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A B S T R A C T   

Following past studies to quantify decadal trends in global carbon monoxide (CO) using satellite observations, we 
update estimates and find a CO trend in column amounts of about − 0.50 % per year between 2002 to 2018, 
which is a deceleration compared to analyses performed on shorter records that found − 1 % per year. Aerosols 
are co-emitted with CO from both fires and anthropogenic sources but with a shorter lifetime than CO. A 
combined trend analysis of CO and aerosol optical depth (AOD) measurements from space helps to diagnose the 
drivers of regional differences in the CO trend. We use the long-term records of CO from the Measurements of 
Pollution in the Troposphere (MOPITT) and AOD from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) instrument. Other satellite instruments measuring CO in the thermal infrared, AIRS, TES, IASI, and CrIS, 
show consistent hemispheric CO variability and corroborate results from the trend analysis performed with 
MOPITT CO. Trends are examined by hemisphere and in regions for 2002 to 2018, with uncertainties quantified. 
The CO and AOD records are split into two sub-periods (2002 to 2010 and 2010 to 2018) in order to assess trend 
changes over the 16 years. We focus on four major population centers: Northeast China, North India, Europe, and 
Eastern USA, as well as fire-prone regions in both hemispheres. In general, CO declines faster in the first half of 
the record compared to the second half, while AOD trends show more variability across regions. We find evi-
dence of the atmospheric impact of air quality management policies. The large decline in CO found over 
Northeast China is initially associated with an improvement in combustion efficiency, with subsequent additional 
air quality improvements from 2010 onwards. Industrial regions with minimal emission control measures such as 
North India become more globally relevant as the global CO trend weakens. We also examine the CO trends in 
monthly percentile values to understand seasonal implications and find that local changes in biomass burning are 
sufficiently strong to counteract the global downward trend in atmospheric CO, particularly in late summer.  
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1. Introduction 

Carbon monoxide (CO) is an atmospheric tracer for incomplete 
combustion, with major primary sources from fossil fuels and fires and 
secondary production from hydrocarbon oxidation. CO is destroyed 
through photochemical oxidation and is the dominant sink for the hy-
droxyl radical (OH), thus impacting the self-cleansing capacity of the 
atmosphere (e.g., Lelieveld et al., 2016) and methane (CH4) lifetime 
(Prather, 2007; Gaubert et al., 2017a). CO is a short-lived climate 
pollutant (SLCP) via its impact on carbon dioxide and ozone formation, 
and the methane budget, with a radiative forcing of 0.23 Wm− 2 (Myhre 
et al., 2014) but whose impact is sensitive to emission location (Bowman 
and Henze, 2012). The moderate CO lifetime of weeks to months (e.g., 
Holloway et al., 2000) allows for observation of distinct pollution 
plumes that gradually succumb to atmospheric mixing, making it useful 
for studying both pollution sources and atmospheric background 
loadings. 

Tropospheric CO is accessible to remote sensing through its ab-
sorption of infrared radiation and is observed by several satellite in-
struments. The longest running satellite instrument is the Measurements 
Of Pollution In The Troposphere (MOPITT), aboard the NASA Terra 
satellite, which has been observing CO since 2000 (Drummond et al., 
2010). A consistent record combined with recent algorithm improve-
ments that minimize bias drift (Deeter et al., 2019) ensure that MOPITT 
CO is suitable for atmospheric trend calculations. 

Atmospheric CO has been decreasing globally for the last two de-
cades, primarily due to improvements in the combustion efficiency of 
anthropogenic sources, in addition to a global decline in tropical fires 
(Novelli et al., 2003; Zeng et al., 2012; Worden et al., 2013; Schultz 
et al., 2015; Yin et al., 2015; Jiang et al., 2017; Gaubert et al., 2017; 
Andela et al., 2017; Tang et al., 2019; Zheng et al., 2019). Recently, 
positive fire trends in Northern Hemisphere boreal regions (e.g., for the 
USA, Dennison et al., 2014) may have counteracted the globally 
decreasing CO. While trends in CO over fire-prone regions such as the 
Amazon and Southern Africa are more difficult to determine due to the 
large source interannual variability (Strode and Pawson, 2013), the CO 
record from MOPITT is potentially long enough to determine trends 
within this variability. Inverse modeling studies to estimate CO emis-
sions and trends using MOPITT observations confirm reductions from 
fossil fuel combustion and tropical biomass burning (Jiang et al., 2017; 
Zheng et al., 2018b, 2019). Strode et al. (2016) show that accurate 
emissions and ozone chemistry are critical for model simulations that 
agree with observations and to interpret trends in CO concentrations. 
Additionally, changing air quality policies, such as the 2010 China Clean 
Air Policy (Zheng et al., 2018a), can reduce or increase pollution 
emissions with impacts on trends in atmospheric composition. 

Atmospheric aerosols are also a marker of pollution processes. Fine 
particulate matter (diameter < 2.5 μm; PM2.5) has a significant negative 
impact on human health (e.g., McClure and Jaffe, 2018). Depending on 
type, aerosols can have either cooling or warming radiative forcing on 
climate (e.g., Ramanathan and Carmichael, 2008). Through impacting 
photolysis rates, aerosols can impact other pollutants such as ozone (Li 
et al., 2019). Previous studies have demonstrated that satellite obser-
vations of atmospheric aerosol along with CO can provide additional 
information in determining CO sources and understanding CO spatial 
and temporal variability (e.g., Edwards et al., 2004). The most reliable 
satellite observations are of bulk aerosol total column optical depth 
(AOD), and these are also available on Terra from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) instrument. Of particular 
interest here are the organic carbon and black carbon aerosols that are 
directly emitted along with CO during the incomplete combustion of 
fossil fuels and biomass (e.g., Edwards et al., 2004; Arellano et al., 
2010). However, distinguishing carbonaceous aerosol from other 
different aerosol types that contribute to the AOD, and especially the 
component from fine mode aerosol, is challenging. Aerosols are also 
formed from secondary reactions of pollutant precursor gases, and these 

may or may not originate from the same combustion sources as CO. For 
example, sulfate aerosol results from the oxidation of sulfur dioxide 
(SO2), although the SO2 emissions are not necessarily associated with 
CO sources. (e.g., Unger, 2006). Spatial correlation of MODIS AOD with 
short-lived species SO2, nitrogen dioxide (NO2) and formaldehyde has 
been used to suggest dominant aerosol types for different global regions 
(Veefkind et al., 2011). 

The shorter lifetime of aerosols, ~ 4 to 12 days (e.g., Kanakidou 
et al., 2005) means that they are not observed as far away from sources 
as CO, so AOD trends are more indicative of local and regional behavior 
in air pollution. The economically developing regions of the Asian 
landmass and surrounding oceanic regions are reported to show 
increasing AOD from satellite-based measurements using MODIS and 
Multi-angle Imaging SpectroRadiometer (MISR) AOD, whereas North 
America, South America, and Europe show decreasing AOD (Mehta 
et al., 2016). Ground-based analysis also shows increases over India, for 
example, at a rate of 2.3% per year between 1985 and 2012 and at 4% 
per year since 2000 (Krishna Moorthy et al., 2013). In the US, air quality 
related to surface-measured aerosols (PM2.5) has been improving, as 
shown by a decreasing trend, except where there are fires in the 
northwest (McClure and Jaffe, 2018). 

This paper presents the trends in CO measured from space between 
2002 and 2018 and uses satellite-measured AOD to help understand CO 
variability. We split the records into two time periods to measure the 
trend temporal stability, as well as examine trends over different source 
and outflow regions, and analyze monthly percentile values. In Section 2 
we present the CO and AOD satellite-based measurements and describe 
the trend analysis methodology. Section 3 shows the CO and AOD re-
cords across different spatial and temporal scales, including regional 
trends (Section 3.4). Section 4 discusses potential impacts on atmo-
spheric trends by investigating the co-variation of CO and AOD, as well 
as monthly CO percentile data. Conclusions are presented in Section 5. 

2. Methods 

2.1. Long-term CO and AOD measured from space 

The NASA/Terra satellite, launched in December 1999, carries two 
key instruments for the work of this paper, MOPITT and MODIS. Terra 
follows a sun-synchronous orbit with equator crossing times of ~10:30 
local solar time (LST). 

2.1.1. MOPITT CO 
MOPITT is a nadir-viewing instrument that began measuring CO in 

2000 and provides global coverage about every three days. The cross- 
track scanning angle is ±26 degrees to yield a swath width of ~640 
km. Pixel resolution is ~22 km × 22 km at nadir. MOPITT uses gas 
correlation spectrometry to complete broadband measurements in the 
thermal infrared (TIR) near 2140 cm− 1 and the near infrared (NIR) near 
4275 cm− 1 (Drummond et al., 2010). The MOPITT retrieval algorithm is 
described in detail elsewhere (Deeter et al., 2019; Worden et al., 2013). 
Briefly, an optimal estimation algorithm is applied to upwelling radi-
ances, that have traveled through CO filled gas cells of varying lengths, 
to retrieve CO profiles of volume mixing ratio (VMR) on 10 vertical 
layers, which are integrated to provide reported column amounts. The 
recent version 8 (V8) algorithm includes: updates to the N2 and H2O 
spectroscopic data; accounting for temporal bias drift and water vapor in 
the radiance bias correction; and updating to MODIS cloud Collection 
version 6.1 to determine clear conditions. Validation covers a range of 
locations and shows minimal bias drift for column amounts (Buchholz 
et al., 2017; Deeter et al., 2019). Improvements in retrieval stability for 
the V8 daytime retrievals result in a negligible drift of − 0.015 ± 0.061% 
per year relative to NOAA airborne flask-sampling for CO total column 
over the MOPITT mission (Deeter et al., 2019). 

While including NIR channel information in the retrievals enhances 
MOPITT sensitivity to CO in the lower troposphere, we use the TIR-only 
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product in order to compare with other TIR instruments (AIRS, TES, 
IASI, CrIS, introduced below). We use V8, TIR, daytime retrievals over 
land and/or ocean scenes, depending on the region of interest. Level-2 
total column CO retrievals are used for regional trend analysis and 
monthly statistics (doi: 10.5067/TERRA/MOPITT/MOP02T_L2.008), 
while Level-3 monthly averaged total column CO is used for the global 
gridded trend and zonal average analyses (doi: 10.5067/TERRA/ 
MOPITT/MOP03TM_L3.008). We filter Level-2 retrievals in the same 
way as Level-3, that is: anomaly diagnostics all must be false to remove 
negative Averaging Kernel elements and thermal anomalies; signal-to- 
noise in the 5A channel must be greater than 1000; and pixel 3 is 
removed because of the large noise variability (Deeter et al., 2015). 
Filtering in this way reduces inter-pixel differences (Hedelius et al., 
2019). Data from 2002 onwards are used for trend analysis to avoid 
discontinuities with the early 2000–2001 data taken before the MOPITT 
cooler failure and instrumental reconfiguration that occurred in 2001 
(Deeter et al., 2004). 

2.1.2. MODIS AOD 
As a passive imaging radiometer, MODIS measures reflected solar 

and thermal radiation in 36 bands with a 2330 km wide viewing swath, 
achieving near global coverage each day. At nadir view, spatial resolu-
tion is 1 km or finer, depending on the band. The calibration has been 
updated over time, mitigating an observed drift in radiance and reflec-
tance due to sensor degradation. 

The observed spectral reflectances are inverted to AOD values from 
look-up-tables that have been created with radiative transfer code that 
include different assumptions about surface properties and aerosol 
types. The DT algorithm (Levy et al., 2013) retrieves aerosol over open 
ocean and dark vegetated land surfaces while the DB retrieval algorithm 
adds retrievals over bright surfaces (Hsu et al., 2013). Both sets of al-
gorithms report AOD at 0.55 μm along with quality assurance. Based 
upon selection of retrievals that pass recommended quality assurance 
(QA = 3, see Sayer et al., 2014), the merged Dark Target/Deep Blue 
(DTDB) product (Levy et al., 2013; Gupta et al., 2020), yields a single 
AOD value (at 10 km spatial resolution) in non-cloudy, non-ice/snow 
scenes. Aggregations of such ‘Level 2’ products onto daily and monthly 
1◦x1◦ grids lead to ‘Level 3’ products. MODIS Collection 6.1 (C6.1) 
represents a consistent reprocessing of all MODIS products, including 
original geolocation, calibration, aerosol retrieval, and Level 3 
aggregation. 

In this work, we have used the C6.1 monthly aggregations from 
MODIS-Terra known as MOD08_M3 (https://doi.org/10.5067/MOD 
IS/MOD08_M3.061, Platnick et al., 2017). We use C6.1 because the 
previous Collection 6 (C6) showed some artifact trends (Levy et al., 
2018) when compared to MODIS on Aqua (King et al., 2013). Since the 
calibration has been made consistent, C6.1 appears to be largely free of 
artificial drifts, which we have confirmed via comparisons with MODIS 
trends on Aqua (Supplementary Fig. C2). Wei et al. (2019a) also found 
C6.1 products were improved relative to C6. Wei et al. (2019b) found 
MODIS C6.1 performed best at capturing temporal variations and was 
closest to ground-based observations. 

2.2. Other nadir-viewing, TIR satellite CO measurements 

To assess the consistency of the hemispheric temporal variability of 
CO in Section 3.3, we compare data from a number of different nadir- 
viewing satellite instruments that make measurements in the TIR band 
of CO. All these instruments are onboard satellites with sun-synchronous 
orbits and, besides AIRS, use optimal estimation approaches to retrieve 
CO columns from measured radiances. Northern Hemisphere (NH) and 
Southern Hemisphere (SH) monthly averages are collated from each 
instrument. A summary of instrument specific details are given in 
Table 1. 

2.2.1. AIRS 
The Atmospheric Infrared Sounder (AIRS), on board NASA/Aqua 

was launched in 2002 and crosses the equator at ~13:15 LST (Aumann 
et al., 2003). Ground-pixel size is nominally 13.5 km × 13.5 km, but is 
degraded to 45 km × 45 km as a trade-off to increase global coverage 
using a cloud-clearing algorithm (Susskind et al., 2003). The 1650 km 
AIRS swath provides near global coverage twice daily. Radiance spectra 
from the AIRS grating spectrometer are used to determine cloud and 
surface properties along with vertical profiles of atmospheric trace gases 
(including CO at 4.6 μm) and temperature. Previous comparisons of 
AIRS and MOPITT CO showed good agreement in horizontal spatial 
variability, but found AIRS CO to be higher than MOPITT (V3) (Warner 
et al., 2007). However, the comparison in Worden et al. (2013), found 
better agreement using more recent versions of the retrieval algorithms 
for both instruments. We use the Level 2 V006 AIRS retrievals here, 
(AIRS2RET, AIRS Science Team/Joao Teixeira, 2013), which has 50 km 
x 50 km spatial resolution. The AIRS2RET Level 2 product was created 
Level-2 using AIRS IR-Only retrievals. NH and SH monthly average 
values were computed for daytime retrievals (SZA < 90). 

2.2.2. IASI 
There are three Infrared Atmospheric Sounding Interferometer (IASI) 

TIR Fourier Transform Spectrometer (FTS) instruments currently in 
orbit: IASI-A, B, and C onboard the Eumetsat satellites Metop-A, B and C, 
launched in 2006, 2012, and 2018, respectively. They fly in the same 
orbit, crossing the equator at ~9:30 a.m. LST. IASI observations 
comprise 4 pixels that each have a 12 km ground resolution at nadir. A 
2200 km swath provides global coverage twice daily (Clerbaux et al., 
2009). CO profiles are retrieved with the Fast Optimal Retrievals on 
Layers for IASI (FORLI, version 20151001) algorithm (Hurtmans et al., 
2012), using invariant a priori information. IASI CO has been validated 
against ground-based observations (Kerzenmacher et al., 2012), aircraft 
data (Pommier et al., 2010; Klonecki et al., 2012) and other satellite 
measurements (George et al., 2009). Comparison between MOPITT and 
IASI CO records found that, while a priori was the dominant source of 
between-instrument bias, timing and vertical sensitivity differences also 
contribute to CO differences (George et al., 2015). While the IASI-A 
record is long enough to determine trends, it is worth noting that this 
CO record is not currently retrieved using homogeneous temperature, 
humidity and cloud information. This causes a few discontinuities in the 
IASI-A CO record, which could affect the long-term trend and it is 
therefore not suited for trend studies at this time. Different versions of 
these IASI auxiliary parameters (distributed by Eumetsat) have been 
improved over time (from V5 to V6 in Sept. 2014, and from V6 to V6.1 in 
Sept. 2015). Reprocessing of these data with homogeneous auxiliary 
data is in progress at Eumetsat but they are not yet available at the time 
of this analysis (Oct. 2019). Despite this, IASI data are still useful for 
confirming the hemispheric CO seasonality and interannual variability 
observed by the other satellites. NH and SH monthly average values for 
daytime (SZA < 80), were computed after filtering for Super Quality 
Flag (SQF) = 0 (see https://iasi.aeris-data.fr/CO_readme/), CO total 
column < 20 × 1018 molecules/cm2, Root Mean Square (RMS) ≤ 2.7e− 9 

W/(cm2 sr cm− 1) and − 0.15e− 9≤ bias ≤ 0.25e− 9 W/(cm2 sr cm− 1). 

2.2.3. TES 
The Tropospheric Emission Spectrometer (TES) was launched on the 

NASA/Aura satellite in 2004 and crosses the equator at 13:40 LST, 25 
minutes after the NASA/Aqua satellite. TES measures radiance spectra 
of Earth’s surface and atmosphere, with relatively fine spectral resolu-
tion (0.10 cm− 1 at nadir, apodized) (Beer, 2006), and retrieves trace 
gases, temperature (Bowman et al., 2006) as well as cloud top pressure 
and cloud optical depth (Kulawik et al., 2006). TES CO profiles and total 
column amounts have been validated with respect to in situ measure-
ments (Luo et al., 2007, 2015). 

For this study, we use V007 Level 2 data and select daytime retrievals 
filtered with master quality flag = 1 (good) that accounts for variations 
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in retrieval performance, e.g., residual radiance mismatch, and the de-
grees of freedom for signal (DFS)⩾0.9. The TES algorithm retrieves on 
both clear and cloudy scenes, but for this work, only clear scenes are 
considered in month averages. Cloud-free retrieval criteria are defined 
as an effective cloud optical depth (OD)⩽0.4. Prior to December 2005, 
the TES instrument was in a different configuration for CO (Rinsland 
et al., 2006), resulting in a land bias for filtered data, especially over the 
fire-prone regions of South America and Africa. After 2005, sampling 
footprints are nearly uniformly distributed over land and ocean when 
filtered. Consequently, we use TES data after December 2005. Also, in 
order to conserve the instrument lifetime, from 2010 onwards routine 
sampling was spatially limited. Therefore, TES data acquired after 2009 
are not included in our analysis. 

2.2.4. CrIS 
The Cross-track Infrared Sounder (CrIS) was launched in October 

2011 on the Suomi National Polar-Orbiting Partnership (S-NPP) satellite 
(NOAA-19) with an equator-crossing time of ~13:30 LST. The CrIS scan 
pattern consists of nine detectors (each called a Field of View: FOV) in a 
3×3 pattern (collectively named a Field of Regard: FOR). At nadir, each 
FOV diameter is ~14 km. The CrIS cross-track scan consists of thirty 
Earth-view FORs, plus additional calibration FORs. CrIS is a FTS oper-
ating in three spectral bands between 648 cm− 1 and 2555 cm− 1, 
including the CO TIR R-branch above 2155 cm− 1. CrIS achieves daily 
coverage of over 95% of Earth’s surface. The full-spectral-resolution 
retrieval of CO (0.625 cm− 1) has been operational since late 2015, 
with significant improvements in sensitivity to CO compared to the 
original 2.5 cm− 1 resolution (Gambacorta et al., 2014). Here we use CrIS 
retrievals processed by the MUlti-SpEctra, MUlti-SpEcies, MUlti-SEnsors 
(MUSES) algorithm (Fu et al., 2016), which performs single pixel (FOV) 
retrievals, and has heritage in the TES algorithm (e.g.,Worden et al., 
2007; Luo et al., 2013), using the same Kulawik et al. (2006) approach 
for retrievals of cloud. Retrievals presented here use the NASA v2 L1B 
Full Spectral Resolution (FSR) radiances (Revercomb and Strow, 2018), 
which are available from November 2015 onward. CO retrievals from 
FSR radiances offer significant improvements in sensitivity compared to 
retrievals using the nominal spectral resolution (NSR) radiances (δ = 2.5 

cm− 1 in the CO region) (Gambacorta et al., 2014). 
In order to expedite analysis, sub-sampling of observations was 

tested to ensure that the NH and SH CrIS monthly averages were 
insensitive to the sub-sampling employed (Appendix A1.2). Like TES, 
the MUSES algorithm retrieves in all-sky conditions. Cloud-screening 
was performed, using an effective cloud optical threshold of 0.1. 
While there are operational CrIS CO products available for the FOR from 
NUCAPS (NOAA Unique Combined Atmospheric Processing System, 
Gambacorta, 2013), we instead use the MUSES single pixel (FOV) re-
trievals to take advantage of the full CrIS CO spatial resolution and error 
characterization derived from optimal estimation. 

2.3. Trend analysis methodology 

In order to compare total column CO timeseries from different sat-
ellite instruments, we convert to column average VMR (XCO) by dividing 
by the reported dry air column for each retrieval. Trends are reported as 
relative trends (% per year) by dividing by the dataset mean value. 
Relative trends in XCO are equivalent to relative trends in total column 
CO, but using XCO removes the dependence on surface topography that 
varies for the different instruments with different horizontal footprints. 

The first step in trend determination is to remove the seasonal 
variability, which can obscure any linear trend. For the global map plots 
of column CO and AOD trends (Section 3.2), we remove seasonal vari-
ations using a 12-month running average prior to computing the linear 
trend. The endpoints are truncated, effectively removing the first and 
last 6 months for all the time series. This determines our bounds for the 
long-term trend as July 2002 - June 2018. For hemispheric and regional 
time series analysis (Section 3.3. and 3.4), we remove the seasonal 
variations in XCO and AOD by subtracting the dataset mean annual cycle 
(with monthly resolution) to produce an anomaly time series. 

Trend analysis on deseasonalized data proceeds by calculating the 
slope of a line for the linear equation: 

y = mt+ b+ ε(t) (1)  

where y is the dependent variable (e.g. CO amounts), t is time in 

Table 1 
Data selection criteria and specifications by instrument.   

MOPITT AIRS TES IASI-A and IASI-B CrIS 

Instrument type Gas filter correlation 
radiometer (GFCR) 

Grating 
spectrometer 

Fourier Transform Spectrometer 
(FTS) 

FTS FTS 

Spectral range 
and resolution 
for CO 

2140–2192 cm− 1 (0.04 cm− 1 

effective) 
2170–2200 cm− 1 

(~1.8 cm− 1) 
2086.06–2176.66 cm− 1 (0.1 cm− 1 

apodized) 
2143− 2181.25 cm− 1 (0.5 cm− 1 

apodized) 
2185.25–2200 
cm− 1 unapodized 
(0.625 cm− 1) 

Data version V8T (TIR-only) V006 V007 Lite FORLI 20151001 MUSES 
Cloud screening Clear sky conditions from 

MODIS Collection 6.1 and 
MOPITT Signal 

Cloud-cleared 
radiances 

Eff. cloud OD < 0.4 <25% clouds in pixel Cloud effective 
optical depth < 0.1 

Data quality 5A SNR > 1000; Remove 
Pixel #3; Retrieval Anomaly 
Diagnostics OK 

QF = 0 Master QF = 1; DFS > 0.9 SQF = 0; COTC < 20 × 1018 molec./cm2; 
RMS ≤ 2.7e− 9 W/(cm2 sr 
cm− 1);− 0.15e–9 ≤ bias ≤0.25e–9 W/ 
(cm2 sr cm− 1) 

Master QF = 1 

Ground 
resolution 

22 × 22 km 50 km x 50 km 8 × 5 km 12 km diameter 14 km radius 

Daytime Global 
coverage 

~3 days Daily Sparse sampling; 16 day orbit track 
repeat 

Daily Daily (sub-sampled 
in this study) 

Column 
uncertainty for 
single obs. 

5–6 % 10 % 6–7 % A & B: 5–7 % 10-12% 

Time range used 03/2000–12/2018 09/2002–12/ 
2018 

01/2005–12/2009 A: 01/2008–12/2018 
B: 01/2013–12/2018 

11/2015–3/2019 

Instr. operation 
gaps 

8–9/2009 20160924 4–6/2005 
1–3/2010 

none 5/2019 

Avg. ret. per 
month 

NH: 684520 
SH: 627344 

NH: 1419165 
SH: 1359028 

NH: 6249 
SH: 3672 

NH: A-2216361, B-2417436 
SH: A-1905719, B-1976112 

NH: 13071 
SH: 12293 

Data source doi:10.5067/TERRA/ 
MOPITT/MOP02T_L2.008 

doi:10.5067/ 
Aqua/AIRS/ 
DATA202 

NASA Langley Atmospheric 
Science Data Center. doi:10.5067/ 
AURA/TES/TL2COLN.007 

A: doi:10.25326/16 
B: doi:10.25326/17 

JPL MUSES team 
(tes.jpl.nasa.gov)  
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fractional years, m is the slope (or linear trend), b is a constant and ϵ(t) is 
the noise, or residual. Weighted Least Squares (WLS) linear regression, 
weighted by the monthly variance, is used to calculate hemispheric and 
regional trends by estimating the linear slope via equation 2: 

m =

∑n
i=1

1
σ2

i

∑n
i=1

tiyi
σ2

i
−
∑n

i=1
ti
σ2

i

∑n
i=1

yi
σ2

i

∑n
i=1

1
σ2

i

∑n
i=1

t2i
σ2

i
−

(
∑n

i=1
ti
σ2

i

)2 (2)  

for yi (e.g. CO month average values) with σi standard deviation asso-
ciated with time ti, where n is the total number of data points. Standard 
error in the slope (σm) is calculated two ways: using the WLS calculations 
or creating an estimate that compensates for first-order autocorrelation 
in the noise (Appendix A3, Weatherhead et al., 1998). The greater of the 
two error values is recorded as a conservative estimate of the standard 
error in the slope. A significant trend is defined as being outside one 
standard error. 

Monthly statistics in MOPITT CO are determined by collecting all 
XCO within a region (filtered as described in Section 2.1.1) for a 
particular month and year followed by calculations of the mean, stan-
dard deviation, median, 25th and 75th percentiles. The Theil-Sen 
method (Theil, 1950; Sen, 1968) is used to analyze the long-term 
trends in XCO percentiles separated by month for each region (Section 
4.2). Theil-Sen analysis is a non-parametric trend estimation technique 
that calculates all the slopes between pairs of points and takes the me-
dian of these slopes (Eq. (3)): 

m =

(
̃yj − yi

tj − ti

)

(3)  

for all yj, yi dependent variable values associated with the tj, ti times, for j 
> i. Significance of a Theil-Sen trend is determined using the Mann- 
Kendall test for p values < 0.05, 0.01 and 0.001 (Mann, 1945; Ken-
dall, 1975). We show in Appendix B1 that Theil-Sen results for the whole 
time series are consistent with the WLS method. Note that because the 
lifetime of CO is ~2 months and consecutive values are a year apart the 
autocorrelation is not significant and is not considered for trends 
calculated by month (Appendix A3). 

A full description of the uncertainty analysis on the XCO trend cal-
culations is provided in Appendix A. Systematic sampling uncertainty is 
approximated by performing trend analysis on a priori (Appendix A1.1) 
and random sampling uncertainty by using bootstrap analysis (Appendix 
A1.2). Systematic uncertainty from changes in instrument sensitivity 
over the MOPITT record is explored using averaging kernels applied to a 
reanalysis climatology (Appendix A2). Autocorrelation is analyzed for 
each region (Appendix A3). We also assess the consistency between 
trend determination methods (Appendix B1) as well as the robustness of 
the trend to removing the influence of outliers such as the large El Niño 
fires in 2015 (Appendix B2). 

3. Results 

3.1. Zonal average time series of CO and AOD 

We show the latitudinal and seasonal dependence of column CO and 
AOD using the zonal average time record (Fig. 1a and b). The annual 
cycle of CO (Supplementary Fig. C3) is determined by a combination of 
source seasonality and removal by reaction with OH. Photochemically 
produced OH depends on incoming solar radiation, leading to lower 
reactivity in winter and higher reactivity in summer. In the background 
atmosphere, the OH sink dominates the seasonal behavior of CO. 
Consequently, the build-up of CO over the winter months produces an 
early spring peak, and destruction during summer leads to a late summer 
minimum. Since removal of aerosols is mainly by dry and wet deposition 
(e.g., Kanakidou et al., 2005), there is no corresponding winter accu-
mulation, and AOD seasonality is determined mainly by production 

processes. Production by photochemical oxidation again depends on OH 
availability, and peaks in summer for secondary aerosol types such as 
sulfate aerosols (e.g., Edwards et al., 2004) and secondary organic 
aerosols (SOA) (e.g., Lack et al., 2004). Direct fire emissions of carbo-
naceous aerosols follow the annual cycles of dry season burning. 

Due to pollution sources, both CO and AOD show higher mean values 
in the Northern Hemisphere (NH) compared to the Southern Hemi-
sphere (SH). Peak CO at 30◦ to 50◦ N occurs at higher latitudes than the 
peak AOD (15◦ to 25◦ N). Enhanced CO columns are mainly influenced 
by fire and anthropogenic emissions, while AOD additionally experi-
ences strong contribution of dust at lower latitudes that combines with 
the anthropogenic and fire aerosol sources. The lifetime of CO allows it 
to be transported to higher latitudes by dominant poleward flow, while 
aerosols with shorter lifetimes produce AOD enhancements closer to 
source regions. Peak NH AOD is shifted equatorward in this study when 
compared to Edwards et al. (2004), which is a result of including the 
Deep Blue AOD retrieval over dust source regions, such as the Sahara, 
Middle East, Gobi, Taklamakan and India deserts. This algorithm was 
not available in the Edwards et al. (2004) study which used MODIS 
Collection 4. Additionally, Levy et al. (2013) found that AOD in MODIS 
C6 is generally lower than Collection 5 for Europe and North America, 
but higher over Eastern Asia. 

The SH peak and interannual variability for both CO and AOD in the 
tropics are mainly driven by biomass burning in South America, Africa, 
Maritime Southeast Asia (SEA) and Australia (Edwards et al., 2004; 
Edwards et al., 2006). The impact of CO and aerosol lifetime differences 
is also apparent as evidenced by the smearing of fire enhanced CO 
poleward (Fig. 1a) compared to AOD (Fig. 1b). The consistent feature of 
relatively large AOD at temperate southern latitudes (40◦ to 60◦ S, 
Fig. 1b) is due to maritime aerosols such as sea salt (e.g., Witek et al., 
2016), ocean biogenics, or transported smoke. 

The anomaly plots show the percent anomaly relative to the monthly 
means (Fig. 1c and d). In general, relative interannual variability for CO 
shows similar strength between hemispheres, while for AOD, the SH 
interannual variability appears weaker than the NH (less saturated 
colors). Several large anomalies are consistent between CO and AOD. 
For example, the 2003 high northern latitude enhancement is a response 
to the large boreal fires in Western Russia (e.g., Edwards et al., 2004). 
The large 2015 El Niño driven Maritime Southeast Asia (SEA) fire season 
emissions in September and October (Huijnen et al., 2016; Field et al., 
2016) had a widespread impact, producing the CO and AOD positive 
anomalies at the end of 2015 and the beginning of 2016. These examples 
highlight the direct co-emission of CO and aerosol from fire events. In 
contrast, AOD includes many anomalies that are absent in the CO record, 
for example, the AOD anomaly in 2018 at about 20◦ N that was mainly 
due to dust emissions over the Arabian peninsula, combined with 
exported dust from the Sahara (Voss and Evan, 2020). 

The large positive anomalies in Fig. 1c and d illustrate the substantial 
interannual variability in both the CO and AOD records. However, we 
can also see that the background CO shows an overall global downward 
trend as observed by more widespread cool colors in later years 
compared to earlier years. In contrast, AOD shows a general upward 
trend in the SH while the NH seems to increase between 2008 and 2012, 
followed by decrease. We investigate these trend behaviors in more 
depth in the following sections. 

3.2. Spatial analysis of trends in CO and AOD 

Fig. 2a and b show the 2000–2018 global average maps of CO and 
AOD, respectively. Regions of high values for both constituents are 
apparent over Northeast China, North India and Central Africa. Trends 
in CO and AOD from 2002–2018 are shown in Fig. 2c and d, globally 
gridded at 2◦x4◦ (significance analysis in Appedix C, Figure C1). The 
overall decline in CO coincides with the improvements in combustion 
efficiency for anthropogenic sources (Zheng et al., 2018b), as well as the 
decrease in global fire emissions, e.g. from 1997 to 2009 as shown in the 
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Fig. 1. Zonal average plot of monthly average (a) MOPITT column CO and (b) MODIS AOD. Percent anomalies in (c) MOPITT CO and (d) MODIS AOD. Percent 
anomalies are calculated relative to the climatological month averages within each 2◦ zonal average box. White stripes in panel a and c during 2001 and 2009 
represent missing MOPITT data due to instrumental diagnostic operations. White pixels at NH and SH high latitudes represent missing data for both instruments due 
to polar night. 

Fig. 2. Global average (a) column CO and (b) AOD between 2000 and 2018. Boxes outline the sub-regions used for regional trend analysis, numbered 1 to 19, 
discussed in Section 3.4 and listed in Table 2. Trends in (c) CO from MOPITT and (d) AOD from MODIS between 2002 and 2018, gridded to 2◦x4◦. 

R.R. Buchholz et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 256 (2021) 112275

7

Global Fire Emissions Database, Version 3 (GFED3) inventory (van der 
Werf et al., 2010) and the negative trend in global burned area in Andela 
et al. (2017) from 1998 to 2015. Since fire emissions account for about 
33% of global CO emissions (Yin et al., 2015), a trend in fires can have 
substantial effect on atmospheric CO. AOD trends are more regionally 
variable and reflect changes in the different sources. 

Burning regions around the South Atlantic show different trend re-
sults (Fig. 2c and d). South America has seen a strong decrease in both 
CO and AOD over the whole record due to the long-term decrease in 
burning there (Andela et al., 2017; Deeter et al., 2018). However, recent 
increases in Amazon deforestation burning over the last few years may 
alter trends in that region, especially for the recent decade. In contrast, 
Central/Southern Africa shows no trends in CO and AOD. Increasing 
burning in this region (Andela et al., 2017) might be counteracting 
transported decreasing trends. In addition, Zheng et al. (2019) find an 
increasing trend in anthropogenic sources in Central Africa that could 
also counteract the global downward CO trend. The AOD trend may be 
further confounded by dust and anthropogenic variability. In compari-
son, the Pacific Northwest (PNW) has less interference from dust or 
anthropogenic aerosol sources and consequently sees a positive AOD 
trend due to climate driven changes in fire (McClure and Jaffe, 2018). 
The CO trend in the PNW is lower than the global average, but local 
behavior is combined with strong downward trends in transported CO 
from Asia. Therefore, CO is still decreasing in the PNW year to year. 

To help interpret regional CO trends, we calculate CO residual 
trends. The lifetime of CO (~2 months) is such that a global mean trend 
can be detected in well-mixed background air. We find the global mean 
CO trend (±60◦ latitude) between 2002 and 2018 to be − 0.50 (±0.3) % 
per year, which is a slow-down relative to the approximate − 1 % per 
year trend between 2000 and 2011 found by Worden et al. (2013) using 
MOPITT V5 retrievals. This difference reflects an atmospheric response 
because both MOPITT versions saw negligible drift in column amounts 
from TIR retrievals (Deeter et al., 2013, 2019). The slow-down is 
potentially due to diminishing returns from improvements in combus-
tion efficiency and emission controls, as has been suggested by McDo-
nald et al. (2013). In addition, emissions from economic production and 
transport have returned to pre-recession levels following the 2008–2009 
global economic crisis (e.g., de Ruyter de Wildt et al., 2012). The re-
sidual trend in CO was calculated by subtracting the global mean trend 
from the total trend within 2◦ by 4◦ gridboxes. The result is a map of 

residual trends that enables interpretation of local behavior relative to 
the global mean trend (Fig. 3) and reveals regions that are decreasing 
faster than the global average (blue colors), and regions that are 
decreasing slower than the global average trend (red colors), suggesting 
increasing regional emissions that counteract the global trend. Light 
colors show where the trend is close to the global average. A global 
average trend for AOD is not meaningful due to the shorter lifetime (~8 
days) of aerosols, so we do not calculate residual AOD trend. 

The different response in the two Atlantic fire-prone regions (South 
America and Central/Southern Africa) is immediately clear in the CO 
residual trend map. Residual trends from these regions extend into their 
respective outflow paths over the Atlantic Ocean. Different patterns are 
also clear for industrial regions. Northeast China experiences the most 
negative CO trends globally, resulting from rapid improvements in 
combustion efficiency and a recent focus on air quality control (Zheng 
et al., 2018a, 2018b; Tang et al., 2019). However, AOD decreases in 
Northeast China are weaker than in Eastern USA, reflecting the rela-
tively new air quality policies in China compared to the longer-term 
focus in USA. India, on the other hand, shows strong increases in AOD 
and the CO residual trends are positive suggesting local pollution 
sources counteract any transported or background decreases in CO. 

In the following sections we examine regional trends in more detail, 
including calculations of trend significance. 

3.3. Hemispheric CO record across different instruments 

Fig. 4 shows the hemispheric monthly mean XCO time series from all 
satellite instruments (MOPITT, AIRS, TES, IASI-A/B and CrIS) available 
between January 2001 and December 2018. Overall, XCO magnitude, 
seasonal patterns, and interannual variability are consistent between 
instruments. Some differences in XCO values arise because we have not 
accounted for differences in sampling coverage, horizontal resolution or 
vertical sensitivity between instruments. Although column results are 
less sensitive than profile retrievals to differences in vertical sensitivity, 
the different averaging kernels between instruments could give rise to 
slightly different results when applied to the same atmospheric state 
(George et al., 2009, 2015). Comparisons of MOPITT, AIRS, TES, and 
IASI were previously conducted by George et al. (2009) and Warner 
et al. (2010), who found that biases are due to differences in spatial 
sampling, instrument spectral resolution and retrieval methodology, 

Fig. 3. Residual trend in CO columns from MOPITT calculated relative to the global average trend (− 0.5% per year, +/- 60◦) from 2002 to 2018.  
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including different a priori information. Additionally, the number of TES 
observations is 2 orders of magnitude lower than the other instruments, 
so we expect the non-colocation of TES observations with other instru-
ment footprints to contribute to the CO differences. The SH high bias 
previously found when using AIRS V5 (Warner et al., 2010; Worden 
et al., 2013) has been removed in the comparison using updated re-
trievals from both instruments. 

Fig. 4c and d show the NH and SH anomaly records for all satellite 
instruments computed by subtracting the respective instrument record 
climatological monthly means. Anomalies reflect interannual variability 
due to changes in fire emissions that are in turn linked with climate 
variability (Buchholz et al., 2018), such as the 2015 El Niño influenced 
fire emissions from Maritime SEA (Huijnen et al., 2016) that impacted 
both hemispheres. There is also a relationship of lower XCO with lower 
anthropogenic emissions due to the global financial crisis starting in late 
2008, particularly for the NH (e.g., de Ruyter de Wildt et al., 2012). 

Trend values from linear fits (July 2002-June 2018) are shown for 
MOPITT and AIRS in Fig. 4c and d, with standard errors. While IASI-A 
has a long enough record to determine trends, it currently does not 
have a fully harmonized record suited for trend analysis (see Section 
2.2.2). The instruments with shorter time records, IASI-B, TES and CrIS, 
do not show significant trends. However, all instruments show similar 
variability, lending confidence to the use of MOPITT and AIRS records 
for trend determination. MOPITT and AIRS XCO trends are consistent 
within <1σm. The SH trend is less negative than the NH trend, and both 
hemispheres have a reduced trend compared to Worden et al. (2013). 
Although it does have some impact, we find that the large emissions in 
2015 are not the main reason for the CO trend slow down (Appendix 
B2). 

3.4. Regional trends in CO and AOD 

In addition to hemispheric trend analysis, we select a number of 

regions for more detailed consideration (Fig. 2a). Four industrial regions 
were chosen to align with Worden et al. (2013): Northeast China, North 
India, Europe and Eastern United States. Other regions are selected 
based on the residual trend patterns from Fig. 2, combined with the 
burned area trends in Andela et al., 2017. Due to the shorter lifetime of 
aerosols, it was not relevant to calculate hemispheric trends for AOD, so 
only regional trends are shown. 

CO trends (in XCO) and AOD trends, determined for the different sub- 
regions are shown in Table 2, for the full 16-year period (July 2002-June 
2018), as well as for two 8-year sub-periods (1st half: July 2002-June 
2010 and 2nd half: July 2010-June 2018). CO trends in the first half 
of the record are consistent with those found in Worden et al. (2013). 
Significant negative CO trends in the 1st half of the record shift to 
slower, non-significant trends in the 2nd half. This leads to an overall 
slowdown in the CO downward trends for the full time period in every 
region. Exceptions are Southern Africa and South America, which show 
no significant CO trend for any time period. This is consistent with 
Strode and Pawson (2013) who found more than 20 years of data are 
necessary to find CO trends over highly variable regions. AOD is more 
regionally variable and generally shows more positive AOD trends in the 
1st half of the record compared to the 2nd half. 

Northeast China has the strongest negative CO trend across all time 
periods, at more than − 1% per year. AOD in China moves from a posi-
tive to negative trend between first and second halves of the record, 
coinciding with the clean air policy implementation in 2010. The CO 
trend in India is substantially lower than the other industrial regions and 
the full time period shows a significant positive trend in AOD, reflecting 
the minimal emission controls in that region. While in the first half of the 
record, both Europe and Eastern USA CO are decreasing at similar rates, 
in the second half, the Eastern USA CO trend is stronger than in Europe. 
This may be due to stronger local focus on air quality improvements in 
the USA than in Europe, as supported by the coinciding large downward 
trend in Eastern USA AOD and the stronger reductions in USA 

Fig. 4. Multi-instrument time series of month average XCO for (a) NH (0◦ to 60◦N) and (b) SH (60◦S to 0◦). Lower panels show the monthly anomalies relative to each 
dataset mean annual cycle, for (c) NH and (d) SH. Weighted least squares trends on the anomalies are indicated with standard error in percent per year for MOPITT 
and AIRS. The grey dashed line is the zero line for reference. 
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Table 2 
Summary of Weighted Least Square (WLS, Eq. (2)) trends in CO (XCO) and AOD for the monthly anomaly values over different time periods for 19 regions.  

Trend % per year (± standard error + systematic error)

CO AOD

Full

July 2002-

June 2018

1st half

July 2002-

June 2010

2nd half

July 2010-

June 2018

Full

July 2002-

June 2018

1st half

July 2002-

June 2010

2nd half

July 2010-

June 2018

Industrial

1. NE China -1.18 (0.3-0.1) -1.94 (0.8) -1.02 (0.7) -0.97 (0.5) 1.70 (1.5) -5.15 (1.5)

2. N India-0.28 (0.2) -0.56 (0.5) -0.17 (0.5) 1.34 (0.7) 1.45 (1.9) 1.50 (2.2)

3. Europe-0.89 (0.1+0.05) -1.58 (0.3) -0.47 (0.3) -0.97 (0.4) 0.26 (1.2) -1.51 (1.1)

4. E USA-0.85 (0.1+0.03) -1.59 (0.3) -0.73 (0.4a) -2.06 (0.3) -0.89 (1.7a) -3.84 (1.5a)

Fire-prone

5. NW USA-0.85 (0.2+0.1) -1.44 (0.5+0.1) -0.67 (0.4) 0.26 (0.6) 2.85 (1.7) -0.19 (2.7a)

6. NW Canada-0.60 (0.1+0.04) -1.35 (0.4a+0.05) -0.51 (0.3+0.03) -1.63 (0.3) -4.21 (1.0) -4.74 (1.2)

7. Siberia-0.59 (0.2a) -1.34 (0.6a-0.03) -0.32 (0.4-0.03) 0.78 (1.0a) 2.47 (3.6a) -2.51 (1.2)

8. Russia -0.80 (0.1+0.1) -1.38 (0.4+0.1) -0.66 (0.3+0.1) 0.90 (0.9) 2.23 (2.3) -3.35 (3.3)

9. Central America -0.46 (0.1) -1.05 (0.4) -0.23 (0.4) 0.18 (0.4) 0.12 (1.1) -0.03 (1.1)

10. S America -0.31 (0.4a) -0.47 (1.0a) 0.02 (1.0a) -0.43 (1.3a) -2.18 (3.7a) 1.22 (3.2a)

11. SAm Transport-0.39 (0.2) -0.77 (0.5) -0.03 (0.8a) 0.59 (0.3) 1.11 (0.7) 0.16 (0.8a)

12. Central Africa -0.22 (0.2) -0.55 (0.5) -0.12 (0.5) -0.10 (0.5) 0.06 (1.4) 0.92 (1.4)

13. Southern Africa -0.17 (0.3) -0.63 (0.7) -0.09 (0.7) -0.12 (0.6) -0.79 (1.8) -0.77 (1.8)

14. SAf Transport-0.07 (0.2) -0.46 (0.6) 0.14 (0.6) 0.16 (0.4) -0.30 (1.2) -0.72 (1.1)

15. Maritime SEA -0.51 (0.4a-0.1) -1.08 (1.0a-0.2) -0.14 (1.3a) -0.29 (1.0a) -0.73 (2.3a) 0.07 (3.4a)

16. NW Australia-0.25 (0.3a) -0.79 (0.7a) 0.03 (0.7a) 0.31 (1.0) 1.23 (2.8) -0.88 (3.1)

17. E Australia -0.32 (0.2) -0.90 (0.5) 0.16 (0.6a) 0.47 (0.8) 1.02 (2.2) -0.56 (2.5)

Background

18. NH (0 to 60)-0.57 (0.3) -1.12 (0.9) -0.43 (0.8) Inconclusive due to land/ocean

and mix of regions

19. SH (-60 to 0)-0.35 (0.3) -0.9 (1) -0.1 (1)

*Cardinal directions are abbreviated (e.g. Northeast = NE), SAm = South America, SAf = Southern Africa
aStandard error is taken from the estimate including autocorrelation where it is larger than the WLS estimate 

(Appendix A3)
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anthropogenic CO emissions since 2010 compared to Europe as found by 
Jiang et al. (2017). Additionally, Eastern USA may be more influenced 
by CO transport from China than Europe, and consequently reflects the 
negative trend in transported CO. 

4. Discussion 

4.1. Covariation of CO and AOD 

Co-variability analysis of CO and AOD provides further insights into 
trend behavior. Cloud masking may contribute to some monthly vari-
ability, but quantifying this contribution is beyond the scope of this 
study. However, we expect the main source of seasonal variability to be 
driven by chemical and physical processes, as discussed in Section 3.1. 
Additionally, because both MOPITT and MODIS use the MODIS cloud 
detection, differences between their variability is expected to be due to 
source or chemistry differences. Co-variability in the industrial regions, 
(Fig. 5 and annual cycles in Supplementary Fig. C3), ranges from little 
correlation between peak CO and peak AOD (e.g. North India) to a 
strong relationship (e.g. Northeast China). 

In Northeast China (Fig. 5a, Supplementary Fig. C3), both CO and 
AOD peak in late spring/early summer, but AOD remains high while CO 
rapidly decreases. This reflects the opposite effects of OH photochem-
istry on CO and sulfate aerosols, as well as the impact of dust aerosols on 
AOD during the dry summer months (Luo et al., 2014; Proestakis et al., 
2018). The residential, industrial, and transportation sectors dominate 
CO emissions in China (Streets et al., 2006; Li et al., 2017). Residential 
CO emissions include biomass and coal burning (Wang and Hao, 2012) 
and are generally higher in winter and spring than in summer (Liu et al., 
2016). In addition, agricultural burning usually peaks in June in this 
region (Wu et al., 2017; Li et al., 2018) and may also contribute to high 
CO in June. The decline in Northeast China CO during the first half of the 
record does not correspond with a decline in AOD. This reflects the move 
to centralized energy production that improved combustion efficiency 
by replacing residential coal use with electricity and natural gas. This 
change in energy production had relatively large impacts on emissions 
of CO, but not on aerosols. In 2010, China implemented Clean Air Pol-
icies (van der A et al., 2017; Zheng et al., 2018a) and as a result, AOD 
started decreasing along with the continued decrease in CO, as seen at 
the inflection point around 2010 in Fig. 5a. This inflection point is 
consistent with results found by Filonchyk et al. (2019) for the whole of 
China using MODIS and MISR. The AOD decrease past 2010 is also 
consistent with reductions in anthropogenically emitted aerosol pre-
cursors SO2 and NO2 since 2012 (Krotkov et al., 2016; Qu et al., 2019; 
Wang and Wang, 2020). 

Over North India, CO and AOD variability are out of phase (Fig. 5b, 
Supplementary Fig. C3) with CO peaking in early spring and AOD 
peaking in summer. The spring peak in North India CO is related to the 
peak biomass burning activity (Bhardwaj et al., 2016). In India, mineral 
dust makes a large contribution to total AOD during the pre-monsoon 
season (Apr-Jun) while at other times of the year anthropogenic fine- 
mode aerosols are optically dominant (Sayer et al., 2014). A signifi-
cant positive trend in AOD over the full time period (Table 2) is due to 
several anthropogenic factors including increased SO2 and NO2 emis-
sions from coal-powered power plants (Krotkov et al., 2016; Li et al., 
2017; Qu et al., 2019; Wang and Wang, 2020), more frequent fog events 
near the Indo-Gangetic Plain (Ghude et al., 2017), increased vehicular 
emissions (Manoj et al., 2019), and increasing crop-residue burning 
activity (Jethva et al., 2019). This region also shows the least negative 
CO trend, suggesting local emissions are offsetting the decreases in the 

global CO background. India’s CO emissions were increasing from 
1996–2015 mainly due to increases in residential and agricultural 
sources (Pandey et al., 2014) as well as due to power production and 
transport activities (Sadavarte and Venkataraman, 2014). 

In both Europe and Eastern USA, the peak CO occurs before the peak 
AOD (Fig. 5c and d, Supplementary Fig. C3). This offset of several 
months is due to OH oxidation mainly driving seasonality, which max-
imizes in summer to remove CO and concurrently produce aerosol 
(Section 3.1). Both regions also show concomitant reductions in AOD 
and CO for the whole time period, reflecting the implementation of 
strong air quality and climate-related policies, as has been observed by 
reductions in anthropogenically emitted aerosol precursors SO2 and NO2 
(Krotkov et al., 2016). Additionally, CO and AOD seasonal variability in 
both these regions appear larger in the 1st half than the 2nd half of the 
record, suggesting reductions in the peak emission months and potential 
impacts on the chemical oxidation environment. 

Fire-prone regions often experience strong correlation between CO 
and AOD (Fig. 6a, Supplementary Fig. C3). The longer lifetime of CO is 
also clear in these regions, as observed by the peak AOD diminishing 
faster than CO, for example over Maritime SEA (Fig. 6a). Over northwest 
USA in the first half of the record, the CO seasonal cycle is dominated by 
a single spring-time peak (Fig. 6b). A significant secondary CO peak 
shows up in late summer in the second half of the record, and in some 
years is as large as the spring-time peak CO, for example in 2017 and 
2018. This secondary CO peak coincides with a strengthening of the 
aerosol peak from about 2012 onwards. This pattern suggests a regime 
shift associated with increasing fire in the region. Similar patterns are 
seen for the Canada and Siberia fire-prone regions (not shown). 

4.2. Separating CO trends by monthly percentiles 

Trend analysis separated by month is used to determine the seasonal 
implications and potential sources of the long-term trend. Trends are 
calculated on the monthly means and percentiles (25th, median, 75th) 
between January, 2002, and December, 2018. Theil-Sen is used for trend 
calculation to minimize the impact of outliers. 

Resulting trend arrays show a range of information useful for inter-
preting trends (Figs. 7, 8 and Appendix C, Figure C4). The size of the 
circle relates to the trend significance, with larger circles indicating 
adherence to a higher significance level. The color of the circles denotes 
the strength of the trend, with darker blues indicating stronger negative 
trends. The climatological annual cycle of column average VMR is dis-
played in colored squares on the left-hand side of the graph, where the 
size of the square represents the coefficient of variation - a larger square 
corresponds to higher variability. Finally, the mean number of monthly 
retrievals are indicated on the right-hand side of the plot. 

It is apparent from the trend arrays which months and percentiles 
have strong and weak trends. Northeast China (Fig. 7a), experiences the 
strongest negative trends when compared to all other regions. Spring 
months (March, May and June) in Northeast China experience the 
strongest trends overall, at over − 1.5 % per year for most of the per-
centiles in these months, which is consistent with the trend results found 
by Zhang et al. (2020). The downward trend is likely to be strongest in 
spring because the impact of residential emissions of CO is greatest 
during this season. The downward trend in Northeast China CO is also 
stronger in the 75th percentile compared to the 25th percentile, sug-
gesting the trend is driven by a reduction in highly polluted events that 
would likely result from local sources. 

Eastern USA (Fig. 7c) and Europe (Appendix C), also see stronger 
trends in the 75th vs. the 25th percentile, albeit smaller in magnitude 

Standard error in the slopes are also shown in brackets. Systematic error is also shown where it was found to be significant (Appendix A). Colors define the trend type, 
determined significant relative to one standard error. Red background colors denote positive trends, blue denotes negative trends and yellow denotes no significant 
trend. Region numbers correspond with regions in Fig. 2. 
Cardinal directions are abbreviated (e.g. Northeast = NE); SAm = South America, SAf = Southern Africa, SEA = Southeast Asia. 
aStandard error is taken from the estimate including autocorrelation where it is larger than the WLS estimate (Appendix A3). 
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compared to Northeast China, implicating local emission reductions. In 
contrast, the trend array for North India (Appendix C) shows few sig-
nificant trends, reflecting that high variability or a positive trend locally 
counteracts any reductions in transported CO. Where they are signifi-
cant, trends occur more frequently in the 25th percentile for North India, 
representing a trend in background CO. 

Many regions of the NH do not see significant trends in late summer 
and early autumn, i.e. August and September (e.g. Fig. 7). This leads to 
small trends with low significance for the whole NH during these months 
(Fig. 8a). Several factors may be influencing the CO trend in these 
months. The large summer sink may effectively process any sources 

independent of their magnitude, smoothing out any trend behavior. 
Additionally, variability is relatively large in these months (see c.v. for 
Northeast China and Northwest USA in Fig. 7a and c, respectively), 
which impacts the determination of significant trends. Finally, the 
recent upward trend in peak CO for boreal fire-prone regions described 
in Section 4.1 (e.g. Fig. 6b) likely counteracts the global downward 
trend. Fire emissions in these boreal regions impact not only the local 
atmosphere, but also downwind regions through atmospheric transport, 
and may be responsible for a hemispheric weakening of the CO trend in 
these months. A modeling study would be required to quantify the 
contributions of each of these processes to trend determination. 

(a)  MODIS Terra AOD & MOPITT CO         1. AnthChina (110-123/30-40)
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(b)  MODIS Terra AOD & MOPITT CO         2. AnthIndi (70-95/20-30)
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(c)  MODIS Terra AOD & MOPITT CO         3. AnthEuro (0-15/45-55)
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(d)  MODIS Terra AOD & MOPITT CO         4. AnthUSA (-95--75/35-40)
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Fig. 5. Regional time series of month average XCO 
(red) and AOD (blue) over industrial regions, Region 
numbers correspond with numbers in Table 2 and 
Fig. 2. Vertical bars are monthly standard deviation. 
General tendencies from linear regression (WLS) are 
shown for the whole record (July 2002-June 2018, 
dotted line), as well as the 1st half and 2nd half of the 
record (solid lines). Slope values are described in 
Table 2. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   

R.R. Buchholz et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 256 (2021) 112275

12

While the NH shows negative trends across all months of the year, 
the SH trends are more confined to one season. The SH sees no signifi-
cant trends in mid-summer to early autumn (January to April, Fig. 8b), 
suggesting that sources are in equilibrium with the photochemical sink 
at this time of year. The downward CO trend is dominant in the fire 
season (Aug-Nov), which is consistent with the Andela et al. (2017) 
global decrease in burned area, and considering biomass burning is the 
major source of CO emissions in the SH (Holloway et al., 2000). Small 

CO trends prior to the SH burning season (May-July) may be due to a 
trend in transported air from the NH (Zeng et al., 2012; Yang et al., 
2019). Overall, the SH trend is mainly determined by the trend from 
fires, while the NH trend also includes improvements in combustion 
efficiency. 

(a)  MODIS Terra AOD & MOPITT CO         15. BBMSEA (95-125/-10-8)
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(b)  MODIS Terra AOD & MOPITT CO         5. BBUSA (-125--105/38-50)
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Fig. 6. Regional time series of XCO (red) and AOD 
(blue) over (a) Maritime Southeast Asia and (b) the 
northwest USA example fire-prone regions. Vertical 
bars are monthly standard deviation. General ten-
dencies from linear regression (WLS) are shown for 
July 2002-June 2018 (dotted line), as well as the 1st 
and 2nd half of the record (solid lines). Slope values 
are described in Table 2. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   

Fig. 7. Arrays of quantile trend analysis for monthly CO data for different regions: (a) Northeast China, (b) Eastern USA, and (c) Northwest USA. Trends are shown as 
circles colored by percent per year, which is calculated relative to the regional mean column average VMR, noted in the bottom left. The Mann-Kendall p-value 
associated with Theil-Sen trend analaysis is indicated by the size of the circle. Trends by month for January to December travel up the page, and trends on annual 
average values are shown in the bottom row for comparison. Month average column average VMR is displayed as colored squares on the LHS with size of the square 
denoting coefficient of variation (σ/μ). The mean number of retrievals (n) within a month are displayed on the RHS, in amounts of thousands (K). 
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5. Conclusions 

We use long-term measurements of MOPITT CO and MODIS AOD, 
taken from the Terra satellite, launched in December, 1999, to estimate 
global and regional trends in atmospheric pollution. Principal results 
from our study are summarized below:  

1) We find a decreasing global trend in CO total column: − 0.50 (±0.3) 
% per year over 2002 to 2018. This trend represents a global slow-
down in the CO decline as compared to CO trends from earlier studies 
over shorter periods that found a trend of − 1% per year. We attribute 
the slow-down to a reduced negative trend in recent years by 
comapring trends for 2002–2010 with 2010–2018.  

2) All the TIR CO satellite records from MOPITT, AIRS, TES, IASI-A/B 
and CrIS observe the same hemispheric seasonality and interannual 
variations. This provides confidence in the MOPITT record for our 
subsequent detailed trend estimates. The AIRS CO NH and SH trends 
agree with MOPITT, while the other satellite instrument records are 
of insufficient length or lack processing consistency to allow for 
confident computation of trends.  

3) Due to the shorter lifetime of aerosol, global trends in AOD were not 
significant. However, significant regional trends in AOD help inter-
pret CO variability for areas with common sources, as in fire-prone 
regions, or where there are impacts due to air quality regulations. 
CO and AOD concurrently decrease in North America, Europe, and 
more recently, China. India has increasing trends in AOD and 
negligible trends in CO, indicating regional CO emissions are suffi-
ciently large to counteract the global declining CO background. 

4) Analyses of trends by percentile and month indicate that the stron-
gest (most negative) trends occur in the 75th percentile for the NH 
and that late summertime CO trends (when CO lifetime is shortest) 
are the least significant, in both hemispheres. 

Overall, local contributions from human pollution or fire emissions 

can counteract the global downward trend in CO. In particular, the 
climate-driven positive fire trend in the NH boreal fire-prone regions 
during summer locally counteracts the global downward CO trend and 
may also have hemispheric impacts through subsequent transport. 
Monitoring changes in regions with high local emissions will be critical 
for diagnosing future air quality and informing mitigation efforts. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2020.112275. 
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Appendix A. Uncertainties in MOPITT CO trend analysis 

Uncertainties due to the instrument system are investigated in this section. Systematic and random sampling uncertainty is assessed by determining 
trends in a priori and using bootstrap sampling, respectively. Systematic uncertainties due to instrument sensitivity changes are investigated using the 
averaging kernels. 

A.1. Sampling bias 

A.1.1. Approximating systematic sampling uncertainty 
Sampling changes may occur for the satellite instrument over time, for example, changes due to physical scene differences such as from cloud 

screening. Fig. A1 shows how sampling differences on different days and months can affect the mean values in MOPITT a priori, which are taken from 
climatology and have no interannual variability. Differences can be seen in the 1◦×1◦ gridboxes containing no data (gray) as well as differences in 
some gridbox colors. For instance, October 2018 sees persistent clouds over central southern China which is not the case in 2002. These differences 
impact how the a priori was sampled, corresponding with each MOPITT observation. While we do not necessarily expect changes in sampling over 
time, we use trend analysis on the sampled a priori values to approximate the impact of any systematic sampling changes within each region. This 
could be of particular importance for regions with large CO spatial variability, such as China.   

Trends are calculated in the same way as the main text using WLS on a priori anomalies, weighted by monthly standard deviation within each 
region (Table A1.1). We also perform Theil-Sen analysis on year average a priori anomalies from 2002–2018 to determine trend consistency. Overall, 
we find no significant trends in the sampled a priori for any of the regions or time periods. Thus, we can be confident that systematic changes in 
sampling are not contributing to the trend analysis performed in the main text. 

A.1.2. Approximating random sampling uncertainty 
We estimate random sampling errors in our trend estimate by resampling MOPITT CO within regions using the bootstrap method of resampling 

with replacement (Efron, 1979) following the implementation of Reuter et al. (2014) and Jiang et al. (2018). This procedure randomly creates one 
hundred resampled datasets, to produce an ensemble of trends from which we calculate a mean trend and standard deviation. 

Specifically, the method proceeds as follows: beginning with a given MOPITT level 2 dataset for a particular month and region, which contains N 
retrievals within the region, we construct a resampled dataset of N points by uniformly sampling the original data, with replacement. Consequently, 
there may be multiples of some of the original data within a resampled dataset; there may also be values in the original dataset that do not appear in 
the resampled dataset. This method effectively randomly increases (multiples) and decreases (left out) the weight of retrievals when contributing to 
the region mean. Regional means and standard deviation are calculated from the resampled dataset and time series of monthly means with corre-
sponding standard deviations are built. We repeat this resampling process on the original data one hundred times to create an ensemble of one 
hundred time series, and in turn an ensemble of one hundred fitted trends for each region. Finally, we calculate a mean trend and a standard deviation 
over the ensemble. The standard deviation of the resampled slopes is our measure of the trend uncertainty due to resampling, which is summarized for 
all regions over 2002–2018 in Table A4.1:. 

We have also tested the extent to which MOPITT data can be sub-sampled and still provide equivalent mean monthly values for the total column. 
Fig. A2 shows that selecting every 28 retrieval within the NH still gives the same values for the monthly mean CO column with acceptable standard 
error. These results informed the sub-sampling used for CrIS data processing with the MUSES algorithm.   
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Fig. A1. MOPITT a priori total column XCO for month averages (top row) and daily averages (bottom row) comparing October 2002 with October 2018. Note that 
daily dates were chosen to display the same MOPITT orbital swaths. The square black box is the Northeast China industrial region of interest for this study and 
average XCO within this region is noted.  
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Table A1.1 
Summary of WLS trends in the a priori XCO anomalies for the 19 regions, shown for different time periods. 
Theil-Sen trends are also shown for the full time series.  

Yellow backgrounds denote no significant trend for WLS analysis, relative to the slope standard error. Orange background indicates p > 0.05 in Theil-Sen trends.  
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Fig. A2. Changes in MOPITT monthly mean total column CO and standard error as a function of sub-sampling reduction factor (2n). Top three plots show results for 
NH June 2007 and bottom three plots show NH December 2007.  
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Table A2.1 
Summary of estimated CO trends due to changes in MOPIT sensitivity. WLS trends in the anomalies of 
smoothed reanalysis climatology from the 19 regions are shown with standard error over the full, 1st half 
and 2nd half time periods.  

Theil-Sen trends are also shown for the full time series. Red background colors denote positive trends, blue denote negative trends and yellow background denote no 
trend for WLS analysis. Orange background indicates p > 0.05 for Theil-Sen.  
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A.2. Systematic uncertainty due to MOPITT sensitivity changes 

Sampling may also be affected by changes in instrumental sensitivity, such as through degradation of the instrument over time. Some of this 
degradation of performance is known (e.g. cell gas loss) and is accounted for in the retrieval algorithm. Additionally, MOPITT retrieval sensitivity is 
related to the amount of atmospheric trace gas, so it would be expected to decline as CO concentrations decline, similar to changes in sensitivity for 
satellite temperature retrievals with increasing CO2 (Shine et al., 2008). Sensitivity changes will be reflected in the instrument averaging kernels (AK). 
The degrees of freedom for signal (DFS) is a measure derived from the AK. Yoon et al. (2013), show that time varying AKs add uncertainty to trend 
analysis in MOPITT surface retrievals and Strode et al. (2016) found that MOPITT AKs impacted simulated trends. We examine the hemispheric DFS 
over time (Fig. A3) and find trend behavior that suggests we should quantify the impact of sensitivity changes on trend analysis for column values. The 
decreasing DFS over time corresponds with an increase in instrument noise (Deeter et al., 2015), whereby changes in instrument signals contribute to a 
trend in the DFS. However, although the DFS shows a strong trend over 2001–2018, we do not expect large impacts on XCO trends because the DFS 
values remain above 1, and consequently enough information is available to retrieve column amounts.

Fig. A3. Time series of degrees of freedom of signal (DFS) for MOPITT in the NH (dashed grey) and SH (solid black).  

To test the impact of sensitivity changes on XCO we create a global climatology from reanalysis (Gaubert et al., 2016; Gaubert et al., 2017; Gaubert 
and Worden, 2017), and convolve with the MOPITT monthly level-3 AKs and a priori (Eqn A1), before calculating regional averages and standard 
deviation and performing trend analysis. The MOPITT AKs are changing in time, while the climatology has no interannual variability. As we saw in 
Appendix A1.1, the a priori have no significant trends. Therefore, any trends found in the smoothed climatology are a result of sensitivity changes. 

colvmrsmooth =
(ca + A(xr − xa) )

cd
(A1)  

where: 
colvmrsmooth = smoothed climatology column average VMR 
ca = MOPITT a priori column 
A = MOPITT column averaging kernel 
xr = reanalysis profile in log(VMR) 
xa = MOPITT a priori profile in log(VMR) 
cd = MOPITT reported column of dry air 
Trends on the smoothed reanalysis climatology for each region and time period are shown in Table A2.1, which have been calculated on anomalies 

with WLS in the same way as trends in the main text, weighted by regional monthly standard deviation in the smoothed data. We also perform Theil- 
Sen analysis on year average values from 2002–2018. Some regions show significant trends in the smoothed reanalysis, meaning that instrument 
sensitivity could have impacted the trend analysis performed in the main text. Significant trends with p < 0.05 for the Theil-Sen analysis are generally 
consistent with the trends that are outside one standard error in the WLS slope. 

In particular, the full time series analysis over Northeast China, Europe and Eastern USA, as well as full and shorter time periods for the NH boreal 
fire-prone regions and Maritime SEA may have been impacted by instrument sensitivity. In most of these regions the impact is small compared to the 
trend in XCO, however the uncertainty has been noted in Section 3.4 as a systematic error. When reported as systematic errors, they impact the trend in 
the opposite direction as shown in Table A2.1. For example, we see a slightly positive trend (+0.145% per year) in the smoothed reanalysis for China 
over 2002–2018 that indicates some of the observed negative trends could have been counteracted by instrument sensitivity. Therefore, we report a 
systematic error of − 0.145 % per year for this effect on the regional trend. 

A.3. Accounting for Autocorrelation 

Autocorrelation in the noise (ϵ(t) of Equation 1) may impact the precision of the slope calculations. We determine autocorrelation in our monthly 
timeseries by performing autocorrelation function (ACF) analysis in the residuals, i.e. once the seasonality and trends have been removed. Residuals 
generally show autocorrelation indicative of an first-order autoregressive, AR(1), model process. For example, the autocorrelation function for CO in 
the Northern Hemisphere (NH) region is shown in Fig. A4, and is similar to an AR(1) model example with the equivalent coefficient (ϕ). 

R.R. Buchholz et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 256 (2021) 112275

20

Table A3.1 
Standard error estimate on the slope accounting for autocorrelation according to Eqn A2. Yellow background 
indicates higher errors than the WLS estimate.  

13. Southern Africa

*Cardinal directions are abbreviated (e.g. Northeast = NE), SAm = South America, SAf = Southern Africa, SEA = Southeast Asia 
NS = Autocorrelation is not significant for p = 0.01  
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Fig. A4. Autocorrelation coefficients in monthly CO residuals for the Northern Hemisphere full timeseries (left) and autocorrelation for an AR(1) model with ϕ =
0.83 (right). Blue shaded area shows the confidence intervals for p = 0.01. 

Consequently, we compensate for an AR(1) noise process by adjusting the standard error to account for autocorrelation. According to Weatherhead 
et al. (1998) the standard error in the slope (σm) can be accurately approximated by the standard deviation in the noise (σϵ), combined with a scaling 
factor based on the autocorrelation coefficient at lag-1, ϕ: 

σm ≈
σε

N3/2

̅̅̅̅̅̅̅̅̅̅̅̅
1 + ϕ
1 − ϕ

√

(A2)  

where N is the number of years of data (Weatherhead et al., 1998, equation 2). 
We investigate autocorrelation in the residual for all regions and where it is found to be significant outside the 99 % confidence intervals, we 

calculate the standard errors according to equation A2 and collect the results in Table A3.1. The estimated standard error on the slope from equation 
A2 was compared with the WLS standard error and was found to be of approximate similar magnitude, and generally smaller than the WLS estimate, 
but sometimes larger. Therefore, as a conservative estimate of the standard error on the slope, we retain the larger of the two estimates in the main 
section of the manuscript. 

The Theil-Sen trend estimates in Section 4.2 do not require compensation for autocorrelation in the noise, because consecutive values are separated 
by a year and CO has about a 2 month atmopsheric lifetime, meaning persistence is not significant. For example, the residuals for January trend 
analysis in the NH region show no significant autocorrelation (Fig. A5), even though the NH full timeseries showed the largest autocorrelation co-
efficient (ϕ = 0.83) of all datasets. Similarly, no significant autocorrelation in the residuals was found in other regions when trend analysis is 
completed in months across different years. 
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Table A4.1 
Summary of uncertainties in the 2002–2018 trend analysis compared with WLS standard error in the slope. 
All values are shown in percent per year. Green backgrounds are significant.  
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Fig. A5. Autocorrelation coefficients in monthly January residual values for the Northern Hemisphere. Blue shaded area shows the confidence intervals for p = 0.01.   

A.4. Summary of uncertainties 2002–2008 

A comparison between uncertainties and the WLS standard error for 2002–2018 trends is shown in Table A4.1. Systematic uncertainties are 
described in one direction and random uncertainty is bi-directional. The uncertainties reported here are of opposite sign to the slopes calculated in 
Appendix A1.1 and A2. Although in some cases uncertainties are determined significant, all uncertainties are small compared to the standard error in 
the slope from the main text. Overall, the impact of these uncertainties on the trends found in the main text does not alter our main findings and 
conclusions. 

Appendix B. Other impacts on trend analysis 

We investigate the robustness of trend analysis to accounting for the seasonal cycle in different ways, using different trend methodologies, as well 
as the impact of outliers. 

B.1. Selection of trend analysis methodology 

Noise is anything that deviates the data from the model (the linear trend), and consequently increases uncertainty in trend analysis. The seasonal 
cycle in CO data therefore adds noise to the trend analysis. There are several methods one can use to remove the impact of seasonality on trend 
analysis. We investigate four methods of accounting for seasonality prior to calculating the WLS trend. 

Method 1: use year average values in trend calculations. 
Method 2: calculate the 12-month moving average. Because seasonality occurs during a 12-month period, any shorter or longer time period (not 

divisible by 12) would introduce some seasonal information. 
Method 3: subtract the whole dataset month average values. 
Method 4: remove the seasonal cycle using a harmonic fit. 
We also assess the use of Theil-Sen on year-average values. The Theil-Sen method is robust to outliers, but is sensitive to cyclic data, therefore we 

use yearly averages of the monthly anomaly data. 
All methods calculate consistent trend signs and magnitudes within one standard error, apart from the WLS on running averages for South America 

(Table B1.1). Regions that show difficulty for interpreting significant trends (Southern Africa) are also generally consistent. In the main text, we 
choose to use Method 2 before applying WLS in global map analysis and Method 3 before applying WLS in timeseries analysis. 

B.2. Impact of outliers on trend analysis 

WLS trend analysis is less impacted by outliers than ordinary least squares because variability associated with outliers reduces the weight of the 
outlier contribution to trend analysis. However, we wish to quantify the impact of the large El Niño in 2015 on trend analysis. Fig. 3c and d show the 
hemispheric impact of the 2015 fires in Maritime SEA. The large contribution to atmospheric CO loading from this event remained in the atmosphere 
for over 2 months (Field et al., 2016). Resulting high values could have skewed our results towards less negative trends. Consequently, we investigate 
the impact of removing XCO data from July 2015 to June 2016, and recalculate trends. The comparison between trends calculated with and without 
Maritime SEA fire influence in 2015 is shown in Table B2.1. 

When removing the Maritime SEA event from analysis, trends become consistently more negative. Trends in the shorter period experience more 
impact than the longer period. Largest differences are seen around the SH fire-prone regions. However, most of the trends are not significantly 
different from what was calculated in the main text, relative to one standard error. Furthermore, the changes in trends do not alter our conclusions 
from the main text. We still find the slowdown in the CO trend such that the earlier record has a stronger trend than either the later or long-term 
records. 

We were also interested in the large dip in 2008–2009 that might particularly influence the trends in our early sub-time period (Fig. 3c), so we 
removed February 2008 to January 2010 and recalculated trends (not shown). While we found some substantial differences in trend magnitudes for 
some regions, the overall message remained that the earlier period experienced more negative trends in CO compared to the later period or the whole 
time period. 
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Table B1.1 
Summary of weighted least-squares different methods of accounting for seasonality. Theil-Sen trends are 
also shown for the full time series.  

Blue backgrounds denote negative trends and yellow background denote no trend for WLS analysis. Orange background indicates p > 0.05 for Theil-Sen (non- 
significant).  
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Table B2.1 
Summary of WLS trends in the anomaly XCO from the 19 regions with standard error in brackets, shown for 
different time periods. The result of removing Maritime SEA large fire emissions impact (without 201507- 
201606) is investigated.  

The original record values are the same as found in Table 2. Trends without 201507–201606 removes the extended influence from the large fires in Maritime SEA 
during the burning season of 2015. Green background colors indicate differences outside one standard error.  
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