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In an earlier paper, Oruba, Soward & Dormy (J. Fluid Mech., vol. 818, 2017, pp. 205–240)
considered the primary quasi-steady geostrophic (QG) motion of a constant density fluid
of viscosity ν that occurs during linear spin-down in a cylindrical container of radius L
and height H, rotating rapidly (angular velocity Ω) about its axis of symmetry subject
to mixed rigid and stress-free boundary conditions for the case L = H. Direct Numerical
Simulation (DNS) at large L = 10H and Ekman number E 6 ν/H2Ω = 10−3 by Oruba,
Soward & Dormy (J. Fluid Mech., vol. 888, A9, 2020, pp. 44) reveals significant inertial
wave activity on the spin-down time-scale. That analytic study, for E � 1, builds on
the results of Greenspan & Howard (J. Fluid Mech., vol. 17, 1963, pp. 385–404) for an
infinite plane layer L→∞. At large but finite distance r† from the symmetry axis, the
meridional (QG-)flow, that causes the QG-spin down, is blocked by the lateral boundary
r† = L, which provides the primary QG-trigger for inertial wave generation. For the
laterally unbounded layer, Greenspan & Howard identified, in addition to the QG-flow,
inertial waves of maximum frequency (MF) 2Ω, which are a manifestation of the transient
Ekman layer, decaying algebraically in time. The blocking of these additional MF-waves
by the lateral boundary (ignored by Oruba et al. 2020) provides an additional trigger
that complements the QG-triggered inertial waves. Here we obtain analytic results for
the full wave activity caused by the combined-trigger (QG+MF) that faithfully capture
the character of the laterally bounded base flow including its transients. The results are
compared with the inertial wave part of the DNS (the so called ‘filtered DNS’ or simply
‘FNS’), for which the agreement is excellent and accounts for minor discrepancies evident
in the previous QG-trigger results.

1. Introduction

Our study is motivated by the understanding of large scale nearly axisymmetric vortices
in the atmosphere, such as tropical cyclones, also referred to as hurricanes or typhoons.
Oscillations have been observed near the eye of actual tropical cyclones (e.g., Harlow &
Stein 1974; Chen et al. 2015). These are reminiscent of inertial waves and exhibit similar
periods (Atkinson et al. 2019). A clean cut mathematical model is needed in order to
investigate these waves. We therefore investigate inertial wave activity in a penny shaped
cylinder in solid body rotation for which the angular velocity of the container is abruptly
changed.

† Email address for correspondence: ludivine.oruba@latmos.ipsl.fr, andrew.soward@ncl.ac.uk,
Emmanuel.Dormy@ens.fr
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In Oruba et al. (2020), we investigated the inertial wave response during spin-down
in a shallow cylinder height H, of large radius L (� H) equivalently

` ≡ L/H � 1 , (1.1)

by consideration of a “reduced model”. Here we consider the complete problem. On the
one hand, we refrain from repeating some of the references cited in Oruba et al. (2020),
which apply equally here. On the other, as we need to refer extensively to equations (say
(x.y)), sections (say §x) and figures (say figure x) from Oruba et al. (2020) (say O), we
use the notation “(O:x.y)”, “§O:x” and “figure O:x” respectively to identify them.

Our cylindrical container is filled with constant density fluid of viscosity ν and rotates
rigidly with angular velocity Ω about its axis of symmetry, the frame, relative to which
our analysis is undertaken; the Ekman number is small:

E = ν
/(
H2Ω

)
� 1 . (1.2)

Initially, at time t† = 0, the fluid itself rotates rigidly at the slightly larger angular velocity
RoΩ, in which the Rossby number Ro is sufficiently small (Ro� E1/4) for linear theory
to apply. Relative to cylindrical polar coordinates, (r†, θ†, z†), the top boundary (r† < L,
z† = H) and the side-wall (r† = L, 0 < z† < H) are impermeable and stress-free. The
bottom boundary (r† < L, z† = 0) is rigid. For that reason alone the initial state of
relative rigid rotation RoΩ of the fluid cannot persist and the fluid spins down to the
final state of no rotation relative to the container, as t† →∞. We describe the transient
relative motion, velocity v†, by its cylindrical components oriented by the rotation axis,
which we partition into its horizontal v†⊥ = [u†, v†] and vertical w† components.

Whereas an actual tropical cyclone is in essence living in an unbounded flow (at
the surface of a sphere), models of axisymmetric geophysical vortices in general (e.g.,
Williams 1968; Read 1986a,b; Rotunno 1979, 2014) and of tropical cyclones in particular
(e.g., Rotunno & Emanuel 1987; Montgomery et al. 2001) are in essence bounded. The
same would be true of any experimental setup. In the particular setup investigated here,
inertial wave activity is triggered by the outer bounding wall. In a true cyclone, they
will be triggered by other disturbances (such as non-axisymmetric heterogeneities) but
will be equally important. In practice, they may also interact nonlinearly (e.g., Yarom
& Sharon 2014). Here we restrict our attention to the exact linear (Ro � 1) solution
for a bounded flow, relevant to either a numerical model or laboratory experiment, both
bounded. We describe mathematically how the waves triggered at the outer boundary
propagate toward the axis and reasonably expect that some of the qualitative wave
behaviour predicted will not simply depend on our chosen forcing but apply equally to
real tropical cyclones. Indeed, we believe that our waves can shed light on understanding
the inertial wave activity observed near the axis of cyclones (e.g., Chen et al. 2015).

Inertial waves in confined flows, driven by the relative motion of boundaries, is of
continued topical interest, from both experimental and theoretical points of view (see
Klein et al. 2014; Kurgansky et al. 2020, and references therein). The special case of
linear spin-down, manifest primarily by a Quasi-Geostrophic (QG) flow (largely time
dependent rigid rotation) caused by axial vortex line shortening due to blowing from the
Ekman layers, is well understood (see, e.g., Benton & Clark 1974; Duck & Foster 2001).
However, the secondary generation of inertial waves during spin-down has received less
attention. Though, in the case of a cylinder, their wave spectrum and viscous decay rates
are well understood (see, e.g., Kerswell & Barenghi 1995; Zhang & Liao 2008, and
references therein), we are only aware of one study (Cederlöf 1988) that addresses the
issue of wave amplitude analytically.

Our development builds on a laterally unbounded model (L → ∞) studied in consid-
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erable detail by Greenspan & Howard (1963), for which a useful summary and clarifying
description are given in sections 2.3 and 2.4 of Greenspan (1968). We emphasise, at the
outset, that mathematically our use of a stress-free boundary at z† = H is equivalent to
theirs on doubling our gap height and applying no-slip boundary conditions at z† = 2H
instead. The equivalence follows from symmetries, z† 7→ 2H − z†, about the mid-plane
z† = H. Greenspan & Howard (1963) also considered the role of the outer rigid boundary
at r† = L and particularly the boundary layer structure there.

The spin-down process operates on three time-scales identified by

Ωt† =


O(1) , Rotation or inertial wave time,
O(E−1/2) , Spin-down time,
O(E−1) , Transverse diffusion time.

We will refer to these regimes repeatedly.

Oruba et al. (2017) pointed out that a QG-layer, close to the outer r† = L boundary,
spreads inwards towards the r† = 0 axis broadening indefinitely. Curiously, when that
outer boundary is stress-free, the returning meridional flow is not impeded by boundary
friction. So, to a small extent, rather than promoting spin-down by compressing axial
vortex lines, the opposite tends to happen. The consequence of this weak tendency is
to slightly slow spin-down on the long transverse diffusion time-scale Ωt† = O(E−1).
Here and in our previous work Oruba et al. (2020), we are not concerned with that
QG-development, but rather focus attention on the evolution of inertial waves triggered
simply by the impermeable boundary condition u† = 0 at r† = L on the shorter time-
scales Ωt† � E−1. For that, whether the lateral boundary r† = L is no-slip or stress-free
is irrelevant and has no influence on the inertial wave activity “triggered” by the blocking
of the radial flow found in the unbounded domain L→∞. Fortunately, to compare our
inertial wave predictions with the results of Direct Numerical Simulation (DNS) based on
the entire governing equations, we are able to filter out the mainstream QG-contribution
(as well as the inertial wave contribution, with frequency close to 2, in the trigger flow
identified by Greenspan 1968) to expose only the triggered inertial waves. The filtered
waves are the same whether the outer boundary r† = L is no-slip or stress-free.

In short, our approach builds on the idea that the radial outflow for the unbounded
case is simply blocked, u† = 0 at r† = L with, at leading order, the stress boundary
condition only affecting the QG-flow contribution studied by Oruba et al. (2017). Our
asymptotic analysis only applies when Ωt† � E−1. Oruba et al. (2020) ignored the early
time Ωt† = O(1) behaviour. Though, this is adequate to capture the main features of the
triggered wave solution, it is not asymptotically correct. For surprisingly the Ωt† = O(1)
behaviour of the unbounded flow has a persistent influence on the solution. Its most
evident consequences are a phase lag and smaller amplitude of the Oruba et al. (2020)
triggered waves relative to the asymptotically correct wave solution derived here.

In order to make our notation relatively compact at an early stage, we use H and Ω−1

as our unit of length and time respectively, and introduce

r† = Hr , z† = Hz , Ωt† = t , v† = RoLΩ v , (1.3a–d)

in which for our unit of relative velocity v†, we have adopted the velocity increment
RoLΩ of the initial flow at the outer boundary r† = L. The cylindrical component
axisymmetric velocity decomposition becomes

v(r, z, t) = [v⊥, w] with v⊥ = [u, v] (1.4a,b)
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and, on introduction of the meridional flow streamfunction rχ, we have

u = − ∂χ

∂z
, w =

1

r

∂(rχ)

∂r
. (1.4c,d)

In this Introduction, we summarise and expand on the results of Greenspan & Howard
(1963), as needed to properly understand the nature of the unbounded, ` = L/H →∞,
spin-down flow which provides the inertial wave trigger in the bounded case at r = `. Like
Greenspan & Howard (1963), our development relies heavily on the Laplace transform
(LT), an operation L leading to values denoted by the ̂ accent, e.g.,

v̂(r, z, p) = L{v} ≡
∫ ∞
0

v(r, z, t) exp(−pt) dt (1.5a)

with inverse-LT

v(r, z, t) = L−1{v̂} ≡ 1

2πi

∫ i∞

−i∞
v̂(r, z, p) exp(pt) dp . (1.5b)

The complete LT-solution of the ` → ∞ problem is given by equations (3.4), (3.5)
of Greenspan & Howard (1963). Crucially, the LTs involve cut-points at p = ±2i,
exemplified by the factors (p ∓ 2i)1/2 which appear in their equations (3.6). The cut-
points are illusory and not part of the solution, which only possesses poles. In the small
Ekman number limit E � 1, a pole near p = 0 identifies the QG-spin-down mode,
while an infinite sequence of densely packed poles to the left of the “illusory” cuts at
p = ±2i identifies modes with distinct viscous decay rates with frequencies close to 2
(see Greenspan & Howard 1963, equations (3.7), (3.8)). The later pole-family is needed
to properly resolve late time behaviour, t = O(E−1). At shorter times t < O(E−1)
a different tactic for the LT-inversion (see Greenspan & Howard 1963, p. 389, 390),
which essentially reinstates the “illusory” cuts, is more useful. That strategy can only be
undertaken with considerable caution, as the asymptotic approach has limitations that
must be clearly understood. To that end, we build the picture slowly through the survey
§§1.1, 1.2 (essentially a considerable expansion of Greenspan 1968, sections 2.3 and 2.4,
respectively, with an alternative perspective) of a hierarchy of problems that highlight
the main ideas. Then, in §1.3, we identify (1.29) as an approximation to the inertial wave
trigger, sufficiently accurate for our purposes over the entire time 0 < t � E−1. We
outline the organisation of our paper in §1.4.

1.1. The transient Ekman layer

The transient Ekman layer, in the half-space z > 0 above a rigid boundary z = 0, is well
known (see, e.g., Greenspan 1968, section 2.3). Still, we provide here a summary in order
to develop our notation and highlight features upon which we will build. Significantly, as
the LT-solution ((1.11) below) involves both a pole at p = 0 and cuts at p = ±2i, we may
immediately identify the seeds of spin-down and inertial wave generation between parallel
planes. For that, the cuts are strictly removed by the inclusion of an upper boundary, as
previously mentioned.

We consider the axisymmetric flow in the self-similar form

v⊥ = (r/`) [u(z, t) , v(z, t)] , w = (1/`)w(z, t) , (1.6a,b)

that solves

∂tu − 2 (v− 1) = E∂2zu , ∂tv + 2 u = E∂2zv (1.7a,b)

subject to [ u , v ] = [0, 1] at t = 0, while subsequently [ u , v ] = [0, 0] at z = 0 and
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[ u , v ] → [0, 1] as z ↑ ∞ for t > 0. Of interest to us is the horizontal boundary layer
volume flux deficit

−E1/2 r

`

[
U(t) , V(t)

]
=

r

`

∫ ∞
0

[ u , v− 1 ] dz . (1.8)

By mass continuity, the outflow velocity E1/2W/` from it is determined from

W(t) ≡ E−1/2wz↑∞ = 2U(t) . (1.9)

The minus sign in (1.8) is motivated by our application to spin-down between two
unbounded parallel plates, 0 < z < 1, in the next §1.2.

In terms of the complex combinations

z±(z, t) = u± i
(
v− 1

)
, W±(t) = U± iV , (1.10a,b)

the LT-solutions are

ẑ±(z, p) = ∓ ip−1 exp
[
−E−1/2(p± 2i)1/2z

]
, (1.11a)

Ŵ±(p) = ± ip−1(p± 2i)−1/2 . (1.11b)

The inverse-LT of the former is discussed in appendix A, while the latter is

W±(t) = 1
2 (1± i) erf

[
(1± i)t1/2

]
, (1.12a)

which, by ((http://dlmf.nist.gov/7.5.E8) of Abramowitz & Stegun 2010) has the alter-
native representation

= S(T ) ± i C(T ) , T (t) =
√

4t/π , (1.12b)

in terms of the Fresnel integrals C and S (http://dlmf.nist.gov/7.2.E7,8). Hence (1.9)
and (1.10b) determine

W(t) = 2U(t) = W+(t) + W−(t) , (1.12c)[
U(t)

V(t)

]
=

[
S(T )

C(T )

]
=

∫ t

0

[
sin(2τ)

cos(2τ)

]
dτ√
πτ

. (1.12d)

As W−(t) is the complex conjugate of W+(t), the ±-notation is unnecessary at this stage.
In the spirit of our notation development, however, we introduce it here anticipating the
later generalisation in §2.2 to W d±

mn(t) with LT (2.19d), which is needed to describe the
wave response in our closed cylinder to excitation at a frequency ωmn.

For t = O(1), the inverse-LT of (1.11a) describes a complicated boundary layer
structure of width

∆(t) =
√
Et , (1.13)

just as for all evolving viscous layers.
For t� 1, the boundary layer splits into two parts:
(i) Steady. The final steady Ekman layer, width ∆E = ∆(1) =

√
E, generated by the

pole p = 0 of (1.11) has

z±E (z) = lim
t→∞

z±(z, t) = ∓i exp[−(1± i)z/E1/2] , (1.14a)

W±E = lim
t→∞

W±(t) = 1
2 (1± i) , (1.14b)

leading to the corresponding u, v, U, V, W values

[uE(z) , vE(z)− 1] = − exp(−z/E1/2)
[
sin(z/E1/2) , cos(z/E1/2)

]
, (1.15a)

UE = VE = 1
2 , WE = 2UE = 1 . (1.15b)
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(ii a) Transient, ∀t. The remaining transient layer may be described by the forms

z±MF(z, t) = z±(z, t) − z±E (z) = h±MF(z, t) exp

[
− z2

4Et
∓ 2it

]
, (1.16a)

W±MF(t) = W±(t) − W±E (t) = − 1
2 (1± i) erfc

[
(1± i)t1/2

]
(1.16b)

= − [f(T )± ig(T )] exp(∓2it) , (1.16c)

the details of which we now explain. The relationship between (1.16b,c) follows
from (http://dlmf.nist.gov/7.5.E10), where the auxiliary functions f, g are defined
in §http://dlmf.nist.gov/7.2.iv. Equations (1.12) and (1.16b,c) determine[

UMF(t)

VMF(t)

]
= −

∫ ∞
t

[
sin(2τ)

cos(2τ)

]
dτ√
πτ

= −
[
f(T ) cos(2t) + g(T ) sin(2t)

−f(T ) sin(2t) + g(T ) cos(2t)

]
, (1.17a)

WMF(t) = 2UMF(t) . (1.17b)

The function h±MF in (1.16a) is defined by (A 3) in appendix A, also in terms of f and g.
(ii b) Transient, t� 1. We emphasise that for t 6 O(1), the E/MF-partition (1.14)–

(1.17) is unhelpful and, though correct, the features suggested by (1.16a,c) are mis-
leading at that early time. However, when t � 1, their defining functions f, g have
algebraic asymptotic expansions (http://dlmf.nist.gov/7.12.E2, E3). Then, the exponent
exp(−z2/4Et) in (1.16a) clearly identifies the boundary layer width ∆(t), as it does
in the asymptotic form (A 7) for the boundary layer flow [uMF(z, t), vMF(z, t)] derived
in appendix A. Likewise, the exponent exp(∓2it) in (1.16a,c) identifies inertial waves of
Maximum Frequency 2. In reality they are modulated and so we refer to such quasi-waves
as MF-waves; whence our use of the subscript ‘MF ’.

1.2. Spin-down between two unbounded parallel plates

In our small E-limit, the spin-down between two unbounded parallel plates z = 0, 1
may be decomposed into its mainstream v and boundary layer v∆ parts. The horizontal
contribution v⊥ is z-independent, while v∆⊥ is of the E/MF-layer type described in
§1.1. However, whereas the vertically unbounded mainstream flow v described there was
simply [0, r, E1/2W(t)]/`, when the upper boundary z = 1 is included, the uniform axial
outflow (E1/2/`)W(t) from the boundary layer is blocked and obliged to escape radially
instead, causing quasi-geostrophic (QG) spin-down. As in §1.1, we find it convenient to
partition the flows into their (i) E- (or rather QG-) and (ii) MF-constituents vQG and vMF

respectively. To understand the nature of the motion, in the following §1.2.1, we consider
vMF⊥ on the transient Ekman layer time scale t = O(1), during which vQG⊥ ≈ [0, r/`] as
in §1.1. Then in §1.2.2, we explain the modifications appropriate on the longer spin-down
time t = O(E−1/2) over which the QG-flow vQG⊥ evolves. That analysis is restricted to
t � E−1 by the requirement that the MF boundary layer width ∆(t) =

√
Et be small

compared to the plate separation unity.
Throughout this section we continue to employ the similarity representation (1.6a)

with Fraktur variables, v⊥ = (r/`)[ u(t), v(t)], and use the aforesaid notations • and •∆
to identify respectively mainstream and boundary layer parts.

1.2.1. The transient Ekman layer time t = O(1)

For t � E−1/2, short compared to the spin-down time, we regard any modification
to the initial value [ u, v ] = [0, 1] as a perturbation. On that basis we may employ but
suitably modify the results of §1.1.

To begin, the ejected volume flux, E1/2W/` = 2E1/2U/` (see (1.9)) from the Ekman
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layer, drives the mainstream radial flow u = (r/`)u, which by continuity of total radial
mass flux is determined by

u(t) = −
∫ ∞
0

u∆ dz = E1/2U = E1/2( 1
2 + UMF) . (1.18a)

From (1.4c,d) the corresponding streamfunction rχ and vertical velocity w for the
resulting meridional mainstream flow are

χ = (r/`)(1− z)u(t) , w = (2/`)(1− z)u(t) . (1.18b,c)

On introduction of z-average,

〈•〉 =
∫ 1

0
• dz , (1.19)

an alternative interpretation of (1.18a) is that of vanishing total radial MF mass flux

(`/r)〈uMF〉 ≈ uMF − E1/2UMF = 0 . (1.20)

On omitting the viscous term in the azimuthal equation of motion (1.7b) to obtain
∂v/∂t = −2u, integration subject to v(0) = 1 determines

v(t)− 1 = − 2

∫ t

0

u(τ) dτ ≈ − 2E1/2

∫ t

0

U(τ) dτ (1.21a)

= − E1/2t − 2E1/2

∫ t

0

UMF(τ) dτ , (1.21b)

on use of (1.18a). The natural partition v = vQG + vMF is

vQG(t) ≈ κ − E1/2t , vMF(t) ≈ 2E1/2

∫ ∞
t

UMF(τ) dτ , (1.22a,b)

where κ is a constant of integration and the upper integration limit is chosen such that
vMF → 0 as t→∞. Evaluation of the integral is relegated to appendix B, in which (B 1)
determines vMF(0) = 1

2E
1/2VMF(0) = − 1

4E
1/2, in turn, fixing

κ = 1 − vMF(0) = 1 + 1
4E

1/2 + O(E) . (1.22c)

The z-average of the pole-residue formula (Greenspan & Howard 1963, second line
of equation (3.10)) suggests that a result (`/r)〈vMF〉 (≈ vMF − E1/2VMF) ≈ 0, similar to
(1.20), holds for the azimuthal flow. Though true asymptotically for t � 1 (see (1.24)
below), (B 2a) shows that

(`/r)〈vMF〉 ≈ vMF − E1/2VMF = E1/2RMF 6= 0 . (1.23)

Asymptotic evaluation of the “remainder” RMF (see (B 1b) and (B 2b)) provides the
estimates

〈vMF〉 =

{
O(vMF) for t = O(1) ,

O(t−1vMF) for t� 1 .
(1.24)

For us, this has the important implication that, whenever t � 1, the z-average 〈vMF〉
is indeed small. This property, together with 〈uMF〉 = 0 (1.20), is needed to justify the
DNS-filter described in §5.1 and employed in §5.2; aliter, the filter is only valid for t� 1.

1.2.2. The spin-down time t = O(E−1/2)

The QG-approximations of the above §1.2.1 are based on the initial assumption that
[uQG, vQG] remains close to [0, 1]. The secular behaviour E1/2t of vQG in (1.22a) explicitly
shows that the assumption fails when E1/2t = O(1). As previously mentioned below
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(1.5), the complete LT-solution is given by equations (3.4), (3.5) of Greenspan & Howard
(1963). That provides the conventional normal mode response (identified by the LT-poles)
in a confined geometry, albeit here only by the two boundaries z = 0 and 1. The normal
modes lead to infinite sums (approximated by Greenspan & Howard 1963, equations
(3.9), (3.10)). When those sums are dominated by large harmonics, it is often possible
(as shown by Oruba et al. 2020, in the MF boundary layer context) to approximate
such sums (O: 1.13) by integrals (O: 1.15). This example illustrates the fact that the
asymptotic continuum approximation

∑
7→
∫

possesses an inherent error, here O(E1/2).
For t > O(1) (following Greenspan & Howard 1963), we adopt that continuum strategy,
bearing in mind that we can never improve on the error estimate O(E1/2).

To identify modifications to the §1.2.1 results needed on the spin-down time scale
t = O(E−1/2), we investigate the complete LT of the mainstream radial flow u = (r/`)u
in the appropriate integral approximation style

û(p) =
iE1/2

[
(p− 2i)1/2 − (p+ 2i)1/2

]
2p(p− 2i)1/2(p+ 2i)1/2 − E1/2

[
(p− 2i)3/2 + (p+ 2i)3/2

] (1.25)

(see Oruba et al. 2017 equation (A3a) with (A2c-e), and cf. Greenspan & Howard 1963

equation (3.14) albeit in the context of v̂ ). As well as the O(E1/2) errors already stressed,
there are other related limitations on the approach imposed by dependence on time t. The
approximation is good at early time t = O(1), consistent with our integral style in §1.2.1
(directed to by the assumption that the z = 1 boundary is “far away”), but becomes
weaker as time increases. By implication, the formulation (1.25) is valid, provided that
the MF boundary layer width ∆(t) =

√
Et is small, which limits applicability to

t � E−1 . (1.26)

To determine the spin-down QG-part uQG proportional to

E(t) = exp(−E1/2σt) , (1.27a)

we need the real pole-location, i.e., the zero of the denominator of (1.25),

p = −E1/2σ = − 2 tan(2βQG) , (1.27b)

close to p = 0. Here, βQG = O(E1/2) solves

sin(2βQG) = 1
2E

1/2 [cos(3βQG) + sin(3βQG)] [cos(2βQG)]1/2 (1.27c)

with the approximate solution

βQG = 1
4E

1/2
(
1 + 3

4E
1/2
)

+O(E) =⇒ σ = 1 + 3
4E

1/2 +O(E) . (1.27d,e)

Bearing in mind that ∂vQG/∂t = −2uQG implies uQG = 1
2E

1/2σvQG (use (1.27a)) and
noting the initial value vQG(0) = κ (see (1.22a)), we see that

uE(t) = 1
2σκE

1/2 E(t) (E-trigger) (1.28)

correctly describes the early time behaviour of uQG(t), found in §1.2.1, in agreement with
(O: 1.20a). Our identification of the factor κ (1.22c), as the initial value vQG(0) (1.22a)
following the removal of the MF-part vMF(0) from v(0) is significant. Previously, Oruba
et al. (2017) derived κ formally as the residue (their equation (A5b)) at the (QG-)pole
(1.27b) of the LT (1.25), without any physical interpretation.

Curiously, there are two further poles of (1.25) that occur with p ± 2i = O(E), very
close to the cut-points p = ∓2i, and so outside the domain |p ± 2i| � E of validity of
(1.25). This condition stems from the requirement that LT boundary layer width of order
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E1/2|p ± 2i|−1/2, as determined by (1.11a), is less than the gap width unity. The poles
are spurious and not a feature of the complete LT-solution. So, with only |p ± 2i| � E
relevant, a plausible approximation of (1.25), for t� E−1 (1.26) of interest, is obtained
upon setting E = 0 in the denominator of its right-hand side

uW(t) = 1
2E

1/2 W(t) = E1/2 U(t) (W-trigger). (1.29a)

Since U(t) = UE + UMF(t) (see (1.14)–(1.17)), we may partition the W-trigger flow into

uE = 1
2E

1/2 WE = E1/2 UE = 1
2E

1/2 (E-trigger), (1.29b)

uMF(t) = 1
2E

1/2 WMF(t) = E1/2 UMF(t) (MF-trigger). (1.29c)

Undoubtedly, the W-trigger flow uW(t) is far better than the E-trigger flow uE(t), as
by construction, it contains the MF-trigger flow uMF(t) appearing in (1.18a). However,
the remaining E-trigger constituent, uE = uW(t) − uMF(t), fails to faithfully capture the
spin-down of vQG suggested by the term −E1/2t in (1.22a), but made explicit by the
exponential decay of uE(t). To remedy the absence only of the spin-down decay E(t) in
(1.29a), Greenspan & Howard (1963) proposed the approximation

ûGH(p) ≈ pÊ ûW(p) = 1
2 iE1/2(p+ E1/2σ)−1

[
(p+ 2i)−1/2 − (p− 2i)−1/2

]
(1.30a)

(cf. their (3.17)), which may be expressed in terms of Ŵ± (1.11b). Whence the inverse-LT
is

uGH(t) = 1
2E

1/2
[
(1/ℵ+)1/2W+

(
ℵ+t

)
+ (1/ℵ−)1/2W−

(
ℵ−t

)]
E(t) (1.30b)

(cf. their (3.19)), in which the argument ℵ±t of W± (1.12a) depends on

ℵ± = 1± 1
2 iE1/2σ . (1.30c)

Our description of (1.30a), as an “approximation”, is a generous interpretation. Rather
it is a “composite” that captures the behaviour of the LT (1.25) close to the pole (1.27b)
and in the neighbourhood of (but not too close to) the cut-points p = ±2i. It is not
uniformly good elsewhere. Indeed, even the O(E1/2) corrections stemming from the
factor σκ in the E-trigger are not captured. Such errors do not bother us. However, we
do take seriously the O(E1/2) contributions to the decay rates, such as E1/2σ, and later
similar frequency corrections, because both describe secular features that accumulate over
long time scales. So, where appropriate, we are at pains to keep track of them. In this
connection, we stress that, whereas the QG-contribution to uGH (1.30b) is Ekman damped,
the MF-contribution is not, because W±MF(ℵ±t)E(t) = −[f(ℵ±T ) ± ig(ℵ±T )] exp(∓2it)
(see (1.16c)). Though Greenspan & Howard (1963) are clear in their text on this
matter, their asymptotic formula equation (3.20) (repeated in equations (2.4.1), (2.4.2)
of Greenspan 1968) suggests otherwise.

1.3. Spin-down between two parallel plates bounded at r† = L for t� E−1

In this paper we consider the triggered response to blocking of the mainstream radial
outflow u by an outer boundary at r = `. In Oruba et al. (2020), we ignored the
MF-contribution −uMF(t) to the trigger and simply considered the E-trigger u = −uE(t)
caused by blocking the QG flow (r/`)uE(t) (see (1.28)) at r = `. Here, instead, our
objective is to identify the response to the complete trigger −u(t) caused by blocking the
entire unbounded (0 6 r <∞) flow (r/`)u(t).

Since the complete trigger −u(t) is extremely complicated possessing the LT (1.25),
which is not even valid for all p (see §1.2.2), it makes more sense to employ the
approximate form−uGH(t). Though its slow exponential decay identified by E(t) in (1.30b)
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is a fundamental feature of the QG-spin down, it only influences the triggered waves of
frequency ω by an amplitude factor [1 +O(E1/2)], i.e., the O(E1/2) errors that occur on
replacing the factors (iω +E1/2σ)−1, associated with the residues at the poles p = iω in
(1.30a), by (iω)−1. For our trigger purpose alone, it is therefore consistent to make the
approximation ℵ± = 1 in (1.30b,c) and so obtain

u(t) = [1 +O(E1/2)] uW(t) for 0 < t� E−1 . (1.31)

On neglecting the O(E1/2) error we are left with the so-called W-trigger −uW(t) (1.29a),
used throughout this paper.

The irrelevance of the continual QG exponential decay on the triggered waves has a
further implication. It suggests that the early time t = O(1), rather than the spin-down
time t = O(E−1), behaviour of uGH(t) (1.30b) has the greatest influence. The upshot is
that, on the one hand, uGH(t) (1.30b) provides a good composite approximation of the
unbounded flow u(t), with LT (1.25), needed in the construction of the complete solution.
On the other, uW(t) (1.29a) is adequate to describe the W-trigger with the O(E1/2) error
identified in (1.31).

Our appraisal of the subtle issues, which guide us to the choice of (1.29a) for our W-
trigger, substantiate our careful description of the transient Ekman layer (unbounded) in
§1.1 and its early time implications for the later spin-down between parallel boundaries
in §1.2.1. Though our concern is with events that occur for t � 1, when the E-trigger
applies, our discussions make clear that wave generation depends on the early time,
t = O(1) behaviour. That is only captured correctly on use of the W-trigger.

A final consideration pertains to our trigger −uW(t) = −uE − uMF(t) (1.29) at r = `,
which is assumed to apply over the entire range 0 < z 6 1 with an equal and opposite
point sink at z = 0. Errors ensue because, in reality, the z = 0 point-sink at t = 0 expands,
in concert, with the boundary layer width ∆(t) =

√
Et. Thus the ensuing errors from

uE and uMF(t) are O(E1/2uE) and O(∆(t)uMF(t)), respectively. Since uMF(t) = O(t−1/2uE)
in which the factor t−1/2 follows from (A 5), the error from both QG and MF parts is
the same O(E1/2u(t)). Fortunately, the size of the error coincides with that accepted in
(1.31) to justify our use of the W-trigger.

1.4. Outline

The paper is organised as follows:
In §2, we formulate the mathematical problem for the inertial waves, including their

internal viscous dissipation when E 6= 0, generated by the W-trigger. We separate the
variables by introducing a z-Fourier series (terms labelled m) in §2.1 and an r-Fourier-
Bessel series (terms labelled n) in §2.2, where we provide the LT-solution, namely a
double-sum generated by individual mn-modes (2.19d).

Since the W-trigger (1.29a) scales as E1/2, so does the wave solution E1/2v∼ in (2.1a)
via the trigger boundary condition (2.2) at r = `. Without viscosity (E = 0), there is
no spin-down and no inertial wave generation. Nevertheless, in the limit E ↓ 0, following
the removal of the amplitude factor E1/2, the scaled velocity v∼, derived from the LT-
inversion in §3, continues to solve the governing equations (2.3). In §3.1, we identify
persistent waves linked to the poles of the LT. Moreover in §3.2, extra MF-waves,

linked to the cuts of Ŵ at p = ±2i, are revealed. Though the pole/cut combination
identifies the characteristics of individual v∼mn-modes, the accumulated consequence of
their double-summation is not revealed. So, to shed further light on the matter, we
consider, in appendix C, the large aspect ratio case ` = L/H � 1, for which a Cartesian
approximation of the geometry applies when ` − r = O(1). We employ the ` � 1
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asymptotic methods of §O:4.2, which approximates the discrete Fourier-Bessel spectrum
jn/` (see (2.16a)) by a continuous wavenumber k. In this way the r-Fourier-Bessel sum
over n is approximated by a more amenable Fourier integral over k.

In appendix C.1 (adaption of §O:5) the z-Fourier series is recast as the sum of image
systems, generated by z-shifts of a primary solution defined on an unbounded domain
−∞ < z − ∞. This solution is particularly revealing for moderate ` − r and t, when
the images constitute perturbations of the primary solution. In appendix C.2 (adaption
of §O:6), we apply the method of steepest descent (stationary phase) to determine the
t � 1 behaviour of individual z-Fourier m-harmonics, which is useful once the m = 1
mode in (2.6) dominates the solution. As the derivations are lengthy and parallel much of
Oruba et al. (2020), their details have been relegated to appendix C. Nevertheless, the
results are important because they explain features of the analytic solution generated
by the numerical evaluation of the §3 mn-sums portrayed in panels (c) of figures 1–
4. Appendix C.1 accounts for the fan-like structures on the right near r = `, while
appendix C.2 identifies the front location on the left, where the waves are attenuated.

The results of §3 and appendix C must, of course, be interpreted within the framework
of the limit E ↓ 0 and as such only describe waves in the mainstream, exterior to all
boundary layers. Once the MF boundary layer (A 7) has expanded to fill the entire
region on the time scale t = O(E−1), the solution is no longer applicable, so placing
an absolute limit on the usefulness of the solution to the range 0 < t � E−1. Viscous
effects are, however, manifest on the spin-down time t = O(E−1/2) and even earlier for
waves with sufficiently short length scales (internal friction). So, in §4, we address the
small but finite-E corrections to the mainstream individual wave amplitudes v∼mn found
previously in §3 by solving the governing equations with E = 0. Our remit is restricted
to finding O(E1/2) decay rates and frequency perturbations due to internal friction in
§4.1 and accounting for similar corrections due to Ekman layer damping in §4.3. The
transitory nature of the Ekman layers for modes with frequencies close to 2 introduces
complications that we accommodate by a composite solution in §4.2, which we argue
gives the required low order accuracy for all t� E−1.

We performed Direct Numerical Simulations (DNS) of the spin-down governing equa-
tions subject to the complete boundary conditions for various small values of E, which
we discuss in §5. Oruba et al. (2020) proposed a Filtered DNS (referred to as FNS), for
which the QG-part vQG of the complete vDNS was removed. In §5.1 we define a new FNS,
whereby the mainstream z-independent MF-part vMF is also removed (see (5.4)). This
has the advantage, over the previous Oruba et al. (2020) definition, that the resulting
FNS in the mainstream, exterior to all boundary layers, may be compared directly, in
§5.2, with the inertial wave solutions of the triggered wave problem formulated in §2.
Comparisons, at E = 10−4, ` = 10, are presented in figures 1–4 below. Within the
various panels of those figures, we compare the FNS (panels (a)) to the analytic results
from our new W-trigger (1.29a) for finite E (panels (b)) and in the E ↓ 0 limit (panels
(c)), and our previous E-trigger (1.28), employed with E = 1, (panels (d)). In making
comparisons with the results of Oruba et al. (2020), it is important to note that, up to the
same order of accuracy achievable by the W-trigger, the E-trigger is adequately described
by the E-trigger (1.29b). Our new W-trigger solutions are almost identical to the FNS,
whereas our previous E-trigger (essentially the E-trigger) exhibits small amplitude and
phase defects. The origin of these defects is explained by various analytic comparisons
made in §3.1 and appendix C. A more quantitative assessment of the relative accuracy
of the analytic- and FNS-results for our W-trigger is described in §5.3.

We conclude with an overview in §6.



12 L. Oruba, A. M. Soward and E. Dormy

2. The mathematical problem

Our strategy parallels Oruba et al. (2020). So here we draw on their results by
referencing the relevant equations but only sketch the methodology; for a more careful
appraisal, the reader is referred to that work and references therein (for a general reference
to inertial waves in a container, see Zhang & Liao 2017).

The essential idea is that the flow vGH (say) between unbounded parallel planes (` →
∞), whose LT-solution is given by equations (3.4)–(3.6) of Greenspan & Howard (1963),
provides the lowest order solution to the bounded (` large but finite) problem. The main
point, emphasised in §1.3, is that outside boundary layers the horizontal components
vQG⊥ and vMF⊥ of both the QG and MF-flow contributions (for ` → ∞), that together
comprise vGH⊥ (see (2.1b)), are z-independent; the small axial components wQG, wMF and
their sum wGH are, of course, all linear in z. However, the failure of the radial velocities
uQG = (r/`)uQG and uMF = (r/`)uMF, both of O(E1/2), to meet the requirement u(`, t) = 0
triggers a further inertial wave response E1/2v∼ (referred to as E1/2vwave by Oruba et
al. 2020). As we are only interested in v∼ outside the Ekman layer (both steady and
transient) and side-wall boundary layers, we ignore those boundary layers and write

v ≈ vGH + E1/2v∼ , vGH = vQG + vMF . (2.1a,b)

Our objective is to determine v∼ obtained subject to the W-trigger boundary condition

u∼ = −U(t) = − 1
2W(t) at r = ` (0 < z 6 1) (2.2)

(see (1.29a)), with a sink of opposite strength at z = 0 to ensure that
∫ 1

0
u∼ dz = 0. It

is important to note that the radial flow uGH differs from the trigger flow (r/`)uW, for
reasons explained in §1.3.

Throughout this section we drop the superscript ‘∼’ and write v = [u, v, w] ( 7→v∼).
With w = r−1∂(rχ)/∂r (1.4d), the inertial wave problem is: Solve

∂v

∂t
+ 2u = E

(
∇2 − r−2

)
v , u = − ∂χ

∂z
, (2.3a,b)

∂γ

∂t
− 2

∂v

∂z
= E

(
∇2 − r−2

)
γ , γ = −

(
∇2 − r−2

)
χ (2.3c,d)

((2.3a,c) are the azimuthal equations of momentum, vorticity respectively) subject to the
initial (t = 0) conditions

v = 0, γ = 0, (2.4a,b)

and for t > 0 the reduced boundary conditions

rχ = 0 at r = 0 (0 < z 6 1) , (2.5a)

rχ = 1
2`(z − 1)W(t) at r = ` (0 < z 6 1) , (2.5b)

χ = 0 at z = 0, 1 (0 < r < `) , (2.5c)

in which the stress boundary conditions, appearing in (5.2) below, have been ignored.

2.1. The z-Fourier series

We seek z-Fourier series solutions of the form[
χ

v

]
= −

∞∑
m=1

(−1)m

mπ

[
χ̃m(r, t) sin

(
mπ(z − 1)

)
ṽm(r, t) cos

(
mπ(z − 1)

) ] (2.6)
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for which (2.5b), noting

1
2 (z − 1) = −

∞∑
m=1

(−1)m

mπ
sin(mπ(z − 1)) (0 < z 6 1) , (2.7)

leads to the boundary condition

rχ̃m = `W(t) at r = ` . (2.8)

The LT-solution obtained from (O: 2.16a), following the change Ê(p) 7→ Ŵ(p), is[ ̂̃χm̂̃vm
]

=

[
1

2mπ/p

]
Ŵ(p)

J1

(
mπqr

)
J1

(
mπq`

) . (2.9a)

Here J1 is the Bessel function, while the functions p = p(p) and q = q(p) = q(p(p)) are
determined by the dispersion relation (O: 2.17a–d), which gives them as the solutions of

p2 = − 4
/(
q2 + 1

)
,

p = p + (q2 + 1)dm

}
⇐⇒

{
q2 + 1 = − 4/p2 ,

p = p + 4dm/p
2 ,

(2.9b,c)

where

dm = E(mπ)2. (2.9d)

In terms of the Bessel function of imaginary argument I1, the initial behaviour

χ̃m ≈
8t3/2

3
√
π

I1
(
mπr

)
I1
(
mπ`

) (t� 1) (2.10)

is recovered on expanding the integrand of the inverse-LT L−1
{̂̃χm

}
of ̂̃χm defined by

(2.9a) under the limit p → ∞, for which q → i (see (2.9c)) and noting that W(t) ≈
8t3/2/(3

√
π) for t� 1 (see (1.12a,c)). The initial response (2.10), ∝ t3/2, is “softer” than

the impulsive response (O: 2.9c) to the E-trigger.
For t > 0 the LT-inversion of (2.9a) involves consideration of the contributions from

various poles, which include the zeros of J1

(
mπq`

)
, as well as the cuts at p = ±2i

exhibited by Ŵ(p). Since we have omitted the stress boundary conditions at r = `,
following Oruba et al. (2020), we disregard the shear layer responses, both QG and

ageostrophic, abutting the outer boundary r = ` linked to the poles p = 0 (in Ŵ(p)) and

p = 0 (in the factor p−1 of the expression for ̂̃vm). Their proper treatment using the full
boundary conditions (5.2) was undertaken by Oruba et al. (2017).

To understand the nature of the triggered waves, we begin by focusing attention on
the remaining set k of poles p = pmn, p∗mn (the superscript ‘∗’ denotes the complex
conjugate) identified by

q = qmn = jn
/

(mπ`) (> 0) , (2.11)

determined by the real zeros jn of J1

(
mπq`

)
(i.e., J1(jn) = 0). In turn, they define

pmn = iωmn , ωmn = 2
/√

q2mn + 1 , (2.12a,b)

pmn = iωmn − dmn , dmn = 4dm
/
ω2
mn , (2.12c,d)

and, following the differentiation of p = p + 4dm/p
2 (2.9c), they determine the value[

p

p

dp

dp

]
p=pmn

=
iωmn + 2dmn

iωmn − dmn
at p = pmn , (2.12e)
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needed to evaluate pole residues in §4.1 below. From (2.12b), we may generate

ϕmn =
√

1− (ωmn/2)2 = cos(2αmn) , (2.13a)

1
2ωmn =

√
1− ϕ2

mn = sin(2αmn) , (2.13b)

qmn = 2ϕmn/ωmn = cot(2αmn) , (2.13c)

cf. ϕmn with ϕ± in (C 8b) in appendix C.1 below. The role of the aforementioned cuts
re-emerges in (2.19) below.

Our disregard of the QG-response linked to the poles p = 0 and p = 0 has consequences
on the boundary values (2.8) of individual triggered waves, which actually satisfy

rχ̃m = `WMF(t) at r = ` , (2.14)

i.e., the oscillatory waves cannot exhibit the steady features of the E-trigger `WE

constituent (1.29b) (a curiosity noted and explained in the last paragraph of section 2.3
of Oruba et al. 2020, in connection with the E-trigger).

2.2. The r-Fourier-Bessel series

As in Oruba et al. (2020), we take advantage of the Fourier-Bessel series expansion

J1(mπqr)

J1(mπql)
= − 1

2

∞∑
n=1

q2mn

ω−2mn + p−2
J1(jnr/`)

jnJ0(jn)
on 0 6 r < ` , (2.15)

which follows from (O: A3) on noting that (2.9c), (2.12b) together imply q2mn − q2 =
4(ω−2mn + p−2). So we write[

χ̃m

ṽm

]
=

∞∑
n=1

[
χ̊d
mn

v̊dmn

]
J1(jnr/`)

jnJ0(jn)
on 0 6 r < ` . (2.16a)

Here, the superscript ‘d’, distinguishes our general dm
(
= E(mπ)2

)
6= 0 (2.9d) usage from

the dm ↓ 0 limit considered in the following §3, where the superscript ‘d’ will be omitted.
It follows that the LT of (2.16a) is determined via[ ̂̊χd

mn̂̊vdmn

]
= − 2ϕ2

mn

[
p

2mπ

]
p Ŵ(p)

p2 + ω2
mn

(2.16b)

on substitution of qmn = 2ϕmn/ωmn (2.13c) into (2.15). An unfortunate feature of the
Fourier-Bessel series expansion (2.15) is that it necessarily fails at r = `, where each
eigenfunction J1(jnr/`) vanishes. So it is not possible for (2.16a) to satisfy the reduced
boundary condition χ̃m(`, t) = WMF(t) (2.14) except in the limiting sense r ↑ `. That
such a limit is achievable is exemplified by the early time inverse-LT (2.10) of (2.9a).

We express the inverse-LT of (2.16b) as[
χ̊d
mn

v̊dmn

]
= −L−1

{
ϕ2
mn

[
p

2mπ

]
Ŵ(p)

p− iωmn

}
+ c.c. , (2.17)

where ‘c.c.’ denotes complex conjugate. A further reduction of the LT ̂̊vdmn, exhibited by
the right-hand side of (2.17), is possible upon using the partial fraction decomposition

1

p− iωmn
=

1

iωmn

[
p

p− iωmn
− 1

]
. (2.18)

The contribution to the inverse-LT L−1
{̂̊vdmn

}
from the second term −1/(iωmn) is pure
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imaginary and so when added to its complex conjugate vanishes leaving[
χ̊d
mn

v̊dmn

]
= ϕ2

mn

[
− 1

2imπ/ωmn

]
W d

mn(t) + c.c. , (2.19a)

where W d
mn(t) has LT

Ŵ d
mn(p) =

pŴ(p)

p− iωmn
. (2.19b)

The W d
mn-notation is motivated by the property W d

mn(t) = W(t), when ωmn = 0. So
employing W(t) =

∑
±
{
W±(t)

}
≡ W+(t) + W−(t) (1.12c), we write

W d
mn(t) =

∑
±
{
W d±

mn(t)
}
, (2.19c)

where Wd±(t) has LT

Ŵ d±
mn(p) =

pŴ±(p)

p− iωmn
=

±i p

p(p± 2i)1/2(p− iωmn)
(2.19d)

on use of (1.11b).
We must stress that our use of the χ̊mn, v̊mn notation, though similar in spirit to

Oruba et al. (2020), differs in detail. For whereas the factor Fmn = q2mnω
2
mn/2 = 2ϕ2

mn

appears multiplying [χ̊mn, v̊mn] in (O: 2.23a), we have removed it from (2.16a) including
it instead in (2.16b) (cf. (O: 2.23b)).

3. The inviscid limit, E ↓ 0, dmn = 0

We investigate the response (2.19a) in the E ↓ 0 limit, for which p = p and Ŵ d±
mn(p),

defined by (2.19d), reduces to

Ŵ±mn(p) =
±i

(p± 2i)1/2(p− iωmn)
=
( 2

$±mn

)3/2
Ŵ±

( 2

$±mn
(p− iωmn)

)
(3.1a)

with inverse

W±mn(t) =
√

2/$±mn W±
(
$±mnt

/
2
)

exp
(
iωmnt

)
(3.1b)

= P±mn

[
S(T±mn)± iC(T±mn)

]
exp
(
iωmnt

)
, (3.1c)

in which we have used (1.11b), (1.12) and introduced

$±mn = 2±ωmn , P±mn =
√

2/$±mn , T±mn =

√
2$±mnt/π = T/P±mn . (3.1d–f)

We note that the above is a simple adaption of the §1.2.2 result (1.30), following the
change of variables iE1/2σ 7→ ωm,n and 2ℵ± 7→$±mn.

For
[
χ̊d
mn , v̊

d
mn

]
, substitution of (3.1c) into (2.19a,c) yields the value[

χ̊mn

v̊mn

]
= − 2ϕ2

mn

[ (
Cmn(t) cos(ωmnt) + Smn(t) sin(ωmnt)

)
(2mπ/ωmn)

(
Cmn(t) sin(ωmnt)− Smn(t) cos(ωmnt)

) ] , (3.2a)

where [
Cmn(t) , Smn(t)

]
=
∑
±
{
P±mn

[
S(T±mn) , ∓C(T±mn)

]}
. (3.2b)

Hence the complete E ↓ 0 version of the solution (2.6) is determined by (2.16a) with[
χ̊d
mn , v̊

d
mn

]
given by (3.2a).

This analytic W-trigger solution has been estimated numerically (by truncating the
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sums involved). The result is shown on the twelve panels (c) of figures 1–4, at instants
when the solution is well developed. It differs significantly from the approximate (or
reduced) E(≈E)-trigger solution of Oruba et al. (2020) illustrated in panels (d). For,
as a comparison of panels (c) and (d) shows, the addition of the MF-trigger to form
the complete W(= E+MF)-trigger corrects the phase issue apparent when only the E-
trigger is used. To understand how the correction is achieved, we need to consider the
large time asymptotic behaviour of the solution, at which stage the wave mechanisms are
identifiable. To that end, the E ↓ 0 value Wmn(t) =

∑
±
{
W±mn(t)

}
of W d

mn(t), given by
(3.1b,c), is usefully partitioned into the pole- and cut-contributions of (3.1a).

3.1. The pole-part, k
On consideration of the explicit form for Ŵ±mn(p), given (3.1a) the residue at the pole

p = iωmn is determined from (3.1b), noting that W±E = (±i/2)1/2 (1.14b), as

Wk
mn(t) =

[
(i/$+

mn)1/2 + (−i/$−mn)1/2
]

exp
(
iωmnt

)
(3.3a)

= ϕ−1mn exp
(
iωmnt− αmn

)
, (3.3b)

in which we have introduced αmn via the relation

2ϕmn =
√
$+

mn$
−
mn = 2 cos(2αmn) (3.3c)

(recall (2.13a) and (3.1d)). The result (3.3b) may be checked by squaring both right-hand
sides of (3.3a,b) and noting (2.13b), (3.3c). Substitution of (3.3b) into (2.19a) determines[

χ̊k
mn

v̊kmn

]
= − 2ϕmn

[
cos(ωmnt− αmn)

(2mπ/ωmn) sin(ωmnt− αmn)

]
,

{
1 > ϕmn > 0 ,

0 < αmn < π/4 .
(3.4)

Cederlöf (1988) solved this normal mode problem but from a different perspective. At
first sight his method appears different to ours, because driving stems directly from the
transient Ekman pumping W(t) (1.9) (see his equation (5.21) in which the LT-form F̃ (s)

is essentially our Ŵ(p)) and not from the boundary condition at r = `. Nevertheless, after
appropriate variable changes, his solution equation (5.25) follows directly from (3.3a) via
(2.19a), (2.16a). He does not, however, introduce the instructive phase angles αmn.

It is interesting to compare the above pole-response χ̊k
mn =−2ϕmn cos(ωmnt − αmn)

to our W-trigger (1.29a), with the corresponding E-trigger (1.28) response, which from
(O: 4.2a) is χ̊kE

mn = − 1
2q

2
mnω

2
mn cos(ωmnt) = −2ϕ2

mn cos(ωmnt). The responses differ by a
factor ϕmn but coincide when ϕmn = 1 (αmn = 0). That is the QG-limit ωmn ↓ 0, which
occurs as qmn = jn/(mπ`) → ∞, namely the short radial-r length scale limit (jn � 1).
As the frequency ωmn increases, ϕmn decreases (αmn increases) in concert. Accordingly,
relative to E-trigger response χ̊kE

mn, the phase shifted (αmn 6= 0) W-trigger response χ̊k
mn

increases in amplitude by a factor 1/ϕmn. The increasing trend of the phase shift and
mode amplitude terminates as ϕmn ↓ 0 (αmn ↑ π/4). That is the MF-limit ωmn ↑ 2,
which occurs as qmn ↓ 0, namely the short axial-z length scale limit, which is of ever
decreasing magnitude[

χ̊k
mn

v̊kmn

]
≈ − 2

√
$−mn

[
cos(2t− π/4)

mπ sin(2t− π/4)

]
, as $−mn ↓ 0 , (3.5)

with χ̊k
mn yet large compared to χ̊kE

mn by the factor ϕ−1mn ≈ 1/
√
$−mn. Both the phase shift

and increased amplitude of the m = 1 mode are evident in the well developed solution
sufficiently far from the outer boundary r = ` in W-panels (c) of figures 1–4 below, when
compared to the E-panels (d), albeit at E = 10−4.
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3.2. The cut-part, �

The remaining cut-contribution Wmn(t)−Wk
mn(t) is

W�
mn(t) =

∑
±
{
W�±

mn (t)
}
, (3.6a)

where the results (3.1b) give

W�±
mn (t) =

√
2/$±mn W±MF

(
$±mnt

/
2
)

exp
(
iωmnt

)
(3.6b)

= − P±mn[f(T±mn)± ig(T±mn)] exp(∓2it) (3.6c)

on application of (1.16b,c), noting T±mn = ($±mnT/2)1/2 (3.1f) (but cf. (3.1c)). The large
T±mn asymptotic behaviour f(T±mn) ≈ (πT±mn)−1/2, g(T±mn) ≈ 0 (see (A 4a)) determines

W�
mn(t) ≈ −ϕ−2mn(πt)−1/2

[
cos(2t)− 1

2 iωmn sin(2t)
]

for T±mn � 1 . (3.7)

Substitution into (2.19a) yields[
χ̊�
mn

v̊�mn

]
≈ 2√

πt

[
cos(2t)

mπ sin(2t)

]
, (3.8)

similar to (3.5) except for the phase shift π/4 but notably smaller by a factor
(π$−mnt)

−1/2 ≈
√

2
/

(πT−mn) whenever T−mn � 1.
The simplicity of (3.8) suggests the possibility of constructing from it the large t

asymptotic form of the cut-solution. On use of the identity

r

2`
= −

∞∑
n=1

J1(jnr/`)

jnJ0(jn)
, (3.9a)

determined from the q → 0 limit of (O: A3), substitution of (3.8) into the r-Fourier-Bessel
series (2.16a) yields[

χ̃�
m

ṽ�m

]
≈ − r

`

1√
πt

[
cos(2t)

mπ sin(2t)

]
as t→∞ . (3.9b)

Substitution into the z-Fourier series (2.6), noting (1.18b), determines[
χ�

v�

]
≈ − 1√

4πt

r

`

[
(z − 1) cos(2t)

sin(2t)

]
≈ −E−1/2

[
χMF

vMF

]
(z > 0) (3.10)

(see §1.2.1 and (A 5)).
The result (3.10) raises disturbing issues. It suggests that the dominant cut-

contribution determines a flow contribution of the same size (but opposite in sign)
as the original Greenspan & Howard MF-flow responsible for the MF-trigger. However,
because of the discontinuous nature of the Fourier series for (z − 1) and 1 at z = 0 and
the Fourier-Bessel series for r at r = `, the series have to reach extremely large values of
m and n to achieve convergence. This is an issue because of the large T−mn requirement
t � 1/$−mn = 1/(2 − ωmn) (see (3.1d) and (3.7)). So at any finite t (however large), it
is unclear how good the approximation is. Certainly at the values of t, for which results
are reported here, some evidence of an MF-contribution from the cut was evident in
tests (not illustrated). However, surprisingly a similar MF-contribution from the poles
was also found (again not illustrated), which when combined with the cut-contribution
led to their cancellation, i.e., there is no evidence of an MF-contribution in panels (c) of
figures 1–4, or for that matter in panels (a), (b) of those figures at small but finite E. The
large time MF-issues raised provide a focal point for our discussion of the ` � 1 limit
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in appendix C, which explains the curious cancellation evident in the aforementioned
numerical results (not illustrated).

Remarkably, the ‘method of images’ approach of appendix C.1, identifies immediately
the main cut contribution (3.10) that prompted our concerns, via the MF-part −UMF(t) of
the very first term −U(t) on the right-hand side of (C 1a). The role of the poles is subtler,
because the estimate |χ̊k

mn| ∼ Tmn|χ̊�
mn| below (3.8) suggests that the pole contribution

will be even bigger. However, the second term on the right-hand side of final result (C 6b)
demonstrates that wave interference must occur reducing the accumulated pole effect to
exactly that from the cuts. The fact, that −UMF(t) = O(t−1/2) is indeed the dominant
cut contribution, is established by (C 6c), which shows the remainder to be even smaller
O(t−1) for t� 1.

An alternative perspective is gleaned from the steepest descent results of appendix C.2,
which for t � 1 identify two wave families χ̃± (C 7). The triggered MF-wave χ̃−,
characterised by (C 10c,d,f), is only pertinent close to the outer boundary r = `. There,
it remains small compared to the low frequency mode χ̃+, characterised by (C 10a,b,e).
Of even greater importance is the identification, in the last paragraph of appendix C.2, of
a wave front at which the χ̃±-waves merge and beyond which the waves are evanescent,
a feature clearly visible in figures 1–4.

4. Small but finite 0 < E � 1

The amplitude of the E ↓ 0 wave-solution, derived in the previous §3, takes no account
of its viscous damping. Such consideration is needed to achieve comparison with the direct
numerical simulations, which are necessarily undertaken at finite E. In this section, we
rectify that omission.

The complete inversion of the LT (2.19d) to obtain W d±
mn(t) in the small E limit is

formidable. So in this section we simply outline an approximate method that suffices for
our purpose. To that end we note that the solution may be partitioned as

W d±
mn(t) = W d±k

mn (t) + W d±�
mn (t) , (4.1)

where W d±k
mn and W d±�

mn are the pole- and cut-contributions to the inverse-LT of (2.19d).

4.1. Pole solution

The pole-contribution is determined from (2.19d) by the residue

W dk±
mn (t) =

[
±i

(p± 2i)1/2
p

p

dp

dp
exp(pt)

]
p=iωmn

(4.2)

of the inverse-LT at p = pmn = iωmn−dmn (2.12c,d), corresponding to p = iωmn (2.12a).
On use of the expression (2.12e) for

[
(p/p)(dp/dp)

]
p=iωmn

and noting from (3.1d) that

pmn ± 2i = ±i$±mn − dmn, the residue (4.2) becomes

W dk±
mn (t) = 1

2 (1± i)P d±
mn exp

(
iωmnt− dmnt

)
, (4.3a)

where

P d±
mn =

(
2

$±mn ± idmn

)1/2
ωmn − 2idmn

ωmn + idmn
, (4.3b)

in which Re
{

($±mn ± idmn)1/2
}
> 0 as required by analytic continuation on increasing

dmn from zero. The decay rate dmn = 4E(mπ)2/ω2
mn (see (2.9d), (2.12d)) is a consequence

of internal friction (identified by the first term in equation (4.5) of Zhang & Liao 2008).
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4.2. Composite solution

To obtain an approximate solution of the full problem, we make the ansatz

W d±
mn(t) = P d±

mn W
±($±mnt

/
2
)

exp
(
iωmnt− dmnt

)
, (4.4a)

which has the properties

W d±
mn(t)→

{
W±mn(t) as dmn → 0 ,

W dk±
mn (t) as T±mn →∞ .

(4.4b,c)

The former limit (4.4b) is a simple consequence of the fact that P d±
mn →

√
2/$±mn, as

dmn ↓ 0, so recovering the E ↓ 0 result (3.1b). The latter limit (4.4c) applies because
W±

(
$±mnt

/
2
)
→ W±E = 1

2 (1 ± i) (1.14b), as T±mn → ∞, leaving the pole-contribution
(4.3), i.e., the remaining cut-contribution W d±�

mn (t) is assumed negligible in this limit.
Our construction of the composite (4.4a) is in much the same spirit as Greenspan

& Howards’ unbounded flow composite uGH(t) (1.30b), i.e., neither is a true asymptotic
formula, but instead both capture the dominant flow characteristics.

4.3. Ekman layer damping

Consistent with our construction of the composite (4.4a), we implement Ekman damp-
ing by replacing the exponential exp(iωmnt− dmnt) with

exp
[
i
(
ωmn + ωE

mn

)
t −

(
dmn + dEmn

)
t
]
, (4.5a)

where the frequency and damping increments ωE
mn and dEmn adopted are those for pure

inertial waves, given by (O: 2.25) (also Kerswell & Barenghi 1995; Zhang & Liao 2008).
The increments have the form[

dEmn

ωE
mn

]
=

√
E

2
ϕmn

[
(2− ϕmn)

√
1 + ϕmn

(2 + ϕmn)
√

1− ϕmn

]
, (4.5b)

where ϕmn = 1
2

√
$+

mn$
−
mn =

√
1− (ωmn/2)2 (see (3.3c)), as can be verified by squaring

both sets of expressions for dEmn and ωE
mn, given by (4.5b) and (O: 2.25b).

The oscillatory Ekman layer adjacent to z = 0, frequency ωmn, has a double layer
structure of respective widths

∆±mn = P±mn

√
E , (4.6)

where P±mn =
√

2/$±mn (3.1e) (cf., e.g., Kerswell & Barenghi 1995, equation (2.8)).

The two widths are readily identifiable on setting p = 2iωmn in the exponential
exp
[
−E−1/2(p± 2i)1/2z

]
of the LT-solution (1.11a) for z±(z, t). In the geostrophic limit

ωmn = 0 (P±mn = 1), the steady Ekman layer width ∆E =
√
E is recovered. The width

∆−mn =
√
Etmn with tmn = (P−mn)2 = 2/$−mn > 0 , (4.7a,b)

of the broader layer increases indefinitely as $−mn ↓ 0 (P−mn →∞), i.e., ωmn ↑ 2. So the
boundary layers of inertial modes, possessing frequencies close to 2, fill the entire gap
0 6 z 6 1 of the layer.

In addition to the MF-matters associated particularly to the final steady state just
discussed, there are also delicate issues concerning how those states are reached. The key
feature of the transient evolution of inertial modes is their expanding viscous boundary
layer width ∆(t) =

√
Et (1.13). It eventually splits into two parts, each of which ceases

to grow at time t = t±mn that solves ∆(t) = ∆±mn. Since ∆−mn > ∆+
mn with t−mn > t+mn,

the splitting occurs at t = t+, at which the thinner reaches its final width ∆+
mn. For
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t > t+mn, the thicker broadens until terminating with width ∆−mn at t = t−mn. Furthermore,
whenever t−mn � 1, this time may be longer than the times reached in our numerical
investigations. In any event, when either ∆−mn = O(1) or 1 � t 6 O(t−mn), the formula
(4.5b) for dEmn and ωE

mn ceases to apply. Nevertheless, since (4.5b) predicts dEmn → 0 and
ωE
mn → 0 as |ωmn| ↑ 2 (ϕmn ↓ 0), their use in that limit, though inappropriate, ought to

be harmless.
The defects, just described are of exactly the same nature as the failure of the

Greenspan & Howard (1963) LT-solution (1.25) near the cut-points p = ±2i, elucidated
in the antepenultimate paragraph of §1.2.2 which ends with the definition (1.29) of the
W-trigger. In short, the failure of both the trigger and the waves pertain to boundary
layers that expand to fill the entire domain, and as such are two sides of the same coin.

Our appraisal of the situation indicates that it is impossible to produce asymptotic
(0 < E � 1) results that are justifiable in all space or for all time. As explained, our
proposed solution (4.4a) modified by (4.5a), namely

WEd±
mn (t) = P d±

mn W
±($±mnt

/
2
)

exp
[
i
(
ωmn + ωE

mn

)
t −

(
dmn + dEmn

)
t
]
, (4.8)

is weakest for disturbances with ωmn ≈ 2. Furthermore, in view of the approximate
nature of the W-trigger (1.29), nothing is gained by using the primitive form Wd±

mn(t) of
the damped (internal friction only) wave solution defined by its LT (2.19). We, therefore,
simply adopt (4.8). Indeed, despite many approximations, our guiding consideration
is to maintain accuracy compatible with our W-trigger assumption. The very tight
comparisons with Direct Numerical Simulation (DNS) reported in the following §5 fully
endorse this strategy.

5. The filtered DNS (FNS-)velocity

In §O:3 we presented results from the spin-down obtained by performing Direct
Numerical Simulations (DNS) of the full governing equations (2.3) subject to the initial
conditions

v/r = 1 , rχ = 0 everywhere at t = 0 , (5.1)

and boundary conditions

rχ =
∂(v/r)

∂r
=

∂w

∂r
= 0 at r = 0 and ` (0 < z < 1) , (5.2a)

rχ =
∂(rχ)

∂z
= v/r = 0 at z = 0 (0 < r < `) , (5.2b)

rχ =
∂2(rχ)

∂z2
=

∂(v/r)

∂z
= 0 at z = 1 (0 < r < `) , (5.2c)

i.e., the bottom plate is rigid (5.2b), whereas the top and side boundaries are stress-free
(5.2a,c). From those results, Oruba et al. (2020) described how asymptotics valid for
E � 1, could be used to remove the QG-part vQG of the flow external to all boundary
layers, leaving what they referred to as the filtered DNS (FNS, §O:3.1). From an analytic
point of view, that remaining FNS is the sum of the underlying MF-flow vMF, described
in §§1.2.1, 1.2.2, together with the wave part E1/2v∼ triggered at the outer boundary.
To simplify matters, only the E-triggered wave E1/2v∼E (= E1/2vwave in (O: 2.1)) was
considered by Oruba et al. (2020). Here we improve on that simplification by considering
the flow more faithfully described by E1/2v∼W (i.e., E1/2v∼ in (2.1a)).
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5.1. Our new FNS

We consider the decompositions

v = vQG + vMF + E1/2v∼ , (5.3a)

v⊥ = vQG⊥ + v∆QG⊥ + vMF⊥ + v∆MF⊥ + E1/2v∼⊥ (5.3b)

of the entire velocity v and the horizontal velocity v⊥. Note that there are also
ageostrophic side wall boundary layer contributions adjacent to r = `, ignored in
(5.3a,b). The z-average of (5.3b) yields

〈v⊥〉 = 〈vQG⊥〉 + 〈vMF⊥〉 + O(E) , (5.3c)

where the wave Ekman layer contribution 〈v∼⊥〉 = O(E1/2) is included in the O(E) error.
As the filter only pertains to the flow outside all boundary layers, we are only interested
in the contribution vQG⊥+vMF⊥+E1/2v∼⊥ to (5.3b). Oruba et al. (2020) filtered the DNS
by simply removing the z-independent QG-contribution vQG⊥. However, a more useful
filter is obtained by removing, in addition, the MF-contribution vMF⊥, which like vQG⊥
is z-independent. By this devise we are left with our new filtered horizontal velocity

vFNS⊥ = E−1/2
(
vDNS⊥ − vQG⊥ − vMF⊥

)
. (5.4)

To evaluate our new filter (5.4), we assume that the needed features of the MF-part
of the DNS are

E−1/2vMF⊥ ≈ (r/`)[UMF , VMF + RMF ] , (5.5a)

E−1/2〈vMF⊥〉 ≈ (r/`)[ 0 , RMF ] , (5.5b)

as given by the analytic results (1.20) and (1.23). Thus with vMF assumed known, we
remove it from both sides of (5.3a) and so obtain vDNS⊥−vMF⊥ = vQG⊥+E1/2v∼⊥ instead
of (5.3b). Then, as in Oruba et al. (2020), we use the recipe implicit in (O: 3.4) and
(O: 3.7a) to relate vQG and uQG to 〈vQG〉:

E−1/2vQG⊥ ≈ µ−1
[

1
2σ , E

−1/2 ]〈vQG〉 , (5.6a)

where σ ≈ 1 + 3
4E

1/2 (1.27e), µ ≈ 1− 1
2E

1/2. Next, (5.3c) determines

〈vQG〉 ≈ 〈vDNS〉 − 〈vMF〉 ≈ 〈vDNS〉 − E1/2(r/`)RMF , (5.6b)

on use of (5.5b). Substitution of E−1/2vMF⊥ (5.5a) and E−1/2vQG⊥ (5.6a,b) into (5.4)
then provides an explicit representation of vFNS⊥ in terms of vDNS⊥ and known analytic
results. Finally we note that

χFNS = E−1/2χDNS − E−1/2(uQG + uMF)(1− z) , (5.7)

in which E−1/2uQG ≈ 1
2 (σ/µ)〈vQG〉 (see (5.6a)) and E−1/2uMF ≈ (r/`)UMF (see (5.5a)).

Following the neglect of 〈v∼〉 = O(E1/2) and other similar approximations such as the
reliability of the trigger itself (see, e.g., (1.31)), we expect the filter values χFNS (5.7) and
vFNS (the azimuthal component of (5.4)) to agree with the analytic predictions for χ∼W
and v∼W, with O(E1/2) error.

5.2. FNS-results

For E = 10−4, FNS-solutions (using the new filter described above in §5.1) are
compared to those obtained using the analytic results of §§3, 4 in figures 1-4. All figures
are arranged in three blocks (each consisting of four panels (a)–(d)) corresponding to
different time instants. We adopt the times employed in figures O:1–O:4, close to which
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t = 4.72

a.

b.

c.

d.

t = 11.00 (a,b,c,d)

t = 17.28 (a,b,c,d)

0 2 4 6 8 10

Figure 1. The case E = 10−4, blocks of E−1/2χ-contours at three distinct instants t = Nπ/2
(N = 3, 7, 11), namely 4.72, 11.00, 17.28, when χMF is maximised (vMF ≈ 0). In order, the four
panels (a–d) within each block show (a) the filtered-DNS χFNS; (b) the analytic solution χ∼

W

from the new W-trigger; (c) again χ∼
W but, for comparison, at E = 0; (d) the analytic solution

χ∼
E from the previous E-trigger (the z–range is 0 6 z 6 1; colour scale from −0.1 (blue) to 0.1

(red)).



Inertial waves induced by spin-down 23

t = 5.50

a.

b.

c.

d.

t = 11.79 (a,b,c,d)

t = 18.07 (a,b,c,d)

0 2 4 6 8 10

Figure 2. As in figure 1 but now at t = (N + 1
2
)π/2 (N = 3, 7, 11), namely 5.50, 11.79, 18.07,

when (vMF is maximised) χMF ≈ 0.
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t = 4.72

a.

b.

c.

d.

t = 11.00 (a,b,c,d)

t = 17.28 (a,b,c,d)

0 2 4 6 8 10

Figure 3. As in figure 1, but now E−1/2v-contours for the same instants, when (χMF is
maximised) vMF ≈ 0. Each block shows (a) the filtered-DNS vFNS; (b) the analytic solution
v∼W from the new W-trigger; (c) again v∼W but, for comparison, at E = 0; (d) the analytic
solution v∼E from the previous E-trigger (the z–range is 0 6 z 6 1; colour scale from −0.5 (blue)
to 0.5 (red)).
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t = 5.50

a.

b.

c.

d.

t = 11.79 (a,b,c,d)

t = 18.07 (a,b,c,d)

0 2 4 6 8 10

Figure 4. As in figure 3 but now at t = (N + 1
2
)π/2 (N = 3, 7, 11), namely 5.50, 11.79, 18.07,

as in figure 2, when vMF is maximised (χMF ≈ 0).
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either χMF or vMF take their stationary values (i.e., the zeros of the time derivative of UMF

or VMF given by (1.17a)). As t→∞, they coincide with the vanishing of the corresponding
asymptotic forms (A 5). Though, having filtered out the MF-contribution, those instants
are no longer special, we limit our attention to them in order to facilitate comparison of
our current W-trigger results with the earlier E-trigger results displayed in figures O:1–
O:4, albeit for the larger E = 10−3. On the one hand, the effects of dissipation are less
evident in our E = 10−4 figures 1-4. On the other hand and related, our new displays
pertain to a very early stage of the spin-down process, i.e., short compared to the QG
spin-down time O(E−1/2) = O(100) for E = 10−4. As our filter removes the QG flow,
the time stage is largely irrelevant to the filter output.

FNS-values for the W-trigger are portrayed in panel (a) of every block. The dark
region at the bottom of those panels reflects the Ekman layer (thin and very dark)
and the expanding MF shear layer, when present in figures 1, 4 (thicker with some
contours visible), that the filter does not remove. There is also an ageostrophic E1/3-
sidewall Stewartson layer adjacent to the outer r = ` boundary that the filter does not
remove either. Further, it is important to realise that, when the MF-contributions are
negligible as in figures 2, 3, the new filter (5.4) is essentially the same as the previous
filter. Our W-triggered wave solution portrayed in panel (b) of every block is based on the
Ekman layer damped composite solution (4.8). Outside the aforesaid boundary layers,
the agreement with panels (a) is remarkable. For comparison, we show E-triggered wave
solution, based on the results of Oruba et al. (2020) (previously portrayed for E = 10−3,
but see the following paragraph) in panel (d). Though the E-results identify all the major
wave processes involved, the E-results are clearly found wanting, and, unlike the robust
W-results, do not capture the FNS-solution in detail.

The comparisons just described are all for E = 10−4. We can see the effect of changing
E from 10−3 to 10−4 by comparing the FNS, IW (MF+‘wave’) panels (b), (c) (etc.)
of figures O:2, O:3 with our FNS, waves(∼) panels (a), (b) (all blocks) of figures 2, 3,
because at the instants (with no MF-contribution) chosen the two filters coincide, as do
the IW and waves.

In panels (c) of figures 1–4, we portray E = 0 results obtained by use of (3.1b)
(equivalently (3.1c)), namely the E = 0 version of (4.8). Their comparison with panels
(b) shows how the small dissipation damps the waves. The large scale features are weakly
damped, whereas the small scale structures near r = ` are strongly damped. There further
comparison of panels (b) with (a) shows how well our damping anzatz (4.5) works outside
the ageostrophic E1/3-sidewall layer, and particularly close to it, where the E = 0 panels
(c) show considerable fan structure, the smoothing of which by dissipation is captured
accurately. We mention also that figures O:6, O:7 show the E = 0 E-response that
correspond to the W-results portrayed in panels (c) of figures 2, 3. Direct correspondence
is not easy. Still, as the E = 10−4 results are very similar to the E = 0 results except
near r = `, the major differences are simply illustrated in figures 1–4 by comparing the
W-wave results panels (b) with the E-wave results panels (d).

Other than the effects of damping, all other features are explained by the E = 0
analysis of §3. There we identify the main modification of the E-wave results of Oruba
et al. (2020) that lead to our present W-wave results and so do not repeat them here.

5.3. Quantitative tests

In this subsection, our objective is to assess quantitatively how well the FNS is
approximated by the analytic W-triggered wave results on decreasing E. To achieve that
goal, we analyse the results for vFNS(E) and v∼W(E) portrayed in the final t = 18.07 block
of panels (a)–(c) in figure 4, extending the values of E considered to include E = 10−n,
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a.

b.

Figure 5. Horizontal cross-sections of v–field measures over the range 5 6 r 6 9 at z = 0.8,
at t = 18.07. (a) shows the linearly interpolated values vlerpFNS (E1, E2) (5.10) that estimate
vFNS(0); (E1, E2) = (10−3, 10−4) (red), (10−4, 10−5) (green), (10−5, 10−6) (blue). (b) shows the
discrepancy vvw(E) (5.11) between the FNS and W-trigger solution; E = 10−3(red), 10−4(green),
10−5(blue), 10−6(light blue).

n = 3, 4, 5, 6. In figures 5 and 6, various quantitative tests are made over the range
5 6 r 6 9 of significant wave activity, yet outside the E1/3-sidewall layer abutting the
outer boundary r = 10. The height z = 0.8 chosen for the horizontal cross-sections is

(i) sufficiently far above the lower boundary z = 0 to avoid possible corruption of the
results by the tail of the lower

√
Et-MF boundary layer, and

(ii) well inside the upper cells, illustrated in figure 4, in order to capture substantial
azimuthal v-wave motion.

The reason for avoiding both the E1/3-sidewall and
√
Et-MF boundary layers is that our

filter cannot resolve them.

Of particular interest is the E ↓ 0 value of the horizontal FNS-velocity vFNS⊥(E), which
being a measure of E1/2vFNS⊥(E), is only defined for E > 0. All our estimates suggest
that its value is determined analytically by the E = 0 value of v∼W⊥(E) determined by
the results (3.2a,b) of §3. So our expectation is that

vFNS⊥(0) ≡ lim
E↓0

vFNS⊥ = v∼W⊥(0) . (5.8)

For 0 < E � 1, various analytic estimates suggest that exterior to all boundary layers
vFNS⊥(E) and v∼W⊥(E) have, at fixed t, expansions of the form

vFNS⊥(E) = vFNS⊥(0) + E1/2v ′FNS⊥ + O(E) , (5.9a)

v∼W⊥(E) = v∼W⊥(0) + E1/2v∼ ′W⊥ + O(E) , (5.9b)

where the notation • ′ is intended to suggest d •
/

dE1/2
∣∣
E↓0. As our filter has O(E1/2)
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a.

b.

c.

Figure 6. Horizontal cross-sections at t = 18.07, as in figure 5, showing the E−1/2-scaled
(a) increment of v∼W(E), namely δv∼W(E)/E1/2 (5.12a); (b) increment of vFNS(E), namely

δvFNS(E)/E1/2 (5.12b); (c) difference vvw(E), namely [δvFNS(E) − δv∼W(E)]/E1/2 (5.12c)

(illustrated previously in figure 5(b), albeit without the E−1/2-scaling).

errors, there is no asymptotic reason for v ′
FNS⊥ and v∼ ′W⊥ to agree. The main purpose of

our tests in figures 5 and 6 is to assess the worth of our ansatz (5.9).
As we cannot determine vDNS(0) (and hence vFNS(0)) other than via the limit E ↓ 0, we

consider instead its linearly interpolated value

vlerpFNS (E1, E2) ≡ E
1/2
2 vFNS(E1) − E

1/2
1 vFNS(E2)

E
1/2
2 − E

1/2
1

, (5.10)

which we plot in figure 5(a) for various pairs (E1, E2). In (5.9), we have been cautious to
offer only a two term Maclaurin series. In the unlikely event of the series remaining valid
up to the next term O(E), it would follow that vlerpFNS (E1, E2) = vFNS(0) + O((E1E2)1/2),

and then only for sufficiently small E1 and E2. Be that as it may, the vlerpFNS (E1, E2) cross-
section in figure 5(a) converges well. The limiting curve v∼W⊥(0) is not plotted being
indistinguishable to graph plotting accuracy, consistent with our expectation (5.8).
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To obtain a measure of the relative sizes of v ′FNS and v∼ ′W , we plot in figure 5(b) the
difference

vvw(E) ≡ vFNS(E)− v∼W(E) = E1/2[v ′FNS − v∼ ′W ] + O(E) (5.11)

with O(E) error, as estimated by (5.9). Reassuringly vvw(E) decreases with decreasing
E consistent with the implications of convergence in figure 5(a), but not very fast.
So in figure 6(c), we plot the scaled value vvw/E1/2, which by (5.11) ought to tend
to an O(1) limit. Instead it shows sign of increasing with decreasing E. It should be
emphasised, however, that we are attempting to identify very small effects. For with
vFNS = O(E1/2vDNS), v

′
FNS = O(E1/2vDNS), v

∼ ′
W = O(E1/2vDNS), the relation (5.11) implies

that vvw = O(EvDNS), an accuracy which is perhaps hard to achieve from the numerics.
As a further test of the anzatz (5.9) we plot respectively

δv∼W(E) ≡ v∼W(E) − v∼W(0) = E1/2v ′W + O(E) , (5.12a)

δvFNS(E) ≡ vFNS(E) − v∼W(0) = E1/2v ′FNS + O(E) , (5.12b)

scaled by E−1/2 in figures 6(a),(b). There is some evidence that both δv∼W(E)/E1/2 and
δvFNS(E)/E1/2 are approaching the proposed respective limiting values v ′W and v ′FNS. To
assess this tendency from a slightly different perspective, we plot vvw(E)/E1/2 (5.11) in
figure 6(c). Being related to (5.12a,b) via

vvw(E) = δvFNS(E) − δv∼W(E) , (5.12c)

its small size relative to both δv∼W(E) and δvFNS(E) is very reassuring, despite lacking evi-
dence of convergence. The lack of convergence may be attributable to the aforementioned
numerical error. More seriously, however, the implied presumption that the O(E1/2) value
of vvw(E) = O(E1/2) defined by (5.11) is meaningful at that order is flawed, because our
W-trigger (1.29), used to obtain v∼W(E), itself possesses O(E1/2) errors, as explained in
§1.3. Essentially, the accuracy of our W-trigger is strictly limited and what figure 6(c)
attempts to illustrate is beyond the accuracy claimed by our asymptotics. Despite the
caveat about figure 6(c), the quantitative measures in figures 5 and 6, strongly support
the convergence of the FNS-results as E ↓ 0 to the E = 0 analytic results.

6. Concluding remarks

Our present work, when combined with the QG-study of Oruba et al. (2017), provides
a full analytical solution to the problem of time-dependent motion of a rotating fluid in
a plane layer including lateral boundaries, pioneered in the seminal article of Greenspan
& Howard (1963). A central feature of our study is the elongated aspect ratio of the
domain. In a container with O(1) aspect ratio, inertial wave activity shows little structure
and decays rapidly, because waves are quickly reflected at the axis with no time available
to create the coherent travelling structures.

The strong inertial wave activity in an elongated domain is likely to have important
consequences on the dynamics of large vortices in the atmosphere, such as tropical
cyclones. It is indeed quite possible that these waves are associated with the eye-wall
replacement (Houze et al. 2007; Fischer et al. 2020), a feature that is often observed prior
to rapid intensifications. To investigate these, the simplified E-trigger (1.28), essentially
equivalent to the E-trigger (1.29b), was adopted by Oruba et al. (2020). The triggered
waves v∼E obtained within that framework were adequate to explain the main features of
the DNS-results.

Here, we extend that preliminary study to include the MF-trigger (1.29c), so construct-
ing the W-trigger (1.29a). For E = 10−4, we find that the comparisons in figures 1–4 of
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our v∼W predictions based on the faithful W-trigger (panels (b)) with the filtered DNS-
waves v∼FNS (panels (a)) are almost perfect in the mainstream above the Ekman layer
adjacent to the lower boundary z = 0 and away from the ageostrophic E1/3-layer abutting
outer boundary r = `. We stress that the comparable E-trigger results figures O:1–O:4
pertain to the larger value E = 10−3 at which diffusive effects are more evident. Only
for E = 10−4 and smaller is viscosity unambiguously suppressed.

Essentially, relative to Oruba et al. (2020), our W-trigger not only incorporates the
E-trigger but the additional MF-trigger as well. Respectively, they take account of the
blocking of uE = 1

2E
1/2 (1.29b) and uMF(t) = 1

2E
1/2UMF(t) (1.29c). The latter (maximum-

frequency or) MF-waves are identifiable as such when t � 1 (Greenspan & Howard
1963). However, for t 6 O(1), both uE and uMF(t) are the same size. More strikingly at
that early time, the transient Ekman boundary layer flow u(z, t) (see (1.6a)) exhibits a
thin but expanding boundary layer width ∆(t) = (Et)1/2. As the steady Ekman layer
part uE(z) (1.15) has width ∆E = E1/2, the width of the remaining MF boundary layer
part uMF(z, t) is necessarily the same, in order that the boundary layer width of the sum
(u = uE + uMF) is ∆(t). That is why we remarked in item (iib) (below (1.17)) that “for
t 6 O(1), the E(or QG)/MF-partition (1.14)–(1.17) is unhelpful”. Only for t� 1 is the
representation (A 7) of uMF(z, t) truly illuminating.

The above considerations imply that uE(t) and uW(t), which define the E- and W-
triggers, (1.28b) and (1.29a) respectively, are distinctly different for t 6 O(1), at which
stage it is to be expected that the responses to each will also differ. What is surprising
is that the difference is not apparent simply at small times but persists, as a comparison
of the E ↓ 0 analytic v∼W and v∼E triggered waves, in panels (c) and (d) respectively of
figures 1–4, shows. On the one hand, that comparison shows that the E-trigger results
(panels (d)) give a good qualitative description of the wave structure visible in vFNS

(panels (a) for 1 � E > 0). On the other hand, v∼E (panels (d)) suffers a systematic
phase-shift and decreased amplitude relative to the true v∼W (panels (c)), i.e., the essential
differences between the E- and W-triggered responses, for t � 1, are manifest by each
wave of given frequency ωmn being ‘rung’ with different strength and phase by the
respective triggers. In the limiting case E ↓ 0, these wave characteristics are identified

by the residues of Ê(p) and Ŵ(p) at the poles p = iωmn, as explained in §3.1 with the
ideas reinforced by the large ` analysis of appendix C (but see particularly (C 7)–(C 9)
of appendix C.2). For those reasons alone, our proper consideration of the W-trigger has
yielded a significant improvement over the simpler analysis of the E-trigger presented in
Oruba et al. (2020).

Significantly, though Ê(p) only possesses poles, Ŵ(p) has cut-points as well at p = ±2i.
In §3.2, we showed that the latter are responsible for wave activity primarily of the MF-
type, which appears to cancel Greenspan & Howards’ MF-trigger flow. This is an issue,
because despite the algebraic decay with time, the MF-trigger flow exists at the times t (�
1) illustrated in figures 1 and 4. They are not visible because our new filter has hidden
them. However, if we examine the FNS (old filter) and IW panels of the corresponding
figures O:1 and O:4, they dominate the wave pattern beyond the triggered wave extent
apparent on our new figures 1-4 right up to the axis r = 0. In appendix C, we resolved this
matter by adopting a Cartesian approximation of the geometry based on ` � 1, which
applies for r � 1 up to the outer boundary r = `. The t � 1 analysis of appendix C.1
gives the surprising result that the poles provide an accumulated MF-contribution that
exactly offsets that due to the cuts. The afore mentioned wave extent is explained and
quantified using the method of Coalescing Saddles (see, e.g., the Kelvin’s Ship-Wave
Pattern https://dlmf.nist.gov/36.13 application of the method) in appendix C.2.
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The above remarks about figures 1–4 allude to another matter, namely that they
pertain to times t less than the time taxis = O(`) taken for the triggered waves to reach
the r = 0 axis. After that time, wave reflection occurs leading to a confused wave pattern.
The ratio of taxis to the spin down time is thus E1/2`. As we have taken E = 10−4, ` = 10
in figures 1–4, for which E1/2` = 10−1, all those plots correspond to the early spin-down
time range 1 � t � E−1/2. Upon restricting our times for plots to less than E1/2`, we
need to increase the size of E to obtain a t = O(E−1/2) plot time. Indeed the E = 10−3

value taken in figures O:1–O:4 is just adequate for that purpose but seriously reduces
the accuracy of the asymptotics. As our objective here has been to identify the waves
generated with high precision accuracy, we have refrained from following that tack.

Nevertheless, the comparison in figures 1–4 of triggered wave v∼W amplitudes (panels
(b)) with the FNS vFNS amplitudes (panels (a)), at the same value of E, show subtle im-
provements over the comparison of v∼W as E ↓ 0 (panels (c)) with vFNS. That improvement
is particularly striking for the χ-contours of figures 1, 2 just outside the ageostrophic E1/3

Stewartson shear layer were the fan structure (see appendix C.1), very evident on panels
(c), is smoothed out (perhaps for r & 0.95) on panels (b) to provide excellent agreement
with panels (a). In §5.3 we performed tighter numerical tests on the dependence on E
in the range 0.5 6 r 6 0.9 beyond r ∼ 0.95, where variation with E is less dramatic.
The results portrayed in figures 5 and 6 provide evidence indicating that our analytic
treatment of dissipation effects encapsulated by (4.8), which captures the secular viscous
wave decay predicted by (4.5), works extremely well for t� 1.

Of course, a comparison with experimental data would be very rewarding. However,
that needs a spin-down experiment (as yet not performed), with a weak forcing to provide
a near linear flow, and an elongated aspect ratio, essential to prevent early reflections.

Finally, it is worth reflecting on how our asymptotic approach would compare to an
analytic solution v(r, z, t) of the governing equations (2.3) subject to the initial (5.1) and
boundary (5.2) conditions, as used by the DNS described in §5. Consider such an LT-
solution v̂(r, z, p). Presumably its LT-inversion simply involves the residues at poles just
like those for the unbounded `→∞ case given by equations (3.4), (3.5) of Greenspan &
Howard (1963). The poles near p = 0 would define the slow spin-down, while the others
would define damped waves, each with distinct spatial structure and decay rate. However,
as our objective is to determine the overall structure, that emerges, when t � E−1, on
superposing all modes, such an approach is unenlightening for the same reasons that it
was abandoned by Greenspan & Howard (1963). The price paid by their asymptotics
is the introduction of cuts that do not exist in the original problem. Our approach
inherits the consequences of those cuts which are reflected by the character of our W-
trigger. However, for t� 1, the cut influence decays algebraically with time and a modal
structure emerges. What remains are the pole modes with frequencies ωmn (3.4) in §3.1,
which are modified to ωmn + ωE

mn and damped by the rates dmn + dEmn given by (4.5) in
§4.3. All the disturbing cut issues evaporate as time proceeds. In short, our asymptotics
has correctly identified the persistent (i.e., dominant) inertial waves generated, together
with their amplitudes over the spin-down time t = O(E−1/2).

Appendix A. The transient Ekman MF-layer of §1.1

The transient Ekman layer problem is outlined in §2.3 of Greenspan (1968). There
he provides the solution, equations (2.3.4), (2.3.5), of the governing equations (2.3.1)–
(2.3.3). His function F (z, t) (equation (2.3.6)) is simply our MF-function iz−MF(z, t) (see
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(1.16a)), more specifically

z±MF =
∓i

2

[
exp[(1± i)E−1/2z] erfc

(
z√
4Et

+ (1± i)t1/2
)

− exp[−(1± i)E−1/2z] erfc

(
− z√

4Et
+ (1± i)t1/2

)]
. (A 1)

Put another way, in the LT-inversion of ẑ± to obtain z± = z±E + z±MF, the steady E-part z±E
(1.14a) stems from the pole at p = 0, whereas the MF-contributions z±MF (1.16a) originate
from the cut contributions about p = ∓2i.

The formula (A 1) is at first sight unenlightening. However, in the t� 1 limit for which
the E/MF-partition is useful, the result may be interpreted on use of the formula

erfc (ζ) = ∓i(1± i)

[
f

(
2ζ

(1± i)
√
π

)
± ig

(
2ζ

(1± i)
√
π

)]
exp
(
−ζ2

)
(A 2)

obtained by reorganising (http://dlmf.nist.gov/7.5.E10). Here the auxiliary functions f,
g were introduced in (1.16c) and defined below it. Application of (A 2) to (A 1), with
ζ taking its respective values in the first and second lines, leads to the representation
(1.16a) with

h±MF = − 1
2 (1± i)

[[
f(T + Z±)− f(T − Z±)

]
± i
[
g(T + Z±)− g(T − Z±)

]]
, (A 3a)

where T (t) =
√

4t/π (1.12b) and

Z± =
z

(1± i)
√
πEt

. (A 3b)

Henceforth in this appendix, we restrict attention to the large-t limit, equivalently

T � 1 , (A 4a)

for which equations (7.12.2/3) of §http://dlmf.nist.gov/7.12.ii give the asymptotic ex-
pansions [

f(T )

g(T )

]
=

1

πT

[
1

(πT 2)−1

]
[1 +O(T−4)] ≈ 1√

4πt

[
1

(4t)−1

]
. (A 4b)

Their use in (1.17a) determines[
UMF(t)

VMF(t)

]
≈ 1√

4πt

[
− cos(2t)

sin(2t)

]
(A 5)

in which we have made the approximations f(T ) ≈ (πT )−1 and g(T ) ≈ 0.
To identify the MF boundary layer structure defined by z±MF(z, t), we assume that

Z± = O(1) with the implication that

|Z±| � T . (A 6a)

Accordingly, a Taylor series expansion of (A 3a) determines

h±MF ≈ − (1± i)Z± f ′(T ) ≈ z

4t
√
πEt

, (A 6b)

where the prime denotes derivative and Z± is given by (A 3b). Substitution of (A 6b) into
(1.16a) and use of (1.10a) determines[

uMF

vMF

]
= 1

2

[
z+MF + z−MF

(z+MF − z−MF)/i

]
≈ z

4t
√
πEt

[
cos(2t)

− sin(2t)

]
exp

[
− z2

4Et

]
. (A 7)
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Appendix B. The mean azimuthal MF-flow vMF(t) for t = O(1)

After various integrations of (1.22b) by parts, using the integral representation of UMF

in the first equality of (1.17a), we may write

E−1/2vMF ≈ 2

∫ ∞
t

UMF dt = VMF + RMF , (B 1a)

where

RMF = −t
(

dVMF

dt
+ 2UMF

)
− 1

2VMF , (B 1b)

in which dVMF/dt = (πt)−1/2 cos(2t). Together they may be employed to establish that
the z-average 〈vMF〉 = 〈vMF〉+ 〈v∆MF〉 of the azimuthal MF-flow is given by

(`/r)〈vMF〉 ≈ vMF +

∫ ∞
0

v∆MF dz = vMF − E1/2VMF = E1/2RMF . (B 2a)

It decays rapidly

RMF ≈ −
cos(2t)

8
√
π t3/2

= O
(
VMF/t

)
, for t� 1 (B 2b)

showing that E−1/2vMF/VMF → 1 as t→∞, which establishes the estimates (1.24).

Appendix C. The Cartesian limit, ` = L/H � 1, `− r = O(1), for E ↓ 0

In this appendix, to obtain a better understanding of the §3 results, we implement the
`� 1 asymptotics of §O:4 that approximates the outer cylindrical geometry as Cartesian
and approximates the discrete values jn/` (see (2.11)) by a continuous wavenumber k.
Thus, Fourier-Bessel sums become Fourier integrals, i.e.,

∑
n 7→

∫
dn.

C.1. The ‘method of images’

As in §O:5, we focus attention on the radial velocity u expressed in the form

u ≈ −U(t) +

∞∑
−∞

ŭl , ŭl(x, z, t) = ŭ(x, z − 2l, t) , x = `− r (� `) , (C 1a–c)

similar to (O: 5.1a,b), and, as in (O: 5.2a,b), introduce the unit vector

[x, z]/$ = [x, z] = [sin(2α), cos(2α)] , $ =
√
x2 + z2 . (C 2a,b)

We multiply the right-hand side of the expression for the LT ̂̆u in (O: 5.2e) by pŴ(p) to
obtain, following algebra that utilises the curious but simple identity

x±
p− 2ix

− x∓
p+ 2ix

= ± 2x
p± 2i

p2 + 4x2
, x± = 1± x, (C 3a,b)

the LT

(π$)̂̆u = 1
2

∑
±
{
∓ x
−1/2
± Ŵ±

(
(p− 2ix)/x±

)}
+ c.c.(p real). (C 3c)

Its LT-inverse, namely the primary l = 0 mode (see (C 1b)) to our W-trigger, is

(π$)ŭ = 1
2

∑
±
{
∓ x

1/2
± W±(x±t)

}
exp(2ixt) + c.c., (C 3d)

where (C 3c,d) bear a striking structural similarity to (3.1a,b) after linking ωmn to 2x.
On partitioning W± into its pole k: W±E = 1

2 (1 ± i) (1.14b) and cut �: W±MF (1.16b,c)
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parts, we may extract the associated ŭk and ŭ� of ŭ from (C 3d), namely

(π$)ŭk = 1
2

∑
±
{
x
1/2
±
}

sin(2xt)− 1
2

∑
±
{
± x

1/2
±
}

cos(2xt) = sin(2xt− α) , (C 4a)

(π$)ŭ� = O(t−3/2) for t� 1 , (C 4b)

following the surprising cancellation of the O(t−1/2) terms. For t = O(1), the contribution
ŭ� is complicated but, as (C 4b) shows, decays rapidly for t� 1.

The previous E-triggered radial velocity ŭkE, namely the so-called mainstream part
denoted by ŭms in (O: 5.6a), is determined using (O: 5.6b) as

(π$)ŭkE = |z| sin(2xt) = |ϕ| sin(2xt) , ϕ ≡ z = cos(2α). (C 5)

Hence our new W-triggered ŭk given by (C 4a), exhibits the same fan-structure near the
outer corner (r, z) = (`, 0), visible in our figures 1-4, as previously identified for ŭkE (C 5)
by Oruba et al. (2020). Moreover, relative to ŭkE, our new ŭk is characterised by both
the amplitude increase ϕ−1 and phase shift α, similar to that described above (3.5) for
individual mn-modes.

For t � 1, the small size of the remaining cut-contribution ŭ� = O(t−3/2) (C 4b)
is significant, because it is smaller than the MF-contribution −U(t) = O(t−1/2) to the
entire radial velocity u (C 1a) by a factor O(t−1). However, ŭ� contributes to every term
ŭl in

∑∞
−∞ ŭl, and so its accumulated effect in the infinite sum might be far larger than

that of ŭ�0 = ŭ� alone. To assess this possibility, we take the z-average of u across the
layer, noting the zero volume flux condition 0 = 〈u〉 = −U(t) +

∑∞
−∞〈ŭl〉. Then aided by

the translational symmetry (C 1b) the integral of the sum may be expressed as a single
integral and the result reorganised as

−
∞∑
−∞
〈ŭ�l 〉 = −U(t) +

∞∑
−∞
〈ŭkl 〉 = −U(t) + 1

2

∫ ∞
−∞

ŭk dz . (C 6a)

Here the infinite integral of ŭk may be recast using x−1dz = −x−2|z|−1dx in the form of
the principal value integral

1
2

∫ ∞
−∞

ŭk dz =
1

4π
−
∫ 1

−1

[∑
±
{
x
−1/2
±

}
sin(2xt) +

∑
±
{
± x
−1/2
±

}
cos(2xt)

]dx

x

=
1

2π
−
∫ 1

−1

[
1

x
+

1
√
x−
− 1

1 +
√
x−

][
sin(2xt)− cos(2xt)

]
dx

=
1

π

∫ 2t

0

sinφ

φ
dφ

− cos(2t)

2πt

∫ 2t

0

[
1√
τ/t
− 1(

1 +
√
τ/t
)] [sin(2τ) + cos(2τ)

]
dτ

+
sin(2t)

2πt

∫ 2t

0

[
1√
τ/t
− 1(

1 +
√
τ/t
)] [cos(2τ)− sin(2τ)

]
dτ

=
1

2
− cos(2t)√

4πt
+

1

4πt
sin(2t− π/4) + · · · · · · for t� 1 . (C 6b)

Recalling that U(t) = 1
2 − (4πt)−1/2 cos(2t) + O(t−3/2) (see (1.15b) and (A 5)), the

asymptotic result,

−
∞∑
−∞
〈ŭ�l 〉 = (4πt)−1 sin(2t− π/4) + O(t−3/2) for t� 1 , (C 6c)
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follows. Except for an amplitude change and phase shift, this has the same power
law t−1 dependence on time, as the leading order E-trigger result 〈ums〉 = −〈ubl〉 =
− (2πt)−1 cos(2t) given by the formulae (O: 5.10), (O: 5.11), where 〈ubl〉 corresponds

to our cut-contribution
∑∞
−∞〈ŭ

�
l 〉 (C 6c). The small size, O(t−1), of (C 6c) is im-

portant because it shows that at O(t−1/2) the dominant cut-contribution −UMF(t) ≈
(4πt)−1/2 cos(2t) is compensated by the accumulation of the inertial waves 1

2

∫∞
−∞ ŭk dz

(C 6b). This largely explains the cancellation discussed in the penultimate paragraph of
§3.2, where the result (C 6c) is alluded to.

C.2. Individual z-Fourier m-modes

Here we adapt the ‘individual z-Fourier m-modes’ analysis of §O:6 to our problem.
Quite simply, for t� 1 the dominant contributions χ̃m (see (2.6)) for given m, extracted
from their LT by the method of steepest descent (equivalently, stationary phase) are two
modulated waves

χ̃±(x, t;α±) ∝ sin(Φ±(x, t)± π/4− α±) (C 7a)

(cf. (O: 6.16)) with phase

Φ± = k±x+ ω±t , where k± = 2mπϕ±/ω± . (C 7b,c)

The two waves χ̃± stem from the saddle point crossings of the inverse-LT contour of
integration at

p = iω± , 0 < ω+ < ω− < 2 , (C 8a)

where

ω± = 2
√

1− ϕ2
± , 1 > ϕ+ > ϕ− > 0 (C 8b)

(see (O: 6.6e,f)). Here, the frequency ω± and wavenumber k± (C 7c) are generated by
ϕ±, which are the two real positive roots of

ϕ3 − ϕ+ ϑ2 = 0 with ϑ =
√
mπx/(2t) (C 8c,d)

(O: 6.6d), (O: 6.3a), which only exist when ϑ < ϑc = 21/2 · 3−3/4 (C 11b).
To connect to the corresponding E-responses, we begin by expressing them (O: 6.16) in

the style of (C 7a) with the additional phase shift −α±. Thus, in terms of the extended
function χ̃E

±(x, t;α±), the actual value of (O: 6.16) is χ̃E
±(x, t; 0). By this device, our new

W-responses, which generate χ̃m = χ̃+ + χ̃−, may be written simply as

χ̃±(x, t;α±) = ϕ−1± χ̃E
±(x, t;α±) , (C 9a)

i.e., with an amplitude increase by ϕ−1± and phase shifts α± related, as in (2.13a), by

α± = 1
2 cos−1 ϕ± , 0 < α+ < α− < π/4 . (C 9b)

For ϑ � 1, the two relevant positive roots of (C 8c) are approximately ϕ+ ≈ 1 − 1
2ϑ

2

and ϕ− ≈ ϑ2, which with (C 7) and (C 8) determine the phases

Φ+ ≈ ϑ−1mπx+ 2ϑt = 4ϑt , α+ ≈ 1
2ϑ , (C 10a,b)

Φ− ≈ ϑ2mπx+ (2− ϑ4)t = (2 + ϑ4)t , α− ≈ π/4− ϑ2/2 (C 10c,d)

(use mπx = 2ϑ2t (C 8d)). For our purpose, it is sufficient to note the lowest order
consequence

χ̃+ ≈
sin(4ϑt+ π/4)√

2πϑt
, χ̃− ≈ −

cos(2t)√
πt

. (C 10e,f)
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The first low frequency (ω+ ≈ 2ϑ) term χ̃+ is identical to the E-triggered mode χ̃E
+ in

(O: 6.19), in which X = 2ϑt. However, relative to χ̃E
−, the second MF-mode χ̃− is phase

shifted by π/4 but more significantly magnified by the large factor ϕ−1− ≈ ϑ−2. This
increased size is interesting because χ̃− (C 10f) is simply the cut-contribution χ̃�

m (see
(3.9b) with r/` ≈ 1). Nevertheless, despite its increased size, χ̃− remains smaller than
χ̃+, albeit by a less significant factor O(ϑ1/2), and is therefore formally negligible. As ϑ
increases, the influence of the cuts on the ‘stationary phase’ solution χ̃− decreases too.
We conclude that the cut-contribution (3.9b) that has caused concern is always negligible
for t� 1.

On the one hand, the m-summation of χ̃+, like χ̃E
+ before, is justifiable in certain

parameter ranges, and recovers the fan like behaviour mentioned in appendix C.1. On
the other hand, the summation applied to χ̃−, like χ̃E

− before, is invalid and meaningless,
because as m increases the assumption that ϑ� 1 is eventually violated. Thus there is no
conflict with the conclusion of appendix C.1 that there are two MF-contributions to the
entire triggered waves, one from the cuts and one from the poles, which when combined
cancel. Rather our present restriction to a single m sheds no light on that matter.

On increasing ϑ, the ω±-saddle points approach each other. The corresponding roots
ϕ± coalesce at ϕ = ϕc, where

ϕc = 3−1/2 , ϑc = 21/2 · 3−3/4 (C 11a,b)

(O: 6.20a,b) to produce a wave ∝ sin(kcx+ ωct− αc), for which (O: 6.21) gives

(mπ)−1kc = 2−1/2 , ωc = 23/2 · 3−1/2 , αc = 1
2 cos−1 ϕc . (C 11c–e)

Of course, this wave is modulated such that for x > xc = (mπ)−12ϑ2ct (see (O: 6.21c),
(O: 6.22)) it is evanescent: x = xc is a fuzzy wave front. The spatial phase shift

αc/kc ≈ m−1 × 0.215 , (C 12)

determined from (C 11c,e), is consistent with the node-shifts visible towards the left of
panels (b), (d) of figures 1, 2, albeit for E = 10−4. Again, near x = xc, (C 11a) predicts a
mode amplification of χ∼W (panels (b)) by a factor ϕ−1c =

√
3 relative to χ∼E (panels (d)),

also evident. As noted by Oruba et al. (2020), such comparisons near the front lie well
outside the domain of validity for our large ` asymptotics, which requires `− r = xc � `.
So any comparison with the figures is illustrative rather than quantitative.
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