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Abstract

The spatial distribution of a scalar undergoing advection and diffusion is impacted by the ve-
locity variability sampled by tracer particles. In spatially structured velocity fields, such as porous
medium flows, Lagrangian velocities along streamlines are often characterized by a well-defined
correlation length and can thus be described by spatial-Markov processes. Diffusion, on the other
hand, is generally modeled as a temporal process, making it challenging to capture advective and
diffusive dynamics in a single framework. We develop a description of transport based on a spatial-
Markov velocity process along Lagrangian particle trajectories, incorporating the effect of diffusion
as a local averaging process in velocity space. The impact of flow structure on this diffusive av-
eraging is quantified through an effective shear rate. The latter is fully determined by the point
statistics of velocity magnitudes together with characteristic longitudinal and transverse length-
scales associated with the flow field. For infinite longitudinal correlation length, our framework
recovers Taylor dispersion, and in the absence of diffusion it reduces to a standard spatial-Markov
velocity model. We derive dynamical equations governing the evolution of particle position and
velocity and obtain scaling laws for the dependence of longitudinal dispersion on Péclet number.
These results provide new insights into the role of shear and diffusion on dispersion processes in
heterogeneous media.

1 Introduction

Transport processes in heterogeneous media are determined by the sampling of the underlying hetero-
geneous flow field through advection and diffusion, leading to rich dynamical behavior and departure
from classical Fickian dynamics (Berkowitz et al., 2006; Klages et al., 2008). The evolution of La-
grangian velocities along particle trajectories can be modeled as a stochastic process, taking into
account the statistical properties of the underlying flow field and diffusion (Pope, 2011; Sund et al.,
2019). Such approaches are greatly simplified if the changes in velocity may be conceptualized as a
Markov process, that is, if their evolution depends only on the current state and not on past his-
tory (Meyer & Tchelepi, 2010; Meyer & Saggini, 2016). In spatially structured velocity fields, such as
porous medium flows, it has been found that the Lagrangian velocity structure often follows spatial-
Markov dynamics (Le Borgne et al., 2008; Dentz et al., 2016; Puyguiraud et al., 2019b). This means
that Lagrangian velocities vary little over spatial scales below a characteristic lengthscale correspond-
ing to a well-defined velocity-field correlation length. In such cases, low velocities persist for longer
times than high velocities, because Lagrangian particles take longer times to cross a correlation length
at lower velocities. In terms of the temporal Lagrangian velocity statistics, this phenomenon may lead
to intermittent velocity timeseries and consequent loss of the Markov property in time (De Anna et al.,
2013; Kang et al., 2014; Holzner et al., 2015).

Stochastic Lagrangian methods describe transport in terms of random particle displacements and
associated transit times (Sund et al., 2019). The stochastic character of these models reflects the statis-
tical properties of the underlying heterogeneity, which can be conceptualized in different manners. For
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example, time domain random walks consider transport in single-medium realizations with prescribed
statistical properties (McCarthy, 1993; Banton et al., 1997; Delay & Bodin, 2001; Painter et al., 2008;
Russian et al., 2016; Aquino & Dentz, 2018), whereas in a continuous time random walk successive
displacements are independent with statistics determined by medium heterogeneity (Scher & Lax,
1973; Berkowitz et al., 2006; Metzler & Klafter, 2000). In this context, spatial-Markov descriptions
often lead to significant simplifications which facilitate analytical treatment, parameterization based
on physical, measurable quantities, and efficient numerical simulation. Spatial-Markov models may be
seen as a variation on the continuous time random walk representation of Lagrangian particle move-
ment, with a fixed spatial step and a one-step correlation between successive waiting times or particle
velocities (Le Borgne et al., 2008; Dentz et al., 2016). In some cases, simple Markov processes such
as Bernoulli relaxation or Ornstein–Uhlenbeck for the spatial evolution of Lagrangian velocities have
been shown to capture the key features of purely advective transport, leading to efficient methods for
predicting larger-scale transport properties such as longitudinal dispersion (Puyguiraud et al., 2019a;
Comolli et al., 2019). In recent years, spatial-Markov models have also been extensively employed to
describe conservative transport in porous media (Kang et al., 2011, 2014), fractured media (Kang et al.,
2015, 2017), surface flows (Sherman et al., 2017), and inertial and turbulent flows (Bolster et al., 2014;
Sund et al., 2015; Kim & Kang, 2020), as well as mixing and reaction (Sund et al., 2017b,a; Wright
et al., 2019; Sherman et al., 2019). Despite the popularity and practical success of spatial-Markov
methods over the last decade, a mechanistic model of the role of diffusion in this type of framework
remains unavailable. In applications, the transition probabilities characterizing the spatial evolution of
Lagrangian velocities in the presence of both advection and diffusion are typically parameterized based
on small-scale simulations, and the resulting model is then applied to predict large-scale transport.

As a scalar tracer is transported through a heterogeneous medium, the statistics of velocity sampled
by the tracer plume evolve in space and time as the underlying heterogeneity is sampled by moving
tracer particles (Dentz et al., 2016; Puyguiraud et al., 2019a; Icardi & Dentz, 2020). Under purely-
advective transport, particles experience this variability as they move along streamlines. In the presence
of diffusion, a tracer particle is not confined to a single streamline and also experiences the variability
across streamlines. In the classical Brownian motion picture, diffusion is modeled as a temporal process,
and coupling advective space-Markovian Lagrangian velocity dynamics with diffusion remains an open
problem. Previous approaches (Dentz et al., 2004; Bijeljic & Blunt, 2006) have introduced a heuristic
diffusive cutoff at the level of the crossing times. In this work, we provide an explicit construction of
a spatial-Markov velocity process accounting for diffusion and heterogeneous advection.

Diffusion across nearby streamlines leads to a local averaging over the transverse spatial structure
of the velocity field. Thus, transverse diffusion in real space translates to an averaging effect in velocity
space. We quantify the impact of the spatial structure on this averaging process through an effective
shear rate, characterized in terms of flow properties. Transport along the longitudinal direction is then
described in terms of equidistant spatial steps along particle trajectories, together with transit times
according to the velocity process. Due to the nature of the velocity transitions induced by diffusion,
which, as we will show, correspond to a dispersive process in velocity space, we name the approach
the diffusing-velocity random walk (DVRW). A conceptual illustration of the DVRW approach for
advective–diffusive transitions is presented in Fig. 1.

The general outline of the paper is as follows. First, in Section 2, we discuss the description of
transport as a spatial-Markov process in general terms. Section 3 is devoted to the formulation of
the DVRW approach, incorporating the impact of advective and diffusive velocity transitions. In
Section 4, we present some general considerations about Eulerian velocity statistics. These are then
employed to relate the effective shear rate to flow characteristics in Section 5. In Section 6, we develop
predictions for asymptotic longitudinal dispersion in the presence of both advective and diffusive
transitions. Overall conclusions are presented in Section 7, and some supporting technical derivations
and numerical validation results may be found in the appendices.
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Figure 1: Conceptual illustration of the central concepts behind the diffusing-velocity random walk
(DVRW). As Lagrangian particles are transported, they undergo advective changes in velocity due
to variability along streamlines as well as diffusion-induced averaging over, and transitions to, nearby
streamlines. The transverse variability of the flow field is encoded in a velocity-dependent effective shear
rate αe(v), which is determined by statistical properties of the flow field. This conceptual illustration is
two-dimensional and includes the presence of a solid phase (black circles), but the proposed approach is
applicable also to three dimensions and arbitrary flow fields characterized by well-defined characteristic
lengths along the longitudinal and transverse directions, as developed in detail in the main text.

2 Transport as a spatial-Markov process

We present, as a starting point, a generic formulation of transport as a spatial-Markov process (Le Borgne
et al., 2008). We start from a discrete formulation and then proceed to consider its continuum limit.
Finally, we provide general forms for the dynamical equations of some key transport quantities. This
general formulation will be adapted to describe the role of advective and diffusive transitions in the
sections that follow.

2.1 Discrete formulation

The velocity magnitudes Vk after k spatial steps of fixed length ∆s along streamlines are assumed to
form a Markov chain. This spatial-Markov velocity process is characterized by its transition proba-
bilities. Discretizing velocity magnitudes into classes, the transition probabilities rij(s) describe the
probability that a tracer particle will be in class i at distance s + ∆s, given that it was in class j at
distance s.

We consider transport to be advection-dominated along the local flow direction, with diffusion
playing a role locally along the transverse direction(s). At a given velocity v, a spatial step is associated
with a duration ∆s/v. The time Tk after k spatial steps is thus described by the stochastic recursion
relation

Tk+1 = Tk +
∆s

Vk
, (1)

with the initial time T0 = 0. The distribution of initial velocities V0 is determined by the initial
spatial distribution of scalar, which is mapped onto the initial distribution of velocities according to
the Eulerian velocity field. For example, an homogeneous spatial distribution corresponds to veloci-
ties distributed according to the Eulerian velocity probability density function (PDF), which will be
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discussed in detail in Section 4. In what follows, we will characterize the Markov chain describing the
evolution of velocity along a particle’s trajectory through its transition probabilities, which depend on
the statistical properties of the underlying flow field. The evolution of particle longitudinal positions
(along the mean flow direction) is then modeled as

Xk+1 = Xk +
k∆s

χ
, (2)

where χ is the average tortuosity, which can be computed as the spatial average of the magnitude of
Eulerian velocities divided by the spatial average of their projection along the mean flow direction (Ko-
ponen et al., 1996; Puyguiraud et al., 2019b).

The use of the average tortuosity to relate longitudinal displacements to displacements along
streamlines is common in spatial-Markov models, and it has been applied successfully to describe
transport at the pore scale (Puyguiraud et al., 2019a,b). We will assume this approximation in the
following developments. For completeness and clarity, we first briefly discuss some of its limitations
and possible extensions. An important limitation is the inability to account for recirculation zones,
which, if present can be reached by diffusion and lead to long retention times before solute can again
exit by diffusion. Such effects would be mostly naturally included in the present framework by intro-
ducing transition probabilities into an additional zero-velocity state, with distributed retention times
with statistics determined by diffusion and the geometry of recirculation zones, in the spirit of mobile-
immobile or multi-rate mass transfer models (see e.g. Coats, Smith et al., 1964; Haggerty & Gorelick,
1995; Comolli, Hidalgo, Moussey & Dentz, 2016). Such an approach could in addition be used to
account for retention times due to sorption and desorption and related effects. Similarly, the average-
tortuosity approximation does not explicitly account for local flow reversal, and it is in general not
expected to be adequate if a strong variability in tortousity, rather than in velocity, is responsible for
the main effects of transport variability across streamlines. At the expense of greater model complexity
and difficulty of parameterization, the present approach could in principle be used in conjunction with
variable tortuosity, in terms of statistics or mean values conditioned on longitudinal position and/or
velocity. Flow reversal, if important, would require allowing for negative displacements in longitudinal
position to be associated with steps along streamlines.

An important simplification brought about by the average-tortuosity approximation relates to the
description of quantities at fixed longitudinal distance from injection. An important example, which
we will discuss below, are breakthrough curves, representing mass flux per unit time at fixed control
planes transverse to the mean flow direction. Under this approximation, distributions on a control
plane at distance x from injection coincide with distributions at fixed distance s = χx measured
along streamlines. Therefore, fixed-s statistics, which are most naturally obtained in a spatial-Markov
model, directly determine control-plane statistics. In general, the relationship between fixed-s and
fixed-x distributions is more complex and depends also on the statistics of tortuosity.

2.2 Continuum limit

As we will see, it is convenient in our formulation to define velocity classes related to diffusive averaging
in terms of the discretization ∆s. Using this approach, the continuum limit of ∆s → 0 will also
correspond to infinitesimal velocity class sizes and transition times ∆s/Vk. Therefore, it will be
associated with a continuous stochastic process for the random time needed to travel distance s along
times. In this sense, the recursion relation (1) in the limit ∆s→ 0 defines a stochastic process

T (s) =

s∫

0

ds′

VS(s′)
, (3)

where VS is the Markov process corresponding to the continuum limit of the Markov chain defined by
the transition probabilities introduced above.

The change in a quantity qi(s), depending on velocity class i and given distance s, due to all
possible velocity transitions over a step ∆s is given by qi(s + ∆s) − qi(s) =

∑
j 6=i rijqj , where rij is
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the transition probability from class j to class i and the sum extends over all velocity classes j 6= i.

Let q(v; s) be the associated continuous density, i.e., qi(s) =
∫ bi+1

bi
dv q(v; s) ≈ ∆viq(vi; s), where the

velocity class i is defined as comprising velocities v ∈ [bi, bi+1[ and ∆vi = bi+1 − bi. Then, in the limit
∆s→ 0,

∂q(v; s)

∂s
= Lq(v; s), (4)

where L is the continuum operator describing velocity transitions, defined through

Lq(vi; s) = lim
∆s→0

rij(s)− δij
∆s∆vi

. (5)

We are now in a position to develop general forms for the dynamical equations governing transport
quantities. The actual dynamics will then depend on the particular form of transition operator L,
which embodies the transition probabilities of the spatial-Markov velocity process.

The space-Lagrangian velocity PDF describes the velocity point statistics of Lagrangian particles
at fixed distance traveled along streamlines. Note that, in the presence of diffusion, the same particle
trajectory spans multiple streamlines. In addition to advective transport along streamlines, diffusion
transverse to the local flow direction induces transitions to nearby streamlines, as will be formalized
in what follows. As discussed above, under the average-tortuosity approximation adopted here, this
presents no further difficulties, as transport in the average flow direction can be directly related to the
total distance traveled along (a collection of) streamlines. Using Eq. (4), we obtain a master equation
for its evolution in space,

∂pS(v; s)

∂s
= LpS(v; s), (6)

with no-flux boundary conditions for velocity in order to conserve probability. For a given initial
condition in s, corresponding to the velocity distribution at s = 0, the solution of Eq. (6) represents
the distribution of velocities at fixed s over an ensemble of trajectories, irrespective of the arrival time.
Equation (6), together with the initial condition, defines the continuous stochastic velocity process VS .

Other important transport quantities are breakthrough curves (mass flux per unit time at a given
distance) and concentration profiles (PDF of positions at a given time). Due to correlations introduced
by the velocity process, it is convenient to first consider the joint probability density of velocity and
arrival time at fixed distance, defined such that ψ(v, t; s) dvdt is the probability of arriving at a given
distance s at a time in [t, t + dt[ and with velocity in [v, v + dv[. Proceeding similarly to above, see
Appendix A for details, we obtain the dynamical equation

∂ψ(v, t; s)

∂s
+ v−1 ∂ψ(v, t; s)

∂t
= Lψ(v, t; s). (7)

The boundary and initial conditions are no-flux in velocity as before, along with ψ(v, t; 0) = pS(v; 0)δ(t)
and ψ(v, 0; s) = 0. Note that, by definition, we have

∫∞
0
dt ψ(v, t; s) = pS(v; s). Indeed, integrating

out t in Eq. (7) leads to Eq. (6) for the space-Lagrangian velocity PDF. The first passage time PDF
at distance s is given by φ(t; s) =

∫∞
0
dv ψ(v, t; s). Particle positions as a function of time are given

by XT (t) = X[S(t)] = S(t)/χ, where S(t) describes the random distance traveled by advection along
streamlines. Since S(t) always increases with time, and longitudinal position is approximated using
the average tortuosity, each Lagrangian particle in this model crosses a given longitudinal position
at most once. The breakthrough curves, normalized to unit total mass, are thus related to the first
passage times by f(t;x) = φ(t;χx).

In order to obtain the PDF of particle positions at a given time, we employ the concept of subor-
dination (Feller, 2008; Meerschaert & Sikorskii, 2012), which may be thought of as a stochastic change
of independent variable. For example, consider XU (u) describing the random position of a particle as
a function of time u spent moving. If the time spent moving as a function of total time t is itself a ran-
dom variable U(t), the position of the particle as a function of total time is given by the subordinated
process XT (t) = XU [U(t)]. The total time T (u) given time u spent moving is called the subordinator,
and U(t) is called its conjugate process. Here, the time T (s) as a function of fixed distance s plays
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the role of the subordinator, and S(t) is its conjugate process at fixed time t. According to the the-
ory of subordination, the PDF of S(t) is then given by (Feller, 2008; Benson & Meerschaert, 2009;
Meerschaert & Sikorskii, 2012)

h(s; t) =

t∫

0

dt′
∂f(t′; s)

∂s
. (8)

Integrating out velocity in Eq. (7), and noting that, as reflected by the boundary conditions, conser-
vation of probability leads to the integral of the right hand side vanishing, this may be written as

h(s; t) =

∞∫

0

dv v−1ψ(v, t; s). (9)

By definition, h(s; t) ds is the probability of having traveled a distance in [s, s+ ds[ along streamlines
by time t. The spatial concentration, normalized to unit mass, is the PDF of particle positions
XT (t) = S(t)/χ, and it is therefore given by c(x; t) = χh(χx; t).

Finally, consider the time-Lagrangian velocity PDF, describing particle velocities at fixed time
rather than distance, that is, the PDF of velocities VT (t) = VS [S(t)] at fixed t. Using the same
approach as before leads to

pT (v; t) =

∞∫

0

ds v−1ψ(v, t; s). (10)

We note that equations for multi-point PDFs, corresponding to the joint PDFs of quantities at more
than one time or distance, may be obtained through similar procedures, see Dentz et al. (2016).

3 The diffusing-velocity random walk

As outlined in the introduction, velocity transitions may occur due to both transverse diffusion and
velocity variability along each streamline. We now proceed to quantify the impact of these two processes
within the generic spatial-Markov framework outlined in the previous section. To this end, we first
present an adapted derivation of the formulation of advective velocity transitions developed by Dentz
et al. (2016). We then develop a new approach to quantify the impact of transverse diffusion on velocity
transitions. Finally, we combine the two to arrive at the general DVRW framework.

3.1 Advective transitions

We consider first advective transitions along streamlines, in the absence of diffusion. Let rAij be the
velocity transition probabilities of the spatial-Markov process associated with advective transitions, i.e.,
due to changes in velocity along a streamline. In order to characterize the continuum limit ∆s→ 0, we
make use of the fact that the velocity process is Markov, with some correlation length /̀/ corresponding
to the longitudinal correlation length of the velocity field. We write, to first order in ∆s,

rAij =
∆s

/̀/
βij(1− δij) +

[
1− ∆s

/̀/
(1− βii)

]
δij , (11)

where δ·· is the Kronecker delta. The first term corresponds to the probability of changing velocity
class and the second of staying in the same class. The βij encode the dependency of the transition
probabilities on the velocity classes. To ensure normalization, i.e.,

∑
i r
A
ij = 1, we must have βjj =

1−∑i 6=j βij .
Recall that rij−δij , seen as a function of velocity class j for each velocity class i, defines an operator

describing the change in velocity class due to a transition, see Eq. (5). Equation (11) leads, to first
order in ∆s, to

rAij − δij =
∆s

/̀/
(βij − δij). (12)
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Thus, in the continuum limit, we recover the dynamical equations of Section (2) with a transition
operator L = LA describing advective transitions along streamlines. This is in general an integral (as
opposed to differential) operator, because the velocity transitions may be long-range in velocity space.
Indeed, according to Eq. (5), we have, for an arbitrary density q(v) as a function of velocity v,

LAq(v) = `−1
//

∞∫

0

dv′ [β(v|v′)− δ(v − v′)] q(v′), (13)

where β is the transition PDF along streamlines (units [β] = 1/V = T/L), i.e., β(v|v′) dv is the
transition probability from velocity v′ to a velocity in [v, v + dv[. It corresponds to the limit

β(vi|vj) = lim
∆s→0

βij
∆vi

. (14)

In this case, it has been shown that, under ergodicity and incompressibility, the equilibrium space-
Lagrangian velocity PDF is the flux-weighted Eulerian PDF (see Section 4), irrespective of the initial
condition, and the equilibrium time-Lagrangian velocity PDF is the Eulerian velocity PDF (Dentz
et al., 2016; Puyguiraud et al., 2019a,b). Non-stationary transition probabilities can be encoded in s-
dependent βij and would lead to s-dependent β(v|v′). We note that, in natural media such as geological
structures, non-stationarity is typically most naturally described in terms of distance x along the mean
flow direction, which under the average-tortuosity approximation is directly related to s via s = χx.

The details of the dynamics depend on the choice of process governing the transition probabilities
between velocity classes and on the underlying Eulerian velocity distribution. As in Dentz et al. (2016),
we will focus on the case of Bernoulli relaxation. This process is defined by the transition probabilities

rAij = e−∆s/ /̀/δij +
(

1− e−∆s/ /̀/
)
p∞i . (15)

The physical interpretation of this setup is as follows. Velocities persist on the scale of the correlation
length /̀/, and when a transition occurs, the probability of the new velocity being in class i is given
by the prescribed equilibrium probability p∞i . Thus, the velocity distribution “relaxes” towards the
equilibrium distribution on a spatial scale on the order of /̀/. The exponential probability of persistence
in Eq. (15) is a consequence of the assumption that the probability of transition per unit length is
constant and equal to 1/ /̀/. In this sense, the Bernoulli process may be seen as the simplest Markov
process converging to a given equilibrium distribution on a given scale. For small ∆s, this corresponds,
according to Eq. (11), to βij = p∞i , the equilibrium probability of velocity class i. The continuum-limit
transition PDF is given by β(vi|vj) = p∞(vi), the equilibrium PDF evaluated at vi, irrespective of vj .
As mentioned above, the equilibrium PDF should in this context be taken equal to the flux-weighted
Eulerian PDF.

Under the Bernoulli relaxation process, all velocities relax towards the equilibrium distribution
at the same spatial rate. Other processes may be used to account for velocity-dependent relaxation
while retaining the Markov property and stationarity of the transitions. For example, a process based
on the classical Ornstein–Uhlenbeck process describing temporal velocity fluctuations in Brownian
motion (Uhlenbeck & Ornstein, 1930) has been successfully employed to capture slower spatial relax-
ation of low velocities in connection with transport in a heterogeneous porous medium (Puyguiraud
et al., 2019a). Conversely, in the presence of preferential high-velocity channels, one expects stronger
correlation, and consequently slower spatial relaxation, at high velocities. In general, in the present
formulation, velocity-dependent relaxation corresponds to j-dependent βij . From Eq. (12), where the
latter always occur in the combination βij/ /̀/, we see that this leads, in effect, to a velocity-dependent
correlation length. In this sense, we may interpret /̀//

∑
i 6=j βij = /̀//(1− βjj) as an effective correla-

tion length associated with velocity class j. The probability of leaving a velocity class in a given step
is then inversely proportional to the effective correlation length. Note that the βij are in principle
arbitrary, so long as probability is conserved,

∑
i βij = 1, and they lead to the correct equilibrium

distribution, the flux-weighted Eulerian PDF. Even when the overall velocity distribution across all
particles has reached equilibrium, single-particle velocities remain dynamic, with the spatial velocity
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series of each particle undergoing purely-advective transport being directly determined by the choice
of βij .

3.2 Diffusive transitions

Next, we examine the role of diffusion, disregarding advective transitions for the moment. This cor-
responds to the limit of infinite correlation length /̀/ →∞. It is directly applicable to stratified flow,
where velocity is constant along each streamline, and velocity transitions are due only to transverse
diffusion across streamlines. This will lead us to discrete and continuous formulations of transverse
diffusion as a spatial-Markov process.

3.2.1 Discrete formulation

The characteristic transverse length explored by diffusing particles in a time interval ∆t is given by√
2D∆t, and a spatial displacement of length ∆s at velocity v corresponds to a duration ∆t = ∆s/v.

The local averaging of velocities due to transverse diffusion during this time interval depends on the
spatial structure of the velocity field. The cornerstone of our approach is the notion of a velocity-
dependent effective shear, see Fig. 1. We describe the local variation of the flow around regions of
velocity v in terms of an effective transverse shear rate magnitude αe(v), so that the range of velocities
averaged by diffusion around velocity v is given by

∆v(v) = αe(v)
√

2D∆s/v. (16)

The actual transverse velocity gradient magnitude depends in general on position, and a given value of
velocity at a randomly chosen spatial location is thus associated with a PDF of possible shear values.
Our approach may be seen as a mean-field formulation associating an average shear rate αe(v) with
each velocity value v.

We consider for now that the effective shear rate αe(v) is known as a function of velocity magnitude,
and we will derive the consequences for transport. Section 5 will be devoted to relating the effective
shear rate to physical properties, in particular the underlying flow statistics. Note that, analogously
to above with the transition PDF β characterizing advective transitions, we have assumed that αe(v)
does not depend on distance s. A non-stationary model can be formulated using the present approach,
but we refrain from exploring it here for simplicity.

The changes in velocity at each step are modeled as a spatial-Markov process, which is characterized
by the diffusive transition probabilities rDij from each velocity class j to each velocity class i over a step
∆s along the flow direction. We discretize velocity magnitudes v into classes v ∈ [bi, bi+1[. The width
∆vi = bi+1 − bi of each class is determined by transverse diffusive averaging according to Eq. (16).
That is, we set ∆vi = αi

√
2D∆s/vi, where vi is the average velocity within class i and αi = αe(vi). A

recursive construction valid in the limit of small class widths is given in Appendix B. The class widths
∆vi vanish in the limit ∆s → 0, so that small-∆vi approximations are reasonable for small ∆s. The
same is true of the transition times ∆s/vi.

In each step ∆s, diffusion averages over the current velocity class, and induces transitions to the
nearest classes according to the transition probabilities

rDij = r+
j δi,j+1 + r−j δi,j−1, (17)

where r±j are the transition probabilities from class j to class j ± 1, with r+
j + r−j = 1. For the

j = 0 velocity class, we have r+
0 = 1 and r−0 = 0, since there is no class below. Conversely, for

the highest velocity class, transitions are always to the class below. For the remaining classes, the
diffusive transition probabilities are obtained as follows. By construction, during a transition, diffusion
homogenizes a transverse length corresponding to a velocity class. The transition is thus associated
with a transition time ∆t = ∆s/vj , where vj is the (arithmetic) average velocity in the class. However,
for a given ∆t, the amount of distance traveled at a given velocity v is proportional to v. This
means that the probability of a particle having velocity v when it finishes the spatial step ∆s is
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proportional to v. In other words, the velocity distribution within a class after a spatial transition is
flux weighted. Imposing a diffusive transition to the velocity class below if the particle has a velocity

lower than the class average (and to the class above otherwise) leads to r−j =
∫ vj
bj
dv v/

∫ bj+1

bj
dv′ v′.

Thus, r−j = (v2
j − b2j )/(b2j+1 − b2j ). Approximating the class average vj by the class center, we have

bj = vj −∆vj/2 and b2j+1 − b2j = (bj+1 − bj)(bj+1 + bj) = 2vj∆vj , so that

r±j =
1

2
± ∆vj

8vj
. (18)

3.2.2 Continuum limit

According to the previous construction, as ∆s → 0, both the velocity class widths ∆vi → 0 and the
corresponding transition times ∆s/vi → 0, indicating that this corresponds to a genuine continuous
limit. We now examine this limit in detail, and we obtain the continuum stochastic process underlying
diffusive transitions, as well as the associated transition operator.

In the continuum limit, Eq. (17) leads to the operator L = LD associated with diffusive transitions,
see Eq. (5). Because diffusive transitions are local, the corresponding operator is differential. For an
arbitrary density q,

LDq(v) =
∂

∂v

[
γ(v)

∂q(v)

∂v
− µ(v)q(v)

]
, (19)

see Appendix C for details on the derivation. The spatial velocity diffusivity γ ([γ] = V 2/L = L/T 2)
corresponds to the limit γ(vi) = lim∆s→0 ∆v2

i /(2∆s) and is given by

γ(v) = Dv−1αe(v)2, (20)

and

µ(v) =

(
v−1 − ∂

∂v

)
γ(v)

2
(21)

is a spatial velocity drift ([µ] = V/L = 1/T ). The first term in this drift is due to the fact that particles
are more likely to transition to higher velocities by diffusion within a class, due to the flux-weighting
effect discussed above. The second arises because velocity classes, corresponding to spatial averaging
by diffusion over a constant spatial step, have velocity-dependent sizes. Thus, particles spend longer
distances at velocities where classes are smaller, giving rise to an effective drift towards these velocities.
The size of the velocity class decreases with velocity, because shorter crossing times are associated with
smaller diffusion lengths, and increases with effective shear, because higher effective shear corresponds
to stronger variation of velocity over the same transverse distance (see Fig. 1). In particular, the
space-Lagrangian velocity PDF obeys the master equation (6) with L = LD. The boundary conditions
in v must ensure conservation of probability, so that we have the no-flux condition γ∂pS/∂v−µpS = 0
at the minimum and maximum velocities.

3.3 Combining advective and diffusive transitions

We now combine the diffusive and advective transition mechanisms to obtain the complete transition
probabilities of the DVRW framework, see Fig. 1. We impose that, if (and only if) a particle does not
undergo an advective transition along a streamline, diffusion causes a transition to one of the nearest
velocity classes. That is, the transition probabilities in the presence of both advection and diffusion
become

rij = rAij(1− δij) + rAjj
(
r+
j δi,j+1 + r−j δi,j−1

)
. (22)

Thus, to first order in ∆s, the changes in velocity class are determined by

rij − δij =
∆s

/̀/
(βij − δij) + r+

j δi,j+1 − δij + r−j δi,j−1. (23)
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Due to the Markovian nature of the process, the somewhat artificial requirement that diffusive
transitions occur only when an advective transition does not occur is inconsequential in the limit of
small ∆s. This can be seen from the fact that rij − δij , which defines the operator characterizing the
change in velocity classes over ∆s, is composed of the sum of terms associated with purely-advective
and purely-diffusive velocity transitions to leading order in ∆s; thus, the transition operator in the
continuum limit becomes the sum of the diffusive and advective contributions. This leads to the same
continuum-limit dynamical equations as before, with the transition operator now given by L = LA+LD,
see Eqs. (13) and (19), representing the effect of both advective and diffusive transitions. That is, for
an arbitrary density q,

Lq(v) = `−1
//

∞∫

0

dv′ [β(v|v′)− δ(v − v′)] q(v′) +
∂

∂v

[
γ(v)

∂q(v)

∂v
− µ(v)q(v)

]
. (24)

Note that, if there is no velocity variation along streamlines, or equivalently /̀/ → ∞, then rAij = δij ,
and we recover the pure-diffusion formulation, valid for stratified flow. Conversely, D = 0 recovers the
purely-advective scenario discussed above.

4 Eulerian velocity statistics

As seen from Eqs. (19)-(21), the effective shear αe(v) plays a key role in quantifying diffusive transitions.
In order to relate it to flow properties, and in particular to velocity statistics, let us first discuss some
properties of the Eulerian PDF of velocity magnitudes, defined as the probability of finding a certain
velocity magnitude value at a uniformly random spatial location.

Denoting the spatial velocity field magnitude at position x in a domain Ω by vE(x), the Eulerian
velocity PDF is then defined as

pE(v) = |Ω|−1

∫

Ω

dx δ[v − vE(x)], (25)

where δ(·) is the Dirac delta, and for a d-dimensional spatial domain A, |A| denotes its measure
(number of elements, area, or volume, respectively for d = 1, 2, 3). Assuming a smooth, non-constant
velocity field, changing variables in the Dirac delta (Hörmander, 2015) leads to

pE(v) =

∫

Λ(v)

dσ(x)

|Ω||∇vE(x)| . (26)

In d spatial dimensions, Λ(v) is the (d − 1)-dimensional spatial surface where the velocity field has
magnitude v, Λ(v) = {x ∈ Ω : vE(x) = v}, and dσ(x) is the corresponding (d− 1)-area element at the
point x on Λ(v). The harmonic average of the local shear rate magnitude |∇vE(x)| over this surface
is given by

αh(v) =


|Λ(v)|−1

∫

Λ(v)

dσ(x)

|∇vE(x)|




−1

, (27)

leading to

pE(v) =
|Λ(v)|
|Ω|αh(v)

, (28)

which shows that the Eulerian PDF is directly related to the harmonic average of the local shear rate
given a velocity magnitude. Note that this result is valid for an arbitrary smooth velocity field that is
not constant. For a piecewise-smooth velocity field, the result applies piecewise. If the velocity field
has fully degenerate maxima or minima, that is, regions of finite volume (in two dimensions, area)
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where velocity is constant, they yield Dirac-delta contributions corresponding to that velocity, with a
probability mass (coefficient) given by the ratio of the region volume and |Ω|. This can easily be seen
from the definition of the Eulerian PDF, Eq. (25).

Throughout, an overline will denote the ensemble average (over tracer particles), and VE will stand
for a random variable distributed according to pE , corresponding to the velocity at a uniformly random
spatial point. Using the previous result, it follows that

αh(VE) = |Ω|−1

∞∫

0

dv |Λ(v)|. (29)

We introduce also the flux-weighted Eulerian PDF, defined according to

pF (v) =
v

VE
pE(v), (30)

which plays an important role in our formulation.
We now consider the Eulerian PDF of velocities at a fixed distance s along streamlines. Let Ω⊥(s)

be the (d− 1)-dimensional cross-section of Ω at fixed s, and let Λ(v; s) = {x ∈ Ω⊥(s) : vE(x) = v} be
the (d−2)-surface of constant velocity on Ω⊥(s). The gradient of the velocity magnitude transverse to
the flow direction is given by ∇⊥vE , where ∇⊥ = ∇− (v/|v|2)v ·∇. Adapting the previous derivation,

pE(v; s) =
|Λ(v; s)|

|Ω⊥(s)|αh(v; s)
, (31)

where αh(v; s) is the harmonic average of |∇⊥vE | over Λ(v; s). Note that the Eulerian velocity PDF at
fixed s is not sensitive to gradients along the flow direction; their contribution to the full PDF arises
through their effect on the variation of |Λ(v; s)|/αh(v; s) with s. For stratified flows, where velocity
is constant along each streamline, pE(v; s) = pE(v) always holds. This equality also holds for more
general flows, as long as the point statistics of velocity over any given transverse plane coincide with
those of the full domain. We will assume this to be the case in what follows for simplicity.

As an example, consider Poiseuille flow in d = 2 dimensions. The Eulerian velocity field is in this
case given by

vE(y) = vM

[
1−

(
2y

L

)2
]
, (32)

where L = |Ω⊥| is the transverse domain width, y ∈ [−L/2, L/2] is the position in the transverse
direction, and vM is the maximum velocity, occurring at y = 0. The full Eulerian PDF is equal to the
PDF over the transverse direction, since there is no variability along the longitudinal direction. The
absolute value of the gradient of velocity is uniquely determined by the velocity, and we have

αh(v) =
4vM
L

√
1− v

vM
. (33)

Since the same absolute value of the gradient occurs at exactly two points (except at the maximum,
where it is zero), we have |Λ(v)| = 2. According to Eq. (28), the Eulerian PDF is thus given by

pE(v) =
1

2vM
√

1− v/vM
, (34)

and the average velocity is VE = 2vM/3. Note the square-root divergence near the maximum, which
is in agreement with the discussion in Appendix D for d = 1, the effective dimension of variability of
this flow field.
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5 Effective shear rate

This section is devoted to linking the effective shear αe(v) rate to flow characteristics, in particular
point statistics as encoded in the Eulerian PDF. In what follows, we will achieve this by requiring that
the DVRW formulation satisfy two criteria in the limit of longitudinal correlation length /̀/ →∞ (i.e.
when only diffusive transitions are present): (i) reproducing the asymptotic space-Lagrangian velocity
PDF as distance s → ∞; and (ii) reproducing the asymptotic Taylor dispersion coefficient as time
t→∞.

5.1 Equilibrium velocity PDF

As shown in Section 3.2, the space-Lagrangian velocity PDF for purely-diffusive velocity transitions
obeys the master equation ∂pS(v; s)/∂s = LDpS(v; s), with the diffusive transition operator LD given
by Eq. (19). Thus, the equilibrium PDF solves LDp∞S (v) = 0. Integrating this equation using no-flux
boundary conditions, and imposing normalization, we obtain

p∞S (v) =
v

αe(v)



∞∫

0

dv′
v′

αe(v′)



−1

. (35)

According to Taylor dispersion theory, the equilibrium distribution of velocities for a stratified flow
after diffusion samples the full transverse variability is the flux-weighted Eulerian distribution, p∞S (v) =
pF (v). When only velocity transitions by transverse diffusion are considered, which is equivalent to
taking the limit of an infinite longitudinal correlation length /̀/ in Eq. (24) for the transition operator
L, the DVRW becomes equivalent to transport in stratified flow. Asymptotic dispersion should then
agree with the Taylor result.

According to Eq. (35), p∞S (v) ∝ v/αe(v), where the proportionality factor is v-independent and
ensures normalization. Obtaining the flux-weighted Eulerian PDF, Eq. (30), as the space-Lagrangian
equilibrium PDF thus requires αe(v) ∝ 1/pE(v), so that p∞S (v) ∝ vpE(v). Therefore, we write for the
effective shear rate

αe(v) =
αe(VE)

δv pE(v)
, (36)

for v ∈]vm, vM [ (and zero otherwise) and with δv = vM − vm the difference between the maximum
and minimum velocities. Note that we have fixed the velocity-independent coefficient in terms of the
average effective shear rate αe(VE) =

∫∞
0
dv pE(v)αe(v). We will show shortly that this average is

determined by asymptotic longitudinal dispersion. It is worth noting also that a physical instance
of a velocity field in a finite domain always exhibits a finite maximum velocity. However, theoretical
Eulerian PDFs, applying in principle to an infinite domain or an infinite number of domain realizations,
may be defined for any positive velocity magnitude. We will later obtain a form of the effective shear
rate which does not explicitly depend on the maximum and minimum velocity values and is suitable
for direct computation for an arbitrary Eulerian PDF.

In order to provide intuition for the velocity-dependence of the effective shear rate, consider the
stratified flow profile shown in Fig. 2, corresponding to a cut in the direction transverse to a two-
dimensional flow, which we name the M-flow. This synthetic example, where the local shear magnitude
is constant and equal to α, is chosen to highlight the role of the multiplicity (number of spatial
occurrences) |Λ(v)| associated with each velocity. Velocity magnitude v occurs |Λ(v)| = ΛM = 4 times
for v larger than a critical velocity vc, and |Λ(v)| = Λm = 2 times for v < vc. This implies that the
center and outer parts of the flow cover velocity variations δvM,m = |vM,m − vc| over lengths `M,m =
ΛM,mδvM,m/α, respectively. Similarly, the effective shear rate αM,m

e ∝ δvM,m/`M,m = α/ΛM,m for
velocities above and below the critical velocity vc. Noting that pE(v) ∝ |Λ(v)|/α, see Eq. (28), we see
that, indeed, αe(v) ∝ 1/pE(v).
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Figure 2: Transverse velocity magnitude profile for the M -flow. The key relevant features of this
illustrative example are: (i) The multiplicity (number of spatial occurrences) of velocity magnitudes
above (below) the critical value vc is ΛM = 4 (Λm = 2); (ii) The transverse gradient magnitude is
constant. It is given by α = δvm/(`m/Λm) = δvM/(`M/ΛM ).

5.2 Longitudinal dispersion

Next, we turn to the asymptotic behavior of longitudinal dispersion for purely-diffusive velocity transi-
tions, that is, in the limit of infinite longitudinal correlation length /̀/ as before. First, consider VT (t),
the Lagrangian velocity process along particle trajectories as a function of travel time t. We have, for
particle positions as a function of time,

XT (t) = χ−1

t∫

0

dt′ VT (t′), (37)

from which XT (t) = χ−1
∫ t

0
dt′ VT (t′).

The previous results imply that the equilibrium time-Lagrangian velocity PDF coincides with the
Eulerian PDF, as expected from Taylor dispersion theory. To see this, consider the joint PDF of velocity
and arrival time, Eq. (7) with L = LD. Integrating out s and using Eq. (10) for the time-Lagrangian
velocity PDF leads to

∂pT (v; t)

∂t
= pS(v; 0)δ(t) + LD

∞∫

0

dsψ(v, t; s). (38)

For the steady-state, we must thus have
∫∞

0
dsψ(v, t; s) ∝ pF (v), and therefore, using normalization,

p∞T (v) = pE(v). (39)

Since, by definition, the time-Lagrangian PDF is the PDF of VT (t), this implies that VT (t) converges to

VE , and therefore, asymptotically, XT (t) = χ−1VEt. Similarly, calculatingX2
T (t) leads to a longitudinal

dispersion

σ2(t) = χ−2

t∫

0

dt′
t∫

0

dt′′ V ′T (t′)V ′T (t′′), (40)

where for late times V ′T (t) = VT (t) − VE are the velocity fluctuations about the mean as a function
of particle travel time. In a statistically stationary velocity field, the velocity correlations at late
times depend only on the time difference, V ′T (t′)V ′T (t′′) = Cv(|t′′ − t′|). This yields the Green–Kubo
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relation (Kubo et al., 1985) for the longitudinal dispersion coefficient,

D//(t) =
1

2

dσ2(t)

dt
= χ−2

t∫

0

dt′ Cv(t
′). (41)

The integral of the correlation function of velocity fluctuations, when it converges, is given by the

product of the velocity autocorrelation and a correlation time. The first is proportional to VE
2

and,
for purely-diffusive velocity transitions, the second is of the order of the diffusion time τD = L2/(2D),
where L is the characteristic width of the domain cross-section. For large t, the integral can be
approximated by extending the upper limit to infinity, leading to the asymptotic Taylor dispersion
coefficient

DT = η
VE

2
L2

χ2D
, (42)

where η is a dimensionless coefficient characterizing the impact of the spatial organization of velocities.
This is the form of the asymptotic longitudinal dispersion coefficient whenever the only mechanism
for sampling velocity variability is diffusive (for example, in stratified flows), and it arises once the
full variability has been sampled. While η does not have a simple general form, it can be expressed
in terms of the normalized velocity fluctuations within the transverse domain (see Aris (1956) and
Appendix E),

ν(y) =
vE(y)

VE
− 1, y ∈ Ω⊥. (43)

In two dimensions, it is given by

η = L−3

L/2∫

−L/2

dy




y∫

0

dy′ν(y′)




2

, (44)

whereas for an axisymmetric flow we have, with ν(r) in terms of the radial coordinate r =
√
y · y,

η =
8

L4

L/2∫

0

dr

r




r∫

0

dr′ r′ν(r′)




2

. (45)

The longitudinal dispersion coefficient corresponding to the DVRW for purely-diffusive velocity
transitions can be computed from the dynamical equation (7) for the joint PDF of velocity and arrival
time, with the transition operator L = LD given by Eq. (19), together with Eq. (9) for the concentration
PDF. As shown in Appendix F.1, the asymptotic longitudinal dispersion coefficient is given by

D∞ =
Iδv2

αe(VE)
2
L2

VE
2
L2

χ2D
, (46)

where the dimensionless coefficient I is a property of the Eulerian velocity PDF,

I =

∞∫

0

dv pE(v)[CE(v)− CF (v)]2. (47)

Here, we have introduced CE,F (v′) =
∫ v

0
dv′pE,F (v′) as the Eulerian and flux-weighted Eulerian cu-

mulative distribution functions (CDFs), respectively.
We require that, when only diffusive transitions are present, the DVRW should reproduce the

correct Taylor dispersion coefficient, D∞ = DT . The first fraction in Eq. (46) must then equal η, see
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Table 1: Values of ω, I, and η for different stratified flows. The last column shows the value√
I/(ηω2) of the ratio of the average effective shear to the harmonic average shear. Poiseuille

flow for d = 3 dimensions refers to a paraboloid profile in a cylindrical pipe. Coefficients for
the M -flow are given in terms of λ = |Λ(VE)|; the polynomial coefficients for η and I are given
by ci = (2368,−5760, 5840,−2880, 740,−96, 5) and di = (3904,−9600, 10160,−4800, 1100,−120, 5),
i = 0, . . . , 6, and K(λ) = [(6− λ)2 − 2(4− λ)2]2.

Flow ω I η αe(VE)/αh(VE)

Couette
(d = 2)

1 1/30 1/30 = 1

Triangular
(d = 2)

2 1/30 1/120 = 1

M -flow
(d = 2)

8

6− λ

∑6
i=0 ciλ

i

120K(λ)

∑6
i=0 diλ

i

1920K(λ)
≈ 7.74 · 10−1–1.02

Poiseuille
(d = 2)

2 2/105 1/210 = 1

Poiseuille
(d = 3)

8/3 1/30 1/192 ≈ 9.49 · 10−1

Eq. (42). This represents a second constraint on the average effective shear rate, which must be given
by

αe(VE) =

√
I

η

δv

L
. (48)

Together with Eq. (36), which enforced the first constraint of reproducing the correct asymptotic
space-Lagrangian velocity PDF, we obtain

αe(v) =

√
I/η

LpE(v)
. (49)

5.3 Role of statistical and spatial flow structure

From Eqs. (29) and (48), we may write

αe(VE) =

√
I

ηω2
αh(VE), ω =

L

δv

∞∫

0

dv |Λ(v)|. (50)

It may be surprising to observe that the ratio between the average effective shear and the average
harmonic shear may differ from unity. The reason for this lies in the fact that the average harmonic
shear rate, as defined by Eq. (27), does not provide information about the spatial organization of the
velocity field. As we have seen, the velocity dependence of the effective shear rate is fixed by the
Eulerian PDF. Different spatial organizations, however, lead to different Taylor dispersion coefficients,
as encoded in η, and this information must thus be included in the effective shear rate through its
average value.

The impact on dispersion due solely to the point statistics of velocity is quantified by the coefficient
I. Using the definition of the Eulerian PDF, Eq. (25), we can express I as a spatial integral,

I = |Ω⊥|−3

∫

Ω⊥

dy



∫

Ω⊥

dy′ ν(y′)H[vE(y)− vE(y′)]




2

, (51)
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where H(·) is the Heaviside step function, meaning the inner integral extends over positions y′ at which
the velocity magnitude is smaller than at y. Details on the derivation may be found in Appendix F.1.
The relationship between I and η, i.e., between the impact of the statistical and spatial structures,
becomes apparent when one considers certain special cases. Consider the following particular scenario
in d = 2 dimensions. First, assume constant |Λ(v)| = |Λ(VE)|. This case, for which we have also
ω = |Λ(VE)|, describes a situation where every velocity value appears ω times. Further assume that
the velocity gradient magnitude is the same at each of these values, so that the shear rate magnitude
may be written as a function of velocity. This implies the velocity profile has a simple spatial structure:
the transverse domain is divided into subregions of equal length L/ω, within each of which the velocity
magnitude is monotonic. Furthermore, the velocity profile in adjacent regions is symmetric with respect
to reflection across the boundary between them. Examples of this type (in d = 2) are Couette flow,
Poiseuille flow, and triangular flow (corresponding to the M -flow, see Fig. 2, with δvM = 0). This
spatial structure, together with the fact that the integral of the velocity fluctuations in each subregion
is null, leads, according to Eq. (51), to

I = L−3

L/2∫

−L/2

dy


ω

y∫

0

dy′ν(y′)




2

, (52)

where the factor of ω in the inner integral is due to the equal contribution of each subregion. Comparing
to Eq. (44), this corresponds to I = ω2η, so that, from Eq. (50), αe(VE) = αh(VE). However, breaking
either of the previous hypotheses will in general result in αe(VE) 6= αh(VE). For example, for an
axisymmetric flow in d = 3, we have

I =
512

L6

L/2∫

0

dr r




r∫

0

dr′ r′ν(r′)




2

, (53)

so that, in general, αe(VE) 6= αh(VE) even in this simple scenario, compare Eq. (45). For illustration
purposes, we computed η, ω, I, and αe(VE)/αh(VE) =

√
I/(ηω2) for a number of simple stratified

flows; the results are summarized in Table 1.
With these results in mind, we identify

`⊥ =

√
η

I
L (54)

as the relevant lengthscale characterizing the variability of the velocity field in the transverse direction.
When

√
I/η = ω, which holds in the simple scenario discussed above, this lengthscale coincides with

the spatial period over which the Eulerian statistics of the velocity field repeat. Substituting in Eq. (49),
the effective shear rate becomes

αe(v) =
1

`⊥pE(v)
. (55)

This is the central result connecting the effective shear rate, which, together with the usual diffusion
coefficient, determines the diffusive transitions of the DVRW, to flow properties. This connection
was achieved by enforcing that the DVRW predictions for the asymptotic space-Lagrangian velocity
distribution and longitudinal dispersion coefficient reduce to known results for purely-diffusive velocity
transitions, that is, for infinite velocity correlation length along streamlines.

The characteristic transverse lengthscale embodies the impact of the interplay between the sta-
tistical and spatial structures of the flow field in the transverse direction. In the absence of detailed
information, it can be estimated based on the characteristic transverse length over which the full vari-
ability of the velocity structure is covered. If the spatial structure of the flow is known on a transverse
section of the domain, I may be computed according to the corresponding Eulerian PDF, see Eq. (47),
and η may be obtained by computing the Taylor dispersion coefficient for a stratified flow characterized
by the flow field magnitudes on the cross section, see Eq. (42). The assumption of stationarity we
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have made here, according to which the effective shear rate does not depend on distance s, is satisfied
when these quantities remain constant across different domain cross-sections. Although we do not
explore the resulting non-stationary model here, the approach generalizes to cross-section-dependent
quantities.

We numerically validated the formulation of diffusive transitions in terms of the effective shear
rate for transport in some instances of the stratified flows from Table 1 by comparing simulations of
the discretized Lagrangian formulation of the DVRW to standard particle tracking simulations with a
fixed time step. The results are discussed in Appendix G.

6 Dispersion under heterogeneous advection and diffusion

In order to illustrate the impact of the interplay between advection and diffusion on transport, let us
consider longitudinal dispersion under heterogeneous advection and diffusion. Following Dentz et al.
(2016), we consider as a rich example a gamma distribution of Eulerian velocities (Fig. 3b). The
gamma PDF, expressed in terms of the mean velocity VE , is given by

pE(v) =

(
θv

VE

)θ
e−θv/VE

vΓ(θ)
, (56)

where Γ(·) is the gamma function and θ > 0 is a parameter controlling the power-law dependence
∝ vθ−1 at low velocities. This type of PDF, which combines low-velocity power-law behavior with
an exponential cutoff at high velocities, has been employed to model the velocity PDFs in porous
medium flows both at the pore and Darcy scales (Holzner et al., 2015; Berkowitz et al., 2006). The
flux-weighted Eulerian PDF is again gamma,

pF (v) =

(
θv

VE

)θ
e−θv/VE

VEΓ(θ)
, (57)

with the same exponential cutoff and a low-velocity dependency ∝ vθ.

6.1 Pure advection

We first summarize some known results on dispersion in gamma-distributed velocity fields, in the ab-
sence of diffusion (Dentz et al., 2016). Recall that, at late times, the PDF of velocities associated with
crossing a fixed distance is pF , and let VF be a random variable distributed according to the latter.
Consider that velocity transitions due to changes along streamlines happen roughly after each correla-
tion length /̀/. The times /̀//VF to cross a correlation length then have PDF p//(t) = pF ( /̀//t) /̀//t

2,

and their average is τ// = /̀//VF = /̀//VE . The large-time tail of this PDF is associated with small ve-

locities, which, for the gamma PDF, are associated with the behavior pF (v) ∼ (v/VE)θ/VE . Therefore,
p//(t) ∼ ( /̀//VE)1+θt−2−θ. The stable exponent corresponding to this tailing behavior is 1 + θ (Feller,
2008; Meerschaert & Sikorskii, 2012). Thus, the crossing times associated with a gamma distribution
of Eulerian velocities always have a finite mean, but their variance is infinite for θ 6 1 (for a general
discussion of crossing times with infinite moments, see e.g. Berkowitz et al. (2006)).

When θ > 1, the crossing times have both a finite mean and variance, and the relevant correlation
time in the Green–Kubo formula (41) for dispersion is of the order of τ//. This leads to a dispersion

coefficient ∼ VE
2
τ// = VE /̀/. For θ < 1, on the other hand, the mean of the crossing times is finite,

but their variance is infinite. In this case, the variability of waiting times about the mean dominates
dispersion. The variance of crossing times observed by time t is σ2

c (t) ∼
∫ t

0
duu2p//(u) ∼ τ2

//(t/τ//)
1−θ.

The relative importance of the fluctuations about the mean with respect to the mean value is σ2
c (t)/τ2

//,

and we estimate the relevant correlation time as τ//σ
2
c (t)/τ2

// ∼ τ//(t/τ//)
1−θ. This leads, according to

Eq. (41), to a dispersion coefficient ∼ VE
2
τ//(t/τ//)

1−θ = VE
2−θ

`θ//t
1−θ.
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This semi-heuristic argument can be made precise, leading to an exact form for dispersion for an
arbitrary Eulerian PDF under the Bernoulli process, see Appendix F.2. In agreement with the scaling
arguments above, for gamma-distributed Eulerian velocities and an initial condition according to the
Eulerian velocity distribution, we find the late-time (t� τ//) longitudinal dispersion coefficient

χ2D//(t) =





(1− θ)−1θθVE /̀/

(
t/τ//

)1−θ
, 0 < θ < 1

VE /̀/ ln
(
e−1t/τ//

)
, θ = 1

(θ − 1)−1VE /̀/, θ > 1

. (58)

The special case θ = 1, for which the gamma distribution reduces to exponential, leads to a logarithmic
correction. Note also that the leading coefficient, in the case of θ < 1, is sensitive to the initial
condition, although the scalings with time, mean velocity, and correlation length are not. These
results correspond to Fickian diffusion for θ > 1, and superdiffusive behavior, that is, dispersion σ2(t)
growing superlinearly with t, for θ 6 1.

6.2 Advection–diffusion

We now employ the DVRW formulation to quantify asymptotic longitudinal dispersion when both ad-
vective and diffusive transitions are present. Diffusion changes the way in which tracer particles sample
the velocity field when compared to pure advection, and it is therefore expected to impact dispersion
properties (see Fig. 1). The equality of the equilibrium PDFs for advective and diffusive transitions,
which holds under conditions of ergodicity and incompressibility, implies that the flux-weighted Eule-
rian PDF is also the equilibrium PDF in the presence of both types of transition. However, diffusion
impacts the temporal correlation properties, which determine dispersion as discussed in Section 5.2.
This leads to a complex dependency of dispersion properties on Péclet number (Bear, 1989; Sallès
et al., 1993; Deng et al., 2001; Kandhai et al., 2002; Bijeljic & Blunt, 2006; Puyguiraud et al., 2019b).
Previous attempts to quantify this behavior have introduced a cutoff resulting from longitudinal dif-
fusion in the distribution of local transit times arising from the distribution of velocities (Bijeljic &
Blunt, 2006). The DVRW framework allows for deriving a mechanistic description of the interplay
between transverse diffusion and advection. This interplay is mediated by the effective shear rate, and
it leads to new dispersion laws.

When diffusion is present, averaging takes place across nearby velocities. In other words, a La-
grangian particle that would be retained in a low-velocity area can be removed by transverse diffusion
into a faster streamline, effectively cutting off transition times and enforcing a loss of velocity correla-
tion. Even at arbitrarily high Péclet number, this effect is important because it is concerned with veloc-
ities that are arbitrarily smaller than the Eulerian mean value. According to the DVRW formulation,
transverse diffusion over a correlation length averages over a velocity range ∆v//(v) = αe(v)

√
2D /̀//v.

Diffusion thus enforces a minimum average velocity that can be sampled by a Lagrangian particle
over a correlation length according to ∆v//(vmin) = 2vmin, so that vmin = [Dα2

e(vmin) /̀//2]1/3. This
minimum velocity corresponds to a maximum transit time τmax = /̀//vmin, so that

τmax =

[
2`2//

Dα2
e(vmin)

]1/3

. (59)

The maximum correlation time decreases with increasing effective shear rate at low velocities, which
corresponds to increased velocity variation over the same spatial distance, as τmax ∼ αe(vmin)−2/3.
Note that this result constitutes an implicit equation for τmax, since vmin = /̀//τmax.

As we have seen, the persistence of low velocities under purely-advective transport may drive
non-Fickian dispersion behavior. As discussed above, when the Eulerian PDF of low velocities scales
like a power law, pE(v) ∼ (v/VE)θ/v for θ < 1, the transit times across a correlation length are

broadly-distributed and longitudinal dispersion grows asymptotically like D//(t) ∼ VE
2−θ

`θ//t
1−θ. In

the presence of diffusion, after a time t = τmax, larger crossing times are cut off due to diffusive
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averaging at low velocities and dispersion stabilizes at a value

D∞ = D//(τmax) ∼ VE
2−θ

`
2+θ
3

//

[
Dα2

e(vmin)
]− 1−θ

3 . (60)

Using the relationship between the effective shear rate and the Eulerian PDF, Eq. (55), and defining
the Péclet number Pe = /̀/VE/D in terms of the longitudinal correlation length, the previous results
yield the scalings

vmin ∼ Pe
2θ

1+2θ , τmin ∼ Pe−
2θ

1+2θ , αe(vmin) ∼ Pe
3θ

1+2θ . (61)

We have used the power-law dependency of the Eulerian PDF for low velocities compared to the mean
at vmin, which holds for high Péclet number because vmin/VE decreases with Pe. We see that the
effective shear rate associated with the minimum velocity increases with Pe. For 0 < θ < 1, this
impacts the dispersion coefficient through a factor of αe(vmin)−2(1−θ)/3 ∼ Pe−2θ(1−θ)/(1+2θ), which
decreases with Pe.

As expected, diffusive averaging decreases the dispersion coefficient, because it smooths out velocity
variability. However, as we have seen, correlation properties along streamlines contribute an additional

factor ∼ VE
2−θ

, leading overall to an asymptotic dispersion coefficient which grows with Pe,

D∞
D
∼ Pe

2+θ
1+2θ . (62)

Our approach thus predicts a nontrivial scaling of the dispersion coefficient at high Pe for broadly-
distributed crossing times. The presence of a maximum correlation time implies a return to Fickianity
at sufficiently late times whenever diffusion is present, and the corresponding dispersion coefficient
results from the interplay between diffusion and advective heterogeneity, which is mediated by the
effective shear rate. The scaling exponent characterizing the behavior of the dispersion coefficient with
Pe decreases with θ. As θ approaches unity, we recover the usual linear Pe dependency characteristic
of advection-dominated transport with finite-mean crossing times. On the other hand, as θ approaches
zero, the dependency approaches quadratic, as for classical Taylor dispersion.

It should be noted that our scaling predictions differ from previous results. Bijeljic & Blunt (2006)
employed a heuristic cutoff at the level of the transit times, which they identified with the diffusion
time associated with homogenizing a longitudinal correlation length. This led, for 0 < θ < 1, to the
prediction of an intermediate scaling of the longitudinal dispersion coefficient related to the stable
exponent of the crossing times as Pe3−(1+θ) = Pe2−θ, followed by a regime linear in Pe. In contrast,
our results suggest that shear plays a key role in the interplay between heterogeneous advection and
diffusion, leading to D∞ ∼ Pe(2+θ)/(1+2θ). The case presented in Bijeljic & Blunt (2006) corresponds
to θ = 0.8, leading to a transition between D∞ ∼ Pe1.2 and D∞ ∼ Pe in their model for high Péclet
numbers. Our approach predicts instead a single regime in this range of Péclet with an intermediate
scaling exponent ≈ 1.08. Note that this scaling might be difficult to distinguish experimentally from
a transition between the two exponents 1.2 and 1. The largest differences between the two modelling
frameworks would be observed for the smallest θ > 0, where our approach predicts a scaling exponent
approaching 2 rather than unity.

In order to characterize the different regimes that arise for late-time longitudinal dispersion in more
detail, we proceed to nondimensionalize the dynamical variables. Diffusive transitions are associated
with a timescale τ⊥ = `2⊥/(2D) and a corresponding longitudinal lengthscale L// = VEτ⊥. On the
other hand, advective transitions are associated with the correlation length /̀/, which corresponds to

the timescale τ// = /̀//VE . We nondimensionalize velocity as v∗ = v/VE , distance as s∗ = s/L//, and
time as t∗ = t/τ⊥. Consider now the transition operator L = LA + LD, Eq. (24). In terms of the
nondimensional variables, the dimensionless transition operator L∗ = L//L = ζ PeL∗A + L∗D/2, with
L∗A,D = L//LA,D and

ζ =
τ⊥
τ//

=
`2⊥
2`2//

(63)

the ratio of longitudinal and transverse timescales.
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This nondimensional form highlights the dominant transition mechanisms occurring under different
flow conditions. Diffusive transitions dominate for Pe� 1/ζ, and advective transitions for Pe� 1/ζ.
For Pe � 1, diffusion dominates longitudinal dispersion, a scenario which we have disregarded here.
According to Taylor dispersion, Eq. (42), and the definition of the transverse lengthscale, Eq. (54), the
late-time longitudinal dispersion coefficient when only diffusive transitions are considered is given by

χ2D∞
D

= 2Iζ Pe2 . (64)

Thus, the effects of diffusion in the longitudinal direction equal those of transverse diffusion on the
asymptotic dispersion coefficient when Pe = Pe⊥, with

Pe⊥ = (2Iζ)−1/2, (65)

for which χ2D∞/D = 1. This implies that the transverse-diffusion-dominated regime has a width of
order 1/

√
ζ in the Péclet scale and disappears for sufficiently small ζ.

The details of the behavior of the large-Pe regime and its onset depend on the particular form of
the advective transitions and Eulerian PDF. We focus now on the example of a gamma distribution of
Eulerian velocities together with a Bernoulli relaxation process of correlation length /̀/, as above. We
have, by direct computation according to Eq. (47),

I =
Γ(3θ)

27θΓ(θ)Γ(1 + θ)2
. (66)

Computing the maximum correlation time according to Eq. (59) with the effective shear rate according
to the gamma PDF leads to

τ∗max =
τmax

τ⊥
=

[
2

Γ(θ)

(
θ

ζ Pe

)θ] 2
1+2θ

, (67)

valid for high Pe so that the minimum average velocity vmin is small compared to VE . We consider an
initial condition according to the Eulerian velocity PDF, corresponding to a transversely homogeneous
spatial injection, at the longitudinal origin x = 0. Dispersion in the absence of diffusion is then given
by Eq. (58). Nondimensionalizing the latter by dividing by the diffusion coefficient and substituting
the maximum cutoff time for θ 6 1, Eq. (67), leads to an explicit form of Eq. (62) for asymptotic
dispersion,

χ2D∞
D

=





[2/Γ(1 + θ)]
2(1−θ)
1+2θ [(1− θ)ζ]−1 (θζ Pe)

2+θ
1+2θ , 0 < θ < 1

Pe ln
[
4e−3ζ Pe

]
/3, θ = 1

(θ − 1)−1 Pe, θ > 1

, (68)

for t� τ// for θ > 1 and t� τmax for θ 6 1.
These results can be used to estimate the characteristic Pe corresponding to the onset of the large-Pe

regime more precisely. Equating the two dispersion-regime expressions (64) and (68), we approximate
the critical Pe = Pe// associated with the onset of the regime dominated by advective transitions as

Pe// =





θ[2/Γ(θ)]
2(1−θ)

3θ [2ζθ(1− θ)I]−1/θ, 0 < θ < 1

e4/(4ζ), θ = 1

[2ζ(θ − 1)I]−1, θ > 1

. (69)

As expected from the discussion above, the advection-dominated regime is characterized by an onset
inversely proportional to ζ in all cases. Note that for θ = 1 the asymptotic expressions for the
intermediate and high Péclet regimes are never equal, due to the divergent behavior of the logarithm
for small arguments. Thus, we estimate in this case Pe⊥ as the value for which the two expressions
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Figure 3: Asymptotic longitudinal dispersion coefficient as a function of Péclet number, with veloc-
ity transitions along streamlines according to a Bernoulli relaxation process and transitions across
streamlines according to transverse diffusion. The three values of θ shown highlight the three possi-
ble asymptotic qualitative behaviors discussed in the text. The inset shows corresponding Eulerian
velocity gamma PDFs, with low velocities having a probability density ∼ vθ−1.

have a ratio closest to unity. The high-Pe expression is always smaller by a factor of 9e−4 ≈ 0.165 at
this point.

Thus, for sufficiently late times, we have three possible scaling regimes for the dependence of the
dispersion coefficient on Péclet number: (i) Pe� Pe⊥: longitudinal diffusion dominates; in this case,
which we do not treat explicitly, D∞/D = 1; (ii) Pe⊥ � Pe � Pe//: transverse diffusion across

streamlines dominates velocity transitions, leading to classical Taylor dispersion, D∞/D ∼ Pe2; and
(iii) Pe � Pe//: advective transitions along streamlines dominate, but transverse diffusion ensures

Fickianity, and we have D∞/D ∼ Peϑ, with an exponent 1 6 ϑ < 2 that depends on the Eulerian
PDF through θ (Eq. (68)). If Pe// . Pe⊥, there is no intermediate Pe2 regime.

Figure 3 shows the behavior of the asymptotic longitudinal dispersion coefficient as a function of
Péclet number for this setup, for fixed ζ = 10−1 and θ = 1/2, 1, 3/2. Time is nondimensionalized by
τ⊥, distance s by L//, and position x by L///χ. A convenient parameterization of the nondimensional

problem is obtained by setting D = 1/2, χ = 1, `⊥ = 1, /̀/ = (2ζ)−1/2, and VE = (ζ/2)1/2 Pe. The free
nondimensional parameters are Pe, ζ, and θ. These set, respectively, the relation between diffusive and
advective timescales, the relation between the timescales of these two processes, and the low-velocity
scaling of the Eulerian velocity PDF. The asymptotic dispersion coefficient in these units is given by
D∗∞ = χ2τ⊥D∞/L

2
//, so that χ2D∞/D = 2D∗∞ in our parameterization. We set the discretization

according to the minimum between Eq. (112) with ∆v = 5 · 10−2VE/θ and ∆s = 5 · 10−2
/̀/, and

we used 103 particles (see Appendix G for a discussion of the convergence properties of the DVRW).
Dispersion was computed using the DVRW for 20 logarithmically-spaced asymptotic times between
t∗ = 5 and t∗ = 10. The corresponding dispersion coefficient was obtained by backward-difference
differentiation and averaged over the resulting values to reduce numerical error.

The results are in agreement with the theoretical predictions. For θ = 1/2, 1, 3/2, the regime onsets
are estimated as (Pe⊥,Pe//) ≈ (6, 9 ·101), (8, 1 ·102), (10, 2 ·102), respectively. The three corresponding
scaling regimes of dispersion with Péclet number are shown in Fig. 3. Note that, for θ = 3/2, there
is a wide intermediate range of Péclet numbers (∼ 102–106) over which different mechanisms are at
play, causing the behavior of dispersion with Pe to deviate from the pure scaling laws derived above.
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The pure advection-dominated regime scaling is then reached only at very large Pe ∼ 106, whereas for
θ = 1/2, 1 the asymptotic regime provides accurate predictions at much lower Pe ∼ 102, 103.

7 Conclusions

We have presented a new theoretical framework that couples heterogeneous advection and diffusion
into a spatial-Markov stochastic process. Our model, the DVRW, allows for taking advantage of the
fact that Lagrangian velocity dynamics in spatially structured flows are Markovian in space, while
incorporating the effect of diffusion. Aside from its potential as a simulation technique, the DVRW
formulation allows for the analytical development of dynamical equations for key transport quantities,
highlighting the role of statistical properties of the flow in their evolution. In particular, we have
shown how this approach provides new scaling laws describing dispersion properties at different Péclet
numbers, explicitly incorporating the interplay between transverse diffusion and advective shear.

In the DVRW framework, diffusive transitions across nearby streamlines are determined by the
following flow properties: (i) point statistics of velocity magnitude, as embodied by the Eulerian PDF;
(ii) average tortuosity; and (iii) a characteristic transverse lengthscale, encoding information about the
transverse spatial and statistical structure of Eulerian velocities. These properties are combined into
an effective shear rate, which, together with the usual diffusion coefficient, governs diffusive transitions
in velocity space. As in previous works, transitions along streamlines are described by transition
probabilities, which can typically be modeled with recourse to simple processes parameterized by (i)
the Eulerian PDF; (ii) average tortuosity; and (iii) a longitudinal velocity correlation length.

The present work has been mainly concerned with formulating the approach while clarifying its
physical meaning and characterizing the necessary parameters. Subsequent work is necessary towards
parameterizing and applying the DVRW formulation to predict transport in realistic heterogeneous
media, and in particular to test the practical applicability of the predicted scaling laws for dispersion.
Since it quantifies single-particle trajectories in the presence of diffusion and heterogeneous advection,
the DVRW formulation also opens up other promising avenues for future research, such as upscaling
effective reaction dynamics in the presence of flow heterogeneity.
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A Joint PDF of velocity and arrival time

The joint PDF of velocity and arrival time, given distance s traveled along streamlines, is defined as

ψ(v, t; s) = δ[VS(s)− v][T (s)− t], (70)

where the overline denotes an ensemble average over tracer particles and δ(·) is the Dirac delta. Revert-
ing to the discrete version of the dynamics, see Eq. (1), we consider the joint density ψi(t; s) of arriving
at time t and having velocity in class i given distance s. We have ψi(t; s) = ∆viδ(Vk − vi)(Tk − t) and
ψi(t; s+ ∆s) = ∆viδ(Vk+1 − vi)(Tk+1 − t) to first order in ∆s. Using Eq. (1) to express Tk+1 in terms
of Tk and Vk and introducing a partition of unity for the latter being in velocity class j we obtain,
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again to leading order in ∆s,

ψi(t; s+ ∆s) = ∆vi
∑

j>0

∆vjδ (Tk + ∆s/vj − t) δ(Vk − vj)δ(Vk+1 − vi),

=
∑

j>0

rij(s)ψj (t−∆s/vj ; s) , (71)

where we have used the Markov property to break the average and identified the average of ∆viδ(Vk+1−
vi) given Vk = vj as the transition probability from velocity class j to i at distance s. Taylor-expanding
ψj(t−∆s/vj ; s) around t leads to

ψi(t; s+ ∆s)− ψi(t; s)
∆s∆vi

=
∑

j>0

rij − δij
∆s∆vi

ψj (t; s)− 1

∆vivj

∂ψi(t; s+ ∆s)

∂t
. (72)

This yields the dynamical equation (7) in the limit ∆s→ 0.

B Diffusion-averaged velocity class widths

Consider velocities discretized into classes [bi, bi+1[. The width ∆vi = bi+1 − bi of class i represents
the range of velocities averaged by diffusion over a spatial step of length ∆s along streamlines. The
width of class i, associated with arithmetic average velocity vi, is given by ∆vi = αi

√
2D∆s/vi,

where αi = αe(vi). In the limit of small class widths, consider the approximation vi ≈ (bi+1 + bi)/2
and αi ≈ αe(bi) respectively for the class average velocities and effective shear rates. Replacing
vi = bi + ∆vi/2 in ∆vi = αi

√
2D∆s/vi yields the cubic equation ∆v2

i (∆vi + 2bi) = 4Dα2
i∆s. Using

the standard cubic solutions and some algebra we arrive at

∆vi = ai

{[
(1 +

√
ξi)

1/3 − (1−
√
ξi)

1/3
]2

+ (1− ξi)1/3

}
, (73)

where ai = (Dα2
i∆s)

1/3 and ξi = 1− 8b3i /(27a3
i ). Class edges can then be obtained recursively up to

a maximum velocity vM according to bj+1 = bi + ∆vi with b0 = vm.
For 0 6 ξ 6 1, the expression for ∆vi is clearly real and positive. At small velocities, for

8b3i /(27Dα2
i∆s) � 1, we obtain ∆vi ≈ (4Dα2

i∆s)
1/3, which in particular holds exactly for class

i = 0 if vm = 0. For ξ < 0, it may be convenient to work with the explicitly real expression

∆vi = ai(1 + |ξ|)1/3

[
1− 4 sin2

(
arctan

√
|ξ|

3

)]
, (74)

which is obtained by expressing the conjugate pair 1±
√
|ξ| in terms of their absolute value and phase

and simplifying the resulting expression. Note that the argument of the sine is smaller than π/6, so
that this expression is also positive. Expanding for |ξi| ≈ 8b2i /(27Dα2

i∆s) � 1, we obtain ∆vi ≈√
2Dα2

0∆s/bi, which holds at sufficiently high velocities. This situation corresponds to ∆vi � 2bi, or
vi ≈ bi.

The approach above breaks down if αe(bi) is zero or divergent. This happens where the Eulerian
PDF diverges or is zero at bi, respectively, see Eq. (55). The above construction can be employed
separately within velocity intervals where the Eulerian PDF pE(v) is finite and nonzero, except that
the approximation αe(vi) ≈ αe(bi) cannot be used at the leftmost class within each interval. In this
case, we use αi = αe(bi + ∆vi/2), which leads to an implicit equation for ∆vi. This equation can be
solved numerically in general, and possibly analytically if the local form of the velocity PDF is known.

23



C Diffusive transitions in the continuum limit

The transition probabilities associated with diffusive transitions, characterized by Eqs. (17) and (18),
give

rDij − δij = r+
j δi,j+1 − δij + r−j δi,j−1. (75)

Let qi be a quantity dependent on velocity class i, and let q(v) be the associated continuous density,

i.e., qi =
∫ bi+1

bi
dv q(v) ≈ ∆viq(vi). We have

∑

j>0

rDij − δij
∆s∆vi

qj =
r−i+1qi+1 − qi + r+

i−1qi−1

∆s∆vi
. (76)

Expanding in Taylor series around vi,

∆vi±1 ≈ ∆vi

(
1± ∂∆v(v)

∂v

∣∣∣∣∣
vi

)
, (77)

where ∆v(v) =
√

2Dαe(v)2∆s/v, and

∆vi±1q(vi±1) ≈ ∆viq(vi)±∆vi
∂∆v(v)q(v)

∂v

∣∣∣∣∣
vi

+
∆v2

i

2

∂2∆v(v)q(v)

∂2v

∣∣∣∣∣
vi

. (78)

We thus find, to leading order in ∆s,

rDij − δij
∆s∆vi

=
1

2∆s

[
∂∆v(v)

∂v

∂∆v(v)q(v)

∂v
+ ∆v(v)

∂2∆v(v)q(v)

∂v2
−∆v(v)

∂

∂v

q(v)

2v

]

vi

,

=
1

2∆s

∂

∂v

[
∆v(v)2 ∂q(v)

∂v
− q(v)

(
1

v
− ∂

∂v

)
∆v(v)2

2

]

vi

. (79)

This leads to
∂q(v; s)

∂s
= LDq(v; s), (80)

with the diffusive transition operator LD given according to Eq. (19).

D Spatial extrema and the Eulerian PDF

We present here a simple scaling argument to identify the qualitative impact of a spatial extremum
(maximum or minimum) on the Eulerian PDF. Near a non-degenerate (point) extremum vM in d
dimensions, at a spatial distance ∆x, we have |Λ(v)| ∝ |∆x|d−1. The associated change in velocity
is |∆v| ∝ |∇v||∆x|, and the gradient behaves as |∇v| ∝ |∇2v||∆x|, so that |∆x| ∝ |∆v|1/2/|∇2v|1/2.
Thus, the contribution near a spatial extremum to the Eulerian PDF is

pE(vM + ∆v) ∝ |∆x|d−1

|Ω||∇2v||∆x| =
|∆v|d/2−1

|Ω||∇2v|d/2 . (81)

This means that a non-degenerate spatial extremum corresponds to a square-root divergence in d = 1,
a ∆v-independent contribution in d = 2, and a zero in d = 3.

It is interesting to note that the Eulerian PDF associated with Poiseuille flow in a cylindrical
pipe is velocity-independent. This can be understood as follows. The probability density for a given
velocity is inversely proportional to the corresponding velocity gradient magnitude, which in turn is
proportional to

√
1− v/vM . In a cylindrical pipe, the flow profile is a paraboloid, and the higher

gradients near the pipe walls are compensated by the fact that, due to the axisymmetry of the profile,
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the spatial frequency of occurrence of a given velocity is proportional to |Λ(v)| ∝
√

1− v/vM . This
results in a constant probability density across velocities. Couette flow in two spatial dimensions, the
constant-shear flow arising between a stationary plate and a plate moving at constant velocity, also
has this property, because the velocity gradient is constant and each velocity occurs the same number
of times (exactly once). However, this flow presents no non-degenerate spatial maxima.

E Taylor dispersion

The Taylor dispersion coefficient is given by DT = ηχ−2VE
2
L2/D. Here, we discuss the dimension-

less coefficient η. It is given by η = |Ω⊥|−1
∫

Ω⊥
dy ν(y)ϕ(y), where the dimensionless function ϕ

solves (Aris, 1956)

L2∇2ϕ(y) = −ν(y), y ∈ Ω⊥, n · ∇ϕ(y) = 0, y ∈ ∂Ω⊥, (82)

where n is the unit outward normal to the transverse domain boundary ∂Ω⊥. We note that this
determines ϕ up to an additive constant, which does not affect η because the spatial integral of the
velocity fluctuations is null.

If the flow depends only on a one-dimensional transverse coordinate y, integrating this equation
leads, up to an additive constant, to

ϕ(y) = −
y∫

−L/2

dy′
y′∫

−L/2

dy′′ ν(y′′). (83)

Thus,

η = −
L/2∫

−L/2

dy ν(y)

y∫

−L/2

dy′
y′∫

−L/2

dy′′ ν(y′′). (84)

Integrating by parts in the outer integral leads to Eq. (44). For axisymmetric flows, depending only

on r =
√
y · y, we have

∫ L/2
0

dr rν(r) = 0. Using ∇2 = r−1d2/dr2r for the Laplacian in cylindrical
coordinates and |Ω⊥| = π(L/2)2, and following the same procedure as before, we obtain Eq. (45).

F Longitudinal dispersion

This appendix is concerned with determining asymptotic longitudinal dispersion. First, we present
the derivation for the DVRW formulation under purely-diffusive velocity transitions. Next, we discuss
the dispersion coefficient for advective transitions only, for the case of a Bernoulli relaxation process.

F.1 Purely-diffusive velocity transitions

We start by defining

Ik(v, t) =

{∫∞
0
ds skψ(v, t; s), k > 0

ψ(v, t; 0) = pS(v; 0)δ(t), k = −1
. (85)

According to Eq. (9), the raw moments of concentration are given, for k > 0, by

ρk(t) = χ−k
∞∫

0

dv v−1Ik(v, t). (86)
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The average position is thus given by XT (t) = ρ1(t) and longitudinal dispersion by the variance
σ2(t) = ρ2(t)− ρ1(t)2. Multiplying Eq. (7) by s and integrating in s, we find, for k > 1, the recursion
relations

v−1 ∂Ik(v, t)

∂t
= LDIk(v, t) + kIk−1(v, t). (87)

Integrating in v yields also

dρk(t)

dt
= χ−kk

∞∫

0

dv Ik−1(v, t). (88)

This gives directly ρ0(t) = 1, confirming that the concentration PDF is correctly normalized. It is easy
to see by inspection that Eq. (87) for k = 1 admits asymptotic solutions of the form I∞0 (v) ∝ pF (v),
so that, in order to satisfy ρ0(t) = 1, we have I∞0 (v) = VEpF (v). Then, Eq. (88) for k = 1 yields the
asymptotic mean position ρ1(t) = χ−1VEt. This means that, as expected, the average position grows
asymptotically according to the mean velocity (corrected by the tortuosity).

The asymptotic longitudinal dispersion coefficient is obtained through a similar, albeit more in-

volved, approach. We expect the asymptotic form ρ2(t) = 2D∞t + χ−2VE
2
t2 for the second raw

moment of position, where D∞ is the asymptotic longitudinal dispersion coefficient. Therefore, we
look for an asymptotic solution to Eq. (87) for k = 1 of the form I1(v, t) = a(v) + b(v)t. Satisfying

Eq. (88) with k = 2 requires
∫∞

0
dv a(v) = D∞ and

∫∞
0
dv b(v) = χ−2VE

2
. On the other hand, Eq. (87)

requires LDb(v) = 0; we conclude that b(v) = χ−2VE
2
pF (v) and

LDa(v) = χ−2VE [pE(v)− pF (v)] . (89)

Using the boundary and initial conditions for ψ(v, t; s), integrating this equation yields

a(v) = ApF (v) +
VEv

χ2Dαe(v)

v∫

0

dv′
CE(v′)− CF (v′)

αe(v′)
, (90)

where A is a so-far arbitrary coefficient. Using Eq. (36) for the effective shear, we obtain

a(v) = pF (v)

[
A+

VE
2
δv2

χ2Dαe(VE)
2 g(v)

]
, g(v) =

v∫

0

dv′ pE(v′)[CE(v′)− CF (v′)]. (91)

Next, we use Eq. (86) for ρ1(t), which requires
∫∞

0
dv a(v)/v = 0 (as well as

∫∞
0
dv b(v)/v = χ−2VE ,

which is satisfied). This fixes A and leads to

a(v) =
VE

2
δv2pF (v)

χ2αe(VE)
2

∞∫

0

dv′ g(v′) [δ(v − v′)− pE(v′)] . (92)

Setting
∫∞

0
dv a(v) = D∞ yields

D∞ =
IVE

2
δv2

χ2Dαe(VE)
2 , (93)

where I =
∫∞

0
dv [pF (v)− pE(v)]g(v). Integrating by parts leads to

I =

∞∫

0

dv pE(v)[CE(v)− CF (v)]2. (94)
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The quantity I may also be expressed as a spatial integral. To this end, we express pE(v) as a
spatial average according to its definition, Eq. (25). Then, the Eulerian CDF is given by

CE(v) =

v∫

0

dv |Ω⊥|−1

∫

Ω⊥

dy δ[vE(y)− v],

= |Ω⊥|−1

∫

Ω⊥

dyH[v − vE(y)], (95)

where H(·) is the Heaviside step function. Similarly, the flux-weighted Eulerian CDF reads

CF (v) = |Ω⊥|−1

∫

Ω⊥

dy
vE(y)

VE
H[v − vE(y)]. (96)

Substituting, we find

I = |Ω⊥|−3

∫

Ω⊥

dy

∞∫

0

dv δ[vE(y)− v]



∫

Ω⊥

dy′ν(x′)H[v − vE(y′)]




2

, (97)

where ν(y) = vE(y)/VE − 1 are the normalized velocity fluctuations. Performing the integral over v
leads directly to Eq. (51).

F.2 Purely-advective velocity transitions

The temporal velocity correlation function is given, by definition, by

Cv(t, t
′) = VT (t)VT (t′)− VT (t)VT (t′), (98)

where VT (t) is the Lagrangian velocity at time t. Following Dentz et al. (2016), we introduce the
propagator

g(v, t) = e−vt/ /̀/ (99)

and the transition time PDFs across a correlation length associated with the velocity PDF pJ ,

φJ(t) = `−1
//

∞∫

0

dv g(v, t)vpJ(v), (100)

where J ∈ {0, E, F} and p0(v) = pT (v; 0) is the initial velocity PDF. We have for the Bernoulli
process (Dentz et al., 2016),

VT (t)VT (t′) =

∞∫

0

dv VT (t− t′|v)vpT (v, t′), (101)

where VT (t|v) is the average velocity at time t + t′ conditioned on velocity v at time t′. Its Laplace
transform is given by (Dentz et al., 2016)

ṼT (λ|v) = vg̃(v, λ) +

∞∫

0

dv′
vv′2pE(v′)

/̀/VE

g̃(v, λ)g̃(v′, λ)

1− φ̃F (λ)
. (102)

where the tilde denotes the Laplace transform (with respect to time) and λ is the associated Laplace
variable. Using the definition of φF (t), this can be rewritten as

ṼT (λ|v) =
vg̃(v, λ)

1− φ̃F (λ)
. (103)
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Similarly, we have (Dentz et al., 2016)

ṼT (λ) = /̀/φ̃0(λ) +

∞∫

0

dv
v2pE(v)

VE

g̃(v, λ)φ̃0(λ)

1− φ̃F (λ)
, (104)

from which

ṼT (λ) =
/̀/φ̃0(λ)

1− φ̃F (λ)
. (105)

We focus here on the case of an initial condition according to the Eulerian PDF, p0(v) = pE(v).

Direct computation from Eq. (100) shows that 1−
∫ t

0
dt′ φF (t′) = φE(t) /̀//VE , from which we conclude

that 1− φ̃F (λ) = ( /̀/λ/VE)φ̃E(λ). This shows immediately that ṼT (λ) = VE/λ, so that, inverting the

Laplace transform, the average velocity is constant and equal to VE , as expected. Furthermore, as
shown in the main text, the time-Lagrangian velocity PDF is in this case stationary, and we have
pT (v, t) = pE(v). Therefore, from Eq. (101),

VT (t)VT (t′) =

∞∫

0

dv VT (t− t′|v)vpE(v). (106)

We conclude that the velocity correlation function is stationary; for t > t′,

Cv(t, t
′) = Cv(t− t′) =

∞∫

0

dv VT (t− t′|v)vpE(v)− VE
2
. (107)

Taking Laplace transforms and using Eq. (103) yields

C̃v(λ) = VE /̀/

[
φ̃F (λ)

1− φ̃F (λ)
− VE

/̀/λ

]
. (108)

Thus, using the Green–Kubo relation (41) gives

χ2D̃∞(λ) =
VE /̀/

λ

[
φ̃F (λ)

1− φ̃F (λ)
− VE

/̀/λ

]
. (109)

For gamma-distributed Eulerian velocities, Eqs. (56) and (57), we take the Laplace transform of
Eq. (100) and perform the integral to obtain

φ̃F (λ) = (1 + θ) exp

(
/̀/θλ

VE

)
E2+θ

(
/̀/θλ

VE

)
, (110)

where Eθ(x) =
∫∞

1
dt exp(−xt)/tθ is an exponential integral. This admits the small-λ expansions

φ̃F (λ) ≈





1− τ//λ− Γ(−θ)(τ//λ)1+θ, θ < 1

1− τ//λ− ln(eγEτ//λ)(τ//λ)2, θ = 1

1− τ//λ+ [θ/(θ − 1)](τ//λ)2, θ > 1

, (111)

where τ// = /̀//VE and γE ≈ 0.577 is the Euler–Mascheroni constant. Substituting in Eq. (109) and
inverting the Laplace transform to leading order in λ leads to Eq. (58).
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Figure 4: Breakthrough curves (left) and concentration profiles (right) for two-dimensional Poiseuille
flow, under a pulse initial condition homogeneous along the direction transverse to the flow. Times
are shown in units of the diffusion time τD and positions in units of the advective distance LD.

10
-1

10
0

�������� �

10
-2

10
-1

10
0

10
1

	
�


��
�


�
�

�
�
�

�
�
�
�

�
�
��
��
�

�	��
����
������
� ��� �����
������������� ������
� ��� �� ���

	�
� � �  !�"

� � #�$ �  !�"

� � "�% �  !� 

� �  !

10
-1

10
0

�������� �

10
-2

10
-1

10
0

10
1

&
'


��
��


�
�

�
�
�

�
�
�
�

�
�
��
�	
�

��(�
��� 	 �  !�"

	 � #�$ �  !�"

	 � "�% �  !� 

	 �  !

Figure 5: Evolution of the time-Lagrangian (left) and space-Lagrangian (right) velocity PDFs for two-
dimensional Poiseuille flow. Times are shown in units of the diffusion time τD, distances in units of the
advective distance LD, and velocities in units of the mean velocity VE . The initial condition coincides
with the Eulerian PDF, corresponding to a homogeneous injection along the direction transverse to
the flow.

G Numerical validation of diffusive transitions

We consider, for validation and illustration purposes, transport in some instances of the stratified
flows from Table 1. We employ a pulse initial condition of unit mass, at the origin along the flow
direction, and uniform along the direction transverse to the flow, corresponding to an initial velocity
distribution according to the Eulerian PDF. We fix, in arbitrary units, L = 1, D = 5 · 10−4, and
VE = 1. This corresponds to a diffusion time τD = L2/(2D) = 103 to homogenize the transverse
direction, an associated advective distance LD = VEτD = 103, and a Péclet number associated with
the width L of VEL/D = 2 · 103.

We compare the results of our DVRW, implemented using the discrete Lagrangian formulation, to
standard fully-resolved particle tracking random walk (PTRW) simulations with fixed-time-step spatial
transitions associated with advection and transverse diffusion. The simulation results are in very good
agreement for the breakthrough curves and concentration distributions as well as the velocity PDFs at
fixed times and distances, as shown for two-dimensional Poiseuille flow in Figs. 4 and 5, respectively.
The results in these figures correspond to ∆s = 10−6LD for the DVRW and ∆t = 10−5τD for the
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Figure 6: Mean (left) and variance (right) of tracer positions for different stratified flows, under a pulse
initial condition homogeneous along the direction transverse to the flow. Times are shown in units of
the diffusion time τD and position in units of the advective distance LD. Variances are normalized in
terms of the Taylor dispersion coefficient as indicated.

PTRW simulations, using 105 particles in both cases.
A slight mismatch can be observed for concentrations very close to injection, see the right panel

of Fig. 4, which occur at early times. This is due to the impact of discretization, which is most
noticeable at positions and times corresponding to few transitions. At large distances (compared to
LD), both concentrations and breakthrough curves become approximately Gaussian, in accordance
with the central limit theorem. Regarding the velocity PDFs, Fig. 5, note how there is no change in
the time-Lagrangian PDF, since the initial condition coincides with the Eulerian PDF and is therefore
the equilibrium solution. As for the space-Lagrangian PDF, note the quick evolution towards the
equilibrium flux-weighted Eulerian PDF: for the last two distances, corresponding s = 2.6·10−1LD and
10LD, the PDF has essentially already converged. Slight mismatches between the simulation results
and the theoretical equilibria are due to the sampling discretization when computing the PDFs.

The temporal evolution of the mean tracer position and longitudinal dispersion for four examples
of stratified flow are shown in Fig. 6. The discretizations used in this case were ∆s = 10−6LD,
∆t = 10−6τD, and 104 particles. The results show excellent agreement between PTRW and DVRW
simulations.

As usual for particle methods, precision scales approximately with the inverse of the square root
of the number of particles. As for the spatial discretization, note that the relevant discretization for
the DVRW is at the level of the Eulerian PDF, which is achieved indirectly through discretizing the
distance ∆s along streamlines. In order to estimate the discretization necessary to achieve a given
precision in velocity space, consider Eq. (16) describing diffusive velocity averaging and characterizing
velocity class widths in the discretized DVRW. Inverting this relation for ∆s and using Eq. (55) for
the effective shear rate, we have, for a given precision ∆v,

∆s = min
i
{vipE(vi)

2}τ⊥∆v2, (112)

where τ⊥ = `2⊥/(2D) is the diffusion time associated with homogenizing a region of characteristic
length `⊥. If vpE(v) has zeros, the minimum value on the right hand side occurs within ∆v of a zero.
Accurate results typically require ∆v/VE � 1.

The convergence with ∆s of longitudinal dispersion for Poiseuille flow is illustrated in Fig. 7. The
order of convergence is found to be approximately 1/3, corresponding to the dependence of velocity
class sizes on ∆s1/3 at small velocities, see Appendix B. Here, fine discretizations are needed for
accurate results. However, when velocity transitions along streamlines are included, the discretization
requirements become less strict at high Péclet number. Although we do not consider this point further
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Figure 7: Convergence of the DVRW with discretization for longitudinal dispersion under Poiseuille
flow in two dimensions. The convergence properties are quantified through the L2 relative error norm,
computed for the solutions with different ∆s at 1000 equally-spaced times between t = 0 and t = 10τD.
The baseline solution used for comparison is computed using a PTRW simulation with ∆t = 10−5.
All solutions use 105 particles. Linear fitting to the logarithm of the error versus the logarithm of ∆s
indicates an order of convergence of 0.31, with 95% confidence bounds of 0.30 and 0.33.

here, we expect it may be possible to develop faster-converging Lagrangian discretizations of the
continuous DVRW description. An alternative is to directly solve the Eulerian continuum equations
for the PDFs of quantities of interest, where the discretization may be imposed directly at the level of
velocity magnitudes.
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