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ABSTRACT 

Coordination iron (II) compounds are studied to simulate switching properties between low 

spin (LS, S=0) and high-spin (HS, S=2) states in spin-crossover materials.  These two states 

are diamagnetic (LS) and paramagnetic (HS) in nature, and the switching between these two 

states is achieved through external excitations which may be of thermal or of pressure origin. 

In this contribution, a local mean-field approach is proposed to study SCO nano/micro-

particles, for which distinctions among the contributions of molecules localized at the edge, 

corner, surface or the bulk, as well as for the external coupling that concerns only surface 

particles have been introduced. In this first attempt, the model is solved using a rough 

approximation which simplifies its treatment, leading to finding out three steps switching and 

three states, simulated under temperature effect while two steps transitions are obtained under 

pressure effect.  

 

Keywords: Ising-like model / Local mean-field approximation / spin crossover / nanoparticles 

or micro-particles/ surface effects. 

 

1. INTRODUCTION 

 

Spin crossover (SCO) compounds could be considered as text-book examples of 

molecular systems, which have uncanny ability to reversibly switch from a high spin (HS) to 

a low spin (LS) state [1-4] and can act under a wide range of external stimuli such as 

temperature [5-8], pressure [9-11], electrical, magnetic [12] or photo- excitations [13-18]. The 

phenomenon is in general followed by some of its signature behaviors, like variations in the 

magnetic, optical, structural and electrical properties of the material. In its solid state, given 

that one of the widely studied stimuli for LS-HS transition is temperature, the thermal 

properties of the SCO materials may give rise to a very rich set of behaviors which include (i) 

continuous gradual spin-transitions (Boltzmann population of two degenerate states) (ii) sharp 

first-order transitions, ranging from (iii) incomplete transitions (non-zero HS fraction at lower 

temperatures) to (iv) two or multi-step spin transitions. The final result could be either of 

these transition paths or some mix of these transition paths. Due to such richness of variety, 

SCO systems have been studied for many years. Their applications are considered as very 

promising such as data storage, displays, pressure sensors, and molecular switches.  

 

There are multiple reasons and multiple ways which may give rise and govern these 

behaviors in SCO compounds: (i) multi-stability or/and the existing structural ordering in the 
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molecule itself (binuclear SCO systems). (ii) asymmetry, having two or more non-equivalent 

sites. (iii) through architecture (SCO core-shell nanocomposites). (iv) different local 

environments (surface effects) i.e. size reduction. However, compounds exhibiting multistep 

spin conversion had remained quite elusive and rare, but since last decade this field has 

garnered increasing attention in both theoretical and experimental aspects, due to their 

promising application in 3-bit electronics. Thus, it is worth considering that the processing of 

SCO materials with two inequivalent sites is hardly controllable, and thus makes the behavior 

of the high-spin fraction highly unpredictable. Recently, chemists started designing well 

controllable and reproducible SCO core-shell nanocomposites, but it is still nascent and might 

lead to instability due to large structural changes at the interface [19]. 

 

Despite the difficulties and challenges faced, the prospects of multistep transition are 

promising. With the growing interest in the nanoscale phenomenon, advances in visualization 

and design are taking place rapidly, thanks to the state-of-art experimental tools (electronic 

and atomic force microscopy, high-resolution x-ray diffraction) along with the usual detection 

techniques (Optical spectroscopy, Mossbauer, Magnetometry, Dielectric constant, 

Calorimetry [20] etc.). To boost the development of nanotechnologies and the availability of 

experimental results, a theoretical viewpoint is also required because the synergy between 

theoretical and experimental studies enhances and optimizes research activities at the 

nanoscale. Surface relaxations and effects may play a major role in this case, in order to 

understand phenomena in new SCO nano-objects, such as thin films, nanoparticles and 

nanopatterns, where surface geometry plays a major or deterministic role. Therefore, 

understanding the dynamics of the size reduction and its effects on the spin transition has 

become of paramount importance.  

 

The experimental observations are already indicative of a variety of finite-size effects in 

different SCO compounds. These effects may originate from different causes such as the 

structural diversity of these materials, due to mono-, poly-nuclear compounds, or the 

numerous physico-chemical phenomena which can arise due to surface, confinement and 

kinetic effects. However, as one keeps on downsizing, decrease in cooperativity, incomplete 

transitions and in general, a shift in transition temperatures toward the low-temperature end 

can be observed. All these trends could be explained by taking into account simple 

thermodynamical considerations which indicate higher surface energy in the LS state, and 

thus leading to stabilization of HS state on surfaces even at low temperatures.  

 

This idea was also supported by investigations conducted in 2D microscopic Monte Carlo 

simulations using Local Mean Field Approximation (LMFA), which clearly depict that the 

number of molecules at the surface or corners with the different number of neighbors 

becomes extensively important and could not be ignored [21]. In SCO compounds, edge, 

corner and bulk environments are physical distinct realities. It must be recalled that in these 

compounds, the active spin site which is due to the presence of a 3d transition element such as 

an iron cation (Fe2+ or Fe3+) is interacting through the local ligand field either directly or 

indirectly through the chemical bonds with a number of different atoms which may be carbon, 

nitrogen or others elements composing the matrix in which the cation is embedded. In this 

respect, the study was particularly interesting as it shed light on the appearance of two-step 

transition due to the thermodynamic interplay among the bulk, edge and corner molecules.  

 

In this paper, the previous model [22,23] has been extended to investigate 3D SCO in 

detail and to understand the role of surface relaxations in transitions. The Ising-like model is 

used and solved in the framework of the Local Mean Field Approximation (LMFA) to study 
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both shape and size effects on the 3D SCO compounds. This LMFA is better adapted to the 

present study to reproduce thermal and pressure hysteresis with access to metastable states 

than Monte Carlo-Metropolis technique that is well adapted to study metastable states. 

 

2. MODEL AND PRINCIPLE OF CALCULATION 

 

Wajnflasz and Pick [22] developed in 1970 the first microscopic Ising-like model in 

which only short-range interactions were taken into account for studying the spin transition 

behavior. This model was later adapted by Bousseksou et al. [23] in the frame of the mean-

field approximation to simulate two-steps transitions. B. Hoo et al. [24] make the first 

extension of this Ising-like model to take into account the next-nearest neighbors. Linares et 

al. [25] showed that it was necessary to add long-range interactions to reveal a transition with 

hysteresis in 1D compounds. The dynamic of this short- and long-interaction model has been 

treated by K. Boukheddaden et al. [26]. Later on, a new interaction term “L” has been 

introduced in the Hamiltonian to take into account the influence of the environment (matrix 

effect) [27-29]. 

Thanks to these previous contributions, the Hamiltonian can be expressed as follows: 

 

𝐻 =  
∆−𝑘𝐵𝑇 ln 𝑔 

2
∑ 𝜎𝑖

𝑁𝑇
𝑖=1 − 𝐽 ∑ 𝜎𝑖𝜎𝑗<𝑖,𝑗> − 𝐺 ∑ 𝜎𝑖 < 𝜎 >

𝑁𝑇
𝑖=1 − ∑ 𝐿𝑖𝜎𝑖

𝑀
𝑖=1             (1) 

 

In equation (1), the first term is the sum of the contributions of each isolated molecules and 

𝑁𝑇 denotes the total number of molecules. The ligand field ∆ (> 0) is the energy difference 

between the high spin (HS) and the low spin (LS) configurations and 𝑔 =  𝑔𝐻𝑆/𝑔𝐿𝑆 is the 

degeneracy ratio between (HS) and (LS) energy levels which takes into account, not only the 

degenerations of electronic origin but also the degenerations of vibrational origin. 𝑇 is the 

absolute temperature and 𝑘𝐵 is the Boltzmann constant such as β=1/(kBT). σ is a fictitious spin 

operator whose eigenstates are +1 and -1 respectively associated to the high-spin (HS) and 

low-spin (LS) states [8-10]. The second term accounts for the coupling 𝐽 between the nearest-

neighbor spin pairs < 𝑖, 𝑗 >. The third term 𝐺 is the long-range part of the interaction and the 

last term  𝐿𝑖 expresses the sum of the contributions of negative local ligand-field felt by the 

molecules located on the outline of the compound due to their interactions with the 

surrounding. Here, the magnitude of this field is clearly distinguished according to the 

position of the molecules (edge, corner or surface), while this field vanishes for the bulk 

molecules. 

 

In order to develop a general approach to solve such problems, existence of four regions in the 

lattice (bulk, edge, corner, surface), can be expected to have four corresponding coupled order 

parameters associated with each of these regions. Indeed, a realistic approach to this problem 

in the local mean-field framework leads to re-express Hamiltonian (1) under the following 

form: 

 

 

𝐻 =  
∆−𝑘𝐵𝑇 ln 𝑔 

2
∑ 𝜎𝑖

𝑁𝑇
𝑖=1 − 𝐽 ∑ 𝜎𝑖𝑞𝑖 < 𝜎 >𝑖<𝑖,𝑗> − 𝐺 ∑ 𝜎𝑖 < 𝜎 >

𝑁𝑇
𝑖=1 − ∑ 𝐿𝑖𝜎𝑖

𝑀
𝑖=1  (2) 

 
where < 𝜎 >𝑖 is the average spin state around site 𝑖 and 𝑞𝑖 is its coordination number.  

Assuming that the local average order parameter  < 𝜎 >𝑖 contains four types of homogeneous 

contributions, < 𝜎 >𝑏, < 𝜎 >𝑐, < 𝜎 >𝑒 , < 𝜎 >𝑠 corresponding respectively to bulk, corner, 

edge and surface contributions, it becomes possible to solve the statistical-mechanics problem 
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which leads to four non-linear coupled equations. This approach will be developed in further 

work where the rigorous variational calculations will be developed. 

 

In the present contribution, to oversimplify the problem it is assumed that the contributions of 

the short and long-range parameters (−𝐽 ∑ 𝜎𝑖𝜎𝑗<𝑖,𝑗> − 𝐺 ∑ 𝜎𝑖 < 𝜎 >
𝑁𝑇
𝑖=1 ) can be merged 

into the same energetic contribution, written under the following form: 

 

                                                  −Γ < 𝜎 > ∑ 𝑞𝑖𝜎𝑖
𝑁𝑇
𝑖=1                                           (3) 

 

where the only local information kept is that of the coordination number of the considered 

site. On the other hand, the new parameter Γ must be seen as a control parameter and not as a 

variational parameter which depends on 𝐽 and 𝐺. Therefore, from now, all thermal properties 

will be investigated using the coupling parameters, Γ and 𝐿𝑖. In this work, Γ will be 

considered as positive quantity, thus favoring ferromagnetic-like interactions, i.e. (HS)-(HS) 

and (LS)-(LS) pairs, whereas (HS)-(LS) pairs are favored when 𝛤 is negative (anti-

ferromagnetic-like interactions). It is interesting to mention that although the case Γ < 0 is not 

considered here, it might be interesting to investigate this case corresponding to dominant 

long-range antiferromagnetic like interactions.  

Accepting the sacrifice of the approximation made in (3), the total Hamiltonian of the system 

can be re-written as follows:  

 

                      𝐻 =  
∆−𝑘𝐵𝑇 ln 𝑔

2
∑ 𝜎𝑖

𝑁𝑡
𝑖=1 − Γ < 𝜎 > ∑ 𝑞𝑖𝜎𝑖

𝑁𝑇
𝑖=1 − ∑ 𝐿𝑖𝜎𝑖

𝑀
𝑖=1            (4) 

 

In the frame of a classical mean-field approximation and the case of a 3D cubic lattice, the 

coordination number is q = 6 (see Fig. 1). 
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Fig. 1. Mean-field approximation in a 3D cubic lattice: 𝜎𝑖 spin surrounded by 6 nearest-

neighbor with the average magnetization < 𝜎 >. 

 

It is important to remember that while dealing with nanoparticles, surface properties can play 

a significant role and deeply modify the material properties. In order to include rigorously the 

matrix effects, it is to be considered that the number of bonds for the molecules inside the 

lattice is different from the one for molecules outside the lattice. 

 

 
(a)                                                                        (b) 

 

Fig. 2. Schematic view of the 3D lattices of two SCO nanoparticles: filled black circles 

represent bulk sites (Nb), while filled blue, red and green circles represent respectively surface 

(Ns), edge (Ne) and corner (Nc) sites which have interactions with their immediate 

environment. (a) 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 cubic lattice with size 4x4x4 (b) 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧  parallelepiped 

lattice with size 4x4x2. 

 

As seen in Fig. 2, four types of sites have to be considered: molecules located in the bulk 𝑁𝑏, 

on the surface 𝑁𝑠, on the edge 𝑁𝑒 and on the corner 𝑁𝑐. Depending on the localization of each 

site in the crystal lattice, it is necessary to specify the number of interactions between a 

molecule and its first-neighbors which are denoted as 𝑞𝑖 and the number of interactions 

between the molecules and the environment (surface pending links) which is denoted 𝑧𝑖. The 

present model, therefore, involves various local situations, and the Hamiltonian can finally be 

re-expressed as follows: 

                                             

          𝐻 =  
∆−𝑘𝐵𝑇 ln 𝑔

2
∑ 𝜎𝑖 +  ∑

−2Γ𝑞𝑖<𝜎>−2𝑧𝑖𝐿

2

𝑁𝑇
𝑖=1  𝜎𝑖 =  −

𝑁𝑇
𝑖=1 ∑ ℎ𝑖𝜎𝑖

𝑁𝑇
𝑖=1                (5) 

 

where 

ℎ𝑖 =  −
∆−𝑘𝐵𝑇 ln 𝑔−2Γ𝑞𝑖<𝜎>−2𝑧𝑖𝐿

2
 .                                     (6) 

 

It is worth noticing that in Eq. (6), the quantity 𝑧𝑖𝐿 represents the extra-outer ligand field 𝐿𝑖 

introduced in Eq. (1). The characteristics of each site are listed in Table 1 for the case 

𝑁𝑥, 𝑁𝑦 𝑎𝑛𝑑 𝑁𝑧  ≥ 3 and in Table 2 for the case  𝑁𝑥 ≥ 3, 𝑁𝑦  ≥ 3 𝑎𝑛𝑑 𝑁𝑧 = 2. The case Nz 

=1 amounts to studying a 2D SCO nanoparticle and this case has previously been studied by 

Allal et al. [21]. 
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2.1 Partition function, mean-field free energy and equation of state 

 

The total partition function of this inhomogeneous mean-field system containing 𝑁𝑏, 𝑁𝑐, 

𝑁𝑒  and 𝑁𝑠  molecules belonging respectively to bulk, corner, edge and surface regions writes 

 

𝑍 = 𝑍𝑏
𝑁𝑏𝑍𝑐

𝑁𝑐𝑍𝑒
𝑁𝑒𝑍𝑠

𝑁𝑠.                    (7) 

 

The expressions of the partition functions for bulk (𝑍𝑏), corner (𝑍𝑐), edge (𝑍𝑒) and surface 

(𝑍𝑠) sites have the general form: 

 

𝑍𝛼 = 2 cosh 𝛽 (
∆−𝑘𝐵𝑇ln𝑔−2Γ𝑞𝛼<𝜎>−2𝑧𝛼𝐿

2
 )                  (8) 

 

where 𝛼 = 𝑏, 𝑐, 𝑒, 𝑠, takes its corresponding value according to the position of the site in the 

lattice, while the average magnetization of site 𝛼 is calculated in the canonical statistics as 

follows:                                                   

 

< 𝜎𝑥 >=
1

𝑍
∑ 𝜎𝑥{𝜎} ∏ 𝑒−𝛽𝐸𝛼

 𝛼=𝑒,𝑏,𝑐,𝑠                      (9) 

 

where 𝐸𝛼 is the total energy of region α and {𝜎} = {𝜎𝑏, 𝜎𝑐, 𝜎𝑒 , 𝜎𝑠} stands for all spin 

configurations of bulk, corner, edge and surface. According to Eq. (5), the energy 𝐸𝛼 writes: 

 

 𝐸𝛼 =  − ∑ ℎ𝛼𝜎𝑖𝛼

𝑁𝛼
𝑖𝛼=1 .                  (10) 

 
Since all regions are independent of each other, Eq. (7) can be factorized. So, the average 

magnetization of the bulk is written under the following form: 

 

 

< 𝜎𝑏 >=
1

𝑍𝑏
𝑁𝑏

∑ 𝜎𝑏{𝜎𝑏} ∏ 𝑒𝛽ℎ𝑏𝜎𝑏
𝑁𝑏
𝑖𝑏        (11) 

 

Developing further the equation leads to the following expression: 

 

< 𝜎𝑏 > = −
sinh 𝛽(

∆−𝑘𝐵𝑇ln𝑔−2Γ𝑞𝑏<𝜎>−2𝑧𝑏𝐿

2
 )

cosh 𝛽(
∆−𝑘𝐵𝑇ln𝑔−2Γ𝑞𝑏<𝜎>−2𝑧𝑏𝐿

2
 )
                          (12) 

 

 

This formulation can be generalized to all regions through the general expression: 

 

 

< 𝜎𝛼 > = − tanh 𝛽 [
∆−𝑘𝐵𝑇 ln 𝑔−2Γ𝑞𝛼<𝜎>−2𝑧𝛼𝐿

2
] , 𝛼 = 𝑏, 𝑐, 𝑒, 𝑠.                                 (13) 

 

The four equations obtained previously in Eq. (13) have to be combined with the relation 

giving the average order parameter of the system, which is obtained as averaged quantity over 

the four types of regions with their proportions: 
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< 𝜎 > =
𝑁𝑏<𝜎𝑏>+𝑁𝑐<𝜎𝑐>+𝑁𝑒<𝜎𝑒>+𝑁𝑠<𝜎𝑠>

𝑁𝑡𝑜𝑡
=

1

𝑁𝑡𝑜𝑡
 ∑ 𝑁𝛼𝛼 < 𝜎𝛼 >.                           (14) 

 

Finally, only one order parameter remains in the system, which is solved by bisection 

technique using Eqs. (13) and (14) which define a self-consistent problem.  

According to the lattice symmetry and topology, the following self-consistent equations are 

detailed for some concrete cases of simple cubic symmetry. 

 

 

 

 
Case 𝑵𝒙, 𝑵𝒚 𝒂𝒏𝒅 𝑵𝒛  ≥ 𝟑  

 

 for the bulk            < 𝜎𝑏 > = tanh (− ∆−𝑘𝐵 𝑇 ln(𝑔)−2 ×6 𝛤 <𝜎>
2𝑘𝐵 𝑇

)           

 

 for the surface       < 𝜎𝑠 > = tanh (−
∆−𝑘𝐵 𝑇 ln(𝑔)−2×5 𝛤<𝜎> −2 𝐿

2 𝑘𝐵𝑇
)                       (15) 

 

 for the edge            < 𝜎𝑒 > = tanh (−
∆−𝑘𝐵 𝑇 ln(𝑔)−2×4 𝛤 <𝜎> −2×2 𝐿

2 𝑘𝐵𝑇
)    

 

 and for the corner   < 𝜎𝑐 > = tanh (−
∆−𝑘𝐵 𝑇 ln(𝑔)−2×3 𝛤 <𝜎> −2×3 𝐿

2 𝑘𝐵𝑇
)    

 

Case 𝑵𝒙 𝒂𝒏𝒅 𝑵𝒚  ≥ 𝟑 𝒂𝒏𝒅 𝑵𝒛 = 𝟐 

 

 for the surface           < 𝜎𝑠 > = tanh (−
∆−𝑘𝐵 𝑇 ln(𝑔)−2×5 𝛤 <𝜎> −2 ×1𝐿

2𝑘𝐵 𝑇
)   

 

 for the edge               < 𝜎𝑒 > = tanh (−
∆−𝑘𝐵 𝑇 ln(𝑔)−2×4 𝛤<𝜎> −2×2 𝐿

2 𝑘𝐵𝑇
)                 (16) 

 

 and for the corner    < 𝜎𝑐 > = tanh (−
∆−𝑘𝐵 𝑇 ln(𝑔)−2×3 𝛤 <𝜎> −2×3 𝐿

2 𝑘𝐵𝑇
) 

 

The set of the above self-consistent equations, which are of classical type < 𝜎 >=
tanh 𝑓(< 𝜎 >), are solved numerically using the bisection method.  

 

The high-spin fraction, 𝑁𝐻𝑆, which is the probability to occupy the (HS) state is deduced 

from: 

 

   𝑁𝐻𝑆 =  
1+<𝜎>

2
 .                                             (17) 

 

 

2.2 The transition temperature and the nature of the transition 

 

To understand the main types of spin transition curve (gradual, stepwise one with two or 

three steps, with hysteresis or incomplete spin transition) and to predict the presence or the 

absence of hysteresis loops, it is essential to be able to compare the two temperatures 𝑇𝑂𝐷 and 
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𝑇𝑒𝑞. Indeed, the occurrence condition of a first-order phase transition with a hysteresis cycle is 

𝑇𝑂𝐷 >  𝑇𝑒𝑞 whereas a gradual transition is observed when 𝑇𝑂𝐷 <  𝑇𝑒𝑞 .  
 

In the pure Ising model, 𝑇𝑂𝐷 is the order-disorder (or Curie) temperature, obtained by 

putting  ∆/𝑘𝐵 = 0,  𝐿/𝑘𝐵 = 0 and 𝑔 = 1  (ln(𝑔) = 0) in the Hamiltonian of Equation (1). 

Taking into account the different types of sites, the order-disorder temperature of the system 

𝑇𝑂𝐷 can be expressed as follows: 

 

                            𝑇𝑂𝐷 =  
𝑁𝑏 𝑇𝑂𝐷

𝑏  +𝑁𝑠 𝑇𝑂𝐷
𝑠  + 𝑁𝑒 𝑇𝑂𝐷

𝑒  + 𝑁𝑐 𝑇𝑂𝐷
𝑐  

𝑁𝑡𝑜𝑡
                                           (18) 

 

and 𝑇𝑂𝐷
𝑏 , 𝑇𝑂𝐷

𝑠  , 𝑇𝑂𝐷
𝑒  , 𝑇𝑂𝐷

𝑐  are respectively the order-disorder temperature of bulk, surface, 

edge and corner particles.  

 

The different values of 𝑁𝑏, 𝑁𝑠, 𝑁𝑒 , 𝑁𝑐 and 𝑇𝑂𝐷
𝑏 , 𝑇𝑂𝐷

𝑠 , 𝑇𝑂𝐷
𝑒 , 𝑇𝑂𝐷

𝑐  obtained in the framework of 

the approximations, are gathered in table 3 and 4 as a function of the lattice size.  

 

 

 

 

A null total effective ligand-field leads to the equilibrium temperature 𝑇𝑒𝑞 of the system and is 

defined as the temperature for which the (HS) fraction is equal to 1/2. For a cubic lattice with 

size  𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 , 𝑇𝑒𝑞 is the solution to the following equation: 

 
∆−𝑘𝐵𝑇𝑒𝑞𝑙𝑛𝑔

2
× 𝑁𝑏 +  

∆−𝑘𝐵𝑇𝑒𝑞𝑙𝑛𝑔−2𝐿

2
 × 𝑁𝑠 +  

∆−𝑘𝐵𝑇𝑒𝑞𝑙𝑛𝑔−4𝐿

2
× 𝑁𝑒 +  

∆−𝑘𝐵𝑇𝑒𝑞𝑙𝑛𝑔−6𝐿

2
 × 𝑁𝑐 = 0 (19) 

 

The solution of this linear equation, proposed by Muraoka et al. [29] gives the following 

analytical expression for the equilibrium temperature:  

 

                                 𝑇𝑒𝑞 =  
𝑁𝑏 𝑇𝑒𝑞

𝑏   + 𝑁𝑠 𝑇𝑒𝑞
𝑠  + 𝑁𝑒 𝑇𝑒𝑞

𝑒  + 𝑁𝑐 𝑇𝑒𝑞
𝑐  

𝑁𝑡𝑜𝑡
                                      (20) 

 

where 𝑇𝑒𝑞
𝑏 , 𝑇𝑒𝑞

𝑠 , 𝑇𝑒𝑞
𝑒   and 𝑇𝑒𝑞

𝑐  are the respective equilibrium temperature of bulk, surface, 

edges and corners and whose analytical expressions are: 

 

𝑇𝑒𝑞
𝑏 =  

∆

𝑘𝐵  ln(𝑔)
            𝑇𝑒𝑞

𝑠 =  
∆−2𝐿

𝑘𝐵  ln(𝑔)
           𝑇𝑒𝑞

𝑒 =  
∆−4𝐿

𝑘𝐵  ln(𝑔)
             𝑇𝑒𝑞

𝑐 =  
∆−6𝐿

𝑘𝐵  ln(𝑔)
          (21) 

 

 

 

Considering a cubic system 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 are such that 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 𝑁, and finally: 

 

𝑁𝑏 = (𝑁 − 2)3, 𝑁𝑠 = 6(𝑁 − 2)2, 𝑁𝑒 = 12(𝑁 − 2) and 𝑁𝑐 = 8. 

 

Replacing the analytical expressions of 𝑁𝑏, 𝑇𝑒𝑞
𝑏 , 𝑁𝑠,  𝑇𝑒𝑞

𝑠 , 𝑁𝑒 , 𝑇𝑒𝑞
𝑒 , 𝑁𝑐 and 𝑇𝑒𝑞

𝑐 in equation (20), 

the expression of the equilibrium temperature becomes : 
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𝑇𝑒𝑞 =
∆ 𝑘𝐵⁄

ln (𝑔)
−

12𝐿 𝑘𝐵⁄

𝑁 ln(𝑔)
.       (22) 

 

It means that, for an infinite size system with 𝑁 → ∞, 𝐿 𝑘𝐵⁄  and ln(g) being constant, 𝑇𝑒𝑞 

tends towards the equilibrium temperature of the bulk 𝑇𝑒𝑞
𝑏 =

∆ 𝑘𝐵⁄

ln (𝑔)
.  

 

To be able to also study the effect of an external isotropic pressure P on the properties of the 

SCO nanoparticle under isothermal conditions, the ligand field energy ∆ is replaced in the 

Hamiltonian by ∆ +  ∆𝑉 × 𝑃, where ∆𝑉 = 𝑉𝐻𝑆 − 𝑉𝐿𝑆 is the volume change per molecule of 

the material between the (HS) and the (LS) states.  

 

Taking into account the pressure effect, the Hamiltonian is modified in the following form [6-

7]:  

 

                             𝐻 =  
∆+∆𝑉×𝑃−𝑘𝐵𝑇𝑙𝑛𝑔−2Γ𝑞<𝜎>−2𝑧𝐿

2
∑ 𝜎𝑖

𝑁𝑇
𝑖=1                              (23) 

 

and the analytical expressions of the transition temperatures associated with the bulk, the 

surface, the edge and the corner are adapted as: 

 

𝑇𝑒𝑞
𝑏 =  

∆+∆𝑉×𝑃

𝑘𝐵  ln(𝑔)
        𝑇𝑒𝑞

𝑠 =  
∆+∆𝑉×𝑃−2𝐿

𝑘𝐵  ln(𝑔)
       𝑇𝑒𝑞

𝑒 =  
∆+∆𝑉×𝑃−4𝐿

𝑘𝐵  ln(𝑔)
        𝑇𝑒𝑞

𝑐 =  
∆+∆𝑉×𝑃−6𝐿

𝑘𝐵  ln(𝑔)
     (24) 

 

 
3. NUMERICAL RESULTS AND DISCUSSION 

 

To explore in details the thermal and pressure properties of a 3D SCO nanoparticle, the 

behavior of the average magnetization < 𝜎 > and thus of the (HS) fraction is simulated in the 

frame of the (LMFA) as a function of temperature and pressure thanks to various parameters 

whose values are chosen in such a way that they correspond to the class of FeII SCO 

compounds that exhibit cooperative spin transitions very close to ambient temperature.  

 

 

3.1 Three states and three steps as a function of temperature 

 

3.1.1 Size effects 

 

The thermodynamic parameters of the [Fe(Htrz)2(trz)](BF4)2 spin crossover complex [30] 

have been used in the numerical simulations. For this compound, the molar entropy change is 

∆𝑆 ≈ 70.25  J/K/mol, which leads to ln(𝑔) = ∆𝑆/𝑅 ≈ 8.45. 𝑅 is the perfect gas constant and 

the energy gap ∆/𝑘𝐵 =3126 K. Thus, in a non-interacting system, the equilibrium 

temperature at which the fractions of (LS) and (HS) are equal is 𝑇𝑒𝑞 =
∆

𝑘𝐵ln (𝑔)
  ≈ 370 K and it 

is also the transition temperature in the bulk as it can be seen in Table 5 below. 

 

For various SCO nanoparticle sizes, the thermal behavior of the (HS) fraction as a function 

of temperature is reported in Fig. 3. Positive “ferromagnetic-like” interactions Γ and positive 

interactions L between the molecules at the surface and the surrounding matrix are 

considered.  
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Fig. 3. Thermal evolution of the (HS) molar fraction in a 3D cubic lattice embedded in a 

matrix for different cubic lattice sizes: 444 (black squares), 888 (blue up triangles), 

121212 (green right triangles). The computational parameters are Δ/kB=3126 K, Γ/kB=150 

K, L/kB=650 K and ln(g)=8.45. 

 

It is interesting to observe that upon reducing the lattice size, a three-step transition emerges. 

This behavior has been experimentally well documented in 2D and 3D SCO compounds [5, 

31]. It also appears that the transition temperature is shifted downward and that the low-

temperature residual (HS) fraction is increased. More precisely, in the case of a 4x4x4 

nanoparticle, the transition temperature which corresponds to 𝑛𝐻𝑆 = 1 2⁄  is equal to 

(𝑇𝑒𝑞
𝑒 + 𝑇𝑒𝑞

𝑠 )/2 ≈ 139𝐾. For the 888 lattice, the transition temperature is equal to ≈ 258𝐾 

and tends towards (𝑇𝑒𝑞
𝑠 + 𝑇𝑒𝑞

𝑏 )/2 = 292𝐾. In the case of the 121212 system, the 

equilibrium temperature tends towards that of the bulk (≈ 370 𝐾) and the curve almost looks 

like a single hysteresis loop.  

 

 

 

It clearly appears that shrinking the size can have significant consequences. The surface to 

volume ratio increases and as part of a heat-induced transition, this leads on the one hand to a 

change in the transition temperature by several tens of Kelvins and on the other hand to a 

drastic change in the type of spin transition.  

 

To pay particular attention to the 888 size nanoparticle, as shown in Fig. 4, an enlarged 

view of the domain which extends from 225 K to 275 K exhibits, on one hand, the presence of 

an intermediate plateau (a mixture of (LS) and (HS) configurations) obtained between 256K 

and 264K with Nhs ≈ 0,55 and on the other hand two hysteresis loops. The first one denoted 

H1 is in the range 256-267 K with Nhs=0.15 to 0.55 which implies that, at 225K, a small 

fraction of the SCO molecules are already in the HS state and the second one is in the range 

231-265K with Nhs=0.55 to 0.1.  

The overlap of the two hysteresis loops H1 and H2 leads to the simultaneous presence of three 

stable states in the temperature range T2-T1=9K. The thermal evolution of the (HS) fraction 

reports on the following intramolecular processes (LS) ↔ (LS) + (HS) for the H1 hysteresis 

loop and (LS) + (HS) ↔ (HS) for the H2 hysteresis loop. The switching from one state to 
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another presents particularly interesting potentials applications in the field of information 

storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Enlarged view of the evolution of the (HS) molar fraction as a function of temperature. 

Three states hysteresis loop in a 3D SCO cubic lattice with size 888: stable and metastable 

regions (filled black circles) and unstable regions (red crosses). The computational parameters 

are Δ/kB=3126 K, Γ/kB=150 K, L/kB=650 K and ln(g)=8.45.  

 

 

3.1.2 Shape effects 

 

In this subsection, the thermal-dependence of the (HS) fraction is analyzed for different 3D 

lattice shapes comprising 216 (see Fig. 5) and 512 SCO (see Fig. 6) molecules. For start, a 

cubic lattice is considered, and a progressive increment along the length is made  until an 

elongated parallelepiped is obtained. For a 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 lattice, a ratio parameter t is defined 

such that 𝑡 = (𝑁𝑐 + 𝑁𝑒 + 𝑁𝑠)/𝑁𝑇 is the ratio between outline and total numbers of molecules.  
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(a)                                                                        (b) 

Fig. 5. Thermal evolution of the (HS) molar fraction for a 3D SCO system comprising 216  

molecules (a) for different lattice shapes: 2336 (black squares), 3612 (blue up triangles), 

666 (left green triangles), (b) 2336 lattice shape: enlarged view of the two steps and the 

three states hysteresis loop. The computational parameters are Δ/kB=3126 K, Γ/kB=150 K, 

L/kB=650 K and ln(g)=8.45. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                        (b) 

 

Fig. 6. Thermal evolution of the HS molar fraction for a 3D SCO system comprising 512 

molecules (a) for different lattice shapes: 2464 (black squares), 4432 (blue up triangles), 

4816 (left green triangles), 8x8x8 (down red triangles). (b) 2464 lattice shape: enlarged 

view of the two steps and the three states hysteresis loop. The computational parameters are 

Δ/kB=3126 K, Γ/kB=150 K L/kB=650 K and ln(g)=8.45. 

 

 

 

For elongated parallelepiped systems, the spin transition presents two hysteresis loops and 

occurs in two well-defined steps from Nhs=0-0.5 for the first one, and from Nhs=0.5-1 for the 

second one. The two hysteresis loops have an overlap over a temperature interval of ≈ 50K for 

the 2464 system, and of ≈ 43K for the 2336 system which is only slightly different. In 

contrast, the two-step spin transition is shifted to lower temperatures for the smaller system 

2336.  

In the case of the 2336 nanoparticle, the equilibrium temperature for which Nhs=1/2 is 

approximately 66 K and corresponds as can be seen in Table 6 to the equilibrium temperature 

of the edge 𝑇𝑒𝑞
𝑒 . In the case of the 2464 nanoparticle, the equilibrium temperature is 

approximately 120 K and is close to (𝑇𝑒𝑞
𝑒 + 𝑇𝑒𝑞

𝑠 )/2 as can be seen in Table 7.  
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3.1.3 Three steps 

 

These calculations highlight three steps associated with three hysteresis loops H1, H2 and H3 

(Fig. 7) in the heating mode as well as in the cooling mode. Similar behavior is obtained in 

the case of 666 SCO system by increasing the value of  its interaction parameter L/kB up to 

775 K compared to the calculations of the two previous subsections. Indeed, it is noticeable 

that increasing the value of parameter L/kB increases the width of hysteresis H2 and with a 

shift towards lower temperatures, which leads to the presence of two well defined 

intermediate bearings. 

Changing the value of the parameter L would amount experimentally to modify the effect 

of the matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Thermal evolution of the (HS) molar fraction and three hysteresis loops in a 3D SCO 

cubic lattice with size 6x6x6. The computational parameters are Δ/kB=3126 K, Γ/kB=150 K, 

L/kB=775 K and ln(g)=8.45.  

 

 

3.2 Three states and three steps under pressure 

 

In this section, focus is paid on the effect of applying external pressure under isothermal 

conditions in 3D SCO compounds. As represented in Fig. 8, in the case of  666 

nanoparticle, switching from the (HS) state to the (LS) state is achievable with two steps and 

three states phenomenon.  The coexistence of these three states is linked to the presence of 

two superimposed hysteresis loops which overlap in the pressure interval P2-P1=14 Mpa. The 

first loop denoted H1 extends in the range 227-245 MPa with values of Nhs between 0.96 and 

0.75 and the second one in the range 190-260 MPa with values of Nhs between 0.63 and 0.25. 

This means that this two-step behavior is incomplete and that a residual fraction of (HS) 
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configurations remains beyond 260 Mpa. This residual fraction of (HS) states progressively 

decreases and finally vanishes when the pressure reaches around 800 MPa. An intermediate 

plateau which corresponds to a mixture of (HS) and (LS) configurations is obtained in the 

pressure range 227 and 260 MPa for Nhs between 0,75 and 0,64. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  Pressure-dependence of the (HS) fraction in isothermal conditions (T=270 K) and 

three states hysteresis loops in a SCO system with size 6x6x6. The computational parameters 

are: Δ/kB = 3126 K, Γ/kB = 155 K, L/kB = 650 K, ln(g) = 8.45, ΔV = 100 Å3. 

 

The increase in the values of the interaction parameters Γ/kB and L/kB accentuates 

respectively the width of the hysteresis loops H1 and H2 and shifts them towards high 

pressures. In addition, H1 and H2 are well separated from each other and a three-step 

behavior is obtained.  
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Fig. 9.  Pressure-dependence of the (HS) fraction under isothermal conditions (T=270 K) and 

three steps behavior in a SCO system with size 6x6x6. The computational parameters are: 

Δ/kB = 3126 K, Γ/kB = 180K, L/kB = 950 K, ln(g) = 8.45, ΔV = 100 Å3. 

 

 

 

4 CONCLUSION 

 

To summarize, this work demonstrates that the local mean-field approximation (LMFA) is 

well adapted to study interacting-molecules in 3D-SCO system of nanoparticles where the 

total amount of molecules at the surface are equivalent or even more than the molecules in the 

bulk. In fact, LMFA allows to discriminate the number of neighbors for the different 

situations of the molecules: at the surface, edge, corner and at the bulk.  

 

By this approximation, the action of the environment on the molecules at the surface is also 

studied, and the numerical results show that the three steps LS-HS thermal hysteresis is 

obtained when this local environment is taken into account as an additional interaction 

considering the different environment for external molecules (surface, edge and corner).  

 

Given that, LMFA and matrix effects are taken into account, it could be claimed that the 

thermodynamic interplay between the non-bulk (i.e. surface, edge, and corner), and bulk 

molecules give rise to two or even multi-step transitions.  

 

Using local mean field approximations, the effect of different sizes (Fig. 3) and different 

shapes for the same number of molecules (Fig. 5 and 6) on the spin transition could be easily 

determined, and thus could be used to establish the thermal behavior of the total spin fraction 

on different cubic and cuboid lattices. 

 

When table 5 is considered, a certain pattern is appearing, showing that as the lattice size is 

being reduced, the equilibrium temperature is shifting towards lower temperatures. This 

behavior is certainly consistent with the 2D lattice observations, thus confirming that non-

bulk entities (edges and surfaces) play a major role in determining the equilibrium 

temperature for smaller lattices. Similarly, for bigger lattices, it is the ratio of bulk to surface 

molecules which determines the fate of the equilibrium temperature for that particular lattice 

architecture, as it can be seen from table 6 and 7.  This interplay between surface and bulk 

molecules on the characteristics of the thermal transition is very interesting and deserves to be 

investigated more deeply in future works. 

 

The impact of specific conditions such as the effect of interaction parameter L/kB on SCO 

nanoparticles has been investigated in a 3‐D model, which is studied in Fig. 7. It clearly 

demonstrates when compared with results in Fig. 5, that keeping everything else constant and 

just increasing the interaction parameter will lead to a decrease in the transition temperature 
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and an increase in thermal hysteresis width for the same lattice size. Thus these definite 

behaviors indicate that under specific boundary conditions, the system might act as if it is 

under negative pressure, which justifies the downwards shift in the equilibrium temperature.  

 

The widening of the hysteresis widths and the generation of a three-step transition, when 

either lattice sizes are reduced, or its shapes are changed in order to change the bulk to surface 

molecule ratios, suggest the role of interplay between the equilibrium temperature variation 

and the expected Curie temperature, arising from a pure Ising model.  

 

 

A three-state behavior for a 6x6x6 system has also been obtained by using calorimetric typical 

values of the SCO. The effect of external pressure on 3D spin-crossover compounds has been 

analyzed with particular attention paid to the effect of the interactions between bulk and non-

bulk molecules and their local environment, which were taken into account in the coupling 

parameter, L. As shown in Fig. 8 and Fig. 9, the variation in the coupling parameter leads to a 

variation in the hysteresis behaviors, due to the applied pressure.  

 

The ligand field at the surface of the lattice is weaker than that of the bulk, due to the matrix’s 

contribution. This indicates the role played by the surface effect on the spin transition due to 

applied pressure, as soon as both surface and bulk effects are combined by increasing the 

coupling parameter. The effect of pressure will be clearly different on the surface and the 

volume, and so its impact on the transition pressure will depend on the ratio of surface to 

volume entities. This explains the stabilization of HS states when the coupling parameters and 

the long range-short range interactions for the 6x6x6 lattice are increased. In the end, a two-

step Pressure phase transition result is depicting the interaction between molecules, and the 

competition between Δ, the energy Gap between HS and LS state, that favors LS state and the 

hydrostatic pressure and the matrix interaction that favors HS. This matrix effect plays an 

opposite role to a typical applied hydrostatic pressure because it favors the HS state.  

 

 

These results demonstrated the key role played by surface effects on the phase stability and 

transition of SCO nano-objects, thus surface relaxations and its mechanism must be 

considered as the nanoscale is approached. By taking all these factors into account a three-

state electronic storage device can be proposed.  
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Table 1. Ligand field contributions as a function of the molecule’s position in the lattice for 

the case 𝑁𝑥, 𝑁𝑦 𝑎𝑛𝑑 𝑁𝑧  ≥ 3 

 
site bulk surface edge corner 

𝑞𝑖 6 5 4 3 

𝑧𝑖 0 1 2 3 

ligand-

field 

∆ − 𝑘𝐵𝑇 ln 𝑔

2
 

∆ − 𝑘𝐵𝑇 ln 𝑔 − 2𝐿

2
 

∆ − 𝑘𝐵𝑇 ln 𝑔 − 4𝐿

2
 

∆ − 𝑘𝐵𝑇 ln 𝑔 − 6𝐿

2
 

 

 

Table 2. Ligand-field contribution as a function of the molecule’s position in the lattice for 

the case 𝑁𝑥 𝑎𝑛𝑑 𝑁𝑦  ≥ 3 𝑎𝑛𝑑 𝑁𝑧 = 2. 

 
site bulk surface edge corner 

𝑞𝑖 0 5 4 3 

𝑧𝑖 0 1 2 3 

ligand-

field 

- ∆ − 𝑘𝐵𝑇 ln𝑔 − 2𝐿

2
 

∆ − 𝑘𝐵𝑇 ln𝑔 − 4𝐿

2
 

∆ − 𝑘𝐵𝑇 ln𝑔 − 6𝐿

2
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Table 3. Number of molecules in the bulk, surface, edge and corner and their corresponding 

lattice coordination number (number of first-nearest neighbors), q,  as well as their 

corresponding order-disorder temperature, 𝑇𝑂𝐷, for a cubic lattice with 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧  ≥ 3. 
 

site number of molecules 

number of 

first-

neighbors 

q 

𝑇𝑂𝐷 

bulk 𝑁𝑏 = (𝑁𝑥 − 2) × (𝑁𝑦 − 2) × (𝑁𝑧 − 2) 6 6Γ 𝑘𝐵⁄  

surface 𝑁𝑠 = (𝑁𝑥 − 2) × (𝑁𝑧 − 2) × 2 + (𝑁𝑥 − 2) × (𝑁𝑦 − 2) × 2

+ (𝑁𝑦 − 2) × (𝑁𝑧 − 2) × 2 

5 5Γ 𝑘𝐵⁄  

Edge 𝑁𝑒 = (𝑁𝑥 − 2) × 4 + (𝑁𝑦 − 2) × 4 + (𝑁𝑧 − 2) × 4 4 4Γ 𝑘𝐵⁄  

corner 𝑁𝑐 = 8 3 3Γ 𝑘𝐵⁄  

 

 

 

Table 4. Number of molecules, of first-neighbors and value of 𝑇𝑂𝐷  as a function of the 

molecules’ localization in a cubic lattice when 𝑁𝑥 𝑎𝑛𝑑 𝑁𝑦  ≥ 3 𝑎𝑛𝑑 𝑁𝑧 = 2. 
 

 

site 

 

number of molecules 

number of 

first-

neighbors q 

𝑇𝑂𝐷 

bulk 𝑁𝑏 = 0 - - 

surface 𝑁𝑠 = (𝑁𝑥 − 2) × (𝑁𝑦 − 2) × 𝑁𝑧 
 5 5Γ 𝑘𝐵⁄  

Edge 𝑁𝑒 = (𝑁𝑥 − 2) × 4 + (𝑁𝑦 − 2) × 4 4 4Γ 𝑘𝐵⁄  

corner Nc=8 3 3Γ 𝑘𝐵⁄  
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Table 5. Order-disorder and equilibrium temperatures calculated for different sizes of 3D 

cubic SCO nanoparticle. The parameters are Δ/kB=3126 K, Γ/kB=150 K, L/kB=650 K and 

ln(g)=8.45 

 

𝑁𝑥  𝑁𝑦 𝑁𝑧 𝑁𝑇 𝑇𝑒𝑞
𝑐  𝑇𝑒𝑞

𝑒  𝑇𝑒𝑞
𝑠  𝑇𝑒𝑞

𝑏  𝑇𝑂𝐷(𝐿𝑀𝐹𝐴) 𝑇𝑒𝑞(𝐿𝑀𝐹𝐴) 

4 4 4 64 -

91.60 

62.25 216.09 369.94 675 139.17 

8 8 8 512 -

91.60 

62.25 216.09 369.94 787.5 254.56 

12 12 12 1728 -

91.60 

62.25 216.09 369.94 825 293.02 

 

 

Table 6. Order-disorder and equilibrium temperatures calculated for various shapes of 3D 

SCO nanoparticle comprising 216 molecules. The parameters are Δ/kB=3126 K, Γ/kB=150 K, 

L/kB=650 K and ln(g)=8.45. 
 

𝑁𝑥  𝑁𝑦 𝑁𝑧 𝑁𝑇 𝑇𝑒𝑞
𝑐  𝑇𝑒𝑞

𝑒  𝑇𝑒𝑞
𝑠  𝑇𝑒𝑞

𝑏  𝑡 𝑇𝑂𝐷(𝐿𝑀𝐹𝐴) 𝑇𝑒𝑞(𝐿𝑀𝐹𝐴) 

2 3 36 216 -91.60 62.25 216.09 369.94 1.00 641.67 104.98 

3 6 12 216 -91.60 62.25 216.09 369.94 0.81 725 190.45 

6 6 6 216 -91.60 62.25 216.09 369.94 0.70 750 216.09 
 

 

 

 

Table 7. Order-disorder and equilibrium temperatures calculated for various shapes of 3D 

SCO nanoparticle comprising 512 molecules. The parameters are Δ/kB=3126 K, Γ/kB=150 K, 

L/kB=650 K and ln(g)=8.45. 

 

𝑁𝑥  𝑁𝑦 𝑁𝑧 𝑁𝑇 𝑇𝑒𝑞
𝑐  𝑇𝑒𝑞

𝑒  𝑇𝑒𝑞
𝑠  𝑇𝑒𝑞

𝑏  𝑡 𝑇𝑂𝐷(𝐿𝑀𝐹𝐴) 𝑇𝑒𝑞(𝐿𝑀𝐹𝐴) 

2 4 64 512 -91.60 62.25 216.09 369.94 1.00 670.31 134.36 

4 4 32 512 -91.60 62.25 216.09 369.94 0.77 740.63 206.48 

4 8 16 512 -91.60 62.25 216.09 369.94 0.67 768.75 235.33 

8 8 8 512 -91.60 62.25 216.09 369.94 0.58 787.5 254.56 
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