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Key Points (shortened to less than 140 characters each, and changed as suggested by 
Reviewer #2): 

• In spring and summer 2020, stations in the northern extratropics report on average 7% (4 
nmol/mol) less tropospheric ozone than normal. 

• Such low tropospheric ozone, over several months, and at so many sites, has not been 
observed in any previous year since at least 2000. 

• Most of the reduction in tropospheric ozone in 2020 is likely due to emissions reductions 
related to the COVID-19 pandemic. 
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Abstract 

Throughout spring and summer 2020, ozone stations in the northern extratropics recorded 
unusually low ozone in the free troposphere. From April to August, and from 1 to 8 kilometers 
altitude, ozone was on average 7% (≈4 nmol/mol) below the 2000 to 2020 climatological mean. 
Such low ozone, over several months, and at so many stations, has not been observed in any 
previous year since at least 2000. Atmospheric composition analyses from the Copernicus 
Atmosphere Monitoring Service and simulations from the NASA GMI model indicate that the 
large 2020 springtime ozone depletion in the Arctic stratosphere contributed less than one 
quarter of the observed tropospheric anomaly. The observed anomaly is consistent with recent 
chemistry-climate model simulations, which assume emissions reductions similar to those caused 
by the COVID-19 crisis. COVID-19 related emissions reductions appear to be the major cause 
for the observed reduced free tropospheric ozone in 2020. 

 

Plain Language Summary 

Worldwide actions to contain the COVID-19 virus have closed factories, grounded airplanes, and 
have generally reduced travel and transportation. Less fuel was burnt, and less exhaust was 
emitted into the atmosphere. Due to these measures, the concentration of nitrogen oxides and 
volatile organic compounds (VOCs) decreased in the atmosphere. These substances are 
important for photochemical production and destruction of ozone in the atmosphere. In clean or 
mildly polluted air, reducing nitrogen oxides and/or VOCs will reduce the photochemical 
production of ozone and result in less ozone. In heavily polluted air, in contrast, reducing 
nitrogen oxides can increase ozone concentrations, because less nitrogen oxide is available to 
destroy ozone. In this study, we use data from three types of ozone instruments, but mostly from 
ozonesondes on weather balloons. The sondes fly from the ground up to 30 kilometers altitude. 
In the first 8 kilometers, we find significantly reduced ozone concentrations in the northern 
extratropics during spring and summer of 2020, less than in any other year since at least 2000. 
We suggest that reduced emissions due to the COVID-19 crisis have lowered photochemical 
ozone production and have caused the observed ozone reductions in the troposphere. 

 

1 Introduction 

Widespread measures to contain the COVID-19 pandemic have slowed, or even closed 
down, industries, businesses, and transportation activities, and have reduced anthropogenic 
emissions substantially throughout the year 2020. Guevara et al. (2020), or Barré et al. (2020) 
report European emissions reductions up to 60% for NOx, and up to 15% for Non-Methane 
Volatile Organic Compounds (NMVOC) in March/April 2020. Based on satellite observations of 
NO2 columns (Bouwens et al., 2020), comparable NOx emissions reductions are reported for 
Chinese cities in February 2020 (Ding et al., 2020; Feng et al., 2020). Globally averaged CO2 
emissions decreased by 8.8% during the first half of 2020 (Liu et al., 2020), consistent in timing 
and magnitude with the aforementioned NO2 emission reductions. The largest relative reductions 
occurred for air traffic, where emissions decreased by ≈40%, on average, in the first half of 2020 
(Le Quéré et al., 2020a; Liu et al., 2020), and remained low during the second half of 2020 (Le 
Quéré et al., 2020b). 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

These COVID-19 emissions reductions are large enough to affect ozone levels in the 
troposphere (Dentener et al., 2011). Tropospheric O3-NOx-VOC-HOx chemistry is, however, 
complex and nonlinear. The net effect of emission changes depends on NOx and VOC 
concentrations (e.g., Kroll et al., 2020; Sillman, 1999; Thornton et al., 2002). In polluted regions, 

at high NOx concentrations (>> 1pbb), reducing NOx concentrations can increase ozone, because 
ozone titration by NO is reduced (e.g., Sicard et al., 2020). At low concentrations (NOx < 1 
nmol/mol), however, in the clean or mildly polluted free troposphere, reducing NOx lowers 
photochemical ozone production (e.g., Bozem et al., 2017), and results in less ozone. 

Indeed, for many polluted regions, studies report increased near-surface ozone after 
COVID-19 lockdowns (e.g., Collivignarelli et al., 2020; Lee et al., 2020; Shi & Brasseur, 2020; 

Siciliano et al., 2020; Venter et al., 2020). Reduced surface ozone is reported for some rural 
areas, e.g., in the US and Western Europe (Chen et al., 2020; Menut et al., 2020). Meteorological 
conditions complicate matters, as they play an important role as well (Goldberg et al., 2020; 

Keller et al., 2021; Ordóñez et al., 2020; Shi & Brasseur, 2020). 

In the free troposphere, ozone is an important greenhouse gas, and plays a key role in 
tropospheric chemical reactions, controlling the oxidizing capacity (e.g. Archibald et al., 2020; 
Cooper et al., 2014; Gaudel et al, 2018). The Northern Hemisphere free troposphere is dominated 
by net photochemical ozone production, proportional (albeit nonlinearly) to the availability of 
ozone precursor gases (e.g., Zhang et al., 2020). In contrast to increases of surface ozone in 
polluted urban areas after the COVID-19 emissions reductions, we find significant reductions of 
ozone in the northern extratropical free troposphere. These large-scale reductions occurred in late 
spring and summer 2020, following the widespread COVID-19 slowdowns, and are unique 
within the last two decades. 

2 Instruments and Data 

Regular observations of ozone in the free troposphere are sparse: Only around 50 ozone 
sounding stations worldwide (e.g. Tarasick et al., 2019), a handful of tropospheric lidars (Gaudel 
et al., 2015; Leblanc et al., 2018), and about twenty Fourier Transform Infrared Spectrometers 
(FTIRs, Vigouroux et al., 2015). In-Service Aircraft for a Global Observing System (IAGOS, 
Nédélec et al., 2015) are another important source of tropospheric ozone data. Due to the 
COVID-19 slowdowns, however, few IAGOS aircraft were flying in 2020, and IAGOS data 
became quite sparse, with only about 20 flights per month since April 2020, compared to more 
than 200 flights per month in 2019. The information content of satellite measurements on ozone 
in the free troposphere is limited, and accuracy is modest, 10 to 30% (Hurtmans et al., 2012; Liu 
et al., 2010; Oetjen et al., 2014). The recent Tropospheric Ozone Assessment Report found large 
differences in tropospheric ozone trends derived from different satellite instruments, and even 
different signs in some regions (Gaudel et al., 2018). 

Ozonesondes measure profiles with high vertical resolution, about 100 m, and good 
accuracy, 5 to 15% in the troposphere, 5% in the stratosphere (Smit et al., 2007; Sterling et al., 
2018; Tarasick et al., 2016; Van Malderen et al., 2016; Witte et al., 2017; WMO, 2014). This is 
adequate to detect ozone anomalies of several percent. We use stations with regular soundings, at 
least once per month since the year 2000, and with data available until at least July 2020. 
Soundings with obvious deficiencies were rejected (i.e. large data gaps, integrated ozone column 
from the sounding deviating by more than 30% from ground- or satellite-based spectrometer 
measurement). Table 1 provides information on stations, and public data archives. 
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Table 1. Stations in this study, mostly ozonesonde stations. FTIR and LIDAR stations are 
italicized. Data sources: W=World Ozone and UV Data Centre 
(https://woudc.org/archive/Archive-NewFormat/OzoneSonde_1.0_1/ ), N=Network for the 
Detection of Atmospheric Composition Change (ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/; 
ftp://ftp.cpc.ncep.noaa.gov/ndacc/RD/), E= European Space Agency Validation Data Center 
(https://evdc.esa.int/ requires registration, or 
ftp://zardoz.nilu.no/nadir/projects/vintersol/data/o3sondes requires account), G=Global 
Monitoring Laboratory, National Oceanic and Atmospheric Administration 
(ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/ ) 

1 Due to COVID-19 restrictions, most Canadian ozonesonde data were available only up to March or April 2020.  

2 Tateno data were corrected for the change from Carbon Iodine to ECC ozonesondes in December 2009. 

3 Stations affected by a drop-off in ECC sonde sensitivity > 3% in the stratosphere, after 2015 (see Stauffer et al., 
2020). The drop-off is much smaller (<< 1%) in the troposphere, and should be negligible here. At many of the 
affected stations, ECC sondes behaved normally again in 2019/2020.   

 
Station Latitude 

(deg N)  
Longitude 
(deg E) 

Data source 
(see caption) 

Data 
until 

Profiles / 
spectra per 
month in 
2020 

Alert, Canada 1, 3 82.50 -62.34 W 4/2020 3.75 

Eureka, Canada  3 80.05 -86.42 W, E 9/2020 4.89 

Ny-Ålesund, Norway 78.92 11.92 W, E 10/2020 7.10 

Ny-Ålesund FTIR, Norway 78.92 11.92 N 7/2020 12.86 

Thule FTIR, Greenland 76.53 -68.74 N 9/2020 73 

Resolute, Canada 1 74.72 -94.98 W 4/2020 5.50 

Scoresbysund, Greenland 70.48 -21.95 E 11/2020 4.00 

Kiruna FTIR, Sweden 67.41 20.41 N 7/2020 46 

Sodankylä, Finland 67.36 26.63 W, E 12/2020 2.83 

Lerwick, United Kingdom 60.13 -1.18 W, E 12/2020 3.92 

Churchill, Canada 1, 3 58.74 -93.82 W 3/2020 3.33 

Edmonton, Canada 1, 3 53.55 -114.10 W 3/2020 3.67 

Goose Bay, Canada 1 53.29 -60.39 W 3/2020 2.67 

Bremen FTIR, Germany 53.13 8.85 N 10/2020 5.27 

Legionowo, Poland  52.40 20.97 W 10/2020 4.00 

Lindenberg, Germany 52.22 14.12 W 11/2020 4.73 

DeBilt, Netherlands 52.10 5.18 W, E 12/2020 4.33 

Valentia, Ireland 51.94 -10.25 W, E 12/2020 2.50 
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Uccle, Belgium 50.80 4.36 W, E 12/2020 12.00 

Hohenpeissenberg, Germany 47.80 11.01 W 12/2020 10.50 

Zugspitze FTIR, Germany 47.42 10.98 N 9/2020 73 

Jungfraujoch FTIR, Switzerland 46.55 7.98 N 12/2020 46 

Payerne, Switzerland 46.81 6.94 W 10/2020 11.10 

Haute Provence, France 43.92 5.71 N 8/2020 2.50 

Haute Provence LIDAR, France 43.92 5.71 N 8/2020 3.50 

Toronto FTIR, Canada 43.66 -79.40 N 10/2020 59 

Trinidad Head, California, USA 41.05 -124.15 G 12/2020 3.58 

Madrid, Spain 40.45 -3.72 W 11/2020 4.09 

Boulder, Colorado, USA 39.99 -105.26 G 12/2020 4.83 

Boulder FTIR, Colorado, USA 39.99 -105.26 N 10/2020 56 

Tateno (Tsukuba), Japan 2 36.05 140.13 W 10/2020 2.70 

Table Mountain LIDAR, 
California, USA 

34.40 -117.70 N 8/2020 19 

Izana, Tenerife, Spain 28.41 -16.53 W 8/2020 2.00 

Izana FTIR, Tenerife, Spain  28.30 -16.48 N 9/2020 28 

Hong Kong, China 22.31 114.17 W 9/2020 4.11 

Hilo, Hawaii, USA 3 19.72 -155.07 G 12/2020 4.08 

Mauna Loa FTIR, Hawaii, USA 19.54 -155.58 N 10/2020 36 

Paramaribo, Suriname 5.81 -55.21 N, E 10/2020 3.60 

Pago Pago, American Samoa 3 -14.25 -170.56 G 12/2020 3.08 

Suva, Fiji 3 -18.13 178.32 G 9/2020 1.44 

Wollongong FTIR, Australia  -34.41 150.88 N 10/2020 43 

Broadmeadows, Australia  -37.69 144.95 W 7/2020 4.29 

Lauder, New Zealand -45.04 169.68 W 10/2020 4.40 

Lauder FTIR, New Zealand -45.04 169.68 N 10/2020 99 

Macquarie Island, Australia -54.50 158.94 W 7/2020 4.29 

 

Apart from the sondes, FTIR spectrometers from the Network for the Detection of 
Atmospheric Composition Change (NDACC, De Mazière et al., 2018) provide independent 
information, based on a completely different method (ground-based solar-infrared absorption 
spectrometry). The altitude resolution of FTIR ozone profiles in the troposphere is much coarser 
(5 to 10 km) than that of the sondes, while accuracy is similar, 5 to 10% (Vigouroux et al.,2015). 
Finally, we use data from tropospheric lidars (Gaudel et al., 2015, Granados-Muñoz & Leblanc 
2016), which provide ozone profiles from ≈3 to 12 km altitude, with accuracy comparable to the 
sondes (5 to 10%; Leblanc et al., 2018), and slightly coarser altitude resolution (100 m to 2 km). 

We also use global atmospheric composition re-analyses from the Copernicus 
Atmosphere Monitoring Service for the years 2003 to 2019, and operational analyses for the year 
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2020 (CAMS, Inness et al., 2019; see also Park et al., 2020). The CAMS data are taken at the 
grid-points closest to the stations in Table 1. The analyses (in 2020) are adjusted for the small 
average difference to the re-analyses in 2018 and 2019. CAMS (re-)analyses are based on 
meteorological fields, and assimilation of satellite observations of ozone and NO2. However, for 
NO2 the impact of the assimilation is small and frequently insignificant, so that tropospheric NOx 
in CAMS is essentially controlled by the prescribed emissions (Inness et al., 2019). Similarly, the 
limited information content of current satellite measurements of tropospheric ozone means that 
tropospheric ozone in CAMS is also driven largely by the prescribed emissions (and the 
chemistry module). Stratospheric ozone, however, is constrained well by the assimilated satellite 
data. Thus, CAMS analyses account for the large Arctic stratospheric depletion in spring of 2020 
(Manney et al., 2020; Wohltmann et al., 2020), for 2020 meteorological conditions, and for 
ozone transport, e.g. from the stratosphere to the troposphere (Neu et al., 2014). However, since 
they rely on “business as usual” emissions for 2020, the CAMS analyses do not account for the 
effects of COVID-19 emissions reductions in 2020 on tropospheric ozone (and NOx). 

3 Results 

For selected stations, Fig. 1 presents the annual cycles of tropospheric ozone over the last 
20 years, at 6 km, a representative altitude for the free troposphere. Monthly means (over 1-km 
wide layers) reduce synoptic meteorological variability and measurement noise, and focus on 
longer-term, larger-scale variations.  

Payerne, Jungfraujoch, and Trinidad Head show an annual cycle with low ozone in 
winter and high ozone in summer. This is the case for most stations in the northern extratropics 
(Cooper et al., 2014; Gaudel et al., 2018; Parrish et al., 2020). Increased photochemical 
production due to more sunlight and warmer temperatures is the main driver for the summer 
ozone maximum in the northern extratropics (Wu et al., 2007; Archibald et al., 2020). 

Figure 1 shows substantial yearly variability, but ozone levels are notably below average 
in 2020, at all four stations (thick red lines in Fig. 1). At Payerne and Jungfraujoch, and a number 
of other stations, monthly means in spring and summer 2020 were actually the lowest, or close to 
the lowest, since 2000. For context, the dark blue lines in Fig. 1 provide global CO2 emission 
reductions due to the COVD-19 pandemic (Le Quéré et al., 2020b). Comparable reductions 
apply to global ozone precursor emissions (NOx and VOCs). The (daily) emission reductions in 
Fig. 1 indicate that the largest effect for ozone might be expected after March 2020. However, 
Fig. 1 does not show any clear or close correspondence between unusual ozone monthly means 
in 2020 (red lines) and the emission reductions (dark blue lines). 
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Figure 1. Observed ozone monthly means at four typical stations. Results are for 6 km altitude. 
The thick red line highlights the year 2020. Climatological averages, and standard deviations 
over the years 2000 to 2020 are indicated by the thick black lines. Payerne (a) and Trinidad Head 
(c) are sonde stations. Jungfraujoch (b) is an FTIR station. Table Mountain (d) is a lidar station. 
Dark blue lines and scale on the right: CO2 emission reduction (in percent) from Le Quéré et al. 
(2020b), as a proxy for ozone precursor reductions in 2020. 

 

Annual cycles of ozone anomalies, averaged over all northern extratropical stations 
(stations north of 15°N), are shown in Fig. 2. Anomalies were defined as the relative deviation 
(in percent) from the 2000-2020 climatological mean of each calendar month at each station. As 
for the single stations in Fig. 1, the observed northern extratropical average shows exceptionally 
low ozone throughout spring and summer 2020 (red line in Fig. 2a). This is not reproduced by 
the CAMS analyses, which do not account for COVID-19 related emissions reductions, and 
simulate ozone in the usual range in 2020 (red line in Fig. 2b). Again, there is no close temporal 
correspondence between the unusual behavior of observed ozone in 2020 (red line in Fig. 2a), 
and the emission reductions (dark blue line in Fig. 2a).  
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Figure 2. Annual cycles of monthly mean northern extratropical ozone anomalies at 6 km 
altitude. Anomalies are in percent, relative to the climatological monthly mean calculated for 
each station/ instrument, and for the period 2000 to 2020 (all Januaries, all Februaries, …, all 
Decembers). These single station/instrument anomalies are then averaged over all northern 
extratropical stations/instruments (north of 15°N). Panel a) Results from the station observations. 
Panel b) Results for CAMS atmospheric composition (re-)analyses at grid points nearest the 
stations. The CAMS data do not account for COVID-19 related emissions reductions in 2020. 
Grey lines: individual years from 2000 to 2019. Thick red line: year 2020. Thick black lines: 
average anomaly, ±1 standard deviation over the years. Dark blue lines and scale on the right in 
panel a): Global CO2 emission reduction in 2020 (in percent) from Le Quéré et al. (2020b), as in 
Fig. 1. 

 

Figs. 1 and 2 show large negative anomalies from April to August 2020. Fig. 3 compares 
anomaly profiles averaged over those five calendar months, between the years 2011 and 2020. 
Both years saw unusually large springtime ozone depletion in the Arctic stratosphere (Manney et 
al., 2020; Wohltmann et al., 2020). In the stratosphere, above ≈10 km, the Arctic depletion 
appears as low ozone, both in observations and CAMS results (particularly for stations north of 
50°N). In both the stratosphere and the troposphere, the observed profiles show more variability 
than the smoother CAMS profiles. In 2020, most observed single station anomaly profiles (Fig. 
3b) are negative throughout the northern extratropical troposphere (between 1 and 10 km). This 
is not the case in 2011 (Fig. 3a, 3c), nor in the CAMS data in 2020 (Fig. 3d). 

The 2020 anomaly is even clearer for the northern extratropical mean profile (dark blue 
lines in Fig. 3). The observed 2020 mean anomaly profile is large, -6% to -9%, and statistically 
significant at the 95% level (more than 99% in fact) from 1 to 8 km (Fig. 3b), whereas the 
corresponding CAMS profile is close to zero (Fig. 3d). Fig. 3 indicates that Arctic stratospheric 
springtime ozone depletion did not have a large effect on tropospheric ozone below 8 km in 2011 
and 2020 (see also Fig. S1 in the supplement), and that the CAMS “business as usual” simulation 
does not account for the observed large negative tropospheric anomaly in 2020. 
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Fig. 3b also shows a simulated profile of tropospheric ozone reduction from a recent 
chemistry-climate modelling study of COVID-like emissions decreases by Weber et al. (2020). 
This simulated profile (red line in our Fig 3b) matches the observed northern extratropical ozone 
reduction (dark blue line), from the ground up to about 8 km. Above 8 km, the simulated profile 
deviates by ≈10% from the observed profile, because it assumes fixed 2012 to 2014 
meteorological conditions. The CAMS analyses (Fig. 3d) show that 2020 meteorological 
conditions and springtime Arctic stratospheric ozone depletion resulted in ozone reductions of 
5% to 10% above 9 km, consistent with the observations. 

 

Figure 3. Ozone anomaly profiles (in percent), averaged over April to August. Stations are 
excluded in years where their data cover less than three of these five months. Panel a) for the 
year 2011. Panel b) for the year 2020. Light blue lines: northern extratropical stations (north of 
15°N). Light orange lines: remaining stations, south of 15°N. Thick dark blue line: mean of the 
northern extratropical stations. Thin dark blue lines: 95% confidence interval of the mean of the 
northern extratropical stations. Red line in panel b): simulated ozone change at 40°N from Weber 
et al. (2020; Fig. S4, scenario A3). Panels c), d): Same as a), b), but for CAMS (re-)analyses at 
the grid-points closest to the stations.  
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Time series of the tropospheric anomaly (averaged from April to August, and from 1 to 8 
km altitude) are shown in Fig. 4. In the observations (left panel), the year 2020 stands out with 
large negative anomalies, not seen in the CAMS data. Across the twenty previous years, ozone 
anomalies at individual stations (thin lines) are scattered around zero. The northern extratropical 
average anomaly (dark blue line) is usually smaller than ±3%. The only other observed exception 
is the positive anomaly related to the (European) heat-wave summer of 2003 (Vautard et al., 
2007). The large negative northern extratropical anomaly in the observations in 2020, ≈-7%, is 
clearly outside of the ±2σ range of the previous 20 years (thin dark blue lines). It is not 
reproduced by the CAMS “emissions as usual” analysis. 

 

 

Figure 4. Tropospheric ozone anomaly, averaged over April to August and from 1 to 8 km, for 
the years 2000 to 2020. Panel a) Observations. Panel b) CAMS atmospheric composition (re-
)analyses. Light blue lines: northern extratropical stations (north of 15°N). Light orange lines: 
stations south of 15°N. Thick dark blue line: Average over all stations north of 15°N. Thin dark 
blue lines: ±2 standard deviations over all years of this average. 

 

The geographic distribution of the average tropospheric ozone anomalies is shown for 
2011 and 2020 in Fig. 5. 2020 stands out in the observations with large negative anomalies at 
nearly all northern extratropical stations, and a fairly uniform geographical distribution (see 
Table S1 of the supplement for the numerical values). CAMS does show negative anomalies in 
2020, but only north of 50°N, and not as large as the observations. In the Southern Hemisphere 
in 2020, agreement between observations and CAMS is quite good, typically within 2.5% or 
better (see also Table S1 in supplement). In 2011, some stations show positive anomalies, 
negative anomalies are not as large as in 2020, and the geographical distribution is less uniform. 
Agreement between observations and CAMS is reasonable in 2011, usually within a few percent. 
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Figure 5. Geographic distribution of observed tropospheric ozone anomalies (averaged over the 
months April to August, and over altitudes from 1 to 8 km) for the years a) 2011 and b) 2020. 
Panels c) and d): same, but for CAMS results at the station locations. Colored circles give the 
anomaly at the ozonesonde stations. Squares are for FTIR and lidar stations. See Table S1 of the 
supplement for the numerical values. Black filling indicates insufficient data in the given year. 

 

4 Discussion and Conclusions 

Ozone stations in the northern extratropics indicate exceptionally low ozone in the free 
troposphere (1 to 8 km) in spring and summer 2020. Compared to the 2000-2020 climatology, 
ozone was reduced by 7% (≈4 nmol/mol). Such widespread low tropospheric ozone, across so 
many stations and over several months has not been observed in any previous year since 2000. 
The observed 7% ozone reduction in the free troposphere stands in contrast to increases of 
surface ozone by 10% to 30%, reported for many polluted urban areas after the COVID-19 
related emissions reductions in 2020 (e.g., Collivignarelli et al., 2020; Lee et al., 2020; Shi & 

Brasseur, 2020; Siciliano et al., 2020; Venter et al., 2020). However, the chemical regime for 
ozone in the free troposphere is different (e.g., Kroll et al., 2020; Sillman, 1999; Thornton et al., 

2002), and free tropospheric ozone reductions are expected after the substantial decrease of 
precursor emissions due to the COVID-19 pandemic (e.g. Guevara et al., 2020; Zhang et al., 

2020). 
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Recent model simulations of COVID-like emissions decreases (Weber et al., 2020) find 
tropospheric ozone reductions very similar to our observational results. From our results, and the 
simulations by Weber et al., 2020, it appears that the total tropospheric ozone burden of the 
northern extratropics decreased by about 7% for April to August 2020. The contribution from 
ozone increases in polluted urban areas to the total burden is opposite, but very small. 

The Weber et al. (2020) simulations indicate that the major causes of tropospheric ozone 
reduction come from reduced surface transportation (ozone decrease throughout most of the 
northern extratropical troposphere), and from reduced aviation (ozone decrease mostly between 
10 and 12 km altitude and north of 30°N, see also Grewe et al., 2017). While the simulations are 
qualitatively consistent with the observations, they consider only March to May. New 
simulations using more recent and extended emissions estimates (Le Quéré et al., 2020b; Liu at 

al., 2020), and further comparison with our station observations would be worthwhile. 

The observed large and fairly uniform 7% reduction of ozone in the northern 
extratropical troposphere in spring and summer 2020 provides a far reaching test case for the 
response of tropospheric ozone to emission changes. Further quantification of this anomaly will 
be possible, when observations from commercial aircraft (IAGOS), and satellite instruments 
become available. Additional modelling studies will improve our understanding of the 
contributions from different sectors such as air traffic, and surface transportation. 
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and are downloadable at https://woudc.org/archive/Archive-NewFormat/OzoneSonde_1.0_1/ ).  

Some ozonesonde data for 2020 were not yet available at the WOUDC. Instead, rapid delivery 
data were obtained from ftp://zardoz.nilu.no/nadir/projects/vintersol/data/o3sondes (requires 
registration), at the Nadir database of the Norwegian Institute for Air Quality (NILU, 
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Copernicus Atmosphere Monitoring Service (CAMS) global chemical weather EAC4 re-
analyses are available at https://atmosphere.copernicus.eu/data . CAMS operational global 
analyses and forecasts are available at https://apps.ecmwf.int/datasets/data/cams-nrealtime/ . 
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