

Hydrogen isotopic fractionations during syntheses of lipid biomarkers in the seeds of broomcorn millet (Panicum miliaceum L.) under controlled environmental conditions

Jérémy Jacob, Nicolas Bossard, Thierry Bariac, Valery Terwilliger, Philippe Biron, Patricia Richard, Claude Le Milbeau, Elisabeth Vergès

▶ To cite this version:

Jérémy Jacob, Nicolas Bossard, Thierry Bariac, Valery Terwilliger, Philippe Biron, et al.. Hydrogen isotopic fractionations during syntheses of lipid biomarkers in the seeds of broomcorn millet (Panicum miliaceum L.) under controlled environmental conditions. Organic Geochemistry, 2021, 154, pp.104221. 10.1016/j.orggeochem.2021.104221. insu-03175971

HAL Id: insu-03175971 https://insu.hal.science/insu-03175971

Submitted on 22 Mar 2021


HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal Pre-proofs

Hydrogen isotopic fractionations during syntheses of lipid biomarkers in the seeds of broomcorn millet (*Panicum miliaceum* L.) under controlled environmental conditions

Jérémy Jacob, Nicolas Bossard, Thierry Bariac, Valery Terwilliger, Philippe Biron, Patricia Richard, Claude Le Milbeau, Elisabeth Vergès

PII:	S0146-6380(21)00042-5
DOI:	https://doi.org/10.1016/j.orggeochem.2021.104221
Reference:	OG 104221
To appear in:	Organic Geochemistry
Received Date:	1 October 2020
Revised Date:	10 March 2021
Accepted Date:	11 March 2021

Please cite this article as: Jacob, J., Bossard, N., Bariac, T., Terwilliger, V., Biron, P., Richard, P., Le Milbeau, C., Vergès, E., Hydrogen isotopic fractionations during syntheses of lipid biomarkers in the seeds of broomcorn millet (*Panicum miliaceum* L.) under controlled environmental conditions, *Organic Geochemistry* (2021), doi: https://doi.org/10.1016/j.orggeochem.2021.104221

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Ltd. All rights reserved.

1	Hydrogen isotopic fractionations during syntheses of lipid biomarkers in the seeds of broomcorn
2	millet (Panicum miliaceum L.) under controlled environmental conditions
3	
4	Jérémy Jacob ^{a,b} , Nicolas Bossard ^a , Thierry Bariac ^c , Valery Terwilliger ^{a,d,e,f} , Philippe Biron ^c , Patricia
5	Richard ^c , Claude Le Milbeau ^a , Elisabeth Vergès ^a .
6	
7	^a Univ Orléans, CNRS, BRGM, Institut des Sciences de la Terre d'Orléans (ISTO), UMR
8	7327, 45071 Orléans, France
9	^b Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Université
10	Paris-Saclay, 91198, Gif-sur-Yvette, France
11	^c Institut d'Ecologie et des Sciences de l'Environnement - Paris, UMR 7618 CNRS-SU-UPMC-IRD-UPEC,
12	78850 Thiverval-Grignon, France
13	^d Le Studium, Loire Valley Institute for Advanced Studies, 1 rue Dupanloup, 45000 Orléans, France
14	^e Department of Geography, University of Kansas, Lawrence, KS 66045, USA
15	^f Department of Archaeology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
16	

	Journal Pre-proofs
17 18 19 20 21 22 23 24	 Highlights Broomcorn millet was grown under controlled condition to examine fractionation of hydrogen isotopes during seeds lipid (miliacin and n-alkanes) synthesis Leaf water hydrogen isotopic composition is the primary driver of lipid δ²H values Apparent and biosynthetic fractionation could be calculated for n-alkanes and miliacin Subtle differences in biosynthetic fractionation between n-alkanes could reflect the impact of relative humidity, although both the experimental setup and the specific location of lipids analyzed (seeds) could have affected this relationship
25	

27 Abstract

28 Compound specific hydrogen isotopic analyses have the potential to reveal the biosynthetic pathways of biomarkers and to reconstruct the effects of water stress in a plant, or in an ecosystem. 29 Although C4 graminoids are of great geological interest and are some of the world's leading crops, 30 there are few experimental studies of their biomarker responses to hydrological conditions. Here, 31 we study a C4 graminoid, broomcorn millet, and compare the effects of controlled changes in 32 environmental conditions on the distributions of *n*-alkane homologues and on the pentacyclic 33 34 triterpene, miliacin, which is a biomarker for broomcorn millet; both were measured in the seeds of the graminoid. Broomcorn millet plants were propagated in hydroponic solutions with four different 35 δ^2 H values for each of two growth chambers, differing in relative humidity (58 and 74 %). Analyses 36 37 of δ^2 H values of the lipid compounds (miliacin and *n*-alkanes) in seeds and water extracted from transpiring and non-transpiring organs allowed us to quantify the apparent (lipids vs. source water 38 to plant) and biosynthetic (lipids vs. leaf water) fractionations during miliacin and n-alkane 39 syntheses. Miliacin and *n*-alkane δ^2 H values were linearly related to leaf water δ^2 H values, 40 permitting credible biosynthetic fractionations to be calculated for *n*-alkanes (average -149.5%) \pm 41 11) and miliacin (-118 $\% \pm 5$). These biosynthetic fractionations were within the range of published 42 values for compounds with their respective biosynthetic pathways, although a ²H-enrichment of 43 miliacin compared to *n*-alkanes remains unexplained. 44

45 Whereas a 16% decrease in relative humidity had no significant impact on the biosynthetic 46 fractionation of miliacin, *n*-C₂₅ and *n*-C₂₇ alkanes, it led to a ~25‰ decrease in biosynthetic 47 fractionation for *n*-C₃₁ and *n*-C₃₃ alkanes. This could be the consequence of a contribution of more 48 depleted pools of hydrogen atoms in cytoplasmic water (compared to chloroplastic hydrogen pools) 49 during the *n*-alkyl lipid elongation process. This finding suggests that the respective influences of 50 source water δ^2 H values and relative humidity on the δ^2 H values of organic compounds may be 51 discretely inferred by examining the δ^2 H values of compounds synthesized from distinct sources of

26

- Journal Pre-proofs
 nyarogen in cells. It provides clues to the biosynthetic fractionations in a C4 plant for compounds
 derived from distinct pathways, but also highlights specific issues related to seed lipids that would
 require further research.
- 55
- 56
- 57 Key words: Biosynthetic fractionation; hydrogen isotopes; *Panicum miliaceum*; Biogeochemical
- 58 chambers; compound-specific δ^2 H, miliacin, biomarker.
- 59

Journal Pre-proofs

61 I. INTRODUCTION

62	The hydrogen isotope ratios (δ^2 H) of lipids synthesised by autotrophs and preserved in
63	geological archives are increasingly used to reconstruct past climates (reviewed by Sachse et al.,
64	2012). These sedimentary lipids are produced by source organisms once living in the catchment and
65	then transported, accumulating over time in sediments. When the conditions of their preservation
66	are favorable, the isotope ratios of their C-bound hydrogen atoms may be unaltered over geological
67	time (Yang and Huang, 2003). The rationale for using lipid δ^2 H values to reconstruct past climatic
68	conditions rests on their ability to record the climatic conditions that prevailed at the time of
69	biosynthesis (Sessions et al., 1999; Sauer et al., 2001; Huang et al., 2002; Gleixner and Mügler,
70	2007). An active area of research concerns the role that organism-level functional and biochemical
71	fractionation has on proper interpretations of climate from lipid δ^2 H values in sedimentary archives.
72	Precipitation water $\delta^2 H$ values are influenced by climatic variables; physical explanations
73	for these relationships have long been established (Craig, 1961; Dansgaard, 1964). As the original
74	source of hydrogen for the synthesis of lipids in autotrophs is precipitation water, the $\delta^2 H$ values of
75	the lipids can potentially reflect the $\delta^2 H$ of precipitation and thus provide a quantitative indicator of
76	climate variability (e.g., Gleixner and Mügler, 2007; Sachse et al., 2012).
77	
	Nevertheless, $\delta^2 H$ values of lipids are shaped not only by the $\delta^2 H$ values of precipitation, but
78	Nevertheless, δ^2 H values of lipids are shaped not only by the δ^2 H values of precipitation, but also by additional factors. The identification and quantification of these factors is not only
78	also by additional factors. The identification and quantification of these factors is not only

82 2016).

Categories of factors that can affect the δ^2 H values of land-plant derived lipids include: (1) physical fractionations to hydrogen in water on its journey from precipitation to the site where it will be incorporated into organic compounds, and (2) fractionations during biosynthesis of compounds. The largest of the physical fractionations to water occur during the change of state

Journal Pre-proofs from liquid to vapor, during which liquid water becomes enriched in molecules with neavy isotopes 87 because of the easier vaporization of water with light isotopes. The main state changes of relevance 88 to land plants are during evaporation of surface soil water and during transpiration from leaves (e.g., 89 90 Gonfiantini et al., 1965; Dongman et al., 1974; Farris and Strain 1978; Allison and Leaney, 1982). Water uptake by non-transpiring parts of plants remains isotopically similar to its sources in the soil 91 (e.g., Ehleringer and Dawson, 1992; Bariac et al., 1994a;b). Evaporation and transpiration rates are, 92 in turn, affected by environmental factors, such as temperature, relative humidity, net radiation and 93 wind speed. The δ^2 H values of lipids synthesised by terrestrial higher plants thus integrate not only 94 the δ^2 H values of precipitation, but also the climatic factors that drive rates of state changes to 95 precipitation prior to the use of its hydrogen atoms in organic compound synthesis in the plant (Hou 96 et al., 2007a,b; Gleixner and Mügler, 2007; Douglas et al., 2012; Sachse et al., 2012; Kahmen et al., 97 2013a,b; Tipple et al., 2015). 98

The extent to which the water providing hydrogen for photosynthesis will have been 99 affected by the aforementioned physical fractionations may vary between plant types (i.e., Sachse et 100 101 al., 2012). As most of the evaporation of soil water occurs at the surface and the more evaporation that occurs, the more difficult it is for plants to take up that water, the impact of evaporation on the 102 δ^2 H of water will depend on root structure. Evapotranspiration causes ²H enrichment of leaf water, 103 although there is strong evidence that exposure to evapotranspiration is heterogeneous (Yakir, 104 1992). At present, evidence favors the hypothesis that for leaves of C4 grasses, water is more 105 protected from evaporation in basal bundle sheath cells and mixed with non-evaporated xylem 106 water, compared to water in mesophyll cells (Zhou et al., 2016; Gamara et al., 2016). Within cells, 107 cytoplasmic water is more affected by evaporation than chloroplastic water (reviewed by Yakir, 108 109 1992).

Hydrogen fractionations during biosynthesis of compounds in a plant primarily involve
enzyme preferences for specific hydrogen isotopes and bond positions during kinetic reactions
(Estep and Hoering, 1980; Sessions 2016). Although the first source of hydrogen for synthesis of a

113	Journal Pre-proofs compound will be the water at the site of photosynthesis, hydrogen can also originate from
114	intermediates (e.g., NADPH and metabolites) produced elsewhere in the plant, at a different time to
115	that of the final compound synthesised, with distinct $\delta^2 H$ values, and in varying proportions (Sachse
116	et al., 2012; Cormier et al., 2018). Thus, the exact climate information in the $\delta^2 H$ value of a
117	compound will depend on where enzymatic reactions leading to its production take place in a plant.
118	Efforts to identify the precise imprints of specific climatic factors on specific lipid
119	compounds have largely centred on studies of <i>n</i> -alkyl lipids (e.g., <i>n</i> -alkanes, fatty acids), which are
120	major components in the leaf waxes of many land plants (Eglinton and Hamilton, 1967; Diefendorf
121	et al., 2011; Diefendorf and Freimuth, 2017). One approach has been to analyse the $\delta^2 H$ values of
122	leaf waxes in plants and sediments over natural environmental gradients (e.g., Huang et al., 2002;
123	Sachse et al., 2004; Sachse et al., 2006; Jia et al., 2008; Feakins and Sessions., 2010; Bai et al.,
124	2011; Douglas et al., 2012; Garcin et al., 2012; Kahmen et al., 2013a). Another approach has been
125	to extract specific <i>n</i> -alkyl lipids from leaf waxes of plant species grown under controlled
126	environmental conditions (e.g., Zhou et al., 2011; Kahmen et al., 2013b; Gao et al., 2014; Tipple et
127	al., 2015; Gamarra et al., 2016; Zhou et al., 2016). As these compounds are found in differing
128	proportions across many different plant types, the results are limited in the extent to which they can
129	be extrapolated to reconstruct climatic changes in systems where vegetation may also have changed
130	(Hou et al., 2007b; Smith and Freeman, 2006; Liu and Yang, 2008; Polissar and Freeman, 2010).
131	Our study reports the effects of growing broomcorn millet plants at different δ^2 H values of
132	hydroponic solutions (HS) and at different relative humidities, on the δ^2 H values of <i>n</i> -alkanes and
133	of miliacin, both extracted from seeds. Miliacin (olean-18-en-3 β -ol ME; Fig. 1), a pentacyclic
134	triterpene methyl ether, is a specific biomarker of broomcorn millet (<i>Panicum miliaceum</i>), which is
135	a C4 plant. This biomarker was found in the sediments of lake Le Bourget dated as prior to the
136	Bronze Age (Jacob et al., 2008a,b; 2009; Bossard et al., 2011; Bossard, 2013). It was also used as a
137	tracer of C4 grasses in tropical soils (Schwab et al., 2015). The first objective was to determine the
138	apparent (lipid vs. water source to plant; \mathbf{E}_{app}) and biosynthetic (lipid vs. leaf water; \mathbf{E}_{bio})

139 Tractionations of two classes of lipids produced by distinct biosynthetic pathways in a single plant 140 species. The second objective of our report was to quantify the effects of relative humidity on the 141 apparent and biosynthetic fractionations of miliacin and *n*-alkanes. Our results suggest minute 142 differences in the relationships of humidity to isotopic compositions between individual compounds 143 extracted from the seeds of one C4 species.

144

145 2. MATERIALS AND METHODS

146 2.1. Experimental design

We quantified the impacts of two factors that contribute to the δ^2 H values of plant lipids: source 147 water δ^2 H values (water taken up by plants) and relative humidity of the atmosphere surrounding 148 plants. Millet plants were cultivated in two controlled climate growth chambers built for 149 experiments on the isotopic consequences of the environment on plant physiology at the Institut 150 d'Ecologie et des Sciences de l'Environnement (UMR 7618, Paris, France): RUBIC I (described in 151 Rothfuss et al., 2010) and RUBIC V (Longchamp et al., 2015). RUBIC stands for Reactor Used for 152 Continental Isotopic Biogeochemistry. We maintained relative humidities of 58 % in the 0.5 m³ 153 RUBIC I and of 74 % in the 9 m³ RUBIC V (Fig. 2). The relative humidity of the air was precisely 154 regulated in the different chambers by controlling the condensation temperature in a heat exchanger. 155 The excess moisture condensed and was then discharged to the outside, thus providing excellent 156 stability of the relative humidity of the air. We sampled the condensate at the end of each day to 157 analyse its isotopic composition. The air temperature was regulated by the volume of air flowing 158 through the heat exchanger. One of the particularities of the RUBIC chambers is that the vapor they 159 contain is not only a driver of transpiration (through a vapor pressure deficit), but is also a resulting 160 effect of condensation (heat exchanger). Otherwise, the environmental conditions were the same in 161 the two chambers: a photoperiod of 12 hours per 24 (at 600 μ mol/m²/s photosynthetic photon flux 162 density), a temperature of 18°C (night) and 25°C (day), and a slow wind speed (0.1 m s⁻¹) to 163

Journal Pre-proofs nomogenize the chamber air. I wenty plants per chamber were germinated on vermiculite from 164 seeds (provided by Parard-Sévin, Mézières-lez-Cléry, France). Then, 5 plants were grown in 4 tanks 165 with different δ^2 H values of water in hydroponic solutions. Four tanks (and hence 20 plants) were 166 167 placed in each chamber. Hydroponic solutions were prepared with 8 stock solutions (4 per chamber) of ²H₂O and tap water of -50‰ (V-SMOW; Vienna Standard Mean Ocean Water). The tanks 168 containing hydroponic solutions were covered with plastic plates drilled with a single hole for each 169 plant. These holes were plugged with rubber stoppers filled with Teroson® (sticky putty) to limit 170 exchange between the hydroponic solution and surrounding air. In addition, each hydroponic 171 solution was replaced weekly with stock solution to ensure that its isotopic composition remained 172 constant (as described below). 173

174 2.2. Water δ^2 H and δ^{18} O analyses

 δ^2 H determination of water in hydroponic solutions and in plant organs allowed us to calculate 175 apparent and biosynthetic fractionations. In addition, we determined δ^{18} O values of the same waters 176 to characterize the effects of transpiration. Water was extracted from one plant per treatment 177 (relative humidity and δ^2 H value of the hydroponic solution) one week before seed harvest, which 178 was when seeds were fully developed, but not dry. This was done to obtain enough water for 179 isotopic ratio measurements. Water was extracted from the following organs of each plant: roots, 180 first internode (collet) and other internodes, leaves and panicles (i.e., stems and spikelets composed 181 of glumes, paleas and lemmas; Fig. 2). Water was extracted from the plant organs by cryogenic 182 distillation and analyzed for δ^2 H and δ^{18} O values (Araguas-Araguas et al., 1995). δ^{18} O values were 183 measured (analytical precision: $\pm 0.1\%$) on an isotope ratio mass spectrometer (IRMS; Isoprime) 184 coupled to an Aquaprep system and for δ^2 H on an IRMS PyrOH (Isoprime, analytical precision: ± 185 1‰) coupled to an elemental analyzer (Eurovector). δ^2 H and δ^{18} O values of hydroponic solutions 186

187 Were determined prior to cultivation and before weekly replacements with the same device. No

discernible evolution of the isotopic composition of the hydroponic solutions was noted (Table S1).

189 2.3. Extraction and purification of compounds

190 We analyzed lipids from the seeds because Bossard et al. (2013) showed that miliacin is very abundant in *P. miliaceum* seeds, but has negligible concentrations elsewhere in the plant. In 191 addition to miliacin, seeds contain other lipids, such as *n*-alkanes. Seeds were harvested when they 192 were fully developed and the plants had become dry. The seeds from one to three plants that had 193 sufficient seeds to yield enough of the compounds for analysis were sampled per treatment ($\delta^2 H$ 194 195 value and relative humidity) for replication. For each plant, about 40 seeds of the main panicle were ground to a powder and weighed. Lipids were extracted by immersing each seed sample in 196 dichloromethane:isopropanol (2:1 v:v) and sonicating for 5 minutes, 3 times, before centrifugation. 197 For each plant, the lipid extracts were combined and dried under a stream of N₂ gas. The total 198 extract was separated into neutral, acidic and polar fractions by ion exchange chromatography on 199 aminopropyl-bonded silica, as per Jacob et al. (2005). The different classes of compounds (n-200 201 alkanes and miliacin) were purified from the neutral fraction by flash chromatography on activated silica using solvents of increasing polarity (as per Bossard et al., 2011). Aliphatic hydrocarbons, 202 such as *n*-alkanes, were first eluted with 2 mL of heptane, then aromatic hydrocarbons were eluted 203 with 1 mL heptane and then 2 mL heptane:toluene 2:1. Miliacin was eluted with 2 mL 204 hexane:toluene (1:1) and 2 mL hexane/ethyl acetate (19:1). The different fractions were dried under 205 a stream of tank nitrogen and stored at 4 °C until analysis. 206

207 2.3.1. Compound quantitation and purity assessment

The abundance and purity of miliacin were assessed by gas chromatography-mass
spectrometry (GC-MS) on a Trace gas chromatograph coupled to a Polaris GCQ ion trap mass
spectrometer (both from Thermo Scientific, Bremen) according to the protocol of Jacob et al.
(2005). 5α-cholestane was added prior to analysis by GC-MS, for quantification. The gas

212 chromatograph was fitted with a Kix-5 MS capillary column (5 m column guard, 30 m, 0.25 mm 213 i.d., 0.25 μ m film thickness; Restek, Bellefonte, PA, USA). The column temperature was held at 214 40°C for 1 min, and then increased from 40 to 300°C at a rate of 20°C min⁻¹, with a final isothermal 215 hold at 300°C for 30min. The sample was dissolved in toluene and injected splitless in a 2 μ L 216 volume with injector temperature set at 280°C. The carrier gas was helium at a flow rate of 1.4 mL 217 min⁻¹. The mass spectrometer was operated in the electron ionization (EI) mode at 70 eV ionization 218 energy and scanned from *m/z* 50 to 650.

219 2.3.2. Compound-specific $\delta^2 H$ measurements

220 δ^2 H values of miliacin and *n*-alkanes were determined by gas chromatography-stable isotope ratio mass spectrometry (GC-irMS) on a TraceGC chromatograph equipped with a Triplus 221 Autosampler coupled to a DeltaV Advantage IRMS through a GC-Isolink interface and a Conflo IV 222 dilution system (all from Thermo Scientific). The chromatographic conditions were the same as 223 those used for the GC-MS analyses, except that the GC column used (J&W DB5, 30 m, 0.25 mm 224 i.d., 0.25 µm film thickness; Agilent, Palo Alto, CA, USA) was slightly different. 1 µL of the 225 sample, dissolved in toluene, was injected at least 3 times. We used a standard consisting of 1 μ L of 226 a mixture of 15 *n*-alkanes (*n*-C₁₆ to *n*-C₃₀) with δ^2 H values ranging from -46.3 to -242.3‰ V-227 SMOW as determined off-line (Mixture A4, A. Schimmelmann, Indiana University, USA) to 228 calibrate our values over the V-SMOW isotopic scale. For miliacin, 1 µL of the standard mixture 229 was co-injected with 1 µL of each sample. No coelution was observed. Data were then normalized 230 to the V-SMOW isotopic scale by using the δ^2 H values of the *n*-C₂₅ and *n*-C₂₇ alkanes as references 231 (Sessions et al., 1990). 232

For *n*-alkanes, the standard A4 mixture was injected after every 3 samples, to calibrate reference gas prior to analyses. Then, each sample *n*-alkane δ^2 H value was normalized to the V-SMOW (Vienna Standard Mean Ocean Water) isotopic scale using the reference gas δ^2 H value. Over the period of analysis, measured δ^2 H values for the *n*-alkane A4 mixture were in good agreement with those measured off-line ($r^2 \ge 0.99$). The overall precision for the *n*-alkane standard was greater than 6‰. I µL or each sample was injected at least three times, or until the precision was better than 6‰. Replicates were injected randomly in order to ensure that the reproducibility was independent of the order of the analyses. All isotopic values are expressed in ‰ V-SMOW. The H₃⁺ factor (Sessions et al., 2001) was determined on a daily basis and was 7.26 ± 0.17 .

242 2.3.3. Statistical analyses

Simple linear regressions were used to establish the significance of relationships between unpooled values of variables within humidity treatments (e.g., of δ^2 H *vs*. δ^{18} O values of water from organs affected by transpiration). Differences in the slopes and intercepts of relationships were established visually as there were not enough samples for more robust statistical comparisons via analysis of covariance. If the resulting regression equation was not significant, because the y-intercept value did not significantly differ from zero, another regression was run with a forced intercept of zero (regression through the origin).

With one δ^2 H value for each compound per hydroponic solution treatment, and thus four \mathcal{E}_{app} 250 values per compound in each of the two chambers, our most robust statistical options for comparing 251 E values between compounds and humidities were non-parametric. We did not correct for possibly 252 inflated type I error from multiple comparisons as the small sample sizes already made the 253 likelihood of any rejection of null hypotheses very conservative. We compared ε values between 254 compounds using Wilcoxon paired-sample tests (Tables S3 and S4). Only unidirectional differences 255 were examined (via one-tailed tests) where Wilcoxon tests were performed to compare compounds 256 within chambers, because sample comparison numbers were too small (4 per compound) to detect 257 overall inequalities in $\boldsymbol{\varepsilon}$ value pairs (two-tailed tests). For comparisons of a compound between 258 humidity chambers, we performed Mann Whitney U tests of possible inequalities in E values within 259 chambers (Table S5). \mathcal{E}_{bio} values were pooled into medians per plant for non-parametric analyses. 260

- 261 All statistical analyses were performed using Minitab (version 15, State College, PA, USA) and
- 262 were considered to be significant at $p \le 0.05$.

263

264

265 3. RESULTS

266 3.1. δ^2 H and δ^{18} O values of water

267 3.1.1. $\delta^2 H$ and $\delta^{18} O$ values of the source water (hydroponic solutions)

The range in δ^2 H values of water in hydroponic solution waters (HS) at 58% relative 268 humidity (RH) was 175‰, where Tank 1 = -15, Tank 2 = 15, Tank 3 = 105 and Tank 4 = 160%269 (Fig. 3; Table 1). δ^{18} O values were -1.09, -2.24, -2.44 and -3.45‰. The hydroponic solution δ^{2} H 270 values at 74% RH spanned a range of 223‰, with specific values of -36, -10, 95, and 187‰ for 271 tanks 1 through 4, respectively. The corresponding δ^{18} O values for these tanks were -4.84, -6.58, -272 6.58, -6.79‰ (Table 1). The slight decreases in δ^{18} O values with increasing δ^{2} H values at both 58 273 and 74% relative humidity were probably caused by the higher δ^{18} O values of 2 H₂O than of the tap 274 water used for the preparation of stock solutions. The parameters of regression lines between δ^{18} O 275 and δ^2 H values for each tank and each relative humidity are given in Table 2a. 276

277 3.1.2. Water $\delta^2 H$ and $\delta^{18} O$ values of non-transpiring organs

The δ^2 H values of water in non-transpiring organs were similar to one another in a given tank and relative humidity (Table S2). At 58% RH, water δ^2 H values of non-transpiring organs, such as roots, first internode and other internodes, ranged from -23 to -13‰ for a hydroponic solution at -15‰ (Tank 1), from 14 to 18‰ for a hydroponic solution at 15‰ (Tank 2), from 104 to 111‰ for a hydroponic solution at 105‰ (Tank 3), and from 151 to 164‰ for a hydroponic solution at 160‰ (Tank 4) (Figure 3 and Table 1; Table S2 contains further details). At 74% RH, water δ^2 H values of non-transpiring organs ranged from -39 to -35‰ for a hydroponic solution at -

285	Journal Pre-proofs 30‰ (1ank 1), from -10 to -9‰ for a nydroponic solution at -9‰ (1ank 2), from 92 to 95‰ for a
286	hydroponic solution at 95‰ (Tank 3), and from 186 to 189‰ for a hydroponic solution at 187‰
287	(Tank 4). Furthermore, the δ^2 H values of non-transpiring organ waters (y) were nearly identical to
288	those of their respective hydroponic solution waters (x), as evidenced by their close to 1:1
289	relationships and y-intercepts close to, or in the case of 58% RH, not significantly different from, 0
290	(Fig. 4; Table 2b).
291	Water δ^{18} O values in non-transpiring organs were also very close to the δ^{18} O values of water
292	in their corresponding hydroponic solutions (Fig. 3; Table 1 and Table S2 contain details). At 58%
293	RH, water δ^{18} O values in non-transpiring organs ranged from -1.4 to -0.8‰ for a hydroponic
294	solution at -1.1‰ (Tank 1), from -2.8 to -2.1‰ for a hydroponic solution at -2.2‰ (Tank 2), from -
295	2.8 to -2‰ for a hydroponic solution at -2.4‰ (Tank 3), and from -3.6 to -3‰ for a hydroponic
296	solution at -3.4‰ (Tank 4). At 74% RH, the δ^{18} O values of water in non-transpiring organs ranged
297	from -5.5 to -4.7‰ for a hydroponic solution at -4.8‰ (Tank 1), from -7 to -6.4‰ for a hydroponic
298	solution at -6.6‰ (Tank 2), from -6.7 to -6‰ for a hydroponic solution at -6.6‰ (Tank 3), and
299	from -7 to -6.1‰ for a hydroponic solution at -6.8‰ (Tank 4).

300 3.1.3. Water $\delta^2 H$ and $\delta^{18} O$ values of transpiring organs

The δ^2 H and δ^{18} O values of water extracted from panicles were similar to, or did not differ 301 systematically from, their respective values in leaf waters (Fig. 4; Table S2). Therefore, we pooled 302 their δ values into a single "transpiring organs" category, comprising panicles and leaves, in further 303 analyses (Table 1 and Fig. 4). The δ^2 H values of water extracted from transpiring organs ranged 304 from 26 to 129‰ at 58 % RH, and from -9 to +117‰ at 74 % RH (Fig. 3; Table 1). At both relative 305 humidities, the waters of transpiring organs were enriched in deuterium compared to their 306 hydroponic solution waters when the δ^2 H values of the hydroponic solution were low (Tanks 1 and 307 2), but were depleted in deuterium when the δ^2 H values of the hydroponic solution were high 308 (Tanks 3 and 4). In contrast, the δ^{18} O values of the transpiring organs (TO) were always higher than 309 their respective hydroponic solution δ^{18} O values (Fig. 3; Table 1). 310

As observed for non-transpiring organs, the slopes of the relationships of of H values of transpiring organ waters (y) to δ^2 H values of hydroponic solution waters (x) were similar for the two relative humidities (Fig. 4 and Table 2c). In contrast to what was observed for non-transpiring organs however, the relationship of δ^2 H values of water in transpiring organs to hydroponic solution was not 1:1 but close to 0.5 at the two relative humidities (Fig. 4 and Table 2c). In addition, for a given hydroponic solution δ^2 H value, the water in transpiring organs had higher δ^2 H values at 58% RH than at 74% RH (Fig. 4 and Table 2c).

For technical reasons, the vapor isotopic composition (δ_v) was not monitored in the 318 chambers during experiments. Instead, we used the condensate isotopic composition (δ_{C} , averaged 319 along the experiment) to examine the water vapor in isotopic equilibrium with the condensates. In 320 steady state conditions, the isotopic compositions of the condensates (RUBIC I: $\delta^{18}O_{C} = -3.5\%$ and 321 $\delta^2 H_C = 52\%$ and RUBIC V: $\delta^{18}O_C = -7.0\%$ and $\delta^2 H_C = 57\%$) were about the same as the average 322 of the isotopic compositions of the 4 hydroponic solutions (RUBIC I: $\delta^{18}O_{HS} = -2.3\%$ and $\delta^{2}H_{HS} =$ 323 66‰; RUBIC V: $\delta^{18}O_{HS} = -6.2\%$ and $\delta^{2}H_{HS} = 59\%$). Small observed differences between the 324 measured and theoretical values were related to the mixing of isotopic transient state values (more 325 depleted in heavy isotopes) during the first hours of the day and steady state values in the afternoon. 326 This explains the difference between the average of the hydroponic solution and the average of the 327 condensate isotopic compositions. 328

329

330 3.1.4. Lipid $\delta^2 H$ values

We analysed the δ^2 H values of the *n*-C₂₅, *n*-C₂₇, *n*-C₃₁ and *n*-C₃₃ alkanes in the seeds because this is the only plant organ where miliacin is reliably abundant enough for δ^2 H value determination (e.g., Bossard et al., 2011). The *n*-C₂₉ alkane was also abundant, but unfortunately co-eluted with the 5 α -cholestane used as a quantitation standard. Consequently, we were unable to obtain reliable δ^2 H values for *n*-C₂₉. The data reported in Table 3 correspond to δ^2 H values of miliacin and all alkanes except *n*-C₂₉ alkane, averaged per tank.

337	Journal Pre-proofs
007	
338	values of the hydroponic solutions (Figure 4). Miliacin δ^2 H values at 58 % RH ranged from -77 (at
339	$\delta^2 H_{HS} = -15\%$) to -17‰ (at $\delta^2 H_{HS} = 160\%$) and from -122 (for $\delta^2 H_{HS} = -36\%$) to -31‰ (for $\delta^2 H_{HS}$
340	= 187‰) at 74 % RH (Figure 4; Table 3). Miliacin δ^2 H values thus spanned 60‰ at 58% RH and
341	91‰ at 74% RH, over a range of $\delta^2 H_{HS}$ values of 175 and 223‰ at the two relative humidities. $\delta^2 H$
342	values of <i>n</i> -alkanes ranged from -119 to -59‰ (58% RH) and from -155 to -61‰ (74% RH) for <i>n</i> -
343	C ₂₅ , from -96 to -57‰ (58% RH) and from -170 to -66‰ (74% RH) for <i>n</i> -C ₂₇ , from -97 to -32‰
344	(58% RH) and from -160 to -71‰ (74% RH) for <i>n</i> -C ₃₁ and from -102 to -31‰ (58% RH) and from
345	-179 to -70‰ (74% RH) for <i>n</i> -C ₃₃ (Figure 4; Table 3).
346	Where significant, the slopes of the relationships between the $\delta^2 H$ values of each lipid and
347	the δ^2 H values of the hydroponic solution were all similar to the slopes of the relationship between
348	δ^2 H values of water in transpiring organs and δ^2 H values of the hydroponic solution (Table 2b; Fig.
349	4). The slopes of the relationships (where significant) between the δ^2 H values of each lipid and the

 δ^2 H values of water in transpiring organs, although not 1:1, were all higher than those of the δ^2 H values of each lipid *vs.* the δ^2 H value of the hydroponic solution (Table 2c; Fig. 5).

352

353 4. DISCUSSION

In order to evaluate the respective impacts of source water δ^2 H values and transpiration on the δ^2 H values of *n*-alkanes and miliacin, we first discuss the impacts of water uptake and transpiration on δ^2 H and δ^{18} O values of water in non-transpiring and transpiring organs. Then we examine the apparent and biosynthetic fractionations for *n*-alkanes and miliacin and compare our results to literature data. Finally, we inspect the extent to which relative humidity impacts the biosynthetic fractionation of each compound and propose an explanation for the distinct behaviour of *n*-alkanes. 361

water uptake and transpiration

362 *4.1.1. Water uptake*

4.1.

 δ^{18} O and δ^{2} H values of water in non-transpiring organs (roots, first and other internodes) are 363 close to those of their hydroponic solutions (HS; Table 1 and Fig. 3). In addition, the regression 364 lines of δ^2 H values of non-transpiring organ waters vs. their corresponding hydroponic solution 365 have nearly 1:1 slopes (58% RH: 1.0067; 74% RH: 1.0056; Table 2b and Fig. 4) and y-intercepts 366 that are not different from (at 58% RH), or that are close to, zero (-0.87 at 74% RH; Table 2b and 367 Fig. 4). These two results suggest that there is no discernible isotopic fractionation during water 368 369 uptake and are consistent with previous studies on suberized plant tissues in which $\delta^2 H$ values of water in non-transpiring organs are the same as those of the source water (Ehleringer and Dawson, 370 1992; Bariac et al., 1994a,b; Terwilliger and DeNiro, 1995; Sachse et al., 2006; Gleixner and 371 Mügler, 2007). 372

373 4.1.2. Transpiration

Our results suggest that the experiments at 58% RH and at 74% RH are realized under a permanent hydric regime. RUBIC I and RUBIC V are designed to provoke a permanent flow regime and isotopic steady states (hydroponic solution; δ_{HS} , water vapor; δ_v , water vapor transpiration; δ_E , and condensate; δ_c).

 $\phi_{\rm HS} = \phi_{\rm E} = \phi_{\rm C}$

379 where ϕ_{HS} is the flow of the source water, ϕ_E is the flow of transpiration/evaporation and ϕ_{HS} 380 is the flow of condensates.

 δ_{v} is substantially constant during the day in the reactors, as are RH and δ_{HS} for each treatment. It is therefore possible to reach an isotopic steady state in the leaf water at the end of the day. In steady state, conditions in the 3 water pools are as follows:

384 $\delta_{HS} x \phi_{HS} = \delta_E x \phi_E = \delta_C x \phi_C$

385 So:

Journal Pre-proofs

 $o_{\rm HS} = o_{\rm E} = o_{\rm C}$

386

There is an isotopic equilibrium between the condensate and the vapor and between the 387 hydroponic solution and the vapor in the reactor, with no exchange between the latter two pools. In 388 389 this experiment, the plants of each treatment were supplied with differently labelled hydroponic solutions. The isotopic composition of the vapor is a mixing of vapor transpiration from plants 390 cultivated in the four hydroponic solutions. Because of this mixing, there is no longer an isotopic 391 equilibrium between the hydroponic solutions and the water vapor. Instead, there is an isotopic 392 exchange between the leaf water and a vapor whose isotopic composition is very different from that 393 encountered under natural conditions. 394

In contrast to non-transpiring organs, the δ^2 H values of water extracted from transpiring organs (leaves and panicles) are different from the δ^2 H values of their hydroponic solution source waters (Fig. 3). In ²H-depleted hydroponic solutions, the δ^2 H values of waters in transpiring organs are enriched in ²H compared to the corresponding values of the hydroponic solution. In contrast, in ²H-enriched hydroponic solutions, the opposite trend occurs and transpiring organs are depleted in ²H compared to the hydroponic solution (Fig. 3).

This shift in behaviour of water δ^2 H values in transpiring organs with respect to their source water ²H enrichment is consistent with the Craig and Gordon model (1965; Eq.1) revisited by Dongmann et al. (1974) and extensively used in the literature (e.g., Bariac et al., 1989, 1990; Barbour et al., 2017). The isotopic compositions (δ^2 H or δ^{18} O) of water vapor (δ_v) are constant during the day in the reactors, as are the δ values of the hydroponic solution (δ_{HS}) and RH (relative humidity). It is therefore possible to reach an isotopic steady state in the leaf water (with δ_L) at the end of the day.

408

$$\delta_{L} = \xi \left(\delta_{HS} + 1 \right) + RH \left(\delta_{v} + 1 \right) \left(\varepsilon_{k} + 1 \right) - 1$$
(Eq.1)

409 With:

410 $\xi = (1 - RH) (1 + \varepsilon_e) (1 + \varepsilon_k)$

411 Where:

- 412Journal Pre-proofs412 o_L is the isotopic composition of lear water,413h is the relative humidity of air at the leaf temperature,414 ε_e and ε_k are respectively the isotopic enrichment factor at equilibrium and the kinetic415enrichment factor between liquid and vapor,416 δ_V is the isotopic composition of the ambient water vapor,
- 417 δ_{HS} is the isotopic composition of the hydroponic solution.

Relative humidity appears to be an important factor in the isotopic variations of leaf water (Ferhi et al., 1983) via the terms " δ_{HS} (1- h)" and "(h δ_V)". When relative humidity increases in the reactor, the influence of δ_V also increases. As mentioned by Farquhar and Cernusak (2005) and Farquhar et al. (2007), it means that at a relative humidity (h) greater than 50%, more water enters the leaf from the air.

Some minor differences in water δ^2 H values are observed within a category of transpiring 423 organs. Leaf water enrichment (both in ²H and ¹⁸O) is less for lower (and senescent) than for higher 424 leaves, which thus exhibit an intermediate enrichment between non-transpiring organs and leaves 425 (Figure 3; further details are given in Table S2). Water extracted from panicles also shows an 426 enrichment in both ²H and ¹⁸O, compared to hydroponic solution waters. In most cases, the range of 427 δ^2 H and δ^{18} O values of water in panicles falls within the range found for transpiring organs (Fig. 3). 428 This is the reason why leaves and panicles were considered together as transpiring organs in the 429 previous sections. Panicles have glumes (Fig. 2) which are photosynthetically active and it is 430 possible that accompanying transpiration accounts for this observed enrichment (Lu and Lu, 2004; 431 432 Zhang et al., 2008). As observed for leaves, some panicle δ^2 H values were closer to those of nontranspiring organ δ^2 H values than others. This may have resulted from more introduction of water 433 from non-transpiring panicle stems in some samples than others. Alternatively, differences in 434 proportional inputs of more water from senescing glumes that were no longer transpiring may have 435 produced the observed variation in δ^2 H values among the panicle samples. 436

437	Journal Pre-proofs 4.2. Apparent and biosynthetic fractionations
438	As expected, all lipids (<i>n</i> -alkanes and miliacin) are systematically depleted in deuterium
439	compared to their corresponding hydroponic solutions and transpiring organ waters (Figure 4; Table
440	3). This depletion could be due to the preferential selection of protium over deuterium during
441	biosynthesis and may be a result of high NADPH selectivity towards deuterium (Schmidt et al.,
442	2003; Chikaraishi et al., 2009). Apparent fractionation (\mathcal{E}_{app}) is a measure of the difference in $\delta^2 H$
443	values between lipid compounds and hydroponic solution, the original source of hydrogens for
444	organic compound synthesis in a plant. Biosynthetic fractionation (ε_{bio}) reflects the difference in
445	δ^2 H values between lipid compounds and water in transpiring organs, the source of hydrogens for
446	the production of photosynthates that will eventually be involved in the synthesis of other
447	compounds (Gleixner and Mügler, 2007; Chikaraishi et al., 2009; Kahmen et al., 2013b).
448	Here, we calculate apparent fractionation as (sensu Sessions et al., 1999; Chikaraishi and
449	Narakoa 2003):
450	$\mathbf{\mathcal{E}}_{app} = 1000[(\delta^2 H \text{ compound} + 1000) / (\delta^2 H_{HS} + 1000) - 1]$ (Eq. 2)
451	and biosynthetic fractionation as:
452	$\mathbf{\mathcal{E}}_{bio} = 1000[(\delta^2 H \text{ compound} + 1000) / (\delta^2 H_{TO} + 1000) - 1] \text{ (Eq. 3)}$
453	$\mathbf{\mathcal{E}}_{bio}$ values are medians per tank calculated from water $\delta^2 H$ values in transpiring organs (TO:
454	panicles and leaves; Table 3).
455	
456	4.2.1. n-Alkanes
457	As discussed above, the relationship between $\delta^2 H$ values of leaf water and hydroponic
458	solutions (slope ≈ 0.46) and between non-transpiring organs and hydroponic solutions (slope ≈ 1.0)
459	differed in a manner consistent with an explanation of transpiration influences (Fig. 4). $\mathbf{\mathcal{E}}_{app}$ values
460	did not differ significantly between the two humidity levels for any of the <i>n</i> -alkanes (p values in
461	Table S3) and so our analyses do not take humidity into consideration. The overall (combined for

	Journal Pre-proofs
462	58 and 74% RH) ranges of average apparent fractionations (\mathcal{E}_{app}) between <i>n</i> -alkanes and
463	hydroponic solution δ^2 H values were consistently highly variable, with a range from -209 to -106‰
464	for n -C ₂₅ , -213 to -82‰ for n -C ₂₇ , -217 to -83‰ for n -C ₃₁ and -217 to -88‰ for n -C ₃₃ (Table 4).
465	The highly variable ranges of \mathbf{E}_{app} values are in agreement with the deviation of leaf water $\delta^2 H$
466	values from $\delta^2 H_{HS}$ values that are thought to be caused by transpiration (as described above).
467	For comparison purposes with the \mathbf{E}_{app} values given in the literature, here we only consider
468	the most realistic water isotopic compositions for millet growing in natural conditions (with $\delta^2 H_{\rm HS}$
469	values at -15 at 58% RH and -36 and -10‰ at 74% RH). This gives a range of $\mathbf{\mathcal{E}}_{app}$ values from -
470	125 to -106‰ for <i>n</i> -C ₂₅ , -153 to -82‰ for <i>n</i> -C ₂₇ , -131 to -83‰ for <i>n</i> -C ₃₁ and -148 to -88‰ for <i>n</i> -
471	C_{33} . Our \mathcal{E}_{app} values for <i>n</i> -alkanes produced by <i>P</i> . <i>miliaceum</i> are consistent with ranges published in
472	the literature for other species. In C3 plants, \mathcal{E}_{app} between <i>n</i> -alkanes and growth water ranged
473	between -230 and -22‰ (Sessions et al., 1999; Sessions, 2006, Sachse et al., 2006; 2009; 2010;
474	Hou et al., 2007b; Feakins and Sessions 2010; Kahmen et al., 2011, 2013a;b; Garcin et al., 2012;
475	Tipple et al., 2013; Tipple et al., 2015; Gamarra et al., 2015). For C4 plants, $\mathbf{\mathcal{E}}_{app}$ values ranged
476	from -150 to -100‰ (Chikaraishi and Naraoka 2003; Chikaraishi et al., 2004a; Smith and Freeman,
477	2006; McInerney et al., 2011; Gamarra et al., 2016). To the best of our knowledge, only Smith and
478	Freeman (2006) have determined \mathcal{E}_{app} for a <i>Panicum</i> species (<i>P. virgatum:</i> $\mathcal{E}_{app} = -151\%$).
479	δ^2 H values of <i>n</i> -alkanes are related to the δ^2 H values of water in transpiring organs (Table 3
480	and Fig. 5). This is also illustrated by the range of \mathcal{E}_{bio} , which is narrower than that of \mathcal{E}_{app} (\mathcal{E}_{bio} = -
481	$151 \pm 5\%$ for <i>n</i> -C ₂₅ , -158 ± 14‰ for <i>n</i> -C ₂₇ , -145 ± 14‰ for <i>n</i> -C ₃₁ and -144 ± 19‰ for <i>n</i> -C ₃₃ ; mean
482	of all values at both relative humidities; Table 4). This is consistent with an explanation of $\delta^2 H$

485	As with the \mathcal{E}_{app} values, our \mathcal{E}_{bio} values of <i>n</i> -alkanes (from -163 to -130‰) fall within the
486	range of values reported by other authors. Feakins and Sessions (2010) reported \mathcal{E}_{bio} of -147 ± 18‰
487	for <i>n</i> -alkanes extracted from plants thriving in an entire ecosystem. For trees, \mathcal{E}_{bio} values ranged
488	from -120 to -170‰ (Sachse et al., 2009; Tipple et al., 2013; Kahmen et al., 2011). \mathcal{E}_{bio} values
489	calculated from $n-C_{29}$ and $n-C_{31}$ alkanes and leaf water $\delta^2 H$ values in dicotyledonous plant species
490	ranged from -136 to -241‰ (Kahmen et al., 2013b). For C4 plants, Zhou et al. (2010) and Smith
491	and Freeman (2006) reported \mathcal{E}_{bio} of -180 and -150‰ (the difference being attributed to
492	temperature) and -157‰, respectively. ε_{bio} values calculated from Kahmen et al. (2013b) ranged
493	between -181 and -158‰ for $n-C_{29}$ and $n-C_{31}$ alkanes in maize. Finally, Gamarra et al. (2016)
494	reported a mean \mathcal{E}_{bio} of -164‰ for <i>n</i> -alkanes produced by C4 grasses, and more specifically of -
495	181‰ for <i>Panicum virgatum</i> . The range of ε_{bio} for <i>n</i> -alkanes in these studies is narrower than that
496	of $\mathbf{\mathcal{E}}_{app}$ and independent of the plant type. Our study provides the first values for <i>n</i> -alkane $\mathbf{\mathcal{E}}_{bio}$ in
497	Panicum miliaceum.

498 4.2.2. Miliacin

Like *n*-alkanes, miliacin δ^2 H values are related to δ^2 H values of water in transpiring organs with 0.725 (RH = 58%) and 0.784 (RH = 74%) slopes (Figure 5, Table 2) and an average \mathcal{E}_{bio} of -118 ± 5‰ (Table 4). Conversely, the slopes of the miliacin δ^2 H values *vs*. δ^2 H_{HS} values are 0.329

	Journal Pre-proofs
502	(RH = 58%) and 0.389 (TH = 74%), which explains the large standard deviation (44‰) of \mathcal{E}_{app}
503	around an average value of -119‰ (Table 4), as illustrated in Fig. 4.
504	Bossard et al. (2011) reported a mean δ^2 H value of -120‰ for miliacin extracted from millet
505	seeds grown in the field, with a meteoric source water of -50‰ (Millot et al., 2010). This
506	corresponds to an \mathcal{E}_{app} of -73.8‰ which is lower than the \mathcal{E}_{app} values we obtained (-104‰ on
507	average at 58% RH and -133‰ on average at 74% RH).
508	Miliacin δ^2 H values ranged from -122 to -18‰. In the literature, δ^2 H values of pentacyclic
509	triterpenes are found in the following ranges: -171 to -142‰ in Spartina alterniflora and -252 to -
510	226‰ in Daucus carota (Sessions et al., 1999); -235 to -177‰ in taraxerol produced by
511	Rhizophora sp. trees in mangroves (Ladd and Sachs, 2015a); -192 to -154‰ in taraxerol produced
512	by <i>Rhizophora stylosa</i> (Ladd and Sachs, 2015b) and -276 to - 185‰ (for β -amyrin), -272 to -181‰
513	(for lupeol) and -252 to -174‰ (for taraxerol) in greenhouse-grown Rhizophora mangle (Park et al.,
514	2019).
515	The \mathcal{E}_{app} of miliacin is about -119‰ on average. The \mathcal{E}_{app} of triterpenes range from -191 to -
516	122‰ for Spartina alterniflora (Sessions, 2006), from -226 to -150‰ in Rhizophora spp. (Ladd and
517	Sachs 2015a; 2015b), from -241 to -231‰ in Bruguiera gymnorhiza (Ladd and Sachs, 2017), and is
518	-150‰ for sedimentary triterpenols (Sauer et al., 2001), the latter identical to that reported for
519	miliacin in Cameroon soil samples (Schwab et al., 2015). The authors reported a 20‰ increase in
520	$\mathbf{\mathcal{E}}_{app}$ for C4 graminoid-derived pentacyclic triterpene methyl ethers (PTMEs) for a 35 % decrease in
521	RH, in agreement with a 19‰ increase in \mathcal{E}_{app} for miliacin with a 16% decrease in relative
522	humidity.

	Journal Pre-proofs
523	\mathcal{E}_{bio} values obtained for miliacin (-118 ± 5‰) indicated less fractionation than that reported
524	for taraxerol from <i>Rhizophora</i> spp. (from -229 to -148‰; Ladd and Sachs 2015a; 2015b), or for
525	lupeol in Bruguiera gymnorhiza (from -239 to -223‰; Ladd and Sachs, 2017).
526	
527	4.2.3. Relationships between compound-specific, leaf water and $\delta^2 H_{HS}$ values
528	As explained earlier, the δ^2 H values of miliacin and <i>n</i> -alkanes correlate with leaf water δ^2 H
529	values, with slopes close to each other (Fig. 5). Several studies have concluded that the $\delta^2 H$ values
530	of biochemicals are influenced by the $\delta^2 H$ values of leaf water, which integrates the $\delta^2 H$ values of
531	meteoric water and fractionations caused by transpiration processes (Sessions et al., 1999;
532	Chikaraishi and Narakoa, 2003; Hou et al., 2007b; McInerney et al., 2011; Gamarra et al., 2016).
533	Our results clearly suggest that the δ^2 H values of <i>n</i> -alkanes and miliacin are more closely related to
534	leaf water $\delta^2 H$ values than to $\delta^2 H_{HS}$ values (Table 3 and Fig. 4 and 5). This result suggests that
535	transpiration processes that affect $\delta^2 H$ values of leaf waters will have a strong impact on the $\delta^2 H$
536	values of biological compounds synthesised in C4 plant leaves, i.e., the factors controlling the
537	transpiration of the plants will strongly influence the $\delta^2 H$ values of biochemicals (Gleixner and
538	Mügler, 2007; Sessions et al., 1999; Hou et al., 2007a,b).

539

540 4.2.4. Differences in \mathcal{E}_{bio} between miliacin and n-alkanes

541	The overall average \mathcal{E}_{bio} value was -118 ± 5‰ for miliacin, whereas it reached -151 ± 7, -
542	158 ± 14 , -145 ± 14 and $-144 \pm 19\%$ for the <i>n</i> -C ₂₅ , <i>n</i> -C ₂₇ , <i>n</i> -C ₃₁ and <i>n</i> -C ₃₃ alkanes, respectively
543	(Table 4). This constitutes a significant (Table S4 shows Wilcoxon paired sample tests between the
544	\mathbf{E}_{bio} values of each compound) enrichment of this C-3 oxygenated pentacyclic triterpene compared
545	to <i>n</i> -alkanes. This is in contrast to previous studies in which pentacyclic triterpenes were depleted

546	Journal Pre-proofs by ~100‰ in <i>Daucus carotta</i> (Sessions et al., 1999) and by 40 to 50‰ in <i>knizopnora</i> spp. (Ladd
547	and Sachs, 2015a), compared to <i>n</i> -alkanes. This depletion is the same as that observed for sterols
548	compared to <i>n</i> -alkyl lipids (Sessions et al., 1999; Zhou et al., 2016; Chikaraishi et al., 2004a;
549	2004b) and is classically attributed to the distinct metabolic pathways leading to these compounds,
550	and the source of their hydrogen atoms. <i>n</i> -Alkanes are produced via the acetogenic pathway from
551	palmitic acid produced in the chloroplast and then by the decarboxylation and elongation that occur
552	in the cytosol. Their hydrogen atoms are thought to derive from intracellular water (50%), from
553	carbohydrate precursors (25%) and from NADPH (25%; Sachse et al., 2012). C-3 oxygenated
554	pentacyclic triterpenes, as well as tetracyclic triterpenes (sterols), are produced in the cytosol via the
555	mevalonic acid pathway (MVA; Sessions et al., 1999; Sessions, 2006; Chikaraishi et al., 2009;
556	Zhou et al., 2011) from isopentenyl diphosphate, a precursor that is produced in both the plastid and
557	the cytosol, with uncertainties on how much can be transported through the plastid membrane.
558	These separate pathways not only involve distinct enzymatic processes but also different pools of
559	water (in the cytosol and in the plastid) with which C-bound hydrogen atoms can be exchanged.
560	They also involve different pools of NADPH produced through distinct processes and with distinct
561	isotopic values (Cormier et al., 2018) that can significantly modify the isotopic composition of the
562	final product; for example, during hydrogenation and dehydrogenation (Chikaraishi et al., 2009).
563	According to Sachse et al. (2012), the ² H-depletion of isoprenoid lipids produced through the MVA
564	pathway compared to <i>n</i> -alkyl lipids is due to hydrogen atoms transferred from NADPH to terpene
565	intermediates during the synthesis of mevalonate.
566	Our data show the reverse, with miliacin being enriched compared to n -alkanes. This pattern

566 Our data show the reverse, with miliacin being enriched compared to *n*-alkanes. This pattern 567 has already been encountered in *Spartina alterniflora* (a C4 Poaceae), where there was either no 568 difference (Sessions et al., 1999), or a ~20‰ enrichment (Sessions, 2006) of pentacyclic triterpenes 569 compared to *n*-alkanes. Hence, an enrichment of pentacyclic triterpenes compared to *n*-alkanes 570 could be specific to C4 grasses, probably related to the compartmentation of photosynthesis in C4 571 plants into mesophyll and bundle sheath cells. Water in bundle sheath cells at the base of C4

Journal Pre-proofs grasses leaves is a mix between xyiem (non-evaporated water) and lear water (submitted to 572 evaporation). Organic compounds produced in bundle sheath cells are hence ²H-depleted compared 573 to compounds produced in the rest of the leaves, because they derive from waters less subjected to 574 evaporation (Zhou et al., 2016; Gamara et al., 2016). In our case, the ²H-enrichment of miliacin 575 compared to *n*-alkanes could result from the preferential synthesis of *n*-alkanes in basal cells, 576 whereas miliacin could be produced in mesophyll cells. This hypothesis is contradicted by 577 Chikaraishi et al. (2004) who reported depleted sterols compared to *n*-alkanes in C4 grasses and, 578 more clearly, by Zhou et al. (2016) who reported an \mathcal{E}_{bio} of -155‰ for *n*-alkanes and of -200‰ for 579 sterols in *Panicum coloratum*. Therefore, it is unclear whether the ²H-enrichment observed for 580 miliacin compared to *n*-alkanes results from a specificity of miliacin synthesis, or a peculiarity of *P*. 581 miliaceum. 582

Specific attention should be paid to the plant location from which we extracted lipids. We 583 584 observed a good correlation between the δ^2 H values of lipids and water in transpiring organs (leaves and panicles) but this relationship could mask more complex mechanisms. It is unclear whether, in 585 P. miliaceum, lipids can be directly photosynthesized in seeds; i.e., whether hydrogen atoms could 586 originate from seed water, this water possibly having a distinct isotopic composition compared to 587 that of leaves (Sanchez-Bragado et al., 2019). Alternatively, lipids in seeds could be synthesised 588 from intermediates that were formed during pre-anthesis by photosynthesis in leaves, and then 589 translocated to seeds during grain-filling, with additional fractionation. Although such heterotrophy 590 is also observed in leaves, it could be more prevalent for lipids produced in seeds, and could be a 591 more important shaper of lipid δ^2 H values than the organ water isotopic composition. In addition, 592 lipids could also be transferred directly from leaves to seeds in late stages of maturation, as 593 suggested for mustard (Mukherjee, 1983). There is currently no information available for the time at 594 which these processes occur in P. miliaceum. The extent to which all these factors more or less 595 affect δ^2 H values of short chain *n*-alkanes, long chain *n*-alkanes and miliacin, remains to be 596 elucidated in order to better understand the significance of \mathcal{E}_{bio} values. 597

599 4.3. Impact of relative humidity

600 4.3.1. Impact of relative humidity on leaf water $\delta^2 H$ values

The impact of transpiration is visible from the data shown in Figure 6 with δ^2 H values of 601 water in transpiring organs systematically ~29‰ higher at 58% than at 74 % relative humidity 602 (calculated from the intercepts of respective regression lines displayed in Table 2). Eq. (1) shows 603 that, depending on the isotopic compositions of the hydroponic solutions, there is a theoretical 604 maximum difference of 6.5% for ¹⁸O and 35% for ²H, when passing from 58% to 74% relative 605 humidity. This supports the idea that leaf water $\delta^2 H$ values are not only influenced by the $\delta^2 H_{HS}$ 606 values, but also by relative humidity. This illustrates the impact of relative humidity on water flux 607 control in stomata (Manzoni et al., 2013), attested by increasing the weight of the term " δ_{HS} (1 – h)" 608 and decreasing the weight of the term "h ($\delta_v - \varepsilon_k$)" with decreasing humidity in Eq. (1) (Craig and 609 Gordon, 1965). 610

611 4.3.2. Impact of relative humidity on \mathcal{E}_{bio} values

As described above, the first parameter that controls miliacin and *n*-alkane δ^2 H values is leaf 612 water δ^2 H. For a given relative humidity, \mathcal{E}_{bio} values of each compound are rather homogeneous, 613 regardless of the $\delta^2 H_{HS}$ values. This result is consistent with some previous studies (i.e., Hou et al., 614 615 2007b; Chikaraishi et al., 2009; Kahmen et al., 2013a). Sachse et al. (2010) reported that lipid $\delta^2 H$ values are mainly controlled by the leaf water δ^2 H value which, in turn, is influenced by the δ^2 H_{HS} 616 value. However, the leaf water enrichment compared to the hydroponic solution is mainly due to the 617 humidity that partly controls transpiration (Kahmen et al., 2013a,b). 618 For miliacin, the difference in \mathcal{E}_{bio} between 58 (from -124 to -112‰) and 74% RH (from -619

130 to -120‰) is not significant (Table 4; Table S5). It thus appears that relative humidity has no or

598

620

	Journal Pre-proofs
621	little impact on miliacin \mathcal{E}_{bio} values. Conversely, minor, but significant differences between <i>n</i> -
622	alkane \mathbf{E}_{bio} values with respect to RH are noted. If confirmed, this could provide clues about
623	variations in the respective impacts of source water $\delta^2 H$ values and relative humidity on the $\delta^2 H$
624	values of biochemicals. $\mathbf{\mathcal{E}}_{bio}$ values for the <i>n</i> -C ₂₅ alkane are similar at both relative humidities (from
625	-161 to -142‰ at 58% and from -163 to -146‰ at 74 H RH; Table 4; Fig. 7; Mann Whitney U test
626	statistics are summarised in Table S5). The same applies to n -C ₂₇ , with no significant difference in
627	ϵ_{bio} values between 58% RH (from -169 to -130‰) and 74% RH (from -175 to -149‰). For longer
628	chain <i>n</i> -alkanes (<i>n</i> -C ₃₁ and <i>n</i> -C ₃₃), the difference in \mathcal{E}_{bio} between the two relative humidity levels,
629	although small, is significant at p=0.03 (Table 4 and Fig. 7; Mann Whitney U test statistics are
630	provided in Table S5). There is more biosynthetic fractionation at 74% RH, compared to 58% RH,
631	for $n-C_{31}$ (from -166 to -150‰ and from -145 to -131‰, respectively) and for $n-C_{33}$ (from -184 to -
632	142‰ and from -136 to -122‰). This constitutes a 23 (for n -C ₃₁) and a 28‰ (for n -C ₃₃) additional
633	fractionation of hydrogen isotopes for a 16% increase in RH. Such a distinct behaviour of <i>n</i> -alkane
634	biosynthetic fractionation depending on carbon chain-length was reported by Kahmen et al.
635	(2013b). In their case, less fractionation was observed for the n -C ₃₁ alkane under drier conditions
636	for Populus balsamifera and Helianthus annus. The reverse was observed for Zea mays and
637	<i>Triticum aestivum</i> (Figure 7). There is as yet no clear pattern of \mathcal{E}_{bio} changes with relative humidity.
638	The small difference in behaviour of the \mathcal{E}_{bio} values of <i>n</i> -alkanes towards humidity suggested by our
639	results could be related to different proportions of hydrogen atoms derived from the chloroplast and
640	from the cytosol, depending on chain length. During <i>n</i> -alkane elongation beyond 16 carbon atoms,
641	they integrate a larger proportion of cytoplasmic hydrogen atoms (derived from water or from
642	NADPH) compared to chloroplastic hydrogen atoms. The contribution of hydrogens originating
643	from the chloroplast thus decreases with increasing chain length. As humidity increases, longer

644	Journal Pre-proofs cnain <i>n</i> -aikanes may integrate nydrogen atoms that are more ² H-depleted from water in the cytosol,
645	but not from cytosolic NADPH that is considered ² H-enriched compared to plastidic NADPH
646	(Cormier et al., 2018). This would imply a preferential input of water H atoms compared to
647	NADPH during <i>n</i> -alkane elongation in the cytosol, for which we have no explanation. Conversely,
648	because the synthesis of miliacin only occurs in the cytosol (except for a potential contribution of
649	the isopentenyl diphosphate precursor from the plastid; Hemmerlin et al., 2012), \mathcal{E}_{bio} does not
650	appear to be affected by relative humidity. The small relative humidity difference between the two
651	chambers (16%), when compared to similar studies (34% for Tipple et al., 2015; 35.2% for Kahmen
652	et al., 2013b) may have been insufficient to reveal differences in miliacin \mathcal{E}_{bio} values.
653	Our results could also have been affected by the specific experimental setting we used,
654	implying transpiration of millet plants growing over a very large range of $\delta^2 H$ values of the
655	hydroponic solution in the same chamber. Through the backflow of water vapor in the leaf, this may
656	have modified the expected isotopic composition of leaf water and could have masked or altered the
657	impacts of relative humidity.
658	These findings indicate that studies to more precisely discern the isotopic contributions of
659	source water $\delta^2 H$ values and to back-calculate relative humidity are now needed to maximize the
660	rigor of the palaeoclimatic interpretation of $\delta^2 H$ values from sedimentary biomarkers. Evaluating
661	the extent to which minute differences in δ^2 H values of <i>n</i> -alkanes in a single C4 plant may reflect
662	relative humidity is a promising study strategy. Our results also suggest that the relationships
663	between the δ^2 H values of lipids and climate factors should be compared between leaves and seeds,
664	especially as the latter can be an important source of sedimentary biomarkers.
665	

666 5. CONCLUSIONS

667 The quality of interpretation of compound-specific isotope analysis in sedimentary archives 668 for paleoclimatic studies, and the potential to obtain quantitative estimates of variables that define these δ^2 H values. Our contribution was conducted on *Panicum miliaceum* plants cultivated under controlled conditions over hydroponic solutions of varying δ^2 H values, and under two relative humidity levels.

 δ^2 H values of *n*-alkanes and miliacin showed a strong correlation with leaf water δ^2 H values 673 as indicated by relatively constant biosynthetic fractionation when compared to apparent 674 fractionations. Our results thus confirm that leaf water $\delta^2 H$ values (which integrate source water 675 δ^2 H values and transpiration) are the main control that shapes the δ^2 H values of biochemicals. 676 The difference in biosynthetic fractionations between two humidity levels is non-significant 677 for miliacin, $n-C_{25}$ and $n-C_{27}$ alkanes, but becomes significant for longer chain *n*-alkanes. We 678 suspect that the respective impacts of humidity and source water $\delta^2 H$ values could be discriminated 679 by comparing δ^2 H values of compounds made for hydrogen atoms originating from distinct 680 compartments and sources within photosynthetic cells. Nonetheless, our results could also be 681 affected both by the specific experimental design, which may have muted any relationship between 682 lipid δ^2 H values and relative humidity, and by the organ from which lipids were extracted, since 683 there is currently a lack of knowledge on the source of their hydrogen atoms and the timing of their 684 synthesis. The hypotheses drawn here should thus be confirmed by additional experiments. 685 686

687

688 ACKNOWLEDGMENTS

The authors wish to thank S. Feakins (as an Associate Editor for a first version of the manuscript, and as a reviewer), N. Ladd and three anonymous reviewers for their impressive work and constructive comments on an earlier version of this manuscript. This study was part of the PalHydroMil Project, supported by an Agence Nationale de la Recherche grant (ANR-2010-JCJC607-1). N. Bossard received a PhD grant provided by the Ministère de la Recherche et de l'Enseignement Supérieur (Action Thématique Prioritaire, 2009-2012). V. J. Terwilliger was a

- 595 Journal Pre-proofs senior research reliow at 1510 under the auspices of Le Studium® (Loire institute for Advanced
- 696 Studies). E. Rowley-Jolivet is acknowledged for English language editing of the manuscript.

- Allison, G.B., Leaney, F.W., 1982. Estimation of isotopic exchange parameters, using constant-feed
 pans. *Journal of Hydrology* 55, 151-161.
- 701 Araguás-Araguás, L., Rozanski, K., Gonfiantini, R., Louvat, D., 1995. Isotope effects
- accompanying vacuum extraction of soil water for stable isotope analyses. *Journal of Hydrology* 168, 159-171.
- Bai, Y., Fang, X., Gleixner, G., Mügler, I., 2011. Effect of precipitation regime on δ²H values of
 soil n-alkanes from elevation gradients Implications for the study of paleo-elevation.
 Organic Geochemistry 42, 838-845.
- Barbour, M.M., Farquhar, G.D., Buckley, T.N., 2017. Leaf water stable isotopes and water transport
 outside the xylem. *Plant Cell & Environment*. 40, 914-92.
- Bariac, T., Rambal, S.A., Jusserand, C., Berger A., 1989. Evaluating water flux of field-grown
 alfalfa from diurnal observations of natural isotope concentrations, energy budget and
 ecophysiological parameters. *Agricultural and Forest Meteorology* 48, 263-283.
- 712 Bariac, T., Jusserand, C., Mariotti, A., 1990. Evolution spatio-temporelle de la composition
- isotopique de l'eau dans le continuum sol-plante-atmosphère. *Geochimica et Cosmochimica Acta* 54, 13-424.
- Bariac T., Gonzalez-Dunia J., Katerji N., Béthenod O., Bertolini J.M., Mariotti, A. (1994a) Spatial
 variation of the isotopic composition of water (¹⁸O, ²H) in the soil-plant-atmosphere system,
 2. Assessment under field conditions. *Chemical Geology* 115, 317-333.
- Bariac, T., Gonzalez-Dunia, J., Tardieu, F., Tessier, D., Mariotti, A., 1994b. Spatial variation of the
 isotopic composition of water (¹⁸O, ²H) in organs of aerophytic plants: 1. Assessment under
 laboratory conditions. *Chemical Geology* 115, 307-315.
- Bossard, N., Jacob, J., Le Milbeau, C., Lallier-Verges, E., Terwilliger, V.J., Boscardin R., 2011.
 Variation in δD values of a single, species-specific molecular biomarker: a study of miliacin

723	Journal Pre-proofs tnrougnout a neud of broomcorn millet (<i>Panicum mulaceum</i> L.). Kapia Communications in
724	Mass Spectrometry 25, 1-9.
725	Bossard, N., Jacob, J., Le Milbeau, C., Sauze, J., Terwilliger, V.J., Poissonnier, B., Verges, E.,
726	2013. Distribution of miliacin (olean-18-en-3β-ol methyl ether) and related compounds in
727	broomcorn millet (Panicum miliaceum) and other reputed sources: Implications for the use of
728	sedimentary miliacin as a tracer of millet. Organic Geochemistry 63, 48-55.
729	Bossard, N., 2013. Pertinence et calibration d'un nouveau marqueur paléohydrologique : Le rapport
730	isotopique de l'hydrogène mesuré sur la miliacine. Ph.D. thesis, Université d'Orléans,
731	Orléans, France, 187 pp.
732	Chikaraishi, Y., Narakoa, H., 2003. Compound-specific $\delta D - \delta^{13}C$ analyses of <i>n</i> -alkanes extracted
733	from terrestrial and aquatic plants. Phytochemistry 63, 361-371.
734	Chikaraishi, Y., Naraoka, H., Poulson, S.R., 2004. Hydrogen and carbon isotopic fractionations of
735	lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry
736	65, 1369-1381.
737	Chikaraishi, Y., Tanaka, R., Tanaka, A., Ohkouchi, N., 2009. Fractionation of hydrogen isotopes
738	during phytol biosynthesis. Organic Geochemistry 40, 569-573.
739	Cormier, M.A., Werner, R.A., Sauer, P.E. Gröcke, D.R., Leuenberger, M.C., Wieloch, T.,
740	Schleucher, J., Kahmen A., 2018. ² H-fractionations during the biosynthesis of carbohydrates
741	and lipids imprint a metabolic signal on the $\delta^2 H$ values of plant organic compounds. <i>New</i>
742	<i>Phytologist</i> 218, 479-491.
743	Craig, H., 1961. Isotopic variations in meteoric waters. Science 133, 1702-1703.
744	Craig, H., Gordon, L.I., 1965. Deuterium and oxygen 18 variations in the ocean and the marine
745	atmosphere, In: Tongiorgi, E. (Eds.), Stable Isotopes in Oceanographic Studies and
746	Paleotemperatures. Consiglio nazionale delle richerche, Laboratorio de geologia nucleare,
747	Spoleto, Italy. pp. 9–131.
748	Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16, 436-468.

749	Journal Pre-proofs Dielendori, A.F., Freeman, K.H., Wing, S.L., Granam H.V., 2011. Production of <i>n</i> -aikyl lipids in
750	living plants and implications for the geologic past. Geochimica et Cosmochimica Acta 75,
751	7472-7485.
752	Diefendorf, A.F., Freimuth E.J., 2017. Extracting the most from terrestrial plant-derived <i>n</i> -alkyl
753	lipids and their carbon isotopes from the sedimentary record: A review. Organic
754	Geochemistry 103, 1-21.
755	Dongman, G., Nürnberg, H.W., Förstel, H., Wagener, K., 1974. On the enrichment of H ₂ ¹⁸ O in the
756	leaves of transpiring plants. Radiation and Environmental Biophysics 11, 41-52.
757	Douglas, P.M.J., Pagani, M., Brenner, M., Hodell, D.A., Curtis, J. H., 2012. Aridity and vegetation
758	composition are important determinants of leaf-wax $\delta^2 H$ values in southeastern Mexico and
759	Central America. Geochimica et Cosmochimica Acta 97, 24-45.
760	Eglinton, G., Hamilton, R.J., 1967. Leaf epicuticular waxes. Science 156, 1322-1335.
761	Ehleringer, J.R., Dawson, T. E., 1992. Water uptake by plants: perspectives from stable isotope
762	composition. Plant, Cell & Environment 15, 1073-1082.
763	Estep, M., Hoering, T., 1980. Biogeochemistry of the stable hydrogen isotopes. Geochimica et
764	Cosmochimica Acta 44, 1197–1206.
765	Farris, R., Strain, B., 1978. The effect of water-stress on leaf H ₂ ¹⁸ O enrichment. <i>Radiation and</i>
766	Environmental Biophysics 15,167-202.
767	Farquhar, G.D., Cernusak, L.A., 2005. On the isotopic composition of leaf water in the non-steady
768	state. Functional Plant Biology 32, 293-303.
769	Farquhar, G.D., Cernusak, L.A., Barnes, B., 2007. Heavy water fractionation during transpiration.
770	Plant Physiology 143, 11-18.
771	Feakins, S.J., Sessions, A.L., 2010. Controls on the D/H ratios of plant leaf waxes in an arid
772	ecosystem. Geochimica et Cosmochimica Acta 74, 2128-2141.

- Journal Pre-proofs 773 Ferni, A., Bariac, T., Jusserand, C., Letone, K., 1985. An integrated method for isotopic analysis of 774 oxygen from organic compounds, air water vapor and leaf water. *The International Journal of* 775 *Applied Radiation and Isotopes* 34, 1451-1457.
- Gamarra, B., Sachse, D., Kahmen, A., 2016. Effects of leaf water evaporative ²H-enrichment and
 biosynthetic fractionation on leaf wax *n*-alkane δ²H values in C3 and C4 grasses. *Plant, Cell & Environment* 39, 2390-2403.
- Gao, L., Edwards, E.J., Zeng, Y., Huang, Y., 2014. Major evolutionary trends in hydrogen isotope
 fractionation of vascular plant leaf waxes. *PLoS ONE* 9, e112610.
- 781 Garcin, Y., Schwab, V.F., Gleixner, G., Kahmen, A., Todou, G., Séné, O., Onana, J.M.,
- 782 Achoundong, G., Sachse, D., 2012. Hydrogen isotope ratios of lacustrine sedimentary *n*-
- alkanes as proxies of tropical African hydrology: Insights from a calibration transect across
 Cameroon. *Geochimica et Cosmochimica Acta* 79, 106-126.
- Gleixner, G., Mügler, I., 2007. Compound-specific hydrogen isotope ratios of biomarkers: tracing
 climatic changes in the past, In: Dawson, T.E., Siegwolf, R.T.W. (Eds.), *Stable isotopes as indicators of ecological change*. Oxford Academic Press, Oxford, pp. 249-266.
- Gonfiantini, R., Gratsiu, S., Tongiorgi, E., 1965. Oxygen isotopic composition of water in leaves. In
 Isotopes and Radiation in Soil Plant Nutrition Studies. IAEA, Vienna. pp. 405-410.
- Hemmerlin, A., Harwood, J.L., Bach, T.J., 2012. A raison d'être for two distinct pathways in the
 early steps of plant isoprenoid biosynthesis? *Progress in Lipid Research* 51, 95-148.
- Hou, J., D'Andrea, W.J., Mac Donald, D., Huang, Y., 2007a. Evidence for water use efficiency as an important factor in determining the δ^2 H values of tree leaf waxes. *Organic Geochemistry* 38, 1251-1255.
- Hou, J., D'Andrea, W.J., McDonald, D., Huang, Y., 2007b. Hydrogen isotopic variability in leaf
 waxes among terrestrial and aquatic plants around Blood Pond, Massachussetts (USA).
- 797 Organic Geochemistry 38, 977-984.

	Journal Pre-proofs
798	Huang, Y., Snuman, B., Wang, Y., Webb, T., 2002. Hydrogen isotope ratios of paimitic acid in
799	lacustrine sediments record late Quaternary climate variations. Geology 30, 1103-1106.
800	Jacob, J., Disnar, JR., Boussafir, M., Spadano Albuquerque, A.L., Sifeddine, A., Turcq, B., 2005.
801	Pentacyclic triterpene methyl ethers in recent lacustrine sediments (Lagoa do Caço, Brazil).
802	Organic Geochemistry 36, 449-461.
803	Jacob, J., Disnar, J.R., Arnaud, F., Chapron, E., Debret, M., Lallier-Vergès, E., Desmet, M., Revel-
804	Rolland, M., 2008a. Millet cultivation history in the French Alps as evidenced by a
805	sedimentary molecule. Journal of Archaeological Science 35, 814-820.
806	Jacob, J., Disnar, J.R., Bardoux, G., 2008b. Carbon isotope evidence for sedimentary miliacin as a
807	tracer of Panicum miliaceum (broomcorn millet) in the sediments of Lake le Bourget (French
808	Alps). Organic Geochemistry 39, 1077-1080.
809	Jacob, J., Disnar, J.R., Arnaud, F., Gauthier, E., Billaud, Y., Chapron, E., Bardoux, G., 2009.
810	Impacts of new agricultural practices on soil erosion during the Bronze Age in French
811	Prealps. The Holocene 19, 241-249.
812	Jia, G., Wei, K., Chen, F., Peng, P., 2008. Soil <i>n</i> -alkane δ^2 H vs. altitude gradients along Mount
813	Gongga, China. Geochimica et Cosmochimica Acta 72, 5165–5174.
814	Kahmen, A., Dawson, T.E., Vieth, A., Sachse, D., 2011. Leaf wax <i>n</i> -alkane δ^2 H values are
815	determined early in the ontogeny of Populus trichocarpa leaves when grown under controlled
816	environmental conditions. Plant, Cell & Environment 34, 1639-1651.
817	Kahmen, A., Hoffmann, B., Schefuss, E., Arndt, S.K., Cernusak, L.A., West, J.B., Sachse, D.,
818	2013a. Leaf water deuterium enrichment shapes leaf wax <i>n</i> -alkane δ^2 H values of angiosperm
819	plants II: Observational evidence and global implications. Geochimica et Cosmochimica Acta
820	111, 50–63.
821	Kahmen, A., Schefuss, E., Sachse, D., 2013b. Leaf water deuterium enrichment shapes leaf wax n-
822	alkane δ^2 H values of angiosperm plants I: Experimental evidence and mechanistic insights.
823	Geochimica et Cosmochimica Acta 11, 39-49.

- Journal Pre-proofs Laad, N.S., Sachs, J.P., 2015a. Influence of salinity on hydrogen isotope fractionation in
- *Rhizophora* mangroves from Micronesia. *Geochimica et Cosmochimica Acta* 168, 206-221.
- Ladd, N.S., Sachs, J.P., 2015b. Hydrogen isotope response to changing salinity and rainfall in
 Australian mangroves. *Plant, Cell & Environment* 38, 2674-2687.
- Ladd, S.N., Sachs, J.P., 2017. ²H/¹H fractionation in lipids of the mangrove *Bruguiera gymnorhiza* increases with salinity in marine lakes of Palau. *Geochimica et Cosmochimica Acta* 204, 300-
- 830 312.
- Liu, W., Yang, H., 2008. Multiple controls for the variability of hydrogen isotopic compositions in
 higher plant *n*-alkanes from modern ecosystems. *Global Change Biology* 14, 2166-2177.
- Longchamp, M., Castrec-Rouelle, M., Biron, P., Bariac, T., 2015. Variations in the accumulation,
- localization and rate of metabolization of selenium in mature *Zea mays* plants supplied with
 selenite or selenate. *Food Chemistry* 182, 128-135.
- Lu, H., Zhang, J., Wu, N., Liu, K.B., Xu, D., Li, Q., 2009. Phytoliths analysis for the discrimination
 of foxtail millet (*Setaria italica*) and common millet (*Panicum miliaceum*). *PLoS ONE* 4,
 e4448.
- Lu, Q., Lu, C., 2004. Photosynthetic pigment composition and photosystem II photochemistry of
 wheat ears. *Plant Physiology and Biochemistry* 42, 395-402.
- Manzoni, S., Vico, G., Katul, G., Porporato, A., 2013. Biological constraints on water transport in
 the soil–plant–atmosphere system. *Advances in Water Resources* 51, 292-304.
- McInerney, F.A., Helliker, B.R., Freeman, K.H., 2011. Hydrogen isotope ratios of leaf wax *n*alkanes in grasses are insensitive to transpiration. *Geochimica et Cosmochimica Acta* 75, 541554.
- 846 Millot, R., Petelet-Giraud, E., Guerrot, C., Négrel, P., 2010. Multi-isotopic composition (δ^7 Li- δ^{11} B-
- δD -δ¹⁸O) of rain waters in France: Origin and spatio-temporal characterization. *Applied*
- 848 *Geochemistry* 25, 1510-1524.

Journal Pre-proofs 1989 INIUKINETJEE, K.D., 1985. Lipia diosynthesis in developing mustard seed. *Plant Physiol*ogy 15, 929

850 **934**.

- Park, W.J., Ladd, N.S., Sachs, J.P., 2019. Hydrogen and carbon isotope responses to salinity in
 greenhouse-cultivated mangroves. *Organic Geochem*istry 132, 23-36.
- Polissar, P.J., Freeman, K.H., 2010. Effects of aridity and vegetation on plant-wax δ^2 H in modern lake sediments. *Geochimica et Cosmochimica Acta* 74, 5785-5797.
- 855 Rothfuss, Y., Biron, P., Braud, I., Canale, L., Durand, J.L., Gaudet, J.P., Richard, P., Vauclin, M.,
- Bariac, T., 2010. Partitioning evapotranspiration fluxes into soil evaporation and plant
 transpiration using water stable isotopes under controlled conditions. *Hydrological Processes*24, 3177-3194.
- Sachse, D., Radke, J., Gleixner, G., 2004. Hydrogen isotope ratios of recent lacustrine sedimentary
 n-alkanes record modern climate variability. *Geochimica et Cosmochimica Acta* 68, 4877 4889.
- 4007.
- Sachse, D., Radke, J., Gleixner, G., 2006. δD values of individual *n*-alkanes from terrestrial plants
 along a climatic gradient Implications for the sedimentary biomarker record. *Organic Geochemistry* 37, 469-483.
- Sachse, D., Kahmen, A., Gleixner, G., 2009. Significant seasonal variation in the hydrogen isotopic
 composition of leaf-wax lipids for two deciduous tree ecosystems (*Fagus sylvatica* and *Acer pseudoplatanus*). Organic Geochemistry 40, 732-742.
- Sachse, D., Gleixner, G., Wilkes, H., Kahmen, A., 2010. Leaf wax *n*-alkane δ²H values of
 fieldgrown barley reflect leaf water δ²H values at the time of leaf formation. *Geochimica et Cosmochimica Acta* 74, 6741-6750.
- 871 Sachse, D., Billault, I., Bowen, G.J., Chikaraishi, Y., Dawson, T.E., Feakins, S.J., Freeman, K.H.,
- 872 Magill, C.R., McInerney, F.A., van der Meer, M.T.J., Polissar, P., Robins, R., Sachs, J.P.,
- Schmidt, H.-L., Sessions, A.L., White, J.W.C., West, J.B., Kahmen, A., 2012. Molecular

874	Journal Pre-proofs pateonyarology: interpreting the nyarogen-isotopic composition of lipid biomarkers from
875	photosynthetic organisms. Annual Reviews of Earth and Planetary Sciences 40, 221-249.
876	Sanchez-Bragado, R., Serret, M.D., Marimon, R.M., Bort, J. and Araus, J.L., 2019. The hydrogen
877	isotope composition δ 2H reflects plant performance. <i>Plant Physiology</i> 180, 793-812.
878	Sauer, P.E., Eglinton, T.I., Hayes, J.M., Schiemmelmann, A., Sessions, A.L., 2001. Compound-
879	specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and
880	climatic conditions. <i>Geochimica et Cosmochimica Acta</i> 65, 213-222.
881	Schmidt, HL., Werner, R.A., Eisenreich, W., 2003. Systematics of ² H patterns in natural
882	compounds and its importance for the elucidation of biosynthetic pathways. Phytochemical
883	<i>Reviews</i> 2, 61-85.
884	Schwab, V.F., Garcin, Y., Sachse, D., Todou, G., Séné, O., Onana, JM., Achoundong, G.,
885	Gleixner, G., 2015. Effect of aridity on δ^{13} C and δ D values of C3 plant- and C4 graminoid-
886	derived leaf wax lipids from soils along an environmental gradient in Cameroon (Western
887	Central Africa). Organic Geochemistry 78, 99-109.
888	Sessions, A.L., Burgoyne, T.W., Schimmelmann, A., Hayes, J.M., 1999. Fractionation of hydrogen
889	isotopes in lipid biosynthesis. Organic Geochemistry 30, 1193-1200.
890	Sessions, A.L., Burgiyne, T.W., Hayes, J.M., 2001. Correction of H3 ⁺ contributions in hydrogen
891	isotope ratio monitoring mass spectrometry. Analytical Chemistry 73, 192-199.
892	Sessions, A.L., 2006. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in
893	Spartina alterniflora. Geochimica et Cosmochimica Acta 70, 2153-2162.
894	Sessions, A.L., 2016. Factors controlling the deuterium contents of sedimentary hydrocarbons.
895	Organic Geochemistry 96, 43-64.
896	Smith, F.A., Freeman, K.H., 2006. Influence of physiology and climate δD of leaf wax <i>n</i> -alkanes
897	from C3 and C4 grasses. Geochimica et Cosmochimica Acta 70, 1172-1187.

898	I erwiniger, v.J., Deniro, M.J., 1995. Hydrogen isotope iractionation in wood-producing avocado
899	seedlings: Biological constraints to paleoclimatic interpretations of δD values in tree ring
900	cellulose nitrate. Geochimica et Cosmochimica Acta 59, 5199-5207.

- Terwilliger, V.J., Jacob, J., 2013. Introduction: Hydrogen isotopes as environmental recorders.
 Geochimica et Cosmochimica Acta 111, 1-4.
- Tipple, B.J., Pagani, M., 2013. Environmental control on eastern broadleaf forest species' leaf wax
 distributions and D/H ratios. *Geochimica et Cosmochimica Acta* 111, 64-77.
- Tipple, B.J., Berke, M.A., Hambach, B., Roden, J.S., Ehleringer, J.R., 2015. Predicting leaf wax *n* alkane ²H/¹H ratios: controlled water source and humidity experiments with hydroponically
 grown trees confirm predictions of Craig–Gordon model. *Plant, Cell & Environment* 38,
- 908 1035-1047.
- Yakir, D., 1992. Water compartmentation in plant tissue: isotopic evidence, In: Somero, S.G.N.,
 Osmond, C.B., Bolis, C.L. (Eds.), *Water and Life*. Springer-Verlag, Berlin, pp. 205-222.

911 Yang, H., Huang, Y., 2003. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine

- sediments and plant fossils at Clarkia, northern Idaho, USA. *Organic Geochemistry* 34, 413423.
- Zhang, Y.H., Wang, Z.M., Huang, Q., Shu, W., 2008. Phosphoenolpyruvate carboxylase activity in
 ear organs is related to protein concentration in grains of winter wheat. *Journal of Cereal Science* 47, 386–391.
- 217 Zhou, Y., Grice, K., Stuart-Williams, H., Farquhar, G. D., Hocart, C.H., Lu, H., Liu, W., 2010.
- Biosynthetic origin of the saw-toothed profile in δ^{13} C and δ^{2} H of *n*-alkanes and systematic isotopic differences between n-, iso- and anteiso-alkanes in leaf waxes of land plants.
- 920 *Phytochemistry* 71, 388-403.
- 21 Zhou, Y., Grice, K., Chikaraishi, Y., Stuart-Williams, H., Farquhar, G.D., Ohkouchi, N., 2011.
- 922 Temperature effect on leaf water deuterium enrichment and isotopic fractionation during leaf

923 Journal Pre-proofs 11pta biosynthesis: Kesuits from controlled growth of C3 and C4 land plants. *Phytochemistry*

924 72, 207-213.

- 25 Zhou, Y., Grice, K., Stuart-Williams, H., Hocart, C.H., Gessler, A., Farquhar, G.D., 2016.
- 926 Hydrogen isotopic differences between C3 and C4 land plant lipids: consequences of
- 927 compartmentation in C4 photosynthetic chemistry and C3 photorespiration. *Plant, Cell* &
- 928 *Environment* 39, 2676–2690.

929 Figure Captions

Journal Pre-proofs

- 930 Fig. 1: Structure of miliacin.
- Fig. 2: (a) Experimental design. δ^2 H and δ^{18} O values of the hydroponic solution are those reported
- in Section 2.1. (b) Sketch of a *Panicum miliaceum* plant with reference to organs sampled for this
- study and details of a spikelet (redrawn from Lu et al., 2009).
- Fig. 3: Water δ^2 H and δ^{18} O values in different organs for distinct hydroponic solution δ^2 H values at
- 935 58 and 74% RH (Table S2). Considering the analytical precision ($\pm 0.1\%$ for δ^{18} O values and $\pm 1\%$
- for δ^2 H values) and reproducibility (cf. Table S1), error bars are not displayed.
- 937 Fig. 4: δ²H values of water in non-transpiring organs (NTO), transpiring organs (TO), panicles (P),
- miliacin and *n*-alkanes (averaged) versus δ^2 H values of the hydroponic solution (HS) at 58%
- relative humidity (a) and at 74% relative humidity (b). Considering the analytical precision ($\pm 0.1\%$
- for δ^{18} O values and ± 1 ‰ for δ^{2} H values) and reproducibility (cf. Table S1), error bars are not
- displayed for water δ^2 H values. Error bars for compound δ^2 H values correspond to the standard
- 942 deviation reported in Table 3.
- Fig. 5: δ^2 H values of miliacin and individual *n*-alkanes versus δ^2 H values of water in transpiring
- organs (TO) at 58% relative humidity (a) and at 74% relative humidity (b). Considering the
- analytical precision ($\pm 0.1\%$ for δ^{18} O values and $\pm 1\%$ for δ^{2} H values) and reproducibility (cf.
- Table S1), error bars are not displayed for water $\delta^2 H$ values in transpiring organs. Error bars for
- 947 compound δ^2 H values correspond to the standard deviation reported in Table 3.
- Fig. 6: Evolution of water δ^2 H values in transpiring organs (TO) versus hydroponic solution (HS)
- δ^2 H values at 58% relative humidity and at 74 % relative humidity. Considering the analytical
- precision ($\pm 0.1\%$ for δ^{18} O values and $\pm 1\%$ for δ^{2} H values) and reproducibility (cf. Table S1),
- error bars are not displayed for water δ^2 H values.
- Fig. 7: a- ε_{bio} values of *n*-alkanes and miliacin at 58 and 74% relative humidity in *Panicum*
- 953 *miliaceum*. Each value corresponds to the median, minimum and maximum of ε_{bio} values (Table 4)
- calculated by tank 1 to 4 (from left to right) from δ^2 H values of compounds (Table 3) compared to

- Journal Pre-proofs 955 of the values of water in the corresponding individual transpiring organs (Table 52); $\mathbf{b} - \mathbf{\epsilon}_{bio}$ values of
- $n-C_{31}$ alkane at 36 and 71.2% relative humidity in various plants (data from Kahmen et al., 2013).

Journal Pre-proofs Table 1: o-H and o...O values of water from hydroponic solutions, and non-transpiring (roots and internodes) and transpiring (leaves and panicles) organs in growth chambers at 58% and 74% relative humidities. δ values are averages where replicates exist or are otherwise individual values. Table S2 contains the data for all individual values. HS = hydroponic solution, NTO = nontranspiring organs, TO = transpiring organs.

58% RH		δ ¹⁸ O (‰ V-	SMOW)	δ²Η (‰ V-	SMOW)	740	% RH	δ ¹⁸ O (‰ V-	SMOW)	$\delta^2 H$ (‰ V-SMOW	
	/0 KH	Average	Stdev	Average	Stdev	/4	/0 KH	Average	Stdev	Average	Stdev
-	HS	-1.1		-15		_	HS	-4.8		-36	
Tank	NTO	-1.1	0.2	-18	4.6	Tank	NTO	-4.9	0.3	-37	1.4
Γ	ТО	8.7	1.6	38	7.2	Γ	ТО	7.5	4.0	0	9.8
7	HS	-2.2		15		7	HS	-6.6		-10	
Tank 2	NTO	-2.5	0.2	16	1.2	Tank 2	NTO	-6.7	0.3	-10	0.3
Γ	ТО	7.4	2.0	51	4.8	Γ	ТО	6.1	1.6	12	2.1
3	HS	-2.4		105		ŝ	HS	-6.6		95	
Tank 3	NTO	-2.3	0.3	109	2.5	Tank	NTO	-6.3	0.3	94	1.0
Ε	ТО	6.3	3.7	88	6.2	Τ	ТО	7.1	1.9	52	3.2
4	HS	-3.5		160		4	HS	-6.8		187	
Tank 4	NTO	-3.3	0.2	157	5.8	Tank 4	NTO	-6.7	0.3	187	1.2
T	ТО	4.3	1.0	118	12.3	Τ	ТО	6.5	0.7	114	2.7

Journal Pre-proofs Table 2: Regression statistics for (a) Figure 5 (tank and plant water of H and of O values); (b) Figure 4 (δ^2 H values of water in HS, organs, miliacin and *n*-alkanes); (c) Figure 5 (δ^2 H values of miliacin and *n*-alkanes versus δ^2 H values of water in transpiring organs); (d) Figure 6 (δ^2 H values of water in HS and in transpiring organs at two RH). a is the slope, b is the intercept.

(a) Figure 3		RH =	58 %		RH = 74 %						
	а	b	r ²	р	a	b	r ²	р			
Tank 1	5.6075	-11.462	0.9902	< 0.0005	2.9528	-22.337	0.9911	< 0.0005			
Tank 2	3.4749	24.872	0.9856	< 0.0005	1.6498	1.3168	0.9943	< 0.0005			
Tank 3	-2.1234	102.23	0.8824	< 0.0005	-3.0654	74.186	0.983	< 0.0005			
Tank 4	-5.0907	140.57	0.8549	< 0.0005	-5.5574	149.94	0.9939	< 0.0005			

(b) Figure 4		RH =	58 %			RH =	= 74 %	
	а	b	r ²	р	а	b	r ²	р
NTO	1.0067	0	0.997	< 0.0005	1.0056	-0.87	1	< 0.0005
ТО	0.45	43.8	0.95	< 0.0005	0.48	15.5	0.963	< 0.0005
Miliacin	0.329	-69.412	0.99	0.005	0.389	-108	0.981	0.01
<i>n</i> -C ₂₅	0.307	-111	0.953	0.024	0.404	-136	0.99	0.005
<i>n</i> -C ₂₇	n.s.	n.s.	n.s.	0.18	0.477	-154	0.997	0.001
<i>n</i> -C ₃₁	0.326	-92	0.907	0.048	0.376	-142	0.987	0.006
<i>n</i> -C ₃₃	0.375	-91.11	0.968	0.016	n.s.	n.s.	0.898	0.052

(c) Figure 5		RH :	= 58 %			RH =	- 74 %	
	а	b	r ²	р	a	b	r ²	р
Miliacin	0.725	-101	0.983	0.009	0.784	-120	0.998	0.001
<i>n</i> -C ₂₅	0.683	-141	0.964	0.003	0.8	-148	0.971	0.015
<i>n</i> -C ₂₇	n.s.	n.s.	n.s.	0.175	0.94	-167	0.967	0.017
<i>n</i> -C ₃₁	0.735	-125	0.97	0.015	0.748	-153	0.846	0.013
<i>n</i> -C ₃₃	0.83	-127	0.97	0.03	n.s.	n.s.	n.s.	0.081

(d) Figure 6	а	b	r ²	р
RH = 58 %	0.448	43.824	0.947	< 0.0005
RH = 74 %	0.482	15.456	0.963	< 0.0005

Table 3: δ^2 H values of hydroponic solution (HS) and transpiring organ (TO) (averaged if >1 value per tank) waters and miliacin and *n*-alkanes extracted from *P. miliaceum* seeds collected after cultivation at 58 and at 74% relative humidity in climatic chambers. n corresponds to the number of replicates for each treatment (seeds from 1 to 3 plants per tank) and can vary between compounds depending on the concentration of each compound in the seed extract considered.

961

		HS	ТО	Miliacin a	δ ² H		<i>n</i> -C ₂₅ alkan	e δ ² H		<i>n</i> -C ₂₇ alkan	e δ ² H		<i>n</i> -C ₃₁ alkan	e δ ² H		<i>n</i> -C ₃₃ alkan	e δ ² H	
	Tank	(‰ V-SMOW)	(‰ V-SMOW)	(‰ V-SMOW)	Stdev	n	(‰ V-SMOW)	Stdev	n	(‰ V-SMOW)	Stde	v n	(‰ V-SMOW)	Stdev	n	(‰ V-SMOW)	Stdev	'n
	1	-15	38	-77	6	3	-119		1	-96		1	-97		1	-102		1
58%	2	15	51	-61		1	-99		1	-128		_1	-83		1	-78		1
2070	3	105	88	-34	1	2	-83	12	2	-81	0	2	-70	18	2	-54	10	2
	4	160	118	-18		1	-59		1	-57		1	-32		1	-31		1
	1	-36	0	-122	7	3	-155	2	2	-170	6	3	-160	3	3	-179	14	3
74%	2	-10	12	-109	2	2	-134		1	-161		1	-140		1	-133		1
/ ./0	3	95	52	-80	7	2	-98		1	-105		1	-108		1	-98		1
	4	187	114	-31	1	3	-61	10	2	-66	1	2	-71	11	2	-70	2	2

HS=hydroponic solution; TO=transpiring organs (averaged according to Table S2).

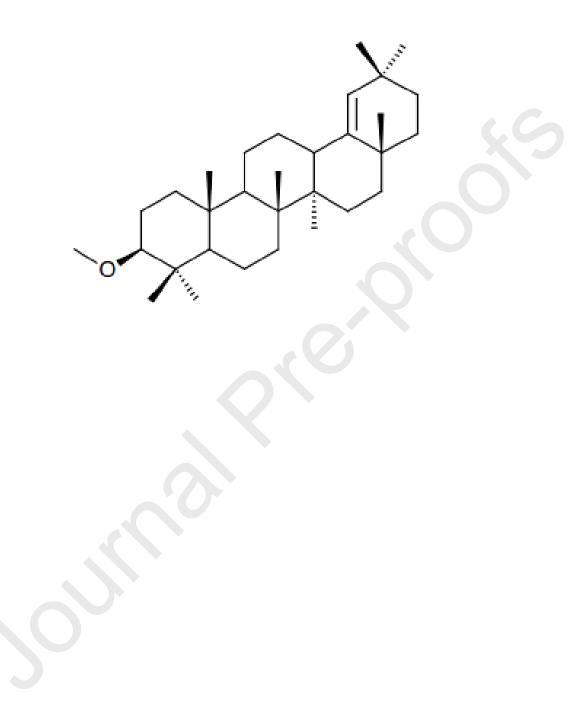
962 963

964

Table 4: Apparent (\mathcal{E}_{app}) and biosynthetic (\mathcal{E}_{bio}) fractionation for miliacin and *n*-alkanes, calculated from equation 2 and equation 3, at 58% and at 74% relative humidity. \mathcal{E}_{bio} values are calculated from δ^2 H values of miliacin and *n*-alkanes (Table 3) and δ^2 H values of water in individual transpiring organs (TO; leaves and panicles, Table S2).

968	
-----	--

			E _{aj}	_{pp} (‰)								E b	_{io} (‰)						
	Tank	Miliania	C	C	C	C	Μ	iliacin			<i>n</i> -0	C ₂₅	1	n-C ₂₇		n	<i>i</i> -C ₃₁		1	<i>i</i> -C ₃₃	
		Miliacin	<i>n</i> -C ₂₅	$n-C_{27}$	$n-C_{31}$	<i>n</i> -C ₃₃	Median	Min	Max	Median	Min	Max	Median	Min	Max	Median	Min	Max	Median	Min	Max
	1	-63	-106	-82	-83	-88	-112	-116	-100	-153	-157	-141	-130	-134	-119	-131	-135	-119	-136	-140	-125
500/ DH	2	-75	-112	-141	-97	-92	-106	-114	-103	-142	-150	-139	-169	-177	-166	-127	-134	-124	-122	-130	-119
58% RH	3	-126	-170	-168	-158	-144	-112	-118	-105	-157	-163	-151	-155	-169	-149	-145	-150	-138	-131	-136	-124
	4	-153	-189	-187	-166	-165	-124	-130	-108	-161	-167	-146	-159	-164	-144	-137	-143	-122	-135	-141	-120
	1	-89	-123	-139	-129	-148	-127	-131	-112	-160	-163	-145	-175	-178	-160	-164	-168	-150	-184	-187	-169
- 40 (2	-100	-125	-153	-131	-124	-120	-121	-117	-145	-146	-142	-171	-172	-168	-150	-151	-147	-144	-145	-141
74% RH	3	-160	-176	-183	-185	-176	-125	-128	-121	-143	-146	-139	-149	-152	-145	-152	-155	-147	-142	-145	-138
	4	-184	-209	-213	-217	-217	-130	-132	-128	-156	-158	-155	-161	-163	-160	-166	-167	-164	-165	-167	-163
Overall a	verage	-119	-151	-158	-146	-144	-	-118			-151			-158			-145			-144	
Overall	Stdev	44	39	40	45	43		5	X		7			14			14			19	


Declaration of interests

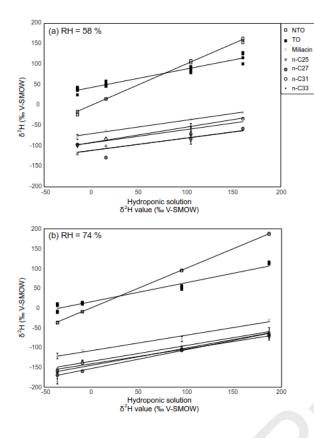
 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

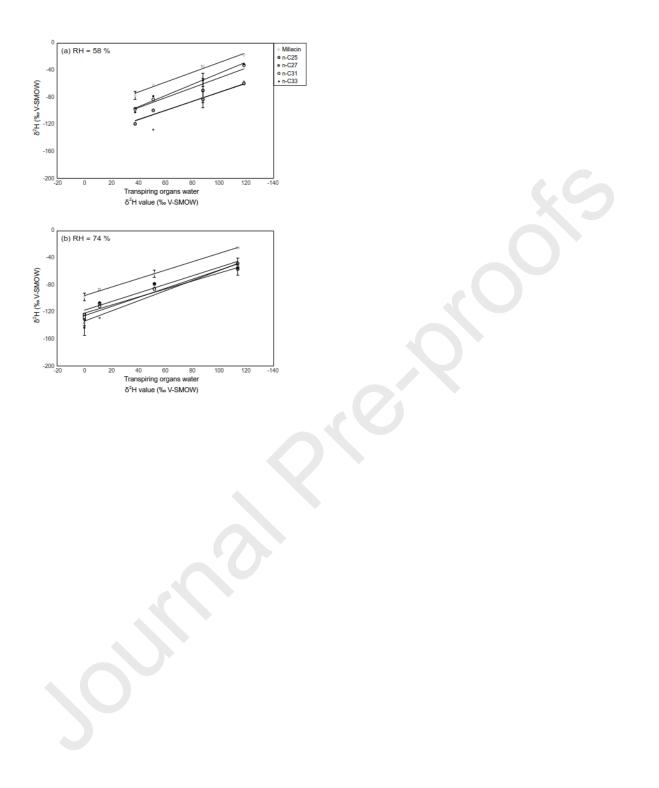
□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

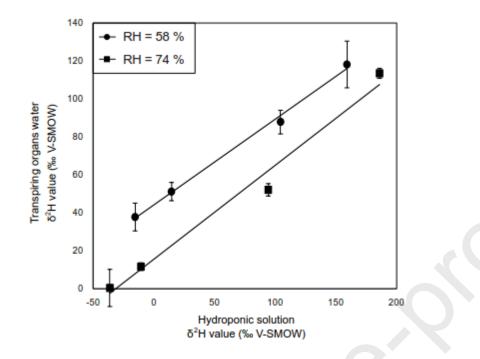

Journal Pre-proofs

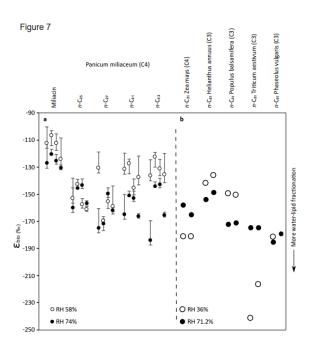
Figure 2

Relative humidity Photoperiod (h/h) Temperature (n/d) 12/12 18/23°C


		x5	×5	5
δ ² H (‰ V-SMOW) δ ¹⁵ O (‰ V-SMOW)	-15%0	15%e -2%o Tank 2	103%0 -2%0 Tank 3	100%0 -3%0 Tank 4




Journal Pre-proofs


Figure 3

