 

these low 18O values tend to decrease after the Oligocene. 

The Neogene distribution of 18O values displays a wide peak, almost a plateau, with a 

central value of (+23 ± 0.5)‰. This broad distribution might correspond to a 

combination between the (+22 ± 0.5)‰ peak observed in the Cretaceous and Paleogene 

data and a new population of data with 18O values around +25‰. Very few 18O values 

are above 30‰. 

A peak at (+22 ± 0.5)‰ is also observed in the Quaternary distribution; however the 

main peak corresponds to higher 18O values (at +25‰). This 3‰ difference, which 

might explain the wide distribution in the Neogene data, also matches the 3‰ increase 

in the 18O values of deep-sea foraminifera during the same period, generally considered 

as reflecting the development of polar ice-caps and the cooling of deep-sea waters (Lear 

et al., 2000; Zachos et al., 2001; Billups and Schrag, 2002) (Fig. 2). A notable feature of 

the Quaternary dataset is the occurrence of tens of 18O values (above + 30‰). 

3.2. Carbon 

The distribution of the 13C values is largely unimodal from the Cretaceous to the 

Neogene, although a hint of bimodality occurs in the Lower Cretaceous data (Fig. 2). 

However, a large number of the high 13C Lower Cretaceous values (up to +10‰) were 
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mainly obtained from the Otway and Strzelecki ranges in Australia which show a strong 

data dispersion and should thus be considered with care (Gregory et al., 1989). Unlike in 

the oxygen data, the major peak of the distribution varies with time, from –6.9‰ in the 

Lower Cretaceous, decreasing to –9.3‰ and –9.1‰ in the Upper Cretaceous – 

Paleogene period then increasing to –6.6‰ in the Neogene. The only remarkable 

exception are the 13C values associated to the Paleocene – Eocene transition Thermal 

Maximum (PETM) that form a secondary peak around –14‰ in the Paleogene 

distribution (Bowen et al., 2001; Koch et al., 2003). These low 13C values have been 

interpreted as resulting from the massive release of carbon from marine methane 

hydrates during the thermal maximum (Dickens et al., 1997; Bains et al., 1999; Beerling, 

2000). 

The Quaternary distribution is bimodal with peaks at –6.1‰ and –1.4‰. An increase in 

13C values seems to start in the Neogene distribution. Interestingly, this increase 

mirrors the decrease of the 13C values of the deep-sea foraminifera observed by Zachos 

et al. (2001) from the Neogene (Fig. 2). 

3.3. 13C vs. 18O values. 

Due to the relatively limited number of oxygen and carbon isotope data available for the 

Cretaceous period, we restricted the visualization of the data in the 13C vs. 18O 

diagram to the Paleogene – Quaternary time-range (Fig. 3). Data clusters, labelled A to E 

in Fig. 3, were obtained using a gaussian kernel density function: the occurrence of a 

cluster is defined by a peak in the density of data. Although the distribution of data 

within a cluster may not be homogeneous, we considered that the center of the cluster 

corresponds to the position of the highest density. 
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Most of the Paleogene data plot within a very narrow range, forming a dense cluster 

(labelled “A” on Fig. 3). Two smaller clusters (A’ and A”) are visible, associated to 

specific time-periods. Cluster A’ with low 18O values but 13C values comparable to 

cluster A, corresponds to the cyclic colder and/or wetter periods recorded in the USA or 

Tibet (Clyde et al., 2001; Retallack et al., 2004; Hoke et al., 2014b). Cluster A” with low 

13C values but 18O values comparable to cluster A corresponds to PETM-related data. 

Finally, some outliers are distributed into a slightly wider region of the graph with an 

incipient cluster (B) showing higher 18O values in relation either with evidence of 

increased aridity or increased hypsometry of the ground-water source region (Clyde et 

al., 2001; Alonso-Zarza and Arenas, 2004). 

The Neogene data form a wide cloud of points with three clusters. Cluster A might 

correspond to Paleogene cluster A, however slightly shifted towards lower 18O values 

(by about 1.5‰). Cluster B represents the majority of the data. It displays 13C and 18O 

central value higher than cluster A. Its position is similar to that of the incipient cluster B 

observed in the Paleogene data. The third cluster C has 13C values generally higher than 

those of A and B and 18O values lower than B and similar to slightly higher than A. 

The differentiation in several clusters is obvious in the Quaternary data: cluster A 

defined for Paleogene and Neogene data no longer exists, cluster B becomes major with 

an increase in the central 13C value and cluster C has largely reduced. Two new clusters 

(D, E) can be identified, corresponding to an increase in 13C and 18O values, 

respectively. Also new in the Quaternary data set is the rather high number of samples 

with both high 13C and 18O values . 

4 Discussion 
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4.1 Global signals: pCO2, emergence of C4 plants, global cooling and hypsometry 

Global, long-term isotopic signals depicted above are registered in carbonate-bearing 

paleosols implying that global forcing parameters have to be invoked. Some of the Early 

Cretaceous 13C values (higher than 0‰, Fig. 2, lower right) seem correlated to high 

pCO2 values (Lee and Hisada, 1999; Robinson et al., 2002; Huang et al., 2012). Recent 

multi-proxy compilations have shown that pCO2 varied largely during the Paleogene. It 

was variable during the Paleocene with mean values comparable to the present-day 

ones and much higher during the Eocene with a peak in global warmth during the 

Ypresian (Beerling and Royer, 2011; Hyland and Sheldon, 2013). These conditions likely 

explain the spread in 13C values between about –16‰ and 0‰ as the minor peak at –

14‰ is clearly related to the PETM. 

The pCO2 being comparatively low during the Neogene, the emergence of high 13C 

values for that period and the well-defined peak at about –1.4‰ (with data reaching up 

to about +8‰) for the Quaternary data is largely explained by the Late Miocene rise of 

C4-dominated ecosystems, with higher-13C values (Quade and Cerling, 1995; Fox and 

Koch, 2004; Edwards et al., 2010; Strömberg, 2011). The distribution of the Quaternary 

13C data is thus, at first order, dominated by the C3 (major peak in distribution) and C4 

(minor peak) plants-dominated environments (Fig. 2). However, unless considering that 

all the ecosystems that produced the analyzed paleosols contained a significant 

proportion of C4 plants, this parameter alone does not explain the complete 

disappearance of cluster (A) in the 13C vs 18O plot (Fig. 3). 

Besides the emergence of C4 plants, two other main events distinguish the late 

Paleogene – Quaternary period from the Cretaceous – Early Paleogene that likely 

influence the isotopic signals. These are (1) the middle Eocene – Oligocene development 
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of the Antarctic Ice cap and of more ephemeral ice in the Arctic (Tripati and Darby, 

2018), followed by the late Miocene – Pliocene extension of Arctic glaciation (Larsen et 

al., 1994; Helland and Holmes, 1997), and (2) the Oligocene – Miocene rise of several 

large mountain ranges. These reliefs increased the number and size of orographic 

barriers, disrupting the atmospheric circulation. 

The Neogene – Quaternary period is marked by a general increase of the 18O values of 

pedogenic carbonates (Fig. 2). In the oceanic realm, the Oligocene and Late Miocene – 

Quaternary global cooling phases induced a comparable increase in the 18O value of 

deep-sea foraminifera (Fig. 2; Zachos et al., 2001). Unless considering that, during the 

Late Miocene – Quaternary period, the global ocean was isotopically unbalanced due to a 

large amount of low 18O water stored in the polar ice-caps and permafrost soils, cooler 

global temperatures should lead to lower 18O rainfall values and therefore to lower 

18O values in paleosol carbonates. For example, this temperature effect is put forward 

to explain the low 18O values registered in the Early Cretaceous, high-latitude paleosols 

of southern Australia (Gregory et al., 1989) (Fig. 2). However, cooler temperatures 

should also increase the CaCO3 – H2O fractionation factor, leading to an increase in the 

18O values of paleosol carbonates (Cerling, 1984). This effect might participate to the 

increase of 18O values during the Neogene and Quaternary (Figs. 2 and 3). 

Although some mountain ranges such as the North American Cordillera existed during 

the Cretaceous (Wernicke et al., 1987; Yonkee and Weil, 2015), global hypsometry 

increased during the Neogene with the formation or enhanced uplift of mountain ranges 

such as the Andes (Hoke and Garzione, 2008), the increased uplift and spreading of the 

Tibetan plateau (Tapponnier et al., 2001; Kirby et al., 2002; Liu-Zeng et al., 2008; Cheng 

et al., 2016), the topographic growth of the Tian Shan, Altai and Sayan ranges in central 
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Asia (Jolivet et al., 2010, 2013, 2018a), the rise of the Alps (Schmid et al., 1996; Willett et 

al., 2006; Labaume et al., 2008) or the formation of the Southern Alps (Tippett and 

Kamp, 1995; Chamberlain et al., 1999)(Fig. 4). These new reliefs increased the number 

and size of orographic barriers, disrupting the atmospheric circulation and leading to 

the development of monsoon-type climates and the formation of rain shadows (Broccoli 

and Manabe, 1992; Dettman et al., 2003; Harris, 2006; Caves et al., 2014). Although the 

exact relation between the Himalayan monsoon and the aridification of Central Asia 

remains debated (e.g. Licht et al., 2014), it has, for example, been recently shown that 

loess deposits started to form during the latest Eocene in the central part of the Rocky 

Mountains (North America) in response to enhanced uplift of the range. Aridification 

was further increased by the global climate cooling at the Eocene–Oligocene Transition 

but its onset seems indeed related to orographic processes (Fan et al., 2020). Central 

Asia provides a good example of the isotopic effect of relief building. In that region, two 

phenomena are acting to increase the 18O values of paleosol carbonates: the low-18O 

moisture evaporated from the Indian Ocean to the south is blocked by the Himalayas 

and rainfalls are mainly sourced from high-18O moisture transported by the Westerlies 

(Bershaw et al., 2012; Caves et al., 2015); in parallel, aridity increased during the Late 

Paleogene – Quaternary period (Bosboom et al., 2014), which led to stronger 

evaporation and to an increase in 18O values of soil water. 

 We thus suggest that the global increase in hypsometry during the Late Paleogene – 

Quaternary period, leading to enhanced regional aridification due to rain shadow effects 

is registered as a first order signal in the evolution of the isotopic composition of 

carbonate paleosols. The parallel shift towards higher 18O values in deep-sea 

foraminifera and pedogenic carbonates during the Quaternary remains to be explored 

further. We acknowledge that the parallel deviation of both dataset could be fortuitous 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 1
3
 

but cannot ignore the possibility that, at least for the Quaternary period, both signals 

record modification in oceanic water oxygen isotopic ratio. 

4.2 Some examples of second order trends 

Second order signals, limited to a specific period of time and/or to a specific locality can 

also be derived from the present global survey. Some of these are illustrated below 

despite not being always completely understood. 

The first order influence of topography and associated enhanced aridity can be blurred 

by local effects. A first group of parameters tends to decrease the 18O values such as the 

decrease in 18O values of rainfall with altitude (Poage and Chamberlain, 2001), the 

mixing between rainfall water and river water coming from high altitude orographic 

rainfalls (Charreau et al., 2012; Jolivet et al., 2018b) or the development of large fresh-

water lakes (Jolivet et al., 2018b). On the other hand, increasing evaporation tends to 

increase the oxygen isotopic composition towards higher values. In some hyper-arid 

regions such as the Atacama desert, the effects of extreme evaporation makes for 

carbonates 18O values incompatible with those expected from carbonates formed in 

isotopic equilibrium with rainfall water (Quade et al., 2007). In the same regions, rapid 

evaporation of rain water implies that carbonates form close or at the surface, in 

isotopic equilibrium with the atmospheric CO2 and not with the soil CO2 (Quade et al., 

2007). This hyper-aridity likely explains the position of the Quaternary samples having 

both the highest 18O and 13C values in Fig. 3. Similarly, in C3 dominated ecosystems, 

the 13C value of paleosol carbonates increases with increasing hydric stress (and the 

coeval decrease in soil respiration capacities) (Kohn, 2010). These secondary 

parameters likely explain part of the spread in 18O and 13C values observed for the 

Neogene and Quaternary periods (Fig. 2). 
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As expected from theoretical models (e.g. Cerling and Quade, 1993), the Quaternary 

mean 18O value of each individual dataset shows a weak negative correlation with 

absolute latitude within the documented range of 4°–45° (Fig. 5a). Between 25° and 40° 

the large spread in the data is probably related to local variations in evaporation and 

rainfall following the topographic factors described above. However, the theoretical 

relationship between the 18O values and latitude is only observed in the Quaternary 

dataset, not for the other periods. The Quaternary mean 13C values show a positive 

correlation with latitude between 4° and 30° possibly linked to the increase in aridity 

and relative proportion of C3 and C4 plants in the ecosystems (Fig. 5b). Actually, altitude, 

by influencing the local climate (especially the mean temperature of the warmest 

months), also plays a role in the competition between C4 and C3 plants (Cotton et al., 

2014; Hyland et al., 2019). Above 30° latitude, the mean 13C values in the Quaternary 

datasets are largely spread, again probably in response to the impact of complex 

topography on the ecosystems and soil conditions. 

Correlations, positive or negative, exist in the 13C vs. 18O plot of individual datasets 

(Fig. 6a, b). Positive correlations are well documented in the Quaternary and to a lesser 

extent in the Neogene dataset (see for example the data of Salomons et al. (1978); 

Cerling and Hay (1986) or Potts et al. (2009) for the Quaternary and Latorre et al. 

(1997) for the Neogene). These trends covering time span of several 10 kyrs to several 

Myrs are usually explained by climate and ecosystem changes through time: an increase 

in aridity leads to increased evaporation (inducing higher 18O values), soil hydric stress 

(inducing higher 13C values) and favors C4 plants (again increasing the 13C values). 

Negative correlations are observed in the Quaternary (Yang Wang and Shu-Hui Zheng, 

1989), possibly in the Neogene (Charreau et al., 2012) and to a larger extend in the 

Paleogene (Koch et al., 1995; Alonso-Zarza and Arenas, 2004) (Fig. 6c–e). Few authors 
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discussed such negative correlations that remain poorly explored. Only (Alonso-Zarza 

and Arenas, 2004) proposed that it could be controlled by climate: the driest periods 

would also be cooler, leading to high 13C values, associated to a limited variation in 18O 

compared to wetter, warmer periods. Finally, some of the Quaternary (Alam et al., 1997; 

Alomar, 2001) and Neogene datasets (Behrensmeyer et al., 2007) show a wide range in 

13C values associated to a narrow 18O range (Fig. 6f, g). Most authors explain the large 

spread in 13C values by changes in the proportion of C3 over C4 plants, associated to 

small variations in climate conditions. However, Alomar (2001) suggested that changes 

in 13C values could also result from fluctuations in the atmospheric component of soil 

CO2. 

5 Conclusions 

The analysis presented here is based on the oxygen and carbon isotope data of 

pedogenic carbonates of the Cretaceous up to the Quaternary. We show that pedogenic 

carbonates record long-term, global isotopic signals, complementary to the record of 

oceanic carbonates. For example, whereas the influence of polar ice-caps from the Late 

Paleogene (and possibly during the Upper Cretaceous) is recorded in the oceanic 18O 

signal, the effects of global continental hypsometry are not. In that respect, continental 

topography and associated enhanced aridity became a major forcing parameter during 

the Neogene and Quaternary periods, creating regional- to local-scale climatic 

conditions leading in turn to contrasted ecosystems. This complex climatic and biologic 

pattern, associated to the rise of C4 plants during the Neogene, seems to have led to 

uniquely complex soil carbonates 18O and 13C patterns. 
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Figure 1-A: Paleogeographic maps of the Lower Cretaceous (bottom) and Upper 

Cretaceous (top) from Scotese (2014a,b) showing the climatic zones (redrawn after Bouco 

et al., 2013). The location of the data used in this study is indicated by the encircled 

numbers. Note that for some of the continental blocks with rapid latitude variations such 

as India, the position of the data point on the map may not correspond to the paleo-latitude 

at the deposition time. Data source: Lower Cretaceous – 1- (Gregory et al., 1989); 2- 

(Mortazavi et al., 2013); 3, 4- (Huang et al., 2012); 5, 6- (Li et al., 2013); 7- (Lee and Hisada, 

1999); 8- (Leier et al., 2009); 9- (Jolivet et al., 2018b); 10- (Platt, 1989); 11- (Robinson et 

al., 2002). Upper Cretaceous – 1-(Nordt et al., 2002); 2- (Brlek and Glumac, 2014); 3- (Bojar 

et al., 2010); 4- (Tandon et al., 1995); 5–7- (Heilbronn et al., 2015; Jolivet et al., 2018); 8- 

(De Pelsmaeker et al., 2018); 9- (Leier et al., 2009); 10- (Suguio et al., 1975); 11- (Dworkin 

et al., 2005); 12- (Gao et al., 2015); 13- (Sandler, 2006); 14- (Ghosh et al., 1995). 

Figure 1-B: Paleogeographic maps of the Paleocene (bottom, including all Paleogene data) 

and Middle Miocene (top, including all Neogene data) from Scotese (2014c,d) showing the 

climatic zones (redrawn after Boucot et al. (2013)). The location of the data used in this 

study is indicated by the encircled numbers. Data source: Paleogene – 1,- (Dworkin et al., 

2005); 2- (Koch et al., 1995, 2003); 3- (Jolivet et al., 2018b); 4- (Macaulay et al., 2016); 5- 

(Hellwig et al., 2018); 6, 7- (Jolivet et al., 2018b); 8- (Bowen et al., 2005); 9- (Gao et al., 

2015); 10- (Hoke et al., 2014); 11- (Alonso-Zarza and Arenas, 2004; Parcerisa et al., 2006); 

12- (Garzione et al., 2008); 13- (Sinha and Stott, 1994); 14- (Caves et al., 2014); 15- (Clyde 

et al., 2001; Hyland and Sheldon, 2013); 16- (Retallack et al., 2004). Neogene: 1- (Fox and 

Koch, 2004); 2- (Fox and Koch, 2004; Fox et al., 2012); 3- (Mack et al., 1994); 4- (Ghosh et 

al., 2006); 5- (Latorre et al., 1997; Kleinert and Strecker, 2001); 6- (Jordan et al., 1996; 

Giambiagi, 1999; Irigoyen et al., 2000; Hoke et al., 2014); 7- (Alonso-Zarza and Arenas, 

2004; Huerta et Armenteros, 2005; Hoke et al., 2014); 8- (Quade et al., 1994); 9- (Cerling et 
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al., 1988; Wynn, 2000, 2004; Cerling, 2011; Levin et al., 2011; Levin, 2013); 10- (Macaulay 

et al., 2016; Hellwig et al., 2018); 11- (Charreau et al., 2012); 12- (Heilbronn et al., 2015; 

Caves et al., 2017; Jolivet et al., 2018b); 13- (Caves et al., 2014); 14- (Kaakinen et al., 2006); 

15- (Hoke et al., 2014); 16- (Quade and Cerling, 1995; Behrensmeyer et al., 2007); 17- 

(Aronson et al., 2008; Cerling, 2011); 18- (Cerling et al., 1991b; Kingston, 1992). 

Figure 1-C: Present-day geographic map (top) simplified from Scotese (2014d) and 

climate map based on the Köppen-Geiger classification (bottom, drawn using the data from 

Kottek et al. (2006)) showing the complexity of the Quaternary climate. The location of the 

data used in this study is indicated by the encircled numbers. Data source: 1- (Neymark et 

al., 2005); 2- (Schlesinger, 1985; Liu et al., 1996); 3- (Mack et al., 1994; Deutz et al., 2001); 

4- (Alomar, 2001; Fox and Koch, 2004; Fox et al., 2012); 5- (Kleinert and Strecker, 2001; 

Quade et al., 2007); 6, 7- (Suguio et al., 1975); 8- (Ringrose et al., 2009); 9- (Cerling and 

Hay, 1986; Sikes et al., 1997; Plummer et al., 1999); 10- (Cerling et al., 1988; Wynn et al., 

2004; Quinn et al., 2007; Levin et al., 2011, 2015); 11–14- (Salomons et al., 1978); 15- 

(Salomons et al., 1978; Eren, 2011; Kaplan et al., 2013); 16- (Jolivet et al., 2018b); 17- 

(Rowe and Maher, 2000; Wang and Deng, 2005); 18- (Wang and Zheng, 1989; Wang and 

Deng, 2005); 19- (Alam et al., 1997); 20- (Srivastava, 2001; Sinha et al., 2006); 21- 

(Salomons et al., 1978; Andrews et al., 1998; Achyuthan, 2003; Dhir et al., 2010); 22- 

(Quade and Cerling, 1995; Achyuthan et al., 2012; Dar et al., 2015); 23- (Magaritz et al., 

1981; Potts et al., 2009; Achyuthan et al., 2012); 24- (Aronson et al., 2008); 25- (Kingston et 

al., 1992; Garrett et al., 2015). 

Figure 2: Kernel density estimation of 18O (left) and 13C (right) values for the 

Cretaceous to Quaternary carbonate-bearing paleosols (obtained using DensityPlotter, 

Vermeesch, 2012). N indicates the number of data for each histogram. The isotope 

values are reported using the conventional “” values using VSMOW as the standard for 
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oxygen (which implied recalculation of the delta value when it was reported against 

PeeDeeBelmenite in the original publication) and VPDB as the standard for carbon. The 

blue and green thick dotted lines indicate the trend of the mean value of the major peaks 

(indicated by a black cross) and the thin dotted lines the deviation from this trend in the 

Quaternary data or trends in secondary peaks for the Upper Cretaceous – Paleogene 

18O data. Two histograms are shown for the 18O in the Lower Cretaceous, one (left) 

excluding the data from Gregory et al. (1989) that are clearly affected by a strong 

latitudinal effect. The deep-sea foraminifera 18O and 13C variation curves are from 

Zachos et al. (2001). The pictures to the left illustrate various types of paleosols: top, 

carbonate nodules and bottom, carbonate root cast (pictures M. Jolivet). The time-span 

of major events (glaciations, mountain uplifts and expansion of C4 flora) are reported, 

the increasing thickness of the grey envelope representing increases in mountain in 

uplift rates. The references of the data and the data are reported in Supplementary Table 

S1, the geographic position of the studies are given on Fig. 1. 

Figure 3: 13C versus 18O diagrams in plan view (left) and 3D (right) for the Paleogene, 

Neogene and Quaternary periods. N indicates the number of data. The probability 

density color contours highlight the major data clusters and were calculated from a 

kernel Gaussian density estimation using a Python (https://www.python.org/) script. 

Data clusters are labelled A to E. The dotted arrows in the Neogene plot indicate 

incipient effect of C4 plants on the 13C values and of topography on the 18O values. 

These effects are obvious in the Quaternary data (plain white arrows). The dotted arrow 

in the Quaternary plot indicate a trend probably combining C4 plants, topography and 

extreme aridity effects. 
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Figure 4: (A) Histograms of the distribution of global altitudes above sea level for the 

Lower Cretaceous, Upper Cretaceous and Quaternary. The Cretaceous topography has a 

~2.8° latitude × 2.8° longitude resolution (Sewall et al., 2007) and the Quaternary data have 

been interpolated on a 2° latitude × 2° longitude using the USGS EROS Archive GTOPO30 

database and the GMT software (Wessel and Smith, 1991). (B) Probability density curve of 

global altitudes above sea level at different periods showing the progressive increase 

elevation over 3000 m during the Miocene and Quaternary. Cretaceous and Quaternary 

data are as on Fig. 3A, Early Eocene data from Herold et al. (2014) and middle-Miocene 

data from Frigola et al. (2018). 

Figure 5: Distribution of the mean isotopic values of each individual dataset as a function 

of the absolute paleo-latitude of the sampling site (the paleo-latitude is comprised between 

0° (equator) and 90° (pole), regardless of the hemisphere). (a) 18O values for the 

Quaternary, (b) 13C values for the Quaternary. The dotted lines refer to specific latitude 

ranges detailed in the text. 

Figure 6: 18O versus 13C diagrams of individual samples for various periods illustrating 

peculiar distributions. (a) Quaternary samples from Salomons et al. (1978) (red), Cerling 

and Hay (1986) (blue) and Potts et al. (2009) (green), showing positive correlations. (b) 

Neogene samples from Latorre et al. (1997) (red) showing positive correlation. (c) 

Quaternary samples from Wang andZheng (1989) showing negative correlation (red). (d) 

Neogene samples from Charreau et al. (2012) showing a faint negative correlation. (e) 

Paleogene samples from Alonso-Zarza and Arenas (2004) showing a negative correlation 

and from Koch et al. (1995) showing a faint negative correlation (blue). (f) Quaternary 

samples from Alam et al. (1997) (blue) and Alomar (2001) (red) showing a wide spread in 

13C values associated to a limited range of 18O values. (g) Neogene samples from 
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Behrensmeyer et al. (2007) showing a wide range of 13C values associated to a narrow 

spread in 18O values. 

Supplementary Table S1: Isotopic data used in this study for the (A) Cretaceous, (B) 

Paleogene, (C) Neogene, (D) Quaternary. The isotope values are reported using the 

conventional “” values using VSMOW as the standard for oxygen (which implied 

recalculation of the delta value when it was reported against PeeDeeBelmenite in the 

original publication) and VPDB as the standard for carbon. ## indicate values that were 

not reported in the original publication or values identified by the authors as affected by 

diagenetic processes. 
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