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Key Points (shortened to less than 140 charactera&h, and changed as suggested by
Reviewer #2):

* In spring and summer 2020, stations in the norte&tratropics report on average 7% (4
nmol/mol) less tropospheric ozone than normal.

* Such low tropospheric ozone, over several montid ad sSo many sites, has not been
observed in any previous year since at least 2000.

» Most of the reduction in tropospheric ozone in 282likely due to emissions reductions
related to the COVID-19 pandemic.
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Abstract

Throughout spring and summer 2020, ozone statiotisei northern extratropics recorded
unusually low ozone in the free troposphere. FragmilAo August, and from 1 to 8 kilometers
altitude, ozone was on average 744 tmol/mol) below the 2000 to 2020 climatologicadan.
Such low ozone, over several months, and at so statipns, has not been observed in any
previous year since at least 2000. Atmospheric amitipn analyses from the Copernicus
Atmosphere Monitoring Service and simulations fribid NASA GMI model indicate that the
large 2020 springtime ozone depletion in the Arstratosphere contributed less than one
quarter of the observed tropospheric anomaly. Tsewed anomaly is consistent with recent
chemistry-climate model simulations, which assuméssions reductions similar to those caused
by the COVID-19 crisis. COVID-19 related emissigaductions appear to be the major cause
for the observed reduced free tropospheric 0zo2@20.

Plain Language Summary

Worldwide actions to contain the COVID-19 virus balosed factories, grounded airplanes, and
have generally reduced travel and transportatiesslfuel was burnt, and less exhaust was
emitted into the atmosphere. Due to these meaghespncentration of nitrogen oxides and
volatile organic compounds (VOCs) decreased irathesphere. These substances are
important for photochemical production and destancof ozone in the atmosphere. In clean or
mildly polluted air, reducing nitrogen oxides arm¥Cs will reduce the photochemical
production of ozone and result in less ozone. hvitg polluted air, in contrast, reducing
nitrogen oxides can increase 0zone concentratimtguse less nitrogen oxide is available to
destroy ozone. In this study, we use data fronethypes of ozone instruments, but mostly from
ozonesondes on weather balloons. The sondes ftytiie ground up to 30 kilometers altitude.
In the first 8 kilometers, we find significantlydeced ozone concentrations in the northern
extratropics during spring and summer of 2020, {ear in any other year since at least 2000.
We suggest that reduced emissions due to the CQ¥IPbrisis have lowered photochemical
ozone production and have caused the observed ogduetions in the troposphere.

1 Introduction

Widespread measures to contain the COVID-19 pardbavie slowed, or even closed
down, industries, businesses, and transportatitivitees, and have reduced anthropogenic
emissions substantially throughout the year 202@\v@ra et al. (2020), or Barré et al. (2020)
report European emissions reductions up to 60%l€y; and up to 15% for Non-Methane
Volatile Organic Compounds (NMVOC) in March/Apri020. Based on satellite observations of
NO. columns (Bouwens et al., 2020), comparable BRissions reductions are reported for
Chinese cities in February 20@Ding et al., 2020; Feng et al., 2020). Globally averaged CO
emissions decreased by 8.8% during the first H&#D@0 (Liu et al., 2020), consistent in timing
and magnitude with the aforementionedNgission reductions. The largest relative reduastio
occurred for air traffic, where emissions decredsed40%, on average, in the first half of 2020
(Le Quéré et al., 2020a; Liu et al., 2020), and remained low during the secbalf of 2020 (Le
Quéré et al., 2020b).
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These COVID-19 emissions reductions are large emémugffect ozone levels in the
troposphere (Dentener et al., 2011). TroposphefiblOx-VOC-HO« chemistry is, however,
complex and nonlinear. The net effect of emissimanges depends on Nénd VOC
concentrations (e.gKroll et al., 2020; Sillman, 1999; Thornton et al., 2002). In polluted regions,
at high NQ concentrations (>> 1pbb), reducing Néncentrations can increase ozone, because
ozone titration by NO is reduced (e.g., Sicard.ef820). At low concentrations (N& 1
nmol/mol), however, in the clean or mildly pollutede troposphere, reducing N@wers
photochemical ozone production (e.g., Bozem eR@ll7), and results in less ozone.

Indeed, for many polluted regions, studies repunteased near-surface ozone after
COVID-19 lockdowns (e.g., Collivignarekl al., 2020; Lee et al., 2020; Shi & Brasseur, 2020;
Siciliano et al., 2020; Venter et al., 2020). Reduced surface ozone igtegdor some rural
areas, e.g., in the US and Western Europe (Chain 2020 Menut et al., 2020). Meteorological
conditions complicate matters, as they play an oo role as well@oldberg et al., 2020;

Keller et al., 20210rdofiez et al., 2028hi & Brasseur, 2020).

In the free troposphere, ozone is an importantrdreese gas, and plays a key role in
tropospheric chemical reactions, controlling thelng capacity (e.g. Archibald et al., 2020;
Cooper et al., 2014; Gaudel et al, 2018). The NortiHemisphere free troposphere is dominated
by net photochemical ozone production, proportiqabdeit nonlinearly) to the availability of
ozone precursor gases (e.g., Zhang et al., 202@pritrast to increases of surface ozone in
polluted urban areas after the COVID-19 emissieadsictions, we find significant reductions of
ozone in the northern extratropical free troposph€hese large-scale reductions occurred in late
spring and summer 2020, following the widespread/(®19 slowdowns, and are unique
within the last two decades.

2 Instruments and Data

Regular observations of ozone in the free tropaspaee sparse: Only around 50 ozone
sounding stations worldwide (e.g. Tarasick et2819), a handful of tropospheric lidars (Gaudel
et al., 2015; Leblanc et al., 2018), and about twe€ourier Transform Infrared Spectrometers
(FTIRs, Vigouroux et al., 2015). In-Service Airdrédr a Global Observing System (IAGOS,
Nédélec et al., 2015) are another important sooft®@pospheric ozone data. Due to the
COVID-19 slowdowns, however, few IAGOS aircraft welying in 2020, and IAGOS data
became quite sparse, with only about 20 flightsmpenth since April 2020, compared to more
than 200 flights per month in 2019. The informattmmtent of satellite measurements on ozone
in the free troposphere is limited, and accuraeyasiest, 10 to 30% (Hurtmans et al., 2012; Liu
et al., 2010; Oetjen et al., 2014). The recent dspperic Ozone Assessment Report found large
differences in tropospheric ozone trends derivethfdifferent satellite instruments, and even
different signs in some regions (Gaudel et al.,801

Ozonesondes measure profiles with high verticallogi®n, about 100 m, and good
accuracy, 5 to 15% in the troposphere, 5% in tregagtphere (Smit et al., 2007; Sterling et al.,
2018; Tarasick et al., 2016; Van Malderen et &1& Witte et al., 2017; WMO, 2014). This is
adequate to detect ozone anomalies of severalrgektfe use stations with regular soundings, at
least once per month since the year 2000, anddaité available until at least July 2020.
Soundings with obvious deficiencies were rejecied large data gaps, integrated ozone column
from the sounding deviating by more than 30% frawugd- or satellite-based spectrometer
measurement). Table 1 provides information onatatiand public data archives.
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Table 1. Stations in this study, mostly ozonesonde statiemiR and LIDAR stations are
italicized Data sourcesiV=World Ozone and UV Data Centre
(https://woudc.org/archive/Archive-NewFormat/Ozone&® 1.0 1), N=Network for the
Detection of Atmospheric Composition Chan@g:(/ftp.cpc.ncep.noaa.gov/ndacc/station/
ftp://ftp.cpc.ncep.noaa.gov/ndacc/RE= European Space Agency Validation Data Center
(https://levdc.esa.intequires registration, or
ftp://zardoz.nilu.no/nadir/projects/vintersol/daidgondesequires accountfz=Global
Monitoring Laboratory, National Oceanic and Atmospb Administration
(ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/

! Due to COVID-19 restrictions, most Canadian ozondsadata were available only up to March or Apdi2Q.
2Tateno data were corrected for the change fromd2alddine to ECC ozonesondes in December 2009.
3 Stations affected by a drop-off in ECC sonde s$etitsi > 3% in the stratosphere, after 2015 (sesuBer et al.,

2020). The drop-off is much smaller (<< 1%) in thegposphere, and should be negligible here. At ntdrilge
affected stations, ECC sondes behaved normallyag&019/2020.

Station Latitude | Longitude | Data source | Data Profiles /
(deg N) (deg E) (see caption)| until spectra per
month in
2020
Alert, Canadé"* 82.5( -62.3¢ | W 4/202( 3.7¢
Eureka, Canad?® 80.0¢ -86.4: | W, E 9/202( 4.8¢
Ny-Alesund, Norwa 78.9: 11.92 | W, E 10/202(C 7.10
Ny-Alesund FTIR, Norwz 78.92 11.92 | N 7/202( 12.8¢
Thule FTIRGreenlanc 76.5:¢ -68.7¢ | N 9/202( 73
Resolute, Canac* 74.7: -94.9¢ | W 4/202( 5.5(
Scoresbysund, Greenle 70.4¢ -21.98 | E 11/202(C 4.0C
Kiruna FTIR, Swede 67.41 20.41| N 7/202( 46
Sodankyla, Finlar 67.3¢ 26.6: | W, E 12/202( 2.8%
Lerwick, United Kingdor 60.1: -1.1E | W, E 12/202( 3.92
Churchill, Canadi * 58.7¢ -93.82 | W 3/202( 3.3¢
Edmonton, Canac"* 53.5¢ -114.1C| W 3/202( 3.67
Goose Bay, Canac* 53.2¢ -60.3¢ | W 3/202( 2.67
Bremen FTIR, Germa 53.1: 8.85 | N 10/202( 5.27
Legionowo, Polan 52.4( 20.97 | W 10/202C 4.0C
Lindenberg, Germai 52.2: 14.12 | W 11/202C 473
DeBilt, Netherlanc 52.1( 5.1¢ | W, E 12/202( 4.33
Valentia, Irelan 51.9¢ -10.2F | W, E 12/202(C 250
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Uccle, Belgiun 50.8( 43¢ | W, E 12/202(C 12.0C
Hohenpeissenberg, Germi 47.8( 11.01| W 12/202( 105C
Zugspitze FTIR, Germa 47.4z% 10.9¢ | N 9/202( 73
Jungfraujoch FTIR, Switzerlal 46.5¢ 7.9¢ | N 12/202( 46
Payerne, Switzerlai 46.8] 6.94| W 10/202(C 11.1C
Haute Provence, Frar 43.92 571 N 8/202( 2.5C
Haute Provence LIDAR, Fran 43.9:2 571 N 8/202( 3.5C
Toronto FTIR, Canac 43.6€ -79.4C | N 10/202( 59
Trinidad Head, California, US 41.0¢ -124.18 | G 12/202( 3.5¢
Madrid, Spail 40.4¢ -3.72 | W 11/202C 4.09
Boulder, Colorado, US 39.9¢ -105.2¢ | G 12/202( 4.8:
Boulder FTIR, Colorado, US 39.9¢ -105.2¢ | N 10/202( 56
Tateno (Tsukuba), Jap? 36.0¢ 140.1: | W 10/202( 2.7C
Table Mountain LIDAR 34.4( -117.7C| N 8/202( 19
California, USA

Izana, Tenerife, Spe 28.41 -16.5: | W 8/202( 2.0C
Izana FTIR, Tenerife, Spa 28.3( -16.4¢ | N 9/202( 28
Hong Kong, Chin 22.3] 11417 | W 9/202( 4.11
Hilo, Hawaii, USA® 19.72 -155.07 | G 12/202(C 4,08
Mauna Loa FTIR, Hawaii, US 19.5¢ -155.5¢ | N 10/202( 36
Paramaribo, Surinar 5.81 -55.21 | N, E 10/202C 3.6C
Pago Pago, American San? -14.2¢ -170.5¢ | G 12/202( 3.0¢
Suva, Fij? -18.1¢ 178.3: | G 9/202( 1.4¢
Wollongong FTIR, Australi -34.41 150.8¢ | N 10/202( 43
Broadmeadows, Austral -37.6¢ 144,98 | W 71202( 4.2¢
Lauder, New Zealar -45.0¢ 169.6¢ | W 10/202(C 440
Lauder FTIR, New Zealai -45.0¢ 169.6¢ | N 10/202( 99
Macquarie Island, Austral -54.5( 158.9¢ | W 71202( 4.2¢

Apart from the sondes, FTIR spectrometers from\teevork for the Detection of
Atmospheric Composition Change (NDACC, De Mazidralg 2018) provide independent
information, based on a completely different metfgrdund-based solar-infrared absorption
spectrometry). The altitude resolution of FTIR ozqmofiles in the troposphere is much coarser
(5 to 10 km) than that of the sondes, while acqurasimilar, 5 to 10% (Vigouroux et al.,2015).
Finally, we use data from tropospheric lidars (Gawd al., 2015, Granados-Mufioz & Leblanc
2016), which provide ozone profiles frof8 to 12 km altitude, with accuracy comparable ® th
sondes (5 to 10%; Leblanc et al., 2018), and sligitarser altitude resolution (100 m to 2 km).

We also use global atmospheric composition re-aealyrom the Copernicus
Atmosphere Monitoring Service for the years 2002@&9, and operational analyses for the year
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2020 (CAMS, Inness et al., 2019; see also Park,&2@20). The CAMS data are taken at the
grid-points closest to the stations in Table 1. @halyses (in 2020) are adjusted for the small
average difference to the re-analyses in 2018 at8.2Z2AMS (re-)analyses are based on
meteorological fields, and assimilation of sateltbservations of ozone and N®lowever, for
NO: the impact of the assimilation is small and freglyeinsignificant, so that tropospheric NO
in CAMS is essentially controlled by the prescriledissions (Inness et al., 2019). Similarly, the
limited information content of current satellite aserements of tropospheric ozone means that
tropospheric ozone in CAMS is also driven largehthe prescribed emissions (and the
chemistry module). Stratospheric ozone, howevamiistrained well by the assimilated satellite
data. Thus, CAMS analyses account for the largéic\stratospheric depletion in spring of 2020
(Manney et al., 2020; Wohltmann et al., 2020),Z020 meteorological conditions, and for
ozone transport, e.g. from the stratosphere tartip@sphere (Neu et al., 2014). However, since
they rely on “business as usual’ emissions for 2828 CAMS analyses do not account for the
effects of COVID-19 emissions reductions in 202Qropospheric ozone (and NO

3 Results

For selected stations, Fig. 1 presents the anrygscof tropospheric ozone over the last
20 years, at 6 km, a representative altitude ferfde troposphere. Monthly means (over 1-km
wide layers) reduce synoptic meteorological vatigband measurement noise, and focus on
longer-term, larger-scale variations.

Payerne, Jungfraujoch, and Trinidad Head show apartycle with low ozone in
winter and high ozone in summer. This is the casebst stations in the northern extratropics
(Cooper et al., 2014; Gaudel et al., 2018; Paetsdl., 2020). Increased photochemical
production due to more sunlight and warmer tempeegatis the main driver for the summer
ozone maximum in the northern extratropics (Wul.e2807; Archibald et al., 2020).

Figure 1 shows substantial yearly variability, bmbne levels are notably below average
in 2020, at all four stations (thick red lines iig.FL). At Payerne and Jungfraujoch, and a number
of other stations, monthly means in spring and san2020 were actually the lowest, or close to
the lowest, since 2000. For context, the dark bhes in Fig. 1 provide global C&mission
reductions due to the COVD-19 pandemic (Le Quérd.e2020b). Comparable reductions
apply to global ozone precursor emissions {ld@d VOCSs). The (daily) emission reductions in
Fig. 1 indicate that the largest effect for ozonghhbe expected after March 2020. However,
Fig. 1 does not show any clear or close correspuwelbetween unusual ozone monthly means
in 2020 (red lines) and the emission reductionsk(baie lines).
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Figure 1. Observed ozone monthly means at four typicalostat Results are for 6 km altitude.
The thick red line highlights the year 2020. Cliolagical averages, and standard deviations
over the years 2000 to 2020 are indicated by tiok tilack lines. Payerne) and Trinidad Head

(c) are sonde stations. Jungfraujobhié an FTIR station. Table Mountaid)(is a lidar station.

Dark blue lines and scale on the right: Bfnission reduction (in percent) from Le Quérélet a
(2020b), as a proxy for ozone precursor reductiorZ)20.

correspondence between the unusual behavior ofwdzsezone in 2020 (red line in Fig. 2a),

Annual cycles of ozone anomalies, averaged overoathern extratropical stations
(stations north of 15°N), are shown in Fig. 2. Arabies were defined as the relative deviation

(in percent) from the 2000-2020 climatological me&each calendar month at each station. As
for the single stations in Fig. 1, the observedh®n extratropical average shows exceptionally
low ozone throughout spring and summer 2020 (reglih Fig. 2a). This is not reproduced by

the CAMS analyses, which do not account for COVmlDrélated emissions reductions, and
simulate ozone in the usual range in 2020 (redifirfédg. 2b). Again, there is no close temporal

and the emission reductions (dark blue line in Ea&).
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Figure 2. Annual cycles of monthly mean northern extrattapozone anomalies at 6 km
altitude. Anomalies are in percent, relative to¢hmatological monthly mean calculated for
each station/ instrument, and for the period 2@02020 (all Januaries, all Februaries, ..., all
Decembers). These single station/instrument anemalie then averaged over all northern
extratropical stations/instruments (north of 15°Rnela) Results from the station observations.
Panelb) Results for CAMS atmospheric composition (re-)gses$ at grid points nearest the
stations. The CAMS data do not account for COVIDrdlted emissions reductions in 2020.
Grey lines: individual years from 2000 to 2019.ckied line: year 2020. Thick black lines:
average anomaly, =1 standard deviation over thesy®ark blue lines and scale on the right in

panel a): Global C@emission reduction in 2020 (in percent) from Leé€@uet al. (2020b), as in
Fig. 1.

Figs. 1 and 2 show large negative anomalies fromil ApAugust 2020. Fig. 3 compares
anomaly profiles averaged over those five calenuamths, between the years 2011 and 2020.
Both years saw unusually large springtime ozonéetiep in the Arctic stratosphere (Manney et
al., 2020; Wohltmann et al., 2020). In the strabesp, above:10 km, the Arctic depletion
appears as low ozone, both in observations and CAdd@ts (particularly for stations north of
50°N). In both the stratosphere and the troposplieeeobserved profiles show more variability
than the smoother CAMS profiles. In 2020, most oles@ single station anomaly profiles (Fig.
3b) are negative throughout the northern extratadgroposphere (between 1 and 10 km). This
is not the case in 2011 (Fig. 3a, 3c), nor in tAMS data in 2020 (Fig. 3d).

The 2020 anomaly is even clearer for the northgtragopical mean profile (dark blue
lines in Fig. 3). The observed 2020 mean anomaifileris large, -6% to -9%, and statistically
significant at the 95% level (more than 99% in ¥dé@m 1 to 8 km (Fig. 3b), whereas the
corresponding CAMS profile is close to zero (Fid).Fig. 3 indicates that Arctic stratospheric
springtime ozone depletion did not have a largectfbn tropospheric ozone below 8 km in 2011
and 2020 (see also Fig. S1 in the supplement)itaidhe CAMS “business as usual” simulation
does not account for the observed large negaitp®spheric anomaly in 2020.
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Fig. 3b also shows a simulated profile of troposjgh@zone reduction from a recent
chemistry-climate modelling study of COVID-like essions decreases by Weber et al. (2020).
This simulated profile (red line in our Fig 3b) rclag¢s the observed northern extratropical ozone
reduction (dark blue line), from the ground up bmat 8 km. Above 8 km, the simulated profile
deviates by10% from the observed profile, because it assummed 2012 to 2014
meteorological conditions. The CAMS analyses (Bi). show that 2020 meteorological
conditions and springtime Arctic stratospheric azdepletion resulted in ozone reductions of
5% to 10% above 9 km, consistent with the obsevuati

a,) avg. O3 anomaly, Apr-Aug 2011 b.) avg. O3 anomaly, Apr-Aug 2020
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Figure 3. Ozone anomaly profiles (in percent), averaged Apeil to August. Stations are
excluded in years where their data cover less tinae of these five months. Paagfor the

year 2011. Pandl) for the year 2020. Light blue lines: northern aktpical stations (north of
15°N). Light orange lines: remaining stations, sooft 15°N. Thick dark blue line: mean of the
northern extratropical stations. Thin dark blue#n95% confidence interval of the mean of the
northern extratropical stations. Red line in pdnekimulated ozone change at 40°N from Weber
et al. (2020Fig. S4, scenario A3). Panely, d). Same as a), b), but for CAMS (re-)analyses at
the grid-points closest to the stations.
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Time series of the tropospheric anomaly (averagad April to August, and from 1 to 8
km altitude) are shown in Fig. 4. In the observati@eft panel), the year 2020 stands out with
large negative anomalies, not seen in the CAMS. datiass the twenty previous years, ozone
anomalies at individual stations (thin lines) azatgered around zero. The northern extratropical
average anomaly (dark blue line) is usually smahan £3%. The only other observed exception
is the positive anomaly related to the (Europe@&atfwave summer of 2003 (Vautard et al.,
2007). The large negative northern extratropicahaaly in the observations in 2026,7%, is
clearly outside of the x?range of the previous 20 years (thin dark blued)nlit is not
reproduced by the CAMS “emissions as usual” anslysi

a. b.
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Figure 4. Tropospheric ozone anomaly, averaged over ApAugust and from 1 to 8 km, for
the years 2000 to 2020. PaaglObservations. Panb) CAMS atmospheric composition (re-
)analyses. Light blue lines: northern extratropstations (north of 15°N). Light orange lines:
stations south of 15°N. Thick dark blue line: Awggaver all stations north of 15°N. Thin dark
blue lines: +2 standard deviations over all yedithis average.

The geographic distribution of the average tropesiptozone anomalies is shown for
2011 and 2020 in Fig. 5. 2020 stands out in themfasions with large negative anomalies at
nearly all northern extratropical stations, andidy uniform geographical distribution (see
Table S1 of the supplement for the numerical vglu@AMS does show negative anomalies in
2020, but only north of 50°N, and not as largeh&sabservations. In the Southern Hemisphere
in 2020, agreement between observations and CAMS8iie good, typically within 2.5% or
better (see also Table S1 in supplement). In 28drhe stations show positive anomalies,
negative anomalies are not as large as in 2020thengeographical distribution is less uniform.
Agreement between observations and CAMS is reatomaB011, usually within a few percent.
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a') ozone anomaly [%], 2011, Apr to Aug, 1 to 8 km b') ozone anomaly [%], 2020, Apr to Aug, 1 to 8 km
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Figure 5. Geographic distribution of observed troposphericne anomalies (averaged over the
months April to August, and over altitudes fronp18tkm) for the yeara) 2011 and) 2020.
Panels) andd): same, but for CAMS results at the station locaidolored circles give the
anomaly at the ozonesonde stations. Squares afd lRrand lidar stations. See Table S1 of the
supplement for the numerical values. Black fillindicates insufficient data in the given year.

4 Discussion and Conclusions

Ozone stations in the northern extratropics inéietceptionally low ozone in the free
troposphere (1 to 8 km) in spring and summer 2@20npared to the 2000-2020 climatology,
ozone was reduced by 7%4(nmol/mol). Such widespread low tropospheric 0z@aiceoss so
many stations and over several months has notddesarved in any previous year since 2000.
The observed 7% ozone reduction in the free trapargpstands in contrast to increases of
surface ozone by 10% to 30%, reported for manyupedl urban areas after the COVID-19
related emissions reductions in 2020 (e.g., Cgjhiarelliet al., 2020; Lee et al., 2020; Shi &
Brasseur, 2020; Siciliano et al., 2020; Venter et al., 2020). However, the chemical regiore
ozone in the free troposphere is different (e.g., Kroll et al., 2020; Sillman, 1999; Thornton et al.,
2002), and free tropospheric ozone reductionsgreated after the substantial decrease of
precursor emissions due to the COVID-19 pandemgr (Buevara et al., 202Bhang et al.,
2020).
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Recent model simulations of COVID-like emissionsréases (Weber et al., 2020) find
tropospheric ozone reductions very similar to dasesvational results. From our results, and the
simulations by Weber et al., 2020, it appearsti@atotal tropospheric ozone burden of the
northern extratropics decreased by about 7% foil AppAugust 2020. The contribution from
ozone increases in polluted urban areas to theltotden is opposite, but very small.

The Weber et al. (2020) simulations indicate thatrhajor causes of tropospheric ozone
reduction come from reduced surface transportgt@ane decrease throughout most of the
northern extratropical troposphere), and from reduaviation (ozone decrease mostly between
10 and 12 km altitude and north of 30°N, see alsw@ et al., 2017). While the simulations are
gualitatively consistent with the observationsythensider only March to May. New
simulations using more recent and extended emiss&stimatesl{e Quéré et al., 2020b; Liu at
al., 2020), and further comparison with our statiservations would be worthwhile.

The observed large and fairly uniform 7% reductbonzone in the northern
extratropical troposphere in spring and summer 20820ides a far reaching test case for the
response of tropospheric ozone to emission chakgether quantification of this anomaly will
be possible, when observations from commerciatair(lAGOS), and satellite instruments
become available. Additional modelling studies wilprove our understanding of the
contributions from different sectors such as aiffic, and surface transportation.
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Data Sources

Most of the ozonesonde data used in this studjreeéy available from the World Ozone and
UV Data Centrel{ttps://woudc.org at Environment Canadat{ps://exp-studies.tor.ec.gc.9a/
and are downloadable lattps://woudc.org/archive/Archive-NewFormat/Ozoned&® 1.0 1).

Some ozonesonde data for 2020 were not yet avaiddlthe WOUDC. Instead, rapid delivery
data were obtained froftp://zardoz.nilu.no/nadir/projects/vintersol/datdgondegrequires
registration), at the Nadir database of the Noraednstitute for Air Quality (NILU,
https://projects.nilu.no/nadir/obs.htilRegistration information, and the same data in
different format, are available from the Europepac Agency Validation Data Center
(https://evdc.esa.in)/

For Boulder, Trinidad Head, Hilo, Fiji, and Sametations operated by the US National Oceanic
and Atmospheric Administration, Global Monitoringlhoratory
(https://lwww.esrl.noaa.gov/gmd/ozw)/data can be obtained freely from
ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/

FTIR and lidar data, as well as some ozonesondg dad from the Network for the Detection of
Atmospheric Composition Chandetips://ndacc.org and are freely available at
ftp://ftp.cpc.ncep.noaa.gov/ndacc/statiandftp:/ftp.cpc.ncep.noaa.gov/ndacc/RD/
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Copernicus Atmosphere Monitoring Service (CAMS)oglochemical weather EACA4 re-
analyses are availablel&tps://atmosphere.copernicus.eu/daCAMS operational global
analyses and forecasts are availabletats://apps.ecmwf.int/datasets/data/cams-nredltime
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