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Abstract. The development of ground based cloud radars offers a new capability to continuously monitor the fog
structure. Retrievals of fog microphysics is key for future process studies, data assimilation or model evaluation,
and can be performed using a variational method. Both the one-dimensional variational retrieval method (1D-Var)
or direct 3D/4D-Var data assimilation techniques rely on the combination of cloud radar measurements and a
background profile weighted by their corresponding uncertainties to obtain the optimal solution for the atmospheric
state. In order to prepare the exploitation of ground-based cloud radar measurements for future applications based
on variational approaches, the different sources of uncertainty due to instrumental errors, background errors and the
forward operator used to simulate the radar reflectivity need to be properly treated and accounted for. This paper
aims at preparing 1D-Var retrievals by analysing the errors associated with a background profile and a forward
operator during fog conditions. For this, the background was provided by a high-resolution numerical weather
prediction model and the forward operator by a radar simulator. Firstly, an instrumental dataset was taken from the
SIRTA observatory near Paris, France for winter 2018-19 during which 31 fog events were observed. Statistics were
calculated comparing cloud radar observations to those simulated. It was found that the accuracy of simulations
could be drastically improved by correcting for significant spatio-temporal background errors. This was achieved
by implementing a most resembling profile method in which an optimal model background profile is selected from
a domain and time window around the observation location and time. After selecting the best background profile
a good agreement was found between observations and simulations. Moreover observation minus simulation errors

were found to satisfy the conditions needed for future 1D-var retrievals (un-biased and normally distributed).
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1 Introduction

The presence of fog is an issue for many modes of transport due to its effect of reducing visibility. When seen at
airports, it can mean the grounding of flights, resulting in large economic costs due to delays and cancellations
(Gultepe et al., 2007). Reliable fog forecasts, however, can allow for the planning of flights around a fog event,
mitigating the impact it has. The development of high-resolution numerical weather prediction (NWP) models, with
horizontal resolutions in the order of 1km, and vertical resolutions in the order of 10 m near the surface, offers the
possibility to represent fog events with fine spatial and temporal resolutions. However, fog events are generally still
poorly forecast with current NWP models (Steeneveld et al., 2015; Philip et al., 2016).

Fog is defined as the reduction of visibility below 1km at the surface due to the presence of cloud droplets (Glickman
and Zenk, 2000), and is thus strictly a boundary layer phenomenon. The lack of accurate observations inside the
boundary layer has in recent years become an increasingly discussed subject (NRC, 2009), and might contribute
to the sub-optimal performance of high-resolution NWP models when forecasting boundary layer events, such as
fog. Although traditional observation methods, such as radio soundings and in-situ surface observations provide the
most accurate information, the development of ground-based remote sensing instruments offers measurements with
a temporal resolution unmatched by traditional instruments. Thanks to these emerging technologies, new products
have been designed making use of observations from lidars, ceilometers and visibility meters to aid fog nowcasting,
giving fog alerts with an average of 10 minutes to 50 minutes before fog formation (Haeffelin et al., 2016).

Recent developments in 95 GHz cloud radars have made these instruments much more affordable (Delanoé et al.,
2016) allowing for cloud studies, including those on fog processes, to be performed with increased insight (Thies
et al., 2010; Dupont et al., 2012; Weersted et al., 2017). These have highlighted which physical processes are the
most important to improve in new models if fog characteristics are to be better represented. The assimilation of
cloud radar data into an operational NWP model to give better fog forecasts with longer advance times, however,
is yet to be seen.

A simple method for assimilating new observations into an NWP model is to first retrieve an atmospheric profile
of a variable or set of variables, and to then assimilate this retrieved profile. Retrievals can be made through different
methods (statistical laws, optimal estimations (OE) (Maahn et al., 2020) using so-called one dimensional variational
(1D-Var) retrievals of state variables (Martinet et al., 2015)). This study focuses on the preparation of future OE
using 1D-Var data assimilation methods such as was performed in the work of Martinet et al. (2015, 2017) for
temperature and humidity profiles.

These retrievals may then be used in a second step with a three/four dimensional variational data assimilation
(3D/4D-Var) scheme (Bauer et al., 2006; Janiskové, 2015), or as a preliminary step towards direct variational data
assimilation of the cloud radar reflectivity (Fielding and Janiskova, 2020). In order to first perform the 1D-Var
retrieval, observations should be combined with an ‘a priori’ profile, otherwise known as a ‘background’ profile.

Though this may be taken from climatological data, the more accurate the background profile, the more accurate
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the final retrieval is likely to be (Rodgers, 2000). As commonly used in data assimilation, the background profile
considered in this study comes from a high-resolution NWP model—in this case the French convective-scale model
AROME (Seity et al., 2011), valid at the time and location of the retrieval.

The background profile must also be of the same variable type as the observation is made in. In the case of
remote sensing instruments this requires either a ‘backward’ model, to transform the observation variables into
those produced by the NWP model, or a ‘forward’ model to transform the variables given by an NWP model to
those made by the instrument. Due to the ill-posed nature of transforming radar reflectivity measurements into
LWC estimates (Atlas, 1954; Bohren and Huffman, 2008; Maier et al., 2012), the forward model approach has been
chosen in this study.

In order to make a 1D-Var retrieval, it is also necessary that the errors associated with the background and the
observations are properly modelled (Rodgers, 2000). For successful variational retrievals to be made, it is assumed
that i) the distribution of errors should follow a normal distribution and ii) that there should be no systematic bias in
the error distributions (Bouttier and Courtier, 2002). Background errors are due to inaccuracies in NWP forecasts.
The forward model may contain errors as a result of the hypotheses needed to simulate the observations, such as
assumptions on the cloud droplet size distribution in the context of radar reflectivity. Observations errors are due
to calibration uncertainties (Toledo et al., 2020; De Angelis et al., 2017), instrumental drifts and random noise.

The modelling of the errors associated with the background, the observations and the forward operator can be
difficult to specify for a given retrieval, owing to dependencies on the type of weather conditions observed, or the lead
time of the forecast used as a background profile, for example. However, an improved knowledge of background and
observation errors is required before the assimilation of any new observation type. The aim of this work is thus to
investigate the types of systematic and random errors which may be present in the three sources of errors previously
mentioned focusing on newly developed 95 GHz cloud radar during fog conditions.

This study has been performed using a dataset from the SIRTA observation site near Paris (Haeffelin et al.,
2005) which hosts a 95 GHz cloud radar, a ground-based microwave radiometer and other remote sensing and in-situ
instruments making continuous measurements. Up to 3h forecasts from the AROME model were used in conjunction
with a radar simulator, also referred to as observation operator or forward operator, designed for airborne 95 GHz
cloud radar (Borderies et al., 2018).

In this article, firstly an overview is given of the fog events used in this study. The performance of the AROME
model is then analysed by using a range of instruments to compare to the observed event. A method is then outlined
for the selection of a background profile which is expected to optimise future retrievals. Statistics are then presented

showing reflectivity innovations and the improvement gained through the profile selection method.
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2 Dataset
2.1 SIRTA Observatory

All observations for this study were made at SIRTA (Site Instrumental de Recherche par Télédétection Atmo-
sphérique) (Haeffelin et al. (2005)). Geographically, the site is located in the suburbs, about 20 kmm south of Paris,
on the campus of the Ecole polytechnique in Palaiseau, which is a semi-urban environment with trees, fields, houses
and some industrial buildings. The observatory sits on a relatively flat plateau at around 160 m above sea level (asl).
The period between 01/11/2018 and 19/02/2019 was analysed due to the relatively high concentration of fog events

seen throughout this period.
2.2 Basta Cloud Radar

The cloud radar used in this study is a 95 GHz frequency-modulated continuous wave (FMCW) Doppler radar named
the Bistatic Radar System for Atmospheric Sounding (BASTA, Delanocé et al., 2016). The instrument is a product of
recent developments aimed at producing an inexpensive radar system to be used operationally. For this reason, the
normally expensive high-powered pulsed transmitter has been replaced with a continuous transmitter with frequency
modulation, to allow for the backscatter power and the line of sight velocity from the targets—in this case cloud
droplets—to be determined. The benefit of using a cloud radar with a 95 GHz transmission frequency compared
to radars using lower frequencies is in the sensitivity to cloud droplets. Where the Rayleigh approximation is valid,
the power of the reflected radiation will be proportional to the sixth power of the radius of a spherical droplet and
inversely proportional to the forth power of the wavelength of light incident. Thus, for a given transmitted power,
radars operating at a higher frequency will have a greater sensitivity to smaller droplets. It does mean, however,
that when large particles such as rain, hail or graupel are encountered, the signal can become quickly attenuated
Kollias et al. (2007).

For monostatic radars, the receiver must be switched off during the transmission of a pulse, meaning that signal
backscattered close to the radar cannot be detected, and a minimum detectable range of over 100m is typical for cloud
radars sounding in a boundary layer mode (Liu et al. (2017)). The fact that BASTA employs a seperate receiver and
transmitter (bistatic) thus allows the minimum measurement distance of the radar to be relatively small compared
to that of a monostatic radar. It is capable of making measurements as close as 40m above ground level, though
the minimum detectable measurement values are quite high at this distance (= —25dBZ for BASTA-SIRTA). This
is due to the interaction between the antennas of the transmitter and receiver at close distances. The radar operates
in 3 different modes with vertical resolutions ranging from 12.5m to 100 m and maximal measurement distance from
12km to 18 km respectively. For the BASTA-SIRTA, a three-second integration time is used, and the three different
modes are cycled through continuously. This therefore gives observations for each mode once every 9 seconds.

The uncertainty associated with BASTA measurements will vary with usage and meteorological conditions. From

a comparison with radar reflectivity simulations with rain rates over 2mmh~! the estimated uncertainty, providing
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Table 1. Instruments used at SIRTA observatory

Instrument Name Measured Variable Units  Measurement Uncertainty =~ Measurement Range
CL31 Ceilometer Cloud Base Height m Greater of 1% or +£5m 7.5m to 7.5 x 10° m
CMP22 Global Shortwave downwelling W m ™2 +5Wm—2 0Wm™2 to 4000 W m 2
DF-320 Visibility Sensor  Meteorological Optical Range m 10% (up to 5km) 0m to 70 x 10°m
Guilcor PT100 2m Temperature °C +0.15°C (at 0°C) —200°C to 700°C
HATPRO Microwave
Radiometer Liquid Water Path gm™ 2 +20gm™? Okm to 10km
PM Rain Gauge 3030 Precipitation Rate mm min ! +8% Ommh™! to 240 mmh~*
Vector A100R, anemometer Wind Speed ms * +0.1ms ! (<10ms™')  02ms ' to 70ms!

that the radome is not wet, is between 0.5dB to 2.0dB (Delanoé et al., 2016). A wet radome can affect readings by
up to 14 dB. Below 230 m, the far field approximation, which is used to give the radar reflectivity value, is not valid.

An overlap correction, derived using rain events is therefore used to correct for this effect (Delanoé et al., 2016).
2.3 Other Instruments

In order to define fog events, the visibility at or near to surface height must be known. Though there has been work
done to classify the visibility from radar reflectivity (Li, 2015), which was done with a Plan Position Indicator (PPI)
scanning strategy, the lowest gates still suffered from quality issues due to ground clutter. The most reliable way
to measure the visibility is with a visibility metre. The visibility metre deployed at ground level at SIRTA is the
Degreane Horizon DF320 visibility monitor. This is able to give the meteorological optical range from 5m to 70 km,
with a measurement error under 5km of 10 %.

Ground-based microwave radiometers also provide insight into the fog properties through liquid water path re-
trievals. The HATPRO microwave radiometer (Rose et al., 2005) operates in two spectral bands (22 GHz to 31 GHz
and 51 GHz to 58 GHz) in order to make retrievals of the temperature and humidity profiles, integrated liquid water
and water vapour contents providing information about the atmospheric stability. For this study, only the liquid
water path retrievals were used. These retrievals have an expected accuracy of 20 gm—2 (Crewell and Lohnert, 2003).

A ceilometer was used primarily for the classification of fog types. Low cloud whose base is descending is very
likely to be observed before an instance of cloud base lowering (CBL) fog. A Vaisala CL-31 ceilometer (Martucci
et al., 2010) was used to measure the cloud base height. This uses a pulse lidar to sense the cloud base and is capable
of sensing up to three layers simultaneously with a range from 0km to 7.6 km.

The wind speed, temperature and rain rate at surface are also important parameters to sense when determining

the fog events and classifying them. The specifications for the instruments used in this study are noted in table 1.
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Table 2. Parameterisation schemes in AROME model

Process Scheme Reference ‘
Cloud microphysics ICE-3 Pinty and Jabouille (1998)
Long wave radiation RRTM Mlawer et al. (1997)
Short wave radiation Computations of Solar Heating Fouquart et al. (1980)

Surface fluxes SURFEX Masson et al. (2012)
Turbulence Turbulence Scheme for Mesoscale and Large Eddy Simulations Cuxart et al. (2000)
Urban features TEB Masson (2000)

2.4 The AROME Model

The NWP model used in this study is the French convective-scale model AROME (Seity et al., 2011). AROME has
been used operationally since 2008, but has since then seen improvements in the horizontal resolution, from 2.5 km
to 1.3km, and in the vertical resolution, which has advanced from 60 to 90 levels, with the first level starting 5 m
above the surface. Near the surface, the vertical levels are aligned with the topography which are then spaced so as
to follow isobars at the top of the model. The model covers a domain centred on France and encompassing most of
western Europe. A 3D-Var data assimilation cycle takes place once every hour.

The model was developed from the Meso-NH research model (Lafore et al., 1998; Lac et al., 2018), and therefore
most of the model physics is resolved in the same way. A bulk one moment micro-physical scheme is used (ICE-3,
Pinty and Jabouille, 1998) which fixes the droplet number concentration over land and sea and specifies six species
of atmospheric water (graupel, ice, snow, rain, cloud liquid water over land and cloud liquid water over sea). An
analysis of the parameters used in ICE-3 and their effect on the distribution shape is given in section 4. Table 2

summarizes the parameterisation schemes relevant to fog processes with the corresponding references.
2.5 The Forward Operator

The forward operator used to convert the parameters supplied by the AROME model into radar reflectivity was
developed by Borderies et al. (2018) and designed for vertically-pointing airborne W-band cloud radars. Input
variables include vertical profiles of pressure, temperature, humidity and the content of five hydrometeor types
(rain, graupel, snow, ice and liquid cloud). From this, it simulates the reflectivity at the resolution of the input
profiles with attenuation taken into account for hydrometeors and moist air. The Liebe (1985) model is used to
calculate attenuation by moist air. The reflectivity calculations are consistent with the ICE-3 bulk microphysical
scheme, which is operationally used in the AROME model. The sensitivity of the radar is also taken into account,
by limiting the minimum simulated reflectivity to the minimum observed reflectivity at each range gate.

Two versions of the radar simulator were developed: the one used in this work employs the Mie approximation

(Wriedt, 2012) which models particles as spherical, and is a valid approximation for cloud liquid water droplets. A
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Table 3. Number of fog types observed at the Sirta observation site between 01/11/2018 and 19/02/2019

Cloud-base lowering | Precipitation | Radiative | Advection | Unknown | Total

14 4 10 0 3 31

version using a T-matrix method is also available for simulating reflectivity from hydrometeors with a more complex

shape.

3 Investigation into Background Errors During Fog Conditions

1D-Var retrievals can be highly sensitive to the background profile as demonstrated by Ebell et al. (2017) in the
context of LWC retrievals from MWR and 35 GHz cloud radar synergy. Background profiles are commonly provided
by short-term forecasts from NWP models which are prone to errors of different nature, such as temporal and spatial
errors. This section aims at better understanding typical errors from the AROME background profiles during fog

conditions.
3.1 Overview of the observed fog events

Fog can occur through several atmospheric processes, not all of which are modelled equally well. Philip et al. (2016)
has shown that the AROME model seems to succeed in predicting certain types of fog better than others. Notably,
CBL events are badly predicted compared to radiative fog. A simple fog classification based on the one described in
Tardif and Rasmussen (2007) was performed on the instrumental dataset after updates in the suggested thresholds
chosen in the classification. These updates concerned the precision of the conditions and reflected some misleading
instrument readings. A total of 31 fog events were observed over the period, the numbers of each type are detailed
in table 3. In line with previous studies performed by (Philip et al., 2016; Dupont et al., 2016) and which looked
at fog events in Paris, and Roméan-Cascén et al. (2019), which examined fog events over a short period in January
2016 on the Spanish Northern Plateau, the majority of fog events were either cloud base lowering or radiative.
Precipitation fog was the third most observed type, for which fog events were typically shorter than radiative or
cloud base lowering. The quality of AROME short term forecasts during these 31 fog events is investigated in the
next sections with a focus on spatial and temporal errors as well as typical fog parameters (duration, formation and

dissipation times, thickness and liquid water content).
3.2 AROME forecast skill scores during fog conditions

In order to make a comparison between observed and modelled fog events, it is necessary to define an equivalent
definition of fog events from parameters inside the AROME model. For this study, AROME forecasts were regenerated

with outputs produced with a temporal period of 10minutes, with lead times of 0 minutes to 180 minutes. The
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forecasts were extracted for a 28 km x 28 km domain centred on the SIRTA observatory site. Visibility in the AROME
model was diagnosed from a newly developed parameterisation based on the liquid water content profile according
to Dombrowski-Etchevers et al. (2020), which has been used operationally to give a visibility output from the model
since July 2019.

A comparison of the exact time match at which fog profiles were observed against when they were predicted was
carried out. Visibility measurements were averaged over a 10 min period. Observed visibility values of lower than
1km were considered as fog. Observations where rain was sensed with the rain gauge and simulations in which
rain was present in the bottom layer were not considered as fog. The accuracy of the model was then analysed by
comparing each fog profile in the model against each fog profile from the averaged visibility. The commonly used
contingency table based on this comparison is shown in table 4 where GD indicates cases of good fog detection, FA
cases of false alarm, ND cases of missed fog events by the model and CN correct negatives.

Based on this table, the frequency bias index (FBI), which assesses the over- or under-prediction of an event, and
critical success index (CSI) which assesses how well events are forecast, are calculated. These indices are defined in
equations (1) and (2). The probability of detection (POD), the probability of an observed event being forecast, and
false alarm ratio (FAR) the probability of a fog forecast being incorrect are also given ((3) and (4)).

- g
CSI = %ﬁim (2)
POD = GDLJPN]) (3)
FAR = % (4)

Scores of FBI and CSI were found to be 1.59 and 0.32 respectively. The scores agree well with the work of Philip
et al. (2016) who calculated a score of 1.24 and 0.37 respectively as well as Martinet et al. (2020) who found scores
of 1.77 and 0.35. The FBI score indicates that the model over-predicts the occurrence of fog with a large number
of false alarms and the CSI score means that only 32% of fog events (observed and/or predicted) are correctly
forecast by the model. The POD is 63 %, meaning that background profiles of acceptable quality could be expected
to be found at about this rate without any other selection method during fog events. With a 60 % FAR, this also
highlights how large errors are made when the closest AROME grid point (both spatially and temporally) is used
during fog-clear scene. The next section investigates how much spatio-temporal variability affects fog forecast errors

in the AROME model.
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Table 4. Contingency table of fog profiles seen in the simulation and observations. Good detection (GD) occurs at the
intersection of fog simulated and observed, false alarm (FA) where fog is simulated but not observed, unpredicted (ND) where

fog is observed but not simulated, and correct negative (CN) where fog is neither predicted nor observed.

Fog Simulated
Yes No Total
Fog Observed Yes |GD = 586| ND = 349 | 935
No |FA =902 |CN = 1341114313
Total| 1488 13760 15248

3.3 Spatial and Temporal Error Analysis

Spatial and temporal errors refer to modelled fog events which are spatially and/or temporally displaced from the
true event. These types of errors were examined to quantify how they can affect the forecast scores.

Firstly, spatial errors were examined by looking at the thickness of the fog layer over the 28 km x 28km domain
around the observation. Figure 1 shows an example of the development of a radiative fog event on 04/11/2018 which
persisted for around eight hours in the model and around 5 hours in the observations. The surface height is shown
in black contours on the figures, with the higher surfaces in the top left of the map. In the formation stage of the
event, approximately half of the domain is covered by fog. The differences in fog thickness at this stage of the event
are around 100m for the AROME grid points already covered by fog. At 05:00 UTC, in the mature phase of the
event, the fog thicknesses have approximately the same variability as in the early formation stage, but almost all of
the AROME grid points have fog conditions. It may also be noted that the thickest fog layers occur where surface
height is the lowest showing how fog top heights are related to the topography— a subject that is beyond the scope
of this work and has been widely discussed elsewhere (Miiller et al., 2010; Ducongé et al., 2019). At 10:20 UTC,
shortly before the fog event ends, there is substantial variability of around 150 m, and in several AROME grid points
the event has already dissipated. After 11:00 UTC, the fog layer lifts and disperses, and the modelled fog event ends
throughout the whole domain.

The significant variability in simulated fog thickness indicates that during the formation and dissipation phases of
the fog event, increased value may be brought to the background accuracy by choosing a model profile which more
closely fits the observed atmospheric profile than the closest grid point.

The temporal errors associated with fog forecasts were then examined. For each observed fog event, the corre-
sponding starting and ending time in the model space was found by looking over a 12 hour window (+6 hours)
around the observation. In the case that there were two events seen in the model within one observed event, the
closest start and end times corresponding to the observations were taken. Out of 31 fog events observed, 21 could
be matched within the twelve hour window to a simulated event. The histograms in figure 2 show the distribution

of hours for which fog was observed and simulated and the temporal differences in the formation time, dissipation
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Figure 1. Fog top altitude above ground level in the AROME model during a radiative fog event. (a) in the formation phase
of the event at 02:20 UTC, (b) in the mature phase at 05:00 UTC, (c) mature phase at 06:40 UTC, (d) in the dissipation
phase at 11:00 UTC. The fog event ended at around 11:30 UTC in the model. The Sirta site is marked by the red or blue

cross. Black contours represent the surface height.

time and duration of fog events observed. The diurnal cycle of fog events is generally well predicted by the model,
with the majority of events taking place between midnight and late morning time. It may be seen with formation
and dissipation time differences that most fog events which occur in both the observations and simulations have
start and end time differences of less than three hours. The simulated events tend to form earlier (with a median
of 25 minutes), and dissipate later (with a median of 20 minutes) than the observed events. Additionally, simulated
fog events tend to have shorter duration, with an average fog time length of 4 hours 53 minutes (4H53M) compared
to 6HO3M for observed events, as many more shorter fog events were simulated than observed.

It was found that the rate of formation between 10:00 UTC and 20:00 UTC (not shown in figure2) was larger in
the observations than in the model, whilst between 00:00 UTC and 8:00 UTC the model had a greater susceptibility
to predict fog formation. This result indicates that the model over-predicts the rate of night fog and under-predicts

the rate of afternoon fog, which could indicate that the radiation budget of the model could be improved.
3.4 Fog Property Error Analysis

In addition to spatial and temporal errors, the AROME background accuracy will depend on the capability of the
AROME model to reproduce the vertical structure of fog microphysical properties. A radar-microwave radiometer
combination enables the measurement of fog characteristics such as the layer thickness and the liquid water path of

the fog layer. Analysis of a high resolution model’s accuracy in predicting these variables has not been extensively
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Figure 2. Top left to bottom right: Times at which fog was observed (brown bars) and simulated (red bars); duration of
fog events observed and simulated; fog formation time differences for matching events; fog dissipation time differences for

matching events (differences are positive where the event occurs later in the observation).

carried out in previous work, as without these instruments a labour intensive method involving tethered balloons or
unmanned aerial vehicles (UAVs) is required. The fog layer thickness depends on the rate of cooling, the entrainment
and surface interactions among other processes. It was also demonstrated by Weersted (2018) that the fog top height
is a key parameter in determining the fog dissipation. It thus follows that the better the fog top height prediction, the
better the fog dissipation forecast will be. This section aims at investigating fog thickness and LWP errors observed
in the AROME fog forecasts during the winter 2018-2019.

Fog thicknesses were derived from the radar observations during fog conditions. This was found from the height at
which the radar reflectivity dropped below the larger of —45dBZ or the sensitivity of the radar at that range gate.
The fog top height was then found in the model from the simulated reflectivity (with the same conditions) for times
when fog conditions were simulated. The height resolution of the radar was 12.5m, whereas the resolution for the
model ranged between 12m at the surface to 65 m at 750 m agl, giving an uncertainty in fog top height difference of
12.25m to 37.75 m. Comparisons were made between the two, for times when both observations and simulations are

under fog conditions. Figure 3 shows that the simulated fog top tends to be larger than the observed fog top height
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Figure 3. Left panel: Histogram of differences in the fog top height observed with the cloud radar and simulated by the
AROME model when fog is both observed and simulated. Positive differences represent a larger observed fog top than is
simulated. Right panel: Liquid water path recorded on the microwave radiometer and predicted in the AROME model for
times at which both predict fog presence. All cases of fog in both model and observations without restrictions are shown in
grey. Red points show LWP values where the integrated cloud thickness above the fog layer does not exceed 25m (in either

model or observation) and difference between the model and the observation fog top being less than 25 m.

with errors up to 300 m and 44 percent of differences greater than 100 m. The mean height difference is —22.5m, and
the standard deviation of fog top heights is 104 m.

As liquid water content is the variable responsible for causing fog, its accuracy will thus determine the quality
of fog forecasts. As there are no in-situ sensors for recording the liquid water content at the observation site, the
integrated value of this, the liquid water path (LWP) from the HATPRO microwave radiometer, was used to evaluate
the quality of the liquid water content forecast in the model. By comparing liquid water paths for all fog cases, we are
left open to comparing not only the error in the thickness and density of the fog layer, but also of clouds aloft. Data
from the radar were therefore used to select cases of fog during which the layers of cloud aloft were of less than 25 m
thick. Similarly, cases where the model simulates thick clouds aloft were discarded. The liquid water path was then
compared for cases where the thickness of the fog layer predicted in the model and observed had differences of less
than 25m (figure 3). As expected, the differences in liquid water path decrease with the constraints. For cases where
there is simply fog observed and simulated, the bias in LWP is 8 gm ™2 of over prediction by the model and a standard
deviation of 66 gm—2. For the model-observation comparisons where the fog thicknesses are the same and no cloud
aloft is seen, there is a bias of 14 gm ™2 of over prediction in the model and a standard deviation of 26.4gm™2. As is
also shown in figure 3, the model more frequently over-predicts the fog thickness than under-predicts it, accounting

for the positive LWP bias. Given the accuracy of the liquid water path retrieved from the microwave radiometer,
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as outlined in section 2.4, of approximately 20 gm™2, it can be concluded that when the fog layer thickness is well
predicted by the AROME model, the liquid water content inside the fog layer is also well predicted.

From the analysis presented in this section, it may be concluded that significant variations both temporally and
spatially could provide scope for the selection of a background profile which does not correspond directly to the
location and time the observation was made at. The analysis of the liquid water content prediction of the model,
however, shows that the model can be reliable providing that fog is forecast with a similar thickness to that observed.
In the next section, the forward operator is evaluated for sources of error, and then comparisons are made between
observed cloud radar profiles and profiles simulated from the AROME model. A methodology is also proposed for

selecting a background profile which better corresponds to the observed profile.

4 Evaluation of Observation Operator
4.1 Forward Operator Sensitivity Study

The radar simulator was based on radar equations which link the hydrometeor contents contained within a parcel of
air to the recorded reflectivity. The attenuation and the reflectivity values both depend on the size and number of
droplets. As there are a very large number of ways a mass of water could theoretically be divided among droplets,
a size distribution needs to be assumed, based on observed droplet size distributions. The droplet size distribution
used in this work is consistent with the one used in the AROME model, the one-moment microphysical scheme
ICE-3. This uses a modified gamma distribution, as specified in equations 5, 6 and 7. In this set of equations, N(d)
is the droplet concentration. Coefficients a and b determine the mass-diameter relationship of the droplets, which
when applied to cloud droplets is well known due to their spherical nature, and are set at 524 and 3 respectively. «,
v and X are fixed coefficients of the size distribution and are set to 1, 3 and 0 respectively in ICE-3 for cloud liquid
droplet. M is the liquid water content of the cell in kg - m ~3. As X is set to 0 in ICE-3 for cloud liquid water over
land, coefficient C' is equal to Ny (the total droplet concentration), and is set to 3-10% m~3.

N(D) = NO%A“”DW*@(—(AD)“), (5)

_ M)
A= (aCF(I/+ gﬂ ’ (6)
No = CAX (7)

Microphysical observations have been investigated on fog events in previous works (Mazoyer et al., 2019; Podz-

imek, 1997) which tend to show lower droplet concentrations than is prescribed for continental clouds in the ICE3
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microphysical scheme (of 300cm™3 ). In the work of Mazoyer (2016), median droplet concentrations for continental
fog events ranged from 6.3 cm™3 to 147 cm 3. For continental boundary layer cloud, a study from Zhao et al. (2019)
found average droplet concentrations of 320 cm ™2, although this study was made in eastern China so the high droplet
concentration may in part be due to elevated levels of pollution acting as condensation nuclei. Figure 4 shows the
difference in distribution shapes for the modified gamma distribution when the C parameter was replaced with what
was considered the reasonable lower and upper bounds of 30 and 300 cm™3.

In a review of numerous studies on low level clouds, Miles et al. (2000) attempted to find the best values for
the parameters of a modified gamma distribution in order to fit the observed droplet size distributions for each of
around 100 events. In this, it was found that the optimal fit warranted a significant deviation in the v parameter
attributed to each event. In this study, mean value of 8.7 was found for the v parameter, with a standard deviation
of 6.3. The reflectivity error resulting from the uncertainty of this parameter was therefore calculated with values
one standard deviation above and below the mean values. The modified distribution with these values is shown in
figure 4. Uncertainties for the @ parameter were assessed in a similar manner, for which low and high values for this
parameter were taken from Thies et al. (2017) and ranged from 1 to 5. The resulting distributions are also shown in
figure 4.

It can be seen from figure 4 that the effect of increasing the o and v parameters was a narrowing of the distribution,
meaning fewer droplets at the smaller and larger end of the spectrum. The concentration of the largest droplet sizes
(above 35pm) is therefore reduced through these changes. As the radar reflectivity is proportional to the sixth
moment of the droplet size where the Rayleigh approximation is valid, this causes smaller values of reflectivity to be
simulated. The perturbations in number concentration, meanwhile, were almost entirely below the value in ICE-3,

3 compared to a value of 300cm—2 in ICE-3. As may be seen in figure 4, this

with a range of 30cm ™ to 300 cm™
caused an increase in the number of large droplets (over 50 pm and thus an increase in the simulated reflectivity).
In order to assess the uncertainty in the simulations resulting from the uncertainty in the size distribution pa-
rameters «, v and C, simulations were made by perturbing these parameters according to the typical uncertainties
from the literature previously discussed. An atmospheric profile under fog conditions was selected from the AROME
model with a maximum LWC of 0.12gm™2 at 71m agl. Reflectivity was then simulated with changes to the de-
fault parameters of the modified gamma distribution. Firstly, the number concentration was held constant, whilst
perturbations were made to the a and v parameters. The same process was repeated, keeping values of o and v
constant and simulating the reflectivity with perturbations in the number concentration. The obtained distribution
of reflectivity values is shown in figure 5. It can be seen that the uncertainty in the number concentration contributes
the largest to the uncertainty in the simulated reflectivity. For the altitude at which the liquid water content is the
largest, at 0.12gm™3 the reflectivity difference reaches 10dB between the highest and lowest readings, and 4dB

between the 25" and 75" percentile. For the changes in the a and v parameters, the difference between the highest

and lowest reading is 8 dB, with a difference of only 1dB between the 25" and 75" percentiles. It can be noted that
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Figure 4. Modified gamma distributions for a liquid water content of 0.12gm ™2 prescribed by the ICE-3 scheme. Top left to

bottom right: with & = 1 and o = 5 (default = 1); with v = 2.5 and v = 15 (default = 3); with C = 30cm™> and C' = 300cm™>
(default = 300cm™3).

the perturbations in the o and v constants were mainly above the values used in the ICE-3 microphysical scheme,
with ranges of 1 to 5 and 2.5 to 15 respectively, compared to their values in ICE-3 of @« = 1 and v = 3.

The reflectivity simulated from the default parameters in ICE3 can be seen from the plots as the minimum
reflectivity simulated in where changes are made to number concentration, and the maximum in the distribution
with changes to a and v. When the 25" to 75'"® percentiles are considered, the total uncertainty in the simulated
reflectivity caused by the uncertainty of the three parameters may be evaluated to be 6 dB.

The results of the microphysics study highlights that non-negligible errors on the simulated radar reflectivity can
be attributed to errors in the fixed parameters of the droplet size distribution. The a and v parameters were found

to contribute to the errors to a lesser extent than the droplet concentration number.
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Figure 5. Spread of simulated values of radar reflectivity with height for a change in the microphysical parameters of a
modified gamma distribution: v and « (left panel) and number concentration (right panel) for a fog profile. The 25" and 75

percentiles are shown in blue, and the median reflectivity shown by the red line.

4.2 Most Resembling Profile (MRP) Selection Method

Section 3.3 has demonstrated that significant errors are seen both spatially and temporally in the AROME model
when corresponding exactly to the time and location of the observation. In order to improve the accuracy of the
background profile, a method was thus devised to select the model profile which best corresponds to the measured
atmospheric profile. For this, reflectivity for all profiles throughout the domain was simulated for a time window of
6 hours (£3 hours). Reflectivity differences were then found between the observed profile and each of the simulated
profiles. The weighted RMSE was then found from equations 9 and 8. The profile with the smallest weighted RMSE
was selected as the ‘most resembling profile’. This method is similar to the most resembling column (MRC) method
used by Borderies et al. (2018) to calibrate and validate the RASTA cloud radar observation operator. It also includes
an altitude-dependent weighting function (equation (8)) as was used in Le Bastard et al. (2019), which puts a larger
weight on the bins at a lower height. In this equation, Height is the height of the reflectivity bin and Altmax is the

maximum altitude considered which for this study was set to 5000 m.

2

Height;

W, = -
Altmax +1

1 (8)

i=Maxlev
=0 Wi(ZObseruation - ZSimulation)2

n

9)

Using the MRP selection, the simulated reflectivity can be improved with the choice of a more appropriate

Weighted RMSE = \/Z

background profile. This is often the case when fog is predicted by the model, but none is seen, in which case it
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is generally possible to select a clear-sky profile. The method is also able to deal with temporal shifts in the fog
event between the model and observations, as well as differences in the vertical structure. Figure 6 illustrates the
MRP selection during a fog event observed at SIRTA on the 22 November 2018. It demonstrates well how much
benefit is brought by the selection method with fog structures closer to the observation. In both the observation
and simulation, stratus lowering events were seen, however, the model predicted the event to occur around 90 min
before it was observed, and the fog top height to wrongly increase from 200m to 400 m between 10:00 and 11:00
UTC. This is also shown in 7, for which the correction in fog top height and values of simulated reflectivity is clearly
illustrated on a specific vertical profile selected during the fog mature phase. The stratus was also predicted to lower
from 100m over one hour in the model, which was corrected to lower from 250m over two hours with the MRP
selection method. The MRP selection method was able to select background profiles to rectify temporal errors at

the fog formation but also the fog vertical structure.
4.3 Contoured Frequency by Altitude Diagrams

In order to investigate the capability of the forward model to reproduce the overall structure of observed reflectivity,
Contoured Frequency by Altitude Diagrams (CFADs, Yuter and Houze, 1995) calculated both from the observations
and the simulations were compared in figure 8. In these figures, the number of cases in each radar reflectivity bin
and each altitude level are shown between 50 m to 1000 m with a bin width of 1dB. The distributions at each height
level were then normalised, and the relative frequency of each bin is shown on the plots. The CFADs were plotted
using data for which reflectivity at each range gate was obtained in the observation, nearest corresponding profile
and the MRP.

In the observations, the reflectivity in the lower 300 m is most concentrated between —30 dBZ to —20 dBZ and be-
comes gradually less concentrated at lower reflectivities. This contrasts the nearest corresponding profile simulations
where there are significantly fewer radar reflectivities below —30dBZ, and a concentration of higher values around
—25dBZ. This distribution is improved by the implementation of the MRP method, where a more even distribution
of reflectivities may be seen in the bottom 200 m. Though the distribution of simulated reflectivity generally improves
by using the MRP method, a large concentration of values between —23 dBZ and —20 dBZ persists which is not seen
in the observation CFAD.

4.4 Statistics on Reflectivity Innovations

For the period for which the fog classification was previously applied to, between November 2018 and February 2019,
radar reflectivity was simulated for the 28 km by 28 km domain for the entire period, after which the MRP method
was applied. The observations were downscaled to the resolution of the simulations by using the observation which
corresponded most closely to the time of the simulation, and by using the bin corresponding most closely to the

level heights of the model.
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Figure 6. Radar reflectivity and surface level visibility from a fog event at SIRTA observed on 22/11/2018 (top), simulated
from the nearest gridpoint (middle) and with the MRP selection method (bottom). The dashed black line indicates the time
at which the following plot of reflectivity profiles is taken. These plots show the reflectivity for all profiles, some of which were

later removed due to significant rain content. Time is in UTC.

The radar simulator relies on the Mie approximation to derive the radar reflectivity. This approximation is valid
for uniform isotropic particles, which may be assumed for liquid cloud droplets. However, for snow, graupel, ice and
rain, whose shape can be significantly more complex, this approximation can no longer be assumed to be valid, and
larger errors of simulated reflectivity are likely to be caused by this. It was therefore decided to limit this study
to reflectivity differences only due to the hydrometeors which are mainly responsible for fog in the mid-latitudes
in winter: liquid water droplets. For the observation, a mask proxy was provided by the developers of the BASTA
instrument to classify the hydrometeor type. The mask was used to reject from the statistical analysis cloud radar
observations containing rain, drizzle and ice below 200 m in the observations.

In the model space a mask based on simulated reflectivity was used to discern whether rain, ice, snow or graupel

significantly contributed to the simulated reflectivity. This was made by finding reflectivity differences between
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Figure 7. Radar reflectivity profiles of the observation, simulation from the nearest gridpoint, and MRP simulation, from the
mature phase of the fog event at SIRTA on 22/11/2018. At this point in the fog event, the model overestimated the thickness
of the fog layer by around 33 %

the simulations containing all hydrometeors and the simulations for only cloud liquid water. Profiles containing
significant reflectivity differences (of greater than 3dB) were masked. This value was chosen as a 3dB increase in
radar reflectivity corresponds to a doubling of the received power. This effectively means that where differences
between radar reflectivity simulated with only liquid water and radar reflectivity simulated with all hydrometeors
exceeds 3 dB, the other hydrometeors contribute more to the radar reflectivity than liquid water content. Due to the
effect of attenuated signal which occurs when the radar signal passes through a rain event but impacts the readings
above as well as inside the rainy atmosphere, where rain was found below 200m, the entire profiles were also removed
from the statistical calculations.

Innovations (the difference between observed values and simulated values) were then calculated <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>