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France7

2Laboratoire Lagrange, OCA, UCA, CNRS, Nice, France8

Key Points:9

• We have applied self-learning methods to predict the key plasma regions crossed by the10

CLUSTER-II spacecraft in the Earth magnetosphere using the WHISPER instrument11

• The extraction of the thermal electron density from WHISPER active (sounding mode)12

and natural (passive mode) electric field spectra is automatically done in the free so-13

lar wind, in the magnetosheath region and in the plasmasphere14

• Such automatic procedure could be used for future data processing of electric field ex-15

periments onboard space missions (for instance AM2P onboard BepiColombo or MIME16

onboard JUICE)17
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Abstract18

The WHISPER (Waves of HIgh frequency and Sounder for Probing Electron density by Re-19

laxation) instrument has been monitoring the bulk properties of the plasma environment around20

Earth for more than twenty years. Onboard the 3-D Earth magnetospheric CLUSTER-II mis-21

sion, this experiment delivers active and natural electric field spectra, in a frequency interval22

ranging respectively from 3.5 to 82 kHz, and from 2 to 80 kHz. The thermal electron density,23

a key parameter of scientific interest and major driver for the calibration of particles instru-24

ment, is derived from spectra.25

Until recently, the extraction of the thermal electron density required a manual intervention.26

To automate this process, self-learning algorithms based on Multilayer Neural Networks have27

been implemented. The evaluation of the thermal electron density from WHISPER spectra de-28

pends on the plasma region encountered by the spacecraft. First, a fully-connected neural net-29

work has been implemented to predict the plasma region, using only the active spectra mea-30

sured by the WHISPER instrument. Secondly, a specific neural network has been implemented31

to predict the thermal electron density for each plasma region. The model reaches up to 98%32

prediction accuracy for some plasma regimes. Two thermal electron density prediction mod-33

els were trained, a first one to process data from the free solar wind and magnetosheath re-34

gions, and a second one for the plasmasphere region. The prediction accuracy can reach up35

to 95% in the free solar wind and magnetosheath regimes, and 75% in the plasmasphere.36

1 Introduction37

The CLUSTER-II mission has been successfully monitoring the plasma bulk properties38

of the Earth magnetosphere for more than twenty years (Escoubet et al., 1997). Launched in39

July and August 2000, this ESA mission is the first to study the ionized medium in near-Earth40

space in three dimensions, thanks to a tetrahedral configuration of four identical spacecraft (Escoubet41

et al., 2015). Each spacecraft follows polar orbits around the Earth, with a ∼57 h period. The42

elliptic orbits have been changed throughout the operations, from a closest perigee at 250 km43

to a farthest apogee at 120,000 km, which, together with the local time drift of the orbit plane44

throughout a year allows the spacecraft to cross the different plasma regions of the Earth mag-45

netosphere. The payload is identical for each satellite, consisting of 11 experiments dedicated46

to the measurements of the surrounding plasma, including five instruments from the Wave Ex-47

periment Consortium (WEC, Lefeuvre et al. (1993)), among which the WHISPER (Waves of48

HIgh frequency and Sounder for Probing Electron density by Relaxation; (Décréau et al., 1997))49
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instrument. The WHISPER instrument makes use of the two far double sphere electric anten-50

nas either in active (sounding) mode or in passive (natural) mode to characterize the plasma51

bulk properties such as the thermal electron density, the magnetic field amplitude as well as52

to provide useful information about the electron velocity distribution function (evdf) (Trotignon53

et al., 2001). In sounding mode, an active spectrum is built on-board by local excitation of the54

surrounding plasma at a frequency sweeping the 3.5-82 kHz range. In passive mode, the trans-55

mitter is switched off and the (electric) antennas are left at floating potential. The instrument56

becomes a natural wave receiver and spectrum analyser, delivering spectrograms over the 2-57

80 kHz frequency range (Décréau et al., 1997). The plasma bulk properties can be extracted,58

under certain conditions, from the active and natural electric field spectrograms measured by59

the WHISPER experiments. In particular, the thermal electron density can be deduced from60

the characteristics of natural waves in natural mode and from the plasma resonances triggered61

in active mode (Trotignon et al., 2003). The thermal electron density is one of the key datasets62

provided by the WHISPER experiment which is used for scientific interest (Canu et al., 2001;63

Darrouzet et al., 2008; El-Lemdani Mazouz et al., 2009; Kougblénou et al., 2011; Sandhu et64

al., 2016) and is the main driver of the calibration of the particles experiments (Johnstone et65

al., 1997; Trotignon et al., 2010). However, the extraction of the electron density requires a66

careful analysis of active and/or natural spectra and can be tricky in some plasma regions (Trotignon67

et al., 2001). Indeed, the location of plasma resonances in the electric field spectrograms, re-68

lated to the plasma parameters, strongly depends on the plasma conditions such as the mag-69

netic field or the evdf (Gilet et al., 2017). The presence and frequency position of plasma res-70

onances are documented in theoretical works (Bernstein, 1958). They are also revealed by nu-71

merical modeling of the experimental responses (Chasseriaux et al., 1972; Wattieaux et al., 2019).72

However, a study of the resonances patterns of both active and natural spectra measured by73

the experiment is required (Trotignon et al., 1986, 2001). In the case of the WHISPER instru-74

ment, the thermal electron density is extracted via a semi-automatic pipeline, and sometimes75

fully manually, e.g. for cross-calibration purposes or detailed scientific analysis (Trotignon et76

al., 2010).77

Fully-automatic algorithms, based on Machine Learning and Deep Learning methods,78

are developing quickly and some are already implemented in order to simplify data process-79

ing of space experiments. For instance, such algorithms have been implemented to detect space80

weather events (e.g. space weather forecasting, Camporeale et al. (2018)), to extract plasma81

parameters from space experiments (Zhelavskaya et al., 2016) or to predict the plasma regions82

–3–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Space Physics

in near-Earth regions (Nguyen et al., 2019; Breuillard et al., 2020). In order to automate the83

extraction of the thermal electron density from the electric field spectra measured by the WHIS-84

PER experiment, we propose to implement neural network methods (LeCun et al., 2015; Good-85

fellow et al., 2016). As explained above, the detection of the thermal electron density strongly86

depends on the plasma regime, mainly driven by the magnetic field strength (Trotignon et al.,87

2010). Therefore, the implemented pipeline proceeds in two steps. The first one is to deter-88

mine the plasma region to separate (i) regions where the electron plasma frequency is the only89

resonance in the frequency bands (i.e. electron cyclotron frequency is neglected), typically cor-90

responding to the solar wind and the magnetosheath, and (ii) regions where the electron plasma91

frequency is of the order of the electron cyclotron frequency, typically corresponding to the92

plasmasphere. To this purpose, we have implemented a fully-connected (dense) neural network93

classifying WHISPER spectra into three classes: free solar wind, magnetosheath and other plasma94

regions, including the plasmasphere, the tail and the cusp. The prediction accuracy can reach95

up to 98% for some plasma regimes. The second step is to automatically extract the thermal96

electron density from WHISPER electric field spectra using neural networks specifically im-97

plemented for each plasma region or group of plasma regions. In the free solar wind and the98

magnetosheath regions, we chose a recurrent (GRU) neural network architecture (Cho et al.,99

2014) to predict the electron plasma frequency from which the thermal electron density is de-100

rived. The prediction accuracy reaches up to 95% with a tolerance of one frequency bin (i.e.101

162.8 Hz, the difference between two scanned frequencies). For the plasmasphere region, the102

upper hybrid frequency, which is more easily detected in active spectra than the plasma fre-103

quency, is predicted, then the thermal electron density is derived using the electron cyclotron104

frequency (obtained from the magnetic field measurement). The corresponding self-learning105

model is a fully-connected (dense) neural network. The prediction accuracy reaches up to 75%106

with a tolerance of one frequency bin.107

A pipeline based on the self-learning algorithms detailed in this study is currently un-108

der development, to deliver the thermal electron density from the free solar wind and the mag-109

netosheath region to the Cluster Science Archive (Laakso et al., 2010). The efficiency of the110

automatic detection of the thermal electron density shows that such automated methods could111

be used to extract the plasma bulk properties from future experiments such as mutual impedance112

experiments onboard BepiColombo (PWI/AM2P) (Trotignon et al., 2006) and JUICE (RPWI/MIME)113

missions (Grasset et al., 2013).114
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This paper is organized as follows. First, the WHISPER experiment and its correspond-115

ing dataset are described in Sect 2. Secondly, we give a high-level description of the neural116

networks in Sect. 3. Thirdly, we detail the methods used to predict the plasma region encoun-117

tered by the spacecraft from WHISPER spectra and we explain the results given by the best118

neural network in Sect. 4. In Sect. 5, we describe the predictions of thermal electron density119

applied in different plasma regimes. In Sect 6, we discuss the applicability of such methods120

in the data processing of the WHISPER instrument and future electric field experiments such121

as PWI/AM2P and the RPWI/MIME onboard respectively BepiColombo and JUICE missions.122

Finally, we conclude our study in Sect 7.123

2 Instrumentation and data124

In this section, we first summarize the main characteristics of the WHISPER instrument125

(Sect 2.1). Then, we introduce its key datasets mainly composed of active and natural elec-126

tric field spectra and of the thermal electron density (Sect 2.2). Finally, we give an overview127

of the semi-automatic algorithms currently used to extract the thermal electron density from128

the WHISPER spectra (Sect 2.3).129

2.1 WHISPER instrument130

As part of the Wave Experiment Consortium (WEC, Lefeuvre et al. (1993)), the Waves131

of HIgh frequency and Sounder for Probing Electron density by Relaxation (WHISPER) in-132

strument is a relaxation sounder that monitors the in situ space plasma bulk properties such133

as the thermal electron density (Décréau et al., 1997). Such instruments have been previously134

deployed in several space missions which operated in various ionized environments such as135

near Earth (GEOS-1 & 2, ISEE-1, Viking) or in the interplanetary medium (Ulysses) (Décréau136

et al., 1978; Harvey et al., 1979; Bahnsen et al., 1986; Stone et al., 1992). The WHISPER prin-137

ciple is based on electric coupling between pairs of electric dipole antennas embedded in the138

surrounding plasma. This specific experiment consists of a pair of receivers and transmitters139

associated with parts of two WEC instruments: the sensors of the Electric Field and Wave (EFW,140

Gustafsson et al. (1997)) experiment and the data processing capability of the Digital Wave141

Processing (DWP, Woolliscroft et al. (1997)) experiment. Figure 1 shows the WHISPER ex-142

periment configuration, which consists of four orthogonal wire booms carrying spherical sen-143

sors (8 cm in diameter) at the tips and deployed around the spacecraft. The electric antennas144

have sphere-to-sphere separations of 88 m. Further information on the WHISPER electron-145
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ics (operational features and performances) are described in detail in Décréau et al. (1997).146

Note that the WHISPER instrument is identical on each of the four CLUSTER-II spacecraft.147

Figure 1. Illustration of the WHISPER relaxation sounder configuration, identical for the four CLUSTER-

II spacecraft, using the EFW electric field antennas as transmitters and two of the four spherical booms

Ri (8 cm in diameter) at the end of each antenna as receivers. The electric antennas have sphere-to-sphere

separations of 88 m.

Two operational modes are used alternatively.148

First, in sounding (active) mode, transmitters emit a sinusoidal signal from one antenna149

pair, at a given time t and frequency f , during a short time duration (∼1 ms). Each train pulse150

covers a frequency band of 976.6 Hz centered on the given frequency f . Next, the signal is151

received on the EFW probes of a receiving pair (R1R2 or R3R4) at t+δt. Using onboard Fourier152

analysis of the instrument response around the transmitted frequency and by sweeping the trans-153

mitted frequency over the 3.5-82 kHz frequency range, a 162.8 Hz frequency resolution (512154

bins) E-field spectrum is constructed on-board.155

Secondly, in passive (natural) mode, transmitters are switched off. The WHISPER ex-156

periment becomes a simple electric receiver and perfoms a Fourier analysis to acquire a nat-157

ural spectrum in the 2 to 80 kHz frequency range, with a frequency resolution of 162.8 Hz,158

corresponding to 512 bins (Décréau et al., 1997).159

The sounding mode is operated alternately with the natural wave mode, with all four space-160

craft following the same timeline. The WHISPER instrument is highly configurable and a num-161

ber of operational parameters can be set by telecommand from ground. The resulting time res-162

olution, depending on these parameters, varies from 0.3 to 3.4 s in natural mode and is gen-163

erally of 1.5 s in active mode. The typical operational pattern includes 3 s of active mode, fol-164

lowed by 49 s of natural mode.165

The relaxation sounder is based on the resonance principle of the propagation of plasma166

eigenmodes (Krall & Trivelpiece, 1973). Basically, the plasma characteristic frequencies of167
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the surrounding medium are triggered when these frequencies are in the emitted frequency range.168

When the transmitted pulse frequency is close to some plasma characteristic frequencies, very169

intense echoes are received. These stimulated signals are called plasma resonances. The WHIS-170

PER experiment operates close to the plasma characteristic frequencies which are typically found171

in the radio frequency (RF) range in Earth magnetospheric plasma. This effect allows the ex-172

traction of characteristic frequencies, which are directly related to the plasma bulk properties.173

In natural mode, only the natural electric emissions are monitored. Plasma bulk properties can174

thus be inferred from the analysis of active and natural spectra, among which:175

The electron plasma frequency, noted fpe, which is directly related to the thermal electron den-

sity as follows:

fpe =
1

2π

√
nee2

ε0me
, (1)

where ne is the thermal electron density, e is the electric charge, ε0 is the vacuum permittiv-176

ity and me the electron mass. The formula can be simplified as follows: fpe[kHz] ∼ 9
√

ne[cm−3].177

The electron cyclotron frequency and its harmonics, noted n fce, reads:

fce =
1

2π
eB0

me
, (2)

where B0 is the magnetic field amplitude. The formula can be simplified as follows: fce [kHz]178

∼ 0.028 B0 [nT]. Note that the electron cyclotron frequency can be extracted using the mea-179

surement of the magnetic field amplitude given by the magnetometer onboard the CLUSTER-180

II spacecraft (Balogh et al., 1997).181

The upper hybrid frequency fuh, related to fce and fpe, and defined as follows:

fuh =

√
f 2
pe + f 2

ce, (3)

Bernstein frequencies: in magnetized plasma, Bernstein frequencies, noted fqn, can occasion-182

ally be measured by the WHISPER experiment. They satisfy the following conditions: fqn >183

2 fce and n fce < fqn < (n+1) fce (Bernstein, 1958). The frequency location of Bernstein modes184

has been tabulated in the Hamelin diagram for a plasma at thermal equilibrium (Hamelin, 1978;185

Trotignon et al., 2001). A shift between the tabulated frequency and the observed fqn can re-186

veal the presence of a non-maxwellian evdf, e.g. two-electron-temperature plasma (Belmont,187

1981). Note that the lower hybrid frequency can be observed in specific cases (e.g. deep plas-188

masphere, Kougblénou et al. (2011)). This characteristic frequency is mainly driven by the mo-189

tion coupling of ions and electrons which allows to constrain the plasma ion composition.190
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2.2 WHISPER dataset191

Both active/natural electric field spectra and the derived thermal electron density com-192

pose the key science datasets of the WHISPER experiment. The active and natural spectro-193

grams show typical signatures encountered by the spacecraft in the different key plasma re-194

gions of the Earth magnetosphere. The characteristic signature of waves indicates the nature195

of the plasma region and, combined with the spacecraft position, reveals the different mag-196

netospheric boundaries and regions. Figure 2 illustrates an example of several plasma region197

crossings by C3 (SAMBA) spacecraft from 18 Feb 2007 at 09:43 UT to 19 Feb 2007 at 09:53198

UT associated with the frequency/time WHISPER active and natural spectra (second and third199

panels), the variation of the electron cyclotron frequency fce derived from the FGM measure-200

ment (fourth panel) and the variation of the electron plasma frequency fpe extracted by ad hoc201

methods (fifth panel). The satellite evolved from the free solar wind at large distances from202

Earth (∼17.0 Re), then crossed the bow shock at ∼16.3 Re around 17:23 UT on 18 Feb 2007203

and penetrated the magnetosheath until around 00:06 UT on 19 Feb 2007 at ∼10.7 Re. This204

plasma region crossing is well identified by a strong increase of the electron plasma frequency205

fpe (here from ∼20 kHz to ∼30 kHz). Then, the spacecraft entered the inner magnetosphere206

region in the cusp region (around 00:10 UT). Note that fpe was not extracted using ad hoc meth-207

ods due to a low signal-to-noise ratio. Finally, C3 spacecraft crossed the plasmasphere (char-208

acterized by higher fce values) a few minutes later.209

Figure 3 shows typical active (black curves) and natural (red dotted curves) electric field210

individual spectra measured by the WHISPER experiment in the key plasma regions with their211

corresponding plasma resonances extracted by ad hoc methods (see Sect. 2.3). The spectra have212

been expressed in dB and normalized between 0 and 1. First and second panels show the ac-213

tive and natural spectra measured in situ respectively in the free solar wind and in the mag-214

netosheath regime. In this regime, the electron temperature and the magnetic field amplitude215

are low, leading to the excitation of only one resonance usually triggered at, or close to, the216

electron plasma frequency fpe (shown by blue vertical dotted bars), from which the thermal217

electron density is derived. For instance, in the free solar wind (resp. magnetosheath regime),218

fpe ∼ 21.1 kHz, (resp. fpe ∼ 48.2 kHz) corresponding to ne ∼ 5.51 cm−3 (resp. ne ∼ 28.76 cm−3).219

Third panel shows the spectra measured by WHISPER in the plasmasphere regime. In this re-220

gion, the electron cyclotron frequency fce (∼ 5.5 kHz) and its harmonics (green) can be mea-221

sured by the WHISPER instrument as well as Bernstein resonances (magenta) and the upper222

hybrid frequency fuh (∼ 29.4 kHz) (yellow). fpe is then derived from fuh and fce (∼ 28.9 kHz).223
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The WHISPER dataset used for the self-learning algorithms presented in this paper consist of224

active/natural electric field spectra which have been processed by ad hoc methods to extract225

the thermal electron density. We briefly discuss this pipeline in the following section.226

2.3 Ad hoc methods227

In order to provide scientific analysis support and dissemination of high-level data, sev-228

eral semi-automatic algorithms have been developped to extract the thermal electron density229

(Trotignon et al., 2010). They are based on a manual analysis of the plasma region (a reso-230

nance pattern) based on WHISPER active and natural spectra, EFW spacecraft potential mea-231

surements and FGM magentic field measurements, coupled with an automatic extraction of232

spectral features (resonance, low cutoff, . . . ) from WHISPER active and/or natural spectra. The233

algorithms are specific to (i) the plasma region and (ii) the operational mode (active and nat-234

ural). In the free solar wind and the magnetosheath, the extraction of the electron plasma fre-235

quency is usually performed by (i) identifying the frequency position at maximum amplitude236

for active spectra or, (ii) identifying the low frequency cut-off for natural spectra. When nat-237

ural signatures are unclear, a proxy can also be derived, obtained from the cross-calibration238

of the EFW spacecraft potential and the electron plasma frequency obtained from WHISPER239

active spectra analysis. In the plasmasphere, the thermal electron density is extracted by (i)240

the location of the upper hybrid frequency or by (ii) manual analysis. For each plasma regime,241

the extraction process includes a manual selection of the frequency band which contains the242

desired characteristic frequencies, with the risk of a bad selection.243

This study aims to a fully-automatic electron density production on the easiest regions244

to analyze (i.e. solar wind and magnetosheath regimes) in order to deliver data faster and re-245

duce manpower and subjectivity due to the manual operations. For this purpose, we have im-246

plemented automatic routines based on neural networks. First, the region determination is the247

key to apply the appropriate algorithm for density calculation. Therefore, we have implemented248

a neural network which predicts the plasma regime. Secondly, we have applied a specific neu-249

ral network to determine the thermal electron density for the solar wind/magnetosheath region250

(for production tool) and for the plasmasphere region (for specific events). We detail the main251

stages of neural network process in the next section.252
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3 Multilayer neural networks253

In this section, we provide a general description of neural networks of direct interest to254

this study. Such methods are derived from a simplified model of the neural system based on255

the dynamical electrochemical properties of biological neurons and their inter-connections (Mcculloch256

& Pitts, 1943).257

Rosenblatt (1957) was the first to implement such a biological architecture, called Perceptron,258

to solve simple linear problems dealing with two classes of signals. This model was composed259

of a single layer of artificial neurons which is fully-connected to the input and the output lay-260

ers. Each modern neural network is based on this model (Lecun & Bengio, 1995; Goodfel-261

low et al., 2016). We provide a functional description of an artificial neuron in Sect 3.1. Then,262

we give the basic aspects of the architecture of the neural network based on a stack of arti-263

ficial neuron layers (Sect. 3.2). Finally, we introduce the implementation of such tools in Sect 3.3.264

3.1 Artificial neuron265

An artificial neuron is an information-processing unit that produces an output y from an

input signal x (Haykin, 1999). The neuron is the basic unit component of any neural network

method. The input signal is typically expressed by a vector:

x = (x1, . . . , xm) ∈ Rm

The signal x of dimension m is connected to the neuron k by a set of synapses characterized

by the synaptic weight, also expressed by a vector of dimension m:

wk = (wk,1, . . . ,wk,m) ∈ Rm

The signal x is multiplied by the synaptic weights which is represented in mathematical terms

by a scalar product between the vectors x and wk, called uk:

uk =

m∑
j=1

wk, jx j

Note that a bias, called bk, can be added to uk. This bias allows the scalar product uk to de-

viate from 0, that can lead to a better updates of the synaptic weights during the learning phase.

Then, an operation to uk is performed by an activation function called ϕ. This function allows

to (i) limit the amplitude range of the output signal and to (ii) introduce a non-linearity lead-

ing to a more complex transformation of the input data. The popular activation functions used

on artificial neurons are (i) the hyperbolic tangent function, that is differentiable, continuous

–10–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Space Physics

and delivering output values ranging from -1 to 1, (ii) the ReLu function (ReLu(x) = max(x, 0))

which is not differentiable at 0 but fast to compute, and (iii) the sigmoı̈d function defined as

ϕ(x) = 1/(1 + exp(−x)) for which the output value ranges from 0 to 1 and the derivative is

non-null which allows the neural network to make some progress at every step. The output

yk of the artificial neuron is then expressed by:

yk = ϕ(uk + bk)

Figure 4 summarizes the architecture of such artificial neuron with an m-dimensional sig-266

nal input and m synaptic weights. Note that artificial neurons can be more elaborated, such267

as for recurrent neural network (Hochreiter & Schmidhuber, 1997; Cho et al., 2014) from which268

the output yk depends on the previous state of the neuron, or for convolutional network (LeCun269

et al., 2015) where each neuron performs a filtering operation (i.e. discrete convolution) on270

a specific part of the data. We discuss the architecture of the artificial neural network com-271

posed of several neuron layers in the following section.272

3.2 Artificial Neural Networks273

The main idea of neural networks is to extract linear combinations of input data as de-274

rived features, and then model the output as a nonlinear function of these features. These su-275

pervised methods are mainly used for classification and/or regression tasks (Goodfellow et al.,276

2016). As illustrated in Figure 5, a neural network is composed of several layers of artificial277

neurons that are interconnected with neurons from the previous and the following layer. The278

classical layers from literature (LeCun et al., 2015) are:279

Input layer: This layer is composed of the content of the input dataset. In term of mathemat-

ical representation, each component of the dataset, called Xi, is expressed as a vector of the

size of the data (here m) and the entire dataset composed of n data, is expressed by a matrix

X:

X = (X1, . . . , Xm) ∈ Rm,n

Hidden layers: The intermediate layers are called hidden layers and are composed of a set of280

artificial neurons (see Sect 3.1). These layers allow the neural network to learn complex tasks281

by extracting progressively more meaningful features from the input dataset.282
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Output layer: Neural networks produce a predicted output for a given input Xi defined by a

vector called y∗i as follows:

y∗i = (y1, . . . , yN)

The output y∗i can be expressed as a function depending on the input Xi and the free param-

eters (i.e. synaptic weights + additional parameters) as follows:

y∗i = f (Xi; W)

where W is the whole synaptic weights wi, j. f can be seen as a combination of functions of

the following form:

f (x) = f(d)(. . . f(i)(. . . (f(2)(f(1)(x))) . . .) . . .)

where d is the number of hidden layers and f (i) = ( f (i)
1 , f (i)

2 , . . . , f (i)
w ), where f (i)

w is the acti-283

vation function ϕw,i associated to the ith-artificial neuron on the wth hidden layer. Usually, for284

a single classification task, the sigmoı̈d function is chosen as the activation function of the last285

layer. Then, the predicted coordinates yi of the output y∗i are expressed between 0 and 1 and286

their sum equals to 1. Therefore, the output y∗i can be seen as a probability of belonging to287

a class. Moreover, the corresponding classifier of the input data Xi is defined as C(Xi) = argmax(y∗i ).288

Neural networks are defined in a way that each neuron is structured and connected to289

each other. This architecture (i.e. structure) strongly depends on the problem to solve. In lit-290

terature, there exist several categories of neural network architectures. In a first category, the291

connection between artificial neurons can flow only in one direction from the input layer to292

the output layer. Note that the neurons can be fully or partially interconnected. This architec-293

ture, called multilayer feedforward network, is the simplest neural network architecture. The294

hidden layers are seen as feature extractions of the input dataset. In a second category, the re-295

current neural network differs from the feedforward neural network in that neurons can have296

backward pointing connections that can be understood as a form of memory. This architec-297

ture is useful when the input data are related in time. Such methods are commonly used for298

the data processing of temporal series. In this study, we have implemented both architectures.299

To predict the class of the input data, the neural network needs to be trained, i.e. the synap-

tic weights W need to be updated. The training step of the neural network can be seen as an

optimisation problem. First, the free parameters W are randomly initialized and a computa-

tion of current y∗ is realized. Then, the accuracy of the prediction is computed by measuring

the difference between the current estimated class Ci and the true training class Ci,true. For that,

we compute an objective function (i.e. a loss function), such as the categorical crossentropy
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function is defined as follows:

J(θ) =

m∑
i

yi,true log( f (Xi; W))

Then, we need to update the free parameters of the neural network to model the prediction on

the training outputs. For that, the loss function J is minimized by a gradient descent method

(called optimizer) using the backpropagation technique (Rumelhart et al., 1986). This tech-

nique uses the fact that the derivative of J with respect to the synaptic weights can be expressed

as the prediction error. Note that the derivative of J is only compared to a limited part of the

synaptic weights, chosen randomly, which is the main idea of the Stochastic Gradient Descent

(SGD). Therefore, we choose new free parameters that reduce the loss function:

Wnew = Wold − ε∇WJ(X,Wold)

where ε is the step of the descent which is commonly called the learning rate. Note that some300

optimizers add a more complex step or/and descent direction in order to speed up the conver-301

gence of the gradient descent (see ADAM method (Kingma & Ba, 2014), Adagrad method (Duchi302

et al., 2011) or RMSprop method (Tieleman & Hinton, 2012)). The update is performed it-303

eratively for a fixed number of times called epochs.304

Usually, the input and the output data are split into three different sub-datasets: (i) a train-305

ing dataset, (ii) a validation dataset and, (iii) a test dataset. The training dataset is fed to the306

neural network which tunes the free parameters to make correct predictions on the dataset it-307

self. Therefore, this dataset need to be representative of the global problem. The validation308

and the test dataset are used to know how well the neural network will generalize to new cases.309

If the model performs well on the training data, but it does not generalize, we say that the model310

overfits the training data, i.e. learning features are too specific to the training dataset. This over-311

fitting can be reduced by using a regularization technique called dropout (Srivastava et al., 2014).312

Basically, this technique ensures that every neuron has a probability p of being temporarily313

ignored during one training step. The hyperparameter p is called the dropout rate.314

To evaluate the performance on the different datasets, we compute an accuracy score such

as, for a classification task, the ratio of correct predictions, which is defined as:

acc =
1
N

N∑
i

1Ci=Ci,true

where Ci,true is the true class of the data Xi. We have used this accuracy score in the follow-315

ing to evaluate the performance of the tested self-learning methods.316

Note that the accuracy score does not take into account the class distribution (some classes317

could appear much more frequently than others) and does not give information about the num-318
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ber of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).319

Neural network performances can be described by the following metrics: (i) the accuracy of320

the positive precisions among all predicted positives, called precision and computed as TP/(TP+FP),321

and (ii) the ratio of positive instances, called recall and computed as TP/(TP+FN), that are cor-322

rectly detected by the method. As FP and FN are quite similar in this study, the performance323

is simply illustrated by the accuracy score.324

3.3 Implementation and ressources325

Nowadays, neural network methods are largely and actively used in space science, es-326

pecially in space weather applications for the data processing and the automatic detection of327

space weather events (Camporeale et al., 2018). Zhelavskaya et al. (2016) applied neural net-328

works to automatically determine the electron density from an electric field experiment on-329

board Van Allen Probes mission (Mauk et al., 2013). For that, they used the measured elec-330

tric field spectra and some geomagnetic conditions such as magnetic field line or the geomet-331

ric index. For this study, we chose to apply two separated neural networks to (i) determine the332

plasma region encountered by the spacecrafts (Sect. 4) and to (ii) extract the thermal electron333

density (Sect. 5), using only the WHISPER spectra, therefore ignoring external conditions.334

Several other automatic methods have been tested to process the WHISPER dataset. It335

must be noted that a large number of sub-operational modes exist, leading to different frequency336

bandwidth (hence several frequency steps). Unsupervised methods (i.e. unlabeled algorithms)337

such as KMEANS (Arthur & Vassilvitskii, 2007) or DBSCAN (Ester et al., 1996) are sensi-338

tive to these modes, i.e. the results are driven by operational mode and not plasma regimes.339

Neural networks have been retained because they can overcome this issue. Moreover, they do340

not require feature extraction (i.e. data representation) to improve the accuracy of the predic-341

tion, in contrary to the majority of self-learning algorithms. Indeed, the hidden layers of the342

neural networks (see Sect. 3.2) allow the extraction of different features from the data (which343

are unknown and possibly difficult to interpret).344

Neural networks have been implemented using Python libraries Scikit-Learn (Pedregosa345

et al., 2011) and Keras (Chollet et al., 2015). They have been run on a workstation featured346

with an AMD Threadripper 2990 WX (32 cores at 3.4 GHz) and a GPU card Nvidia Geforce347

1660 GTX (6 Go DDR5 with 1406 CUDA cores).348

Hereafter, we detail the neural networks used to predict the plasma regions (resp. the349

thermal electron density) in Section 4 (resp. in Sect. 5).350
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4 Detection of the plasma regimes351

In this section, we describe the implementation of several neural networks to predict the352

plasma region into three classes: solar wind, magnetosheath and other plasma regions (plas-353

masphere, tail, cusp, . . . ). First, we detail the input data and the output (i.e. labels) of the neu-354

ral networks (Sect. 4.1). Secondly, we compare the performance of the neural networks (Sect. 4.2).355

Finally, we apply the best neural network to more WHISPER data (Sect. 4.3).356

4.1 Data and labels357

To predict the plasma region crossed by CLUSTER-II at a specific time, we have used

the WHISPER data format defined for the Cluster Science Archive (Trotignon et al., 2010).

Each active spectrum contains 480 frequency bins covering the 3.5-81.5 kHz band. Note that

for the sub-operational modes measured at different frequency bandwidth (see Sect. 2.1), the

missing values are replaced by 0. Each natural spectrum contains 470 frequency bins cover-

ing the 3.5-79.9 kHz band. Moreover, all spectra have been expressed in decibels (20log10)

and individually normalized between 0 (amplitude min.) and 1 (amplitude max.). Therefore,

each input data can be expressed as:

Xi = (act1, . . . , act480, nat1, . . . , nat470)

where acti (resp. nati) is the ith value of the active spectrum (resp. natural spectrum).358

The spectra Xi are classified as three different plasma regimes: (i) free solar wind, (ii)359

magnetosheath region and, (iii) a class containing various ionized medium (plasmasphere, tail,360

cusp, . . .). Therefore the output y∗ can be seen as a vector of three dimensions containing the361

estimated probability for each class. The plasma region Ci is chosen as argmax(y∗).362

In order to train the neural network and validate its ouputs, the region labels have been363

identified manually for a substantial set of data randomly chosen during the mission lifetime.364

We ensured that the training and the test datasets were sufficiently representative of the en-365

tirety of WHISPER spectra by verifying that selected data distributions in terms of (i) value366

of thermal electron density and (ii) the maximum amplitude in dB were consistent/representative367

with the overall same distributions. Finally, the total number of spectra are the following: 113,829368

spectra from the free solar wind, 118,632 spectra from the magnetosheath and 113,551 spec-369

tra from other plasma regions and from an additionnal specific dataset composed of 40,762370

spectra mesured in the plasmasphere. From this dataset, we randomly took 67% of the spec-371

tra from each plasma region to build the training (95%) and the validation dataset (5%). The372

–15–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Space Physics

testing dataset is composed of the remaining 33%. In order to classify WHISPER spectra ac-373

cording to the plasma region encountered by the CLUSTER-II spacecraft, we have tested sev-374

eral neural networks and we have optimized the neural network characteristics (number of hid-375

den layers, number of neurons, learning rate, . . . ) using GridSearch method (Géron, 2019).376

A comparison between some architectures is presented in the following section.377

4.2 Comparison of several architectures378

We have compared two neural networks architectures: (i) a fully-connected (DENSE)379

neural network (see Sect. 3.2) and (ii) a recurrent (GRU) neural network (Cho et al., 2014).380

Each architecture has been tested with three different input datasets contening respectively: (i)381

only the active spectra (A), (ii) the active and natural spectra (A+N) and, (iii) only the nat-382

ural spectra (N).383

To compare the performance of these models, we have first computed the variation of384

the accuracy on each input dataset during the training task. Results are shown in Figure 6. First,385

each model converged after four iterations (i.e. epochs). Secondly, we see that the neural net-386

works which only learnt with the natural spectra (green and yellow curves) have the poorest387

accuracy (from 0.84 to 0.91) whatever the architecture (dense or recurrent). This observation388

is consistent with the fact that the plasma resonances are not actively excited in passive mode389

(see Fig. 3). Therefore, the plasma signatures are generally less visible in the natural spectra.390

Finally, the best accuracy is obtained with the fully-connected (DENSE) architecture with the391

active and natural spectrum combination (purple curve). The accuracy goes up to 97.5% at the392

last epoch. We see that the recurrent (GRU) architecture gives a lower accuracy than the fully-393

connected network, whatever the input data.394

Secondly, we have applied these neural networks to the test dataset composed by 24,324395

spectra measured in the free solar wind, 25,562 spectra measured in the magnetosheath region396

and 51,406 in other plasma regions (including the plasmasphere). We have computed the ac-397

curacy and the output probability given by these models. These parameters are presented in398

Table 1. On one hand, we can see that the dense neural network trained with only the active399

spectrum (DENSE A) gives the best accuracy for the solar wind and the magnetosheath (resp.400

97.9 and 96.4%). However, the recurrent neural network trained with only the active spectra401

(GRU A) gives the best accuracy for the other plasma regions (98.5%). On the other hand,402

we have computed (i) the mean probability associated to the predicted plasma region Ci given403

by the neural network (fourth column), (ii) the mean probability associated to the predicted404
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Table 1. Accuracy and mean probability of several neural networks implemented to predict the plasma

region (Solar Wind, Magnetosheath and Other): GRU with active + natural spectrum in input (GRU A+N),

GRU with only the active spectrum (GRU A), GRU with only natural spectrum, fully-connected NN with ac-

tive + natural (DENSE A+N), fully-connected NN active (DENSE A) and fully-connected with only natural

spectrum (DENSE N).

Model Solar Wind Magnetosheath Other Mean Proba.

Total Correct Pred. Wrong Pred.

GRU A+N 94.9 93.0 94.2 0.95 0.96 0.77

GRU A 95.6 92.8 98.5 0.97 0.98 0.75

GRU N 75.8 76.6 87.2 0.89 0.92 0.77

DENSE A+N 94.3 94.6 95.0 0.96 0.97 0.77

DENSE A 97.9 96.4 96.9 0.95 0.96 0.66

DENSE N 75.2 83.5 87.8 0.92 0.94 0.81

plasma region (i.e. maximum probability for each spectrum) when the model predicted the cor-405

rect class and, (iii) the mean probability associated to the predicted plasma region (i.e. max-406

imum probability for each spectrum) when the model predicted a wrong class.407

We see that GRU A model has the highest mean probability for correct prediction (0.98)408

and DENSE A model has the lowest mean probability for wrong predictions (0.66). There-409

fore, if we choose to impose a threshold on the probability to delete the wrong predictions,410

more correct predictions will be kept with both models. In the following, we chose to apply411

the DENSE A model to predict the plasma regime.412

Table 2 summarizes the characteristics of this neural network, which is used to predict413

the plasma regime. The training part needs about 1 hours for 200,000 active spectra and the414

prediction (i.e. testing) part takes around 5 seconds for 50,000 active spectra. We have applied415

the model to more WHISPER spectra. We discuss the results in the following section.416
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Table 2. Characteristics of the best neural network model used to predict the plasma regime.

Model Plasma Regime

Input Active spectrum

# of spectra 305,480

Pre-processing normalized dB

Architecture Dense

# hidden layers 3

# neurons 1024+1024+1024

Activation function ReLU/Sigmoı̈d

Dropout 30%

Loss function Categorical Crossentropy

Optimizer Adam

Metrics Accuracy

Number of parameters 3,076,099

Output 3 classes (SW,MS,Other)
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4.3 Application of the best model417

We have applied the model presented in Table 2 to WHISPER measurements presented418

in Sect 2.2 from 18 Feb 2007 at 09:43 UT to 19 Feb 2007 at 09:54 UT when the C3 space-419

craft crossed several plasma boundaries. Figure 7 (middle panel) shows the corresponding clas-420

sification obtained from the neural network: solar wind (yellow), magnetosheath region (red)421

and other (blue). We see that the plasma region boundaries are quite well defined. For instance,422

we note that the model predicted a solar wind region from the beginning to 17 Feb 2007 at423

∼17 h corresponding to the bow shock crossing (see Fig. 3). Then, the model predicted a mag-424

netosheath region until 19 Feb 2007 at ∼00:00 corresponding to the penetration of the satel-425

lite into the magnetopause. Finally, the model predicted, as expected, a magnetosphere regime.426

Resulting predictions are consistent with the shape of the spectra. First, only one strong res-427

onance is observed on the active spectra (upper panel). Then, the magnetosheath region cor-428

responds to a lower maximum amplitude leading to a low signal-to-noise ratio. Finally, the429

plasmasphere is well defined by the presence of several plasma resonances, especially the har-430

monics of the electron cyclotron frequency, which depend on the magnetic field amplitude.431

Note that the magnetic field amplitude could provide a direct way to distinguish the plasma432

regimes. However, we only used the WHISPER dataset in order to set up an electron density433

pipeline independent from the other CLUSTER-II instruments, that is mainly motivated by op-434

erational considerations.435

We observe that wrong predictions can be observed inside the boundaries. For instance,436

some spectra are labeled as magnetosheath whereas they seem to belong to the plasmasphere437

or the tail. In particular, in the free solar wind, the model sometimes predicted a magnetosheath438

regime. This can be due to (i) instrumental artefact such as a low signal-to-noise ratio or the439

presence of interferences potentially affecting the noise level or (ii) the fact that the predic-440

tion is only based on WHISPER observations. Indeed, WHISPER spectra acquired in the free441

solar wind and in the magnetosheath regions usually exhibit the same features, leading to an442

ambiguous prediction. Similar observations have been done with unsupervised and supervised443

methods (e.g. decision tree). In the other plasma regimes, including the plasmasphere, the wrong444

predictions are mainly due to (i) a high amplitude of the magnetic field (leading to an elec-445

tron cyclotron frequency above the WHISPER frequency range) and, (ii) a poor signal-to-noise446

ratio.447

Let us analyse the prediction of the plasma region compared to external parameters such448

as the magnetic field amplitude and the spacecraft position. Figure 8 shows the predicted plasma449
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region for one orbit (from 4 Jan 2013 at 00:00 UT to 6 Jan 2013 at 4:00 UT) with respect to450

the electron cyclotron frequency (expressed in kHz in logarithmic scale) and the Xgse coor-451

dinate (Russell, 1971), normalized by the Earth radius. As expected, the solar wind region is452

associated with a large distance from Earth (higher than 10 Earth radii) on the Sun side and453

a low electron cyclotron frequency (i.e. low magnetic field). Moreover, the magnetosheath re-454

gion is associated with a large Earth distance range (from 2.5 to 10 Earth radii) and interme-455

diate electron cyclotron frequencies (from 0.1 to 1 kHz). The other plasma regions are pre-456

dicted close to Earth, especially the plasmasphere regime, where the plasma region is driven457

by a high magnetic field amplitude (i.e. high electron cyclotron frequency). Therefore, we can458

conclude that the predicted plasma regions are mainly driven by the spacecraft location and459

the magnetic field, despite the fact that the prediction is only implemented with WHISPER460

spectra.461

In both case studies (Fig. 7 and 8), an interference or less likely other signatures (e.g.462

lower hybrid frequency) can be incorrectly interpreted as the unique plasma resonance lead-463

ing to a classification in the magnetosheath or solar wind regime. In order to correct these wrong464

predictions and avoid such isolated detections, plasma regions time/space continuity could be465

taken into account. To this end, we have implemented another step in the predicted plasma466

region process: the k-nearest neighbors algorithm (Cover & Hart, 1967; Géron, 2019). This467

method is generally applied for data classification tasks using pre-labeled data as input. For468

each unlabeled data (or test data), the method identifies the k-nearest neighbors taken from the469

labeled data and determines the most contributing class. If we consider a uniform contribu-470

tion between the k-nearest neighbors, the most contributing class is then equivalent to the most471

frequent class among the k-nearest neighbors. The resulting class is then assigned to the test472

data.473

We have applied this method to the spatial domain around the Earth. In this context, the474

input data are the points along the spacecraft orbit (defined by their GSE coordinates) and pre-475

viously labeled by the neural network. For each grid point defining a volume around the Earth476

(corresponding to an unlabeled test data), the algorithm determines the k-nearest neighbors and477

the resulting class. Finally, we have decided to take advantage of this large-scale labelling pro-478

cess to correct the region associated with each point of the orbit by imposing the label (i.e.479

plasma region) of the closest volume point.480

Figure 9 shows the results for one complete orbit of C1 spacecraft in the XYgse frame,481

normalized by Earth radius, from 4 Jan 2013 at 00:00 UT to 6 Jan 2013 at 4:00 UT. The plasma482
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regions predicted by the neural network are given by the color points (yellow: solar wind, red:483

magnetosheath and blue: other) along the orbit. The background color represents the plasma484

regions predicted by the k-nearest neighbors algorithm from the neural network predictions485

as inputs. We see that wrong detections made by the neural network can be corrected by the486

large-scale classification given by the k-nearest neighbors algorithm, as the plasma region bound-487

aries are now well defined. Note that using this method with a high value for k, the plasma488

region is less sensitive to wrong predictions (not shown here) but cannot account for fast mul-489

tiple boundary crossings (e.g. when skimming the bow shock).490

As explained in Sect. 2.2, the detection of the thermal electron density depends on the491

plasma regime. The automatic prediction of the plasma region is then used as an input of the492

extraction of the thermal electron density. We present the automatic model and the results of493

the prediction of the thermal electron density in the following section.494

5 Prediction of the thermal electron density495

In this study, we chose to define two separated neural networks which apply in differ-496

ent plasma regimes. First, in the solar wind/magnetosheath regime, a self-learning algorithm497

is implemented in order to fully automate the extraction of the thermal electron density. We498

describe the method and the results in Sect. 5.1. Secondly, we focused on the plasmasphere499

region from which the extraction of the thermal electron density is more intricate, and ad hoc500

methods require a manual intervention. We present the neural network and the given predic-501

tions in Sect. 5.2.502

5.1 In the solar wind/magnetosheath regime503

5.1.1 Data and labels504

As explained in Sect. 2.2, the two plasma regions considered now (solar wind and mag-505

netosheath, respectively) are characterized by the presence of a main resonance on spectra lo-506

cated at, or close to, the electron plasma frequency. Therefore, the thermal electron density507

can be directly derived from the predicted electron plasma frequency, and is obtained in the508

0.15 to 82.37 cm−3 range (corresponding to the 3.5-82 kHz frequency range). Note that ad hoc509

methods can provide an electron plasma frequency which could be not aligned on the emit-510

ted frequency bins of the active mode. In that case, the electron plasma frequency has been511

translated onto the nearest active frequency bin. Therefore, the frequencies have been rescaled512
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on the emitted frequency bins of the active mode. Thus, the output of the model can be seen513

as a vector of 480 classes corresponding to the emitted frequencies defined in the 3.5-82 kHz514

bandwidth with a 162.8 Hz resolution. For the input data, we have used the active spectra and515

the time-closest natural spectra measured by WHISPER where the thermal electron density516

has been extracted from ad hoc methods adapted to the solar wind and the magnetosheath regimes.517

Note that we have chosen not to consider a class corresponding to the case where ad518

hoc methods were not able to extract the electron plasma frequency, that means that spectra519

without associated plasma frequency were discarded from the analysis. The prediction of such520

models are sensitive to the presence of this class (not shown here), in particular because the521

extraction of the electron plasma frequency from ad hoc methods is mainly based on natural522

spectra and then assigned to the closest active spectrum in time. Therefore, two similar ac-523

tive spectra will not necessarily lead to the same plasma frequency estimations. Actually, the524

training part can be strongly affected by such a case, when the model learning is based on ac-525

tive spectra.526

The labels (i.e. the electron plasma frequencies) have been identified manually for a sub-527

stential set of data selected during the entire mission lifetime. We ensured that the data is rep-528

resentative of the entire WHISPER dataset, in particular with respect to the distribution of the529

electron plasma frequency for each plasma regime. The total numbers of spectra are the fol-530

lowing: 73,709 spectra for the solar wind and 77,458 spectra for the magnetosheath regime.531

From this dataset, we randomly took 67% of the spectra from each plasma region to build the532

training and the validation dataset. The testing dataset is composed of the remaining 33%.533

5.1.2 Comparison of several architectures534

Like in Sect. 4, we have tested several neural network architectures to predict the ther-535

mal electron density in the solar wind and in the magnetosheath regime. We have implemented536

two architectures: (i) a fully-connected (DENSE) neural network and, (ii) a recurrent (GRU)537

neural network. Each architecture has been trained and tested with the same dataset composed538

of three sub-datasets with (i) only active spectra (A), (ii) with active and natural spectra (A+N)539

and, (iii) only natural spectra (N).540

Figure 10 shows the evolution of the accuracy of the two neural network architectures541

separately trained with the three sub-datasets. First, we see that the two architectures tested542

with only the natural spectra give the worst accuracy (between 0.1 to 0.2), probably due to lower543

signal-to-noise ratio. As explained in Sect. 4, in passive mode, the signal-to-noise ratio is lower544
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than the sounding (active) mode. Therefore, the determination of the plasma frequency is more545

tricky for this operational mode. Secondly, the best accuracy is obtained by the recurrent neu-546

ral network (GRU) tested with only the active spectra. The accuracy reaches up to 0.7 at the547

last epoch whereas the accuracy of the other neural networks do not exceed 0.6. Thus, we chose548

to apply the GRU architecture with only the active spectrum to predict the electron plasma fre-549

quency in the free solar wind and in the magnetosheath regime. Table 3 summarizes the main550

parameters of the retained neural network. The training part needs about 2 hours for 200,000551

active spectra and the prediction (i.e. testing) part takes around 40 seconds for 50,000 active552

spectra. We have applied the model to more WHISPER spectra. We discuss the results of this553

model on the WHISPER dataset in the following section.554

5.1.3 Results555

In this section, we comment on the results of the thermal electron density automated de-556

tection in the solar wind/magnetosheath region using the best neural network chosen in the557

previous section.558

First, we have tested the recurrent neural network presented in section 5.1 on 24,323 (resp.559

25,561) active spectra acquired in the free solar wind (resp. in the magnetosheath regime). We560

have computed the difference between the predicted electron plasma frequency ( fpe,pred) and561

the electron plasma frequency given by ad hoc methods ( fpe,adhoc), considered as ground truth.562

Figure 11 shows the percentage of correct predictions within a tolerance interval (expressed563

in kHz) for different neural network architectures. We can see that the recurrent (GRU) neu-564

ral network with active spectra as input (represented by the red line) gives the best absolute565

accuracy (70%). By increasing the tolerance interval by one frequency bin (± 0.182 Hz) for566

each predicted electron plasma frequency, we see that recurrent and dense models are give quite567

similar accuracy (95%). This large increase of the precision is mainly due to the fact that the568

electron plasma frequency, extracted by ad hoc methods, is given as a real value and the pre-569

dicted electron plasma frequency is expressed into the 480 frequency bins of the active mode.570

Moreover, the detection of the electron plasma frequency by ad hoc methods, sometimes, can571

be done with only the natural spectrum. Therefore, in the active spectrum, the predicted plasma572

frequency can be different by one or several bins compared to the plasma frequency given by573

ad hoc methods.574

Secondly, we have run the neural network on active spectra measured by WHISPER on575

C1 on 13 Feb 2012 between 00:02 and 13:21 UT. At this time, the spacecraft were in the free576
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Table 3. Summary of the neural network used to determine the thermal electron density in the Solar Wind

and Magnetosheath region

Model SW/MS

Input Active spectrum

# of spectra 151,167

Pre-processing normalized dB

Architecture Recurrent (GRU)

# hidden layers 3

# neurons 1024+1024+1024

Activation function ReLU/Sigmoı̈d

Dropout 30%

Loss function Categorical Crossentropy

Optimizer Adam

Metrics Accuracy

Number of parameters 17,215,491

Output fpe on 480 freq. bins (3.5 to 81.5 kHz)
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solar wind region characterized by a single plasma signature observed on active spectra. Fig-577

ure 12 shows the prediction of the electron plasma frequency fpe, expressed in frequency bins578

(red points) and the electron plasma frequency given by ad hoc methods (black points).579

For this case study, we have computed the relative error made by the self-learning al-580

gorithm compared to the thermal electron density ne derived from the electron plasma frequency581

fpe, extracted using ad hoc methods. The distribution of the electron density relative error is582

shown in Figure 13 (upper panel). We see that the relative error is low. Notably, the mean of583

the relative error is around 0.01. The bottom panel shows the scatter plot of the predicted ther-584

mal electron density ne versus the density extracted by ad hoc methods. We see that the pre-585

dictions follow the electron density given by ad hoc methods. However, there exist wrong pre-586

dictions for which the model gave ne ∼ 2-5cm−3 and ad hoc methods, ne ∼12 cm−3. Taking587

into account the probability yi corresponding to the predicted class given by the model (col-588

orbar), we see that the probability is low (from 0.2 to 0.4). Therefore, it could be possible to589

delete these wrong predictions by imposing a reasonable threshold on the probability yi.590

We also predicted the thermal electron density in the solar wind and the magnetosphere591

regions for a larger amount of data. We have applied the self-learning method to 29,735 WHIS-592

PER data measured onboard C1 in 2012. Figure 14 shows three scatter plots of the thermal593

electron density showing the predicted electron density versus the density detected by ad hoc594

methods. The first panel shows all the data. The middle panel shows the data where the prob-595

ability is higher than 0.2. The amount of data has decreased to 28,094. The right panel shows596

the data where the probability is higher than 0.5. The amount of data has decreased to 21,386.597

We see that the number of wrong predictions also decreases. Therefore, if we want to auto-598

matically extract the thermal electron density, it is possible to impose a probability threshold599

in order to minimize the wrong predictions.600

5.2 In the plasmasphere regime601

5.2.1 Data and labels602

The prediction of the thermal electron density in the plasmasphere is more tricky than603

in the solar wind and the magnetosheath regions. In active spectra, the resonance correspond-604

ing to the electron plasma frequency is less visible, when it is, than the resonance located at605

the upper hybrid frequency (see Figure 3). Therefore, we have chosen to identify the upper606

hybrid frequency in a first step, and then, knowing the electron cyclotron frequency from the607
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measurement of the magnetic field amplitude of FGM, to derive the electron plasma frequency.608

This automatic pipeline is shown in figure 15.609

We have used active spectra and the closest natural spectrum measured by WHISPER610

for which the thermal electron density has been extracted using ad hoc methods. We only kept611

spectra (i) that are not labeled in the solar wind and magnetosheath region and (ii) spectra where612

the electron cyclotron frequency (derived from the magnetometer) is higher than 1.5 kHz. Then,613

we deleted 16% of the dataset (∼ 58,000 spectra) by applying thresholds on several charac-614

teristics of active spectra. In particular, for each active spectrum, we have computed the num-615

ber of resonances that are not located close to the electron cyclotron frequency or to its har-616

monics. A high value of this number (i.e. higher than 5) means that the key plasma resonances,617

especially the resonance associated with the upper hybrid frequency, if measured, are not well-618

described in the spectrum. Moreover, we have modified the threshold to be less restrictive us-619

ing the mean amplitude at low and high frequencies in order to limit the impact of the noise620

at such frequencies. A combination of the two descriptors allows to delete different kinds of621

active spectra which are considered as not suitable for detection of the electron plasma fre-622

quency or the upper hybrid frequency.623

On the selected active spectra, a top-hat filter (Serra, 1983) has been applied in order624

to amplify the plasma resonances. Moreover, the spectra have been normalized in dB between625

0 and 1. The output of the model can be seen as a vector of 480 classes corresponding to the626

emitted frequencies defined on the 3.5-81.5 kHz bandwidth with a precision of 162.8 Hz. Note627

that the electron plasma frequency can be lower than 3.5 kHz. 360,607 spectra measured in628

the plasmasphere have been used. A careful study of this dataset has been performed in or-629

der to adopt a well representative dataset of the WHISPER instrument in the plasmasphere.630

In particular, we ensured that in both datasets, the distribution of the upper hybrid frequency,631

compared to the electron cyclotron frequency and its harmonics or Bernstein waves, was sim-632

ilar to the entire measurements of the WHISPER experiment. From the entire dataset, we ran-633

domly took 66.7% of the spectra to build the training and the validation datasets. The testing634

dataset is composed of the remaining 33.3%.635

Table 4 summarizes the characteristics of the best neural network used in the plasma-636

sphere to predict the upper hybrid frequency. Note that the model uses a hybrid activation func-637

tion composed of an Exponential Linear Unit (ELU) and a hyperbolic tangent function (Clevert638

et al., 2016; Manessi & Rozza, 2018). We apply the Nesterov Accelerated Gradient method639

(Nesterov, 1983). This method measures the gradient of the cost function not at the local po-640
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sition but slightly ahead in the direction of the momentum vector that points generally in the641

right direction. Note that the low dropout rate (5%), considered as a hyperparameter of the642

model, has been obtained using a grid search method (Bergstra & Bengio, 2012). We applied643

this neural network to the WHISPER dataset. The results are shown in the following section.644

5.2.2 Results645

Figure 16 shows an almost perfect case of active spectrogram in the plasmasphere mea-646

sured on C1 (RUMBA) on 5 August 2002 between 17:00 and 20:40 UT. It shows several plasma647

resonances corresponding to the electron cyclotron frequency fce and its harmonics, the up-648

per hybrid frequency fuh, and Bernstein frequencies. The corresponding frequency bins of the649

electron plasma frequency fpe, when obtained with ad hoc methods, are shown in the bottom650

panel as black points, while those predicted by the automatic pipeline are shown in red.651

We have computed the relative error of the predicted thermal electron density derived652

from the predicted fpe for this case study. The distribution of the relative error is shown in Fig-653

ure 17 (upper panel). The mean relative error is around 0.09, thus larger than in the solar wind/magnetosheath654

regime. We have also computed the scatter plot of the predicted thermal electron density ver-655

sus the density given by ad hoc methods (Fig. 17, lower panel). We can observe that the model656

seems sometimes perturbed by other resonances, as illustrated by vertical lines formed by the657

points on the scatter plot for this case study. The probability yi of each prediction is represented658

by the colorbar. In contrast with the solar wind or the magnetosheath region results, the model659

gives a lower probability of correct predictions (around 0.2). This low probability is mainly660

due to the fact that the active spectra shown in this case study are of exceptional quality, with661

all of the key plasma resonances well-described. This kind of spectra is rare and thus poorly662

represented in the training dataset, then leading to a low probability value for the prediction.663

For most of spectra measured in the plasmasphere, the probability of correct predictions is quite664

similar to the probability given in the solar wind/magnetosheath regime.665

6 Future data processing666

In this section, we first describe the applicability of self-learning methods for the data667

processing of WHISPER spectra (section 6.1). Secondly, we discuss the applicability of such668

automatic data processing for the future active electric field experiments onboard spacecraft669

such as BepiColombo/Mio or JUICE (section 6.2).670
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Table 4. Characteristics of the best neural network used to determine the upper hybrid frequency in the

plasmasphere regime. The hybrid activation function is a combination of an Exponential Linear Unit (ELU)

and a hyperbolic tangent function.

Model Plasmasphere

Input Active + Natural spectrum

# of spectra 360,607

Pre-processing normalized dB

+ additionnal processing (top hat)

Architecture Dense

# hidden layers 2

# neurons 512+480

Activation function Hybrid function∗

Dropout 5%

Loss function Categorical Crossentropy

Optimizer Nesterov

Metrics Accuracy

Number of parameters 964,032

Output fuh on 480 freq. bins (3.5 to 81.5 kHz)
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6.1 WHISPER data processing671

In this study, we have applied self-learning algorithms to predict the thermal electron672

density on specific data or events. We could apply these methods to the complete WHISPER673

dataset, present and future, and replace ad hoc methods (see Sect. 2.3), currently in use, by674

the self-learning methods shown in this study. However, the high cadence of WHISPER spec-675

tra measurements requires an optimization of the manual intervention, especially for deleting676

wrong detections. In order to minimize this intervention, we have implemented a new pipeline677

that evaluates the self-learning algorithms in the solar wind and the magnetosheath regime. This678

tool, named FP JEDAI (Judging Electron Density by Artificial Intelligence), allows to plot,679

visualize and validate the predictions made by the neural networks. It is developed with the680

main objective of reducing the tedious and time-consuming electron density manual determi-681

nation or ad hoc methods selection. FP JEDAI combines two models described in this study:682

the region classification model and the fpe determination model only applied in the solar wind683

and the magnetosheath regimes.684

First, the model used in the tool predicts the plasma region for each spectrum. Using685

the time stamp and the probabilities provided by the model, large intervals are automatically686

selected. This step allows to automatically delete the spurious predictions, in particular the pre-687

dictions of dynamic plasma regions that varies a lot in a short time period. Secondly, the elec-688

tron plasma frequency is extracted from the selected spectra. Combined with a probability thresh-689

old, a contrast formula, that gives information about the resonance-to-noise ratio, is computed690

in order to select only the best predictions. The interface allows manual selection of the elec-691

tron plasma frequency in order to delete the bad predictions. Finally, the thermal electron den-692

sity is computed and saved in a file.693

FP JEDAI could allow to deliver density files with human intervention reduced up to 10694

times for WHISPER active spectra (compared to the ad hoc methods) and only limited to a695

validation step (as opposed as a preprocessing step and a validation step for the currently used696

ad hoc methods). For instance, the processing of one month of data for the four spacecraft re-697

quires approximatively 4h of manual intervention whereas the ad hoc methods required around698

40h. In order to limit ambiguous predictions, we imposed a severe threshold (around 0.4) on699

the probability associated to each density estimate. This can lead to a 20%-loss in the num-700

ber of electron densities given by neural networks as compared to ad hoc methods.701
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6.2 Future electric field experiments702

Self-learning algorithms could be used for future space missions such as BepiColombo703

(Benkhoff et al., 2010) or JUICE (Grasset et al., 2013) which include electric field experiments704

such as mutual impedance experiments (Trotignon et al., 2006) or quasi-thermal noise spec-705

troscopy (Moncuquet et al., 2006).706

For instance, the Active Measurement of Mercury’s Plasma (AM2P, (Trotignon et al.,707

2006)) experiment is one element of the Plasma Wave Investigation (PWI, Kasaba et al. (2020))708

consortium onboard the Mercury Magnetospheric Orbiter (Mio/MMO) of the BepiColombo709

mission, successfully launched in October 2018. From March 2026, the mutual impedance ex-710

periment aims to determine the thermal electron density in the Hermean magnetosphere for711

plasma frequencies in the 0.7-120 kHz band. The Mio/MMO spacecraft will fly along an el-712

liptic polar orbit of 400×11, 824 km with a 9.3 h period (Benkhoff et al., 2010), so that the713

spacecraft will cross several plasma regions (Yagi et al., 2017; Kasaba et al., 2020) such as714

the free solar wind, where the electron cyclotron frequency is expected to be much smaller715

than the electron plasma frequency, and the Hermean plasmasphere, where the electron cyclotron716

frequency and its harmonics will be much larger than the electron plasma frequency. There-717

fore, the electric field spectrogram should present similarities, in terms of frequency position718

of plasma signatures, with the Earth magnetospheric observations made by the WHISPER in-719

strument. Prediction of the plasma region will also be highly desirable to automatically ex-720

tract the plasma bulk properties from the AM2P measurements. In contrast with the WHIS-721

PER experiment which has been operating for more than twenty years, the mutual impedance722

experiment should monitor the Hermean plasma environment for two and a half terrestrial years723

at most (including a planned one terrestrial year extension). Moreover, the AM2P measure-724

ment cadence will be lower than the one of WHISPER instrument, with active measurements725

planned to be performed every 160–200 s in the Hermean magnetosphere and every 320–400 s726

in the free solar wind. Therefore, the amount of AM2P active spectra will be substantially lower727

than those of the WHISPER dataset. In order to characterize the capability to implement a neu-728

ral network to predict the plasma regime, we have studied the influence of the amount of spec-729

tra needed for an efficient prediction of the plasma regime.730

Figure 18 shows the accuracy of the neural network on a test dataset with respect to the731

number of active spectra in the training dataset from 10 to 10,000 spectra. The correspond-732

ing time period to measure such number of spectra with the AM2P instrument is given by the733

colored verticals bars from 1 day (blue) to 4 months (red). The training dataset is built with734
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spectra randomly chosen. In order to be independent of this random part, we have run the model735

several times with different training datasets. The overall accuracy score is then given with an736

error bar (shown in vertical black lines) for each case. We see that the accuracy goes up from737

0.5 to 0.95, meaning that an automatic pipeline to predict the plasma region will be efficient738

after 4 months of operations. Note that this estimation is based on the assumption that all spec-739

tra are exploitable, especially in the solar wind and the magnetosheath regions where a clear740

single signature is expected to be observed. Therefore, the number of spectra actually needed741

in the training dataset could be higher in real operational conditions.742

However, in order to increase the size of the training dataset, it could be possible to model743

the electric field experiments. Indeed, modeling of the experimental response has been per-744

formed in several plasma conditions such as in interplanetary plasma or planetary plasma (Béghin,745

1995; Gilet et al., 2017; Wattieaux et al., 2019; Gilet et al., 2019). Recent studies show that746

modeling of the experiment taking into account the effect of a vacuum sheath around the ex-747

periment and the spacecraft, are close to in situ observations (Wattieaux et al., 2019). More-748

over, thanks to a comparison between the observations and the dataset of modeled spectra, it749

is possible to characterize the surrounding plasma. Wattieaux et al. (2020) provided a char-750

acterization of two-electron-temperature-plasma in the ionosphere of 67P/Churyumov-Gerasimenko751

using a combination of the observations made by the mutual impedance probe (RPC-MIP, Trotignon752

et al. (2007)) and the modeling of the instrument response. Therefore, it is possible to gen-753

erate a dataset of modeled electric field spectra in order to train a model to predict the plasma754

region and, eventually, the thermal electron density. A complementary alternative could be to755

make use of modelling of the plasma regions in the context of the JUICE mission using iono-756

spheric modeling of Ganymede (Leclercq et al., 2016; Leblanc et al., 2017; Carnielli et al.,757

2019) from which the plasma bulk properties can be extracted to model the instrumental re-758

sponses of mutual impedance experiments (Gilet et al., 2017; Wattieaux et al., 2019).759

7 Conclusion760

In this study, we have implemented several automated pipelines based on neural network761

methods to extract the thermal electron density from the electric field spectra measured by WHIS-762

PER instrument onboard the four CLUSTER-II spacecraft. We have seen that the determina-763

tion of the thermal electron density mainly depends on the plasma regime, which is driven by764

the magnetic field amplitude and the solar activity. In the electric field spectrogram, the ef-765
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fect of the magnetic field leads to the presence of multiple plasma resonances, thus compli-766

cating the determination of the electron plasma frequency.767

Therefore, we first predicted the plasma region encountered by the WHISPER instru-768

ment from the active and natural spectra. We have used a fully-connected (dense) neural net-769

work composed of three hidden layers with additional dropout. We have shown that the model770

reaches an accuracy score close to 97% for the three plasma regimes. Then, we have imple-771

mented two neural networks in the solar wind/magnetosheath region (i.e. low magnetic field)772

and in the plasmasphere (i.e. high magnetic field).773

In the low magnetic field regime, the main resonance is close to the electron plasma fre-774

quency, that is directly related to the thermal electron density. Therefore, we chose to predict775

the electron plasma frequency, defined in the frequency range of the WHISPER instrument.776

We have used a recurrent neural network based on Gated Recurrent Unit (GRU) built with three777

hidden layers of 1024 neurons with additional dropout (30%). In the free solar wind and in778

the magnetosheath regimes, the prediction accuracy score reaches up to 95%. A fully-automatic779

pipeline is currently under development (FP JEDAI) is order to produce datasets of thermal780

electron density using outputs of the neural networks (prediction and probability).781

For the plasmaspheric region (in practice, for electron cyclotron frequencies higher than782

1.5 kHz), the spectral signature at the upper hybrid frequency, related to the electron cyclotron783

frequency and the electron plasma frequency, is much more simple to detect than the signa-784

ture at the electron plasma frequency. Therefore, we first chose to predict the upper hybrid fre-785

quency. Then, with the cyclotron frequency computed from the magnetic field amplitude mea-786

sured by the magnetometer, it is possible to automatically determine the thermal electron den-787

sity. We have shown that active spectra need to be pre-processed in order to increase the ac-788

curacy of the upper hybrid frequency prediction. In the plasmasphere regime, the prediction789

accuracy score reaches up to 75%. For the other plasma regions such as the cusp or the tail790

where the signal-to-noise ratio is low, the extraction of the thermal electron density is more791

tricky. A specific automatic method is currently under development.792

Finally, we have shown that automatic methods could be applied for future data process-793

ing of electric field experiments such as mutual impedance experiments onboard BepiColombo794

(Hermean environment) and JUICE (jovian environment) missions with constraints related to795

the size of the dataset. The efficiency of the automatic process strongly depends on the qual-796

ity and the representativeness of the training dataset. We have shown that in the context of Bepi-797

Colombo, a self-learning predictive model of PWI/AM2P instrumental response in the Her-798
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mean environment should only be effective after 4 months of operations around Mercury. How-799

ever, modeling of the instrumental responses (Gilet et al., 2017; Wattieaux et al., 2019) could800

be used to feed the training dataset and shorten this period.801
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Canu, P., Décréau, P. M. E., Trotignon, J. G., Rauch, J. L., Seran, H. C., Fergeau, P., . . .845

Yearby, K. (2001, Oct). Identification of natural plasma emissions observed close to846

the plasmapause by the Cluster-Whisper relaxation sounder. Annales Geophysicae,847

19(10), 1697-1709. doi: 10.5194/angeo-19-1697-2001848

Carnielli, G., Galand, M., Leblanc, F., Leclercq, L., Modolo, R., Beth, A., . . . Jia, X. (2019).849

First 3d test particle model of ganymede’s ionosphere. Icarus, 330, 42 - 59. doi:850

https://doi.org/10.1016/j.icarus.2019.04.016851

Chasseriaux, J. M., R. Debrie, R. D., & C. Renard, C. R. (1972, October). Electron density852

and temperature measurements in the lower ionosphere as deduced from the warm853

plasma theory of the h.f. quadrupole probe †. Journal of Plasma Physics, 8, 231-253.854

doi: 10.1017/S0022377800007108855
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Figure 2. Overview of the WHISPER dataset with parameters of interest measured from 18 Feb 2007 at

09:43 UT to 19 Feb 2007 at 09:54 UT on the C3 (SAMBA) spacecraft. Upper panel: orbit of the C3 space-

craft (red line) and field lines in the X-Y GSE coordinate system, normalized to the Earth radius Re, produced

by the Orbit Visualization Tool (OVT) (available at http://ovt.irfu.se/). C3 crossed the bow shock and the

magnetopause successively at 17:23 and 00:06 UT. Second and third panel: Frequency/time active and nat-

ural electric field spectrograms measured by WHISPER, expressed in dB normalized between 0 and 1 (red:

maximum amplitude, blue: minimum amplitude). Fourth panel: Variation of the electron cyclotron frequency

fce, expressed in kHz, derived by the measurement of the magnetic field amplitude by FGM. Fifth panel:

Variation of the electron plasma frequency fpe, expressed in kHz, extracted from the WHISPER spectra by ad

hoc methods (see Sect. 2.3).
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Figure 3. Typical WHISPER individual active (black curve) and natural (red dotted curve) electric field

spectra measured in several plasma regimes: in solar wind (first panel), in magnetosheath (second panel)

and in the plasmasphere (third panel). The frequency position of the plasma resonances are given by vertical

dotted line: the electron plasma frequency fpe (blue), the electron cyclotron frequency fce and its harmonics

(green), the upper hybrid frequency fuh (yellow) and Bernstein frequencies fqn (magenta). All spectra have

been expressed in dB and each of them normalized in amplitude between 0 and 1.

Figure 4. Architecture of an artificial neuron. The neuron takes m input values xi, multiplies each input by

a synaptic weight, wk,i, and sums them along with a bias, bk. An activation function φ is then applied to the

output which gives the final output yk of the neuron.
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Figure 5. Illustration of the architecture of a multilayer feedforward (dense) neural network composed by

several layers: an input layer X, d hidden layers and an output layer y. The neural network is also defined by

a combination of activation function f ( j)
i . The depth of the neural network is defined by the number of hidden

layers. The width is defined by the number of neurons on each hidden layer.

Figure 6. Accuracy of several neural networtk architectures used to predict the plasma region on the train-

ing dataset: (i) fully-connected (DENSE) neural network (squared color line) and, (ii) recurrent (GRU) neural

network (asterisk color line), in the training dataset composed of (i) only active spectra (A), (ii) active and

natural spectra (A+N) and, (iii) only the natural spectra (N).
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Figure 7. Prediction of the plasma region and electron plasma frequency fpe for the case shown in Fig 2

for the WHISPER measurement on C3 (SAMBA) spacecraft from 18 Feb 2007 at 9:43 UT to 19 Feb 2007

at 09:54 UT. First panel: active WHISPER spectrogram expressed in dB. Second panel: Predicted plasma

regime: Solar wind (SW, yellow), Magnetosheath (MS, red) and Other (blue). Third panel: Predicted electron

plasma frequency fpe expressed in kHz.

Figure 8. Prediction of the plasma region from 4 Jan 2013 at 00:00 UT to 6 Jan 2013 at 4:00 UT compared

to the Xgse, normalized by Earth radius and the electron cyclotron frequency fce, expressed in kHz in logarith-

mic scale. The solar wind region is indicated by yellow points, the magnetosheath region by red points and

the other regions by blue points.
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Figure 9. Classification of the plasma region on one complete orbit described by C1 (RUMBA) from 4

Jan 2013 at 00:00 UT to 6 Jan 2013 at 4:00 UT by k-nearest neighbors algorithm using the plasma regions

predicted by the neural network model, in the XYgse coordinates (normalized by Earth radius). The color

background shows the predicted plasma regimes: free solar wind (yellow), magnetosheath (red) and other

(blue).

Figure 10. Accuracy of several neural network architectures to predict the thermal electron density on the

training dataset: (i) fully-connected (DENSE) neural network (squared color line) and, (ii) recurrent (GRU)

neural network (asterisk color line), in the training dataset composed of (i) only active spectra (A), (ii) active

and natural spectra (A+N) and, (iii) only natural spectra (N) measured in the solar wind or the magnetosheath

regime. Accuracies on the test dataset, at 80 epochs, are given by the horizontal dotted line with the same

color code.
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Figure 11. Percentage of well predicted electron plasma frequencies compared to a tolerance threshold,

expressed in kHz, for several neural network architectures: recurrent network (GRU), dense (DENSE), or by a

regression method. The black vertical dotted line shown the 95% accuracy threshold.

Figure 12. Upper panel: Active WHISPER spectrogram measured on C1 (RUMBA) on 13 Feb 2012 be-

tween 00:02 UT and 13:21 UT. Lower panel: Electron plasma frequency fpe, expressed in frequency bins,

given by ad hoc methods (black points) and predicted by neural network (red points). Note that the size of red

points has been decreased for the sake of clarity.
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Figure 13. Upper panel: Relative error distribution of the predicted thermal electron density on the data

shown in Figure 12. The mean relative error is given by the black vertical line. Lower panel: Scatter plot of

the predicted thermal electron density versus the density given by ad hoc methods, expressed in cm−3. The

class probability is given by the colorbar (blue: min, red: max).

Figure 14. Scatter plots of the thermal electron density showing the predicted density versus the density

detected by ad hoc methods. Both density are expressed in cm−3. The data corresponds to the WHISPER

measurements made onboard C1 spacecraft in 2012 (i) without threshold on the probability (left panel), (ii)

with a threshold of 0.2 (middle panel) and, (iii) with a threshold of 0.5 (right panel).
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Figure 15. Illustration of the automatic pipeline used to predict the thermal electron density in the plasmas-

phere regime.

Figure 16. Upper panel: Active WHISPER spectrogram measured on C1 on 5 Aug 2002 between 17:00

and 20:40 UT. Lower panel: Electron plasma frequency fpe, expressed in frequency bins, given by ad hoc

methods (black points) and predicted by the neural network (red points).
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Figure 17. Upper panel: Relative error distribution of the predicted thermal electron density on the data

shown in Figure 16. The mean relative error is given by the black vertical line. Lower panel: Scatter plot of

the predicted thermal electron density versus the density given by ad hoc methods, expressed in cm−3. The

class probability is given by the colorbar (blue: 0, red: 1).

Figure 18. Accuracy score of an automatic plasma region model compared to the amount of spectra in the

training dataset in the AM2P experiment context. The error bar is given in black vertical bar. The time period

corresponding to the AM2P measurement rate is given by verticals bars from 1 day (blue vertical bar) to 4

months (red vertical bar).
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